blob: b39974d1cf3d21a92744bd67d08d8d5504d484e0 [file] [log] [blame]
/*
* Control Flow plugin
*
* This plugin will track changes to control flow and detect where
* instructions fault.
*
* Copyright (c) 2024 Linaro Ltd
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
#include <glib.h>
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <qemu-plugin.h>
QEMU_PLUGIN_EXPORT int qemu_plugin_version = QEMU_PLUGIN_VERSION;
typedef enum {
SORT_HOTTEST, /* hottest branch insn */
SORT_EXCEPTION, /* most early exits */
SORT_POPDEST, /* most destinations (usually ret's) */
} ReportType;
ReportType report = SORT_HOTTEST;
int topn = 10;
typedef struct {
uint64_t daddr;
uint64_t dcount;
} DestData;
/* A node is an address where we can go to multiple places */
typedef struct {
GMutex lock;
/* address of the branch point */
uint64_t addr;
/* array of DestData */
GArray *dests;
/* early exit/fault count */
uint64_t early_exit;
/* jump destination count */
uint64_t dest_count;
/* instruction data */
char *insn_disas;
/* symbol? */
const char *symbol;
/* times translated as last in block? */
int last_count;
/* times translated in the middle of block? */
int mid_count;
} NodeData;
typedef enum {
/* last insn in block, expected flow control */
LAST_INSN = (1 << 0),
/* mid-block insn, can only be an exception */
EXCP_INSN = (1 << 1),
/* multiple disassembly, may have changed */
MULT_INSN = (1 << 2),
} InsnTypes;
typedef struct {
/* address of the branch point */
uint64_t addr;
/* disassembly */
char *insn_disas;
/* symbol? */
const char *symbol;
/* types */
InsnTypes type_flag;
} InsnData;
/* We use this to track the current execution state */
typedef struct {
/* address of end of block */
uint64_t end_block;
/* next pc after end of block */
uint64_t pc_after_block;
/* address of last executed PC */
uint64_t last_pc;
} VCPUScoreBoard;
/* descriptors for accessing the above scoreboard */
static qemu_plugin_u64 end_block;
static qemu_plugin_u64 pc_after_block;
static qemu_plugin_u64 last_pc;
static GMutex node_lock;
static GHashTable *nodes;
struct qemu_plugin_scoreboard *state;
/* SORT_HOTTEST */
static gint hottest(gconstpointer a, gconstpointer b)
{
NodeData *na = (NodeData *) a;
NodeData *nb = (NodeData *) b;
return na->dest_count > nb->dest_count ? -1 :
na->dest_count == nb->dest_count ? 0 : 1;
}
static gint exception(gconstpointer a, gconstpointer b)
{
NodeData *na = (NodeData *) a;
NodeData *nb = (NodeData *) b;
return na->early_exit > nb->early_exit ? -1 :
na->early_exit == nb->early_exit ? 0 : 1;
}
static gint popular(gconstpointer a, gconstpointer b)
{
NodeData *na = (NodeData *) a;
NodeData *nb = (NodeData *) b;
return na->dests->len > nb->dests->len ? -1 :
na->dests->len == nb->dests->len ? 0 : 1;
}
/* Filter out non-branches - returns true to remove entry */
static gboolean filter_non_branches(gpointer key, gpointer value,
gpointer user_data)
{
NodeData *node = (NodeData *) value;
return node->dest_count == 0;
}
static void plugin_exit(qemu_plugin_id_t id, void *p)
{
g_autoptr(GString) result = g_string_new("collected ");
GList *data;
GCompareFunc sort = &hottest;
int i = 0;
g_mutex_lock(&node_lock);
g_string_append_printf(result, "%d control flow nodes in the hash table\n",
g_hash_table_size(nodes));
/* remove all nodes that didn't branch */
g_hash_table_foreach_remove(nodes, filter_non_branches, NULL);
data = g_hash_table_get_values(nodes);
switch (report) {
case SORT_HOTTEST:
sort = &hottest;
break;
case SORT_EXCEPTION:
sort = &exception;
break;
case SORT_POPDEST:
sort = &popular;
break;
}
data = g_list_sort(data, sort);
for (GList *l = data;
l != NULL && i < topn;
l = l->next, i++) {
NodeData *n = l->data;
const char *type = n->mid_count ? "sync fault" : "branch";
g_string_append_printf(result, " addr: 0x%"PRIx64 " %s: %s (%s)\n",
n->addr, n->symbol, n->insn_disas, type);
if (n->early_exit) {
g_string_append_printf(result, " early exits %"PRId64"\n",
n->early_exit);
}
g_string_append_printf(result, " branches %"PRId64"\n",
n->dest_count);
for (int j = 0; j < n->dests->len; j++) {
DestData *dd = &g_array_index(n->dests, DestData, j);
g_string_append_printf(result, " to 0x%"PRIx64" (%"PRId64")\n",
dd->daddr, dd->dcount);
}
}
qemu_plugin_outs(result->str);
g_mutex_unlock(&node_lock);
}
static void plugin_init(void)
{
g_mutex_init(&node_lock);
nodes = g_hash_table_new(NULL, g_direct_equal);
state = qemu_plugin_scoreboard_new(sizeof(VCPUScoreBoard));
/* score board declarations */
end_block = qemu_plugin_scoreboard_u64_in_struct(state, VCPUScoreBoard,
end_block);
pc_after_block = qemu_plugin_scoreboard_u64_in_struct(state, VCPUScoreBoard,
pc_after_block);
last_pc = qemu_plugin_scoreboard_u64_in_struct(state, VCPUScoreBoard,
last_pc);
}
static NodeData *create_node(uint64_t addr)
{
NodeData *node = g_new0(NodeData, 1);
g_mutex_init(&node->lock);
node->addr = addr;
node->dests = g_array_new(true, true, sizeof(DestData));
return node;
}
static NodeData *fetch_node(uint64_t addr, bool create_if_not_found)
{
NodeData *node = NULL;
g_mutex_lock(&node_lock);
node = (NodeData *) g_hash_table_lookup(nodes, (gconstpointer) addr);
if (!node && create_if_not_found) {
node = create_node(addr);
g_hash_table_insert(nodes, (gpointer) addr, (gpointer) node);
}
g_mutex_unlock(&node_lock);
return node;
}
/*
* Called when we detect a non-linear execution (pc !=
* pc_after_block). This could be due to a fault causing some sort of
* exit exception (if last_pc != block_end) or just a taken branch.
*/
static void vcpu_tb_branched_exec(unsigned int cpu_index, void *udata)
{
uint64_t lpc = qemu_plugin_u64_get(last_pc, cpu_index);
uint64_t ebpc = qemu_plugin_u64_get(end_block, cpu_index);
uint64_t npc = qemu_plugin_u64_get(pc_after_block, cpu_index);
uint64_t pc = GPOINTER_TO_UINT(udata);
/* return early for address 0 */
if (!lpc) {
return;
}
NodeData *node = fetch_node(lpc, true);
DestData *data = NULL;
bool early_exit = (lpc != ebpc);
GArray *dests;
/* the condition should never hit */
g_assert(pc != npc);
g_mutex_lock(&node->lock);
if (early_exit) {
fprintf(stderr, "%s: pc=%"PRIx64", epbc=%"PRIx64
" npc=%"PRIx64", lpc=%"PRIx64"\n",
__func__, pc, ebpc, npc, lpc);
node->early_exit++;
if (!node->mid_count) {
/* count now as we've only just allocated */
node->mid_count++;
}
}
dests = node->dests;
for (int i = 0; i < dests->len; i++) {
if (g_array_index(dests, DestData, i).daddr == pc) {
data = &g_array_index(dests, DestData, i);
}
}
/* we've never seen this before, allocate a new entry */
if (!data) {
DestData new_entry = { .daddr = pc };
g_array_append_val(dests, new_entry);
data = &g_array_index(dests, DestData, dests->len - 1);
g_assert(data->daddr == pc);
}
data->dcount++;
node->dest_count++;
g_mutex_unlock(&node->lock);
}
/*
* At the start of each block we need to resolve two things:
*
* - is last_pc == block_end, if not we had an early exit
* - is start of block last_pc + insn width, if not we jumped
*
* Once those are dealt with we can instrument the rest of the
* instructions for their execution.
*
*/
static void vcpu_tb_trans(qemu_plugin_id_t id, struct qemu_plugin_tb *tb)
{
uint64_t pc = qemu_plugin_tb_vaddr(tb);
size_t insns = qemu_plugin_tb_n_insns(tb);
struct qemu_plugin_insn *first_insn = qemu_plugin_tb_get_insn(tb, 0);
struct qemu_plugin_insn *last_insn = qemu_plugin_tb_get_insn(tb, insns - 1);
/*
* check if we are executing linearly after the last block. We can
* handle both early block exits and normal branches in the
* callback if we hit it.
*/
gpointer udata = GUINT_TO_POINTER(pc);
qemu_plugin_register_vcpu_tb_exec_cond_cb(
tb, vcpu_tb_branched_exec, QEMU_PLUGIN_CB_NO_REGS,
QEMU_PLUGIN_COND_NE, pc_after_block, pc, udata);
/*
* Now we can set start/end for this block so the next block can
* check where we are at. Do this on the first instruction and not
* the TB so we don't get mixed up with above.
*/
qemu_plugin_register_vcpu_insn_exec_inline_per_vcpu(first_insn,
QEMU_PLUGIN_INLINE_STORE_U64,
end_block, qemu_plugin_insn_vaddr(last_insn));
qemu_plugin_register_vcpu_insn_exec_inline_per_vcpu(first_insn,
QEMU_PLUGIN_INLINE_STORE_U64,
pc_after_block,
qemu_plugin_insn_vaddr(last_insn) +
qemu_plugin_insn_size(last_insn));
for (int idx = 0; idx < qemu_plugin_tb_n_insns(tb); ++idx) {
struct qemu_plugin_insn *insn = qemu_plugin_tb_get_insn(tb, idx);
uint64_t ipc = qemu_plugin_insn_vaddr(insn);
/*
* If this is a potential branch point check if we could grab
* the disassembly for it. If it is the last instruction
* always create an entry.
*/
NodeData *node = fetch_node(ipc, last_insn);
if (node) {
g_mutex_lock(&node->lock);
if (!node->insn_disas) {
node->insn_disas = qemu_plugin_insn_disas(insn);
}
if (!node->symbol) {
node->symbol = qemu_plugin_insn_symbol(insn);
}
if (last_insn == insn) {
node->last_count++;
} else {
node->mid_count++;
}
g_mutex_unlock(&node->lock);
}
/* Store the PC of what we are about to execute */
qemu_plugin_register_vcpu_insn_exec_inline_per_vcpu(insn,
QEMU_PLUGIN_INLINE_STORE_U64,
last_pc, ipc);
}
}
QEMU_PLUGIN_EXPORT
int qemu_plugin_install(qemu_plugin_id_t id, const qemu_info_t *info,
int argc, char **argv)
{
for (int i = 0; i < argc; i++) {
char *opt = argv[i];
g_auto(GStrv) tokens = g_strsplit(opt, "=", 2);
if (g_strcmp0(tokens[0], "sort") == 0) {
if (g_strcmp0(tokens[1], "hottest") == 0) {
report = SORT_HOTTEST;
} else if (g_strcmp0(tokens[1], "early") == 0) {
report = SORT_EXCEPTION;
} else if (g_strcmp0(tokens[1], "exceptions") == 0) {
report = SORT_POPDEST;
} else {
fprintf(stderr, "failed to parse: %s\n", tokens[1]);
return -1;
}
} else {
fprintf(stderr, "option parsing failed: %s\n", opt);
return -1;
}
}
plugin_init();
qemu_plugin_register_vcpu_tb_trans_cb(id, vcpu_tb_trans);
qemu_plugin_register_atexit_cb(id, plugin_exit, NULL);
return 0;
}