| /* |
| * QEMU model of the Smartfusion2 Ethernet MAC. |
| * |
| * Copyright (c) 2020 Subbaraya Sundeep <sundeep.lkml@gmail.com>. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| * |
| * Refer to section Ethernet MAC in the document: |
| * UG0331: SmartFusion2 Microcontroller Subsystem User Guide |
| * Datasheet URL: |
| * https://www.microsemi.com/document-portal/cat_view/56661-internal-documents/ |
| * 56758-soc?lang=en&limit=20&limitstart=220 |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/log.h" |
| #include "qapi/error.h" |
| #include "hw/registerfields.h" |
| #include "hw/net/msf2-emac.h" |
| #include "hw/net/mii.h" |
| #include "hw/irq.h" |
| #include "hw/qdev-properties.h" |
| #include "migration/vmstate.h" |
| |
| REG32(CFG1, 0x0) |
| FIELD(CFG1, RESET, 31, 1) |
| FIELD(CFG1, RX_EN, 2, 1) |
| FIELD(CFG1, TX_EN, 0, 1) |
| FIELD(CFG1, LB_EN, 8, 1) |
| REG32(CFG2, 0x4) |
| REG32(IFG, 0x8) |
| REG32(HALF_DUPLEX, 0xc) |
| REG32(MAX_FRAME_LENGTH, 0x10) |
| REG32(MII_CMD, 0x24) |
| FIELD(MII_CMD, READ, 0, 1) |
| REG32(MII_ADDR, 0x28) |
| FIELD(MII_ADDR, REGADDR, 0, 5) |
| FIELD(MII_ADDR, PHYADDR, 8, 5) |
| REG32(MII_CTL, 0x2c) |
| REG32(MII_STS, 0x30) |
| REG32(STA1, 0x40) |
| REG32(STA2, 0x44) |
| REG32(FIFO_CFG0, 0x48) |
| REG32(FIFO_CFG4, 0x58) |
| FIELD(FIFO_CFG4, BCAST, 9, 1) |
| FIELD(FIFO_CFG4, MCAST, 8, 1) |
| REG32(FIFO_CFG5, 0x5C) |
| FIELD(FIFO_CFG5, BCAST, 9, 1) |
| FIELD(FIFO_CFG5, MCAST, 8, 1) |
| REG32(DMA_TX_CTL, 0x180) |
| FIELD(DMA_TX_CTL, EN, 0, 1) |
| REG32(DMA_TX_DESC, 0x184) |
| REG32(DMA_TX_STATUS, 0x188) |
| FIELD(DMA_TX_STATUS, PKTCNT, 16, 8) |
| FIELD(DMA_TX_STATUS, UNDERRUN, 1, 1) |
| FIELD(DMA_TX_STATUS, PKT_SENT, 0, 1) |
| REG32(DMA_RX_CTL, 0x18c) |
| FIELD(DMA_RX_CTL, EN, 0, 1) |
| REG32(DMA_RX_DESC, 0x190) |
| REG32(DMA_RX_STATUS, 0x194) |
| FIELD(DMA_RX_STATUS, PKTCNT, 16, 8) |
| FIELD(DMA_RX_STATUS, OVERFLOW, 2, 1) |
| FIELD(DMA_RX_STATUS, PKT_RCVD, 0, 1) |
| REG32(DMA_IRQ_MASK, 0x198) |
| REG32(DMA_IRQ, 0x19c) |
| |
| #define EMPTY_MASK (1 << 31) |
| #define PKT_SIZE 0x7FF |
| #define PHYADDR 0x1 |
| #define MAX_PKT_SIZE 2048 |
| |
| typedef struct { |
| uint32_t pktaddr; |
| uint32_t pktsize; |
| uint32_t next; |
| } EmacDesc; |
| |
| static uint32_t emac_get_isr(MSF2EmacState *s) |
| { |
| uint32_t ier = s->regs[R_DMA_IRQ_MASK]; |
| uint32_t tx = s->regs[R_DMA_TX_STATUS] & 0xF; |
| uint32_t rx = s->regs[R_DMA_RX_STATUS] & 0xF; |
| uint32_t isr = (rx << 4) | tx; |
| |
| s->regs[R_DMA_IRQ] = ier & isr; |
| return s->regs[R_DMA_IRQ]; |
| } |
| |
| static void emac_update_irq(MSF2EmacState *s) |
| { |
| bool intr = emac_get_isr(s); |
| |
| qemu_set_irq(s->irq, intr); |
| } |
| |
| static void emac_load_desc(MSF2EmacState *s, EmacDesc *d, hwaddr desc) |
| { |
| address_space_read(&s->dma_as, desc, MEMTXATTRS_UNSPECIFIED, d, sizeof *d); |
| /* Convert from LE into host endianness. */ |
| d->pktaddr = le32_to_cpu(d->pktaddr); |
| d->pktsize = le32_to_cpu(d->pktsize); |
| d->next = le32_to_cpu(d->next); |
| } |
| |
| static void emac_store_desc(MSF2EmacState *s, const EmacDesc *d, hwaddr desc) |
| { |
| EmacDesc outd; |
| /* |
| * Convert from host endianness into LE. We use a local struct because |
| * calling code may still want to look at the fields afterwards. |
| */ |
| outd.pktaddr = cpu_to_le32(d->pktaddr); |
| outd.pktsize = cpu_to_le32(d->pktsize); |
| outd.next = cpu_to_le32(d->next); |
| |
| address_space_write(&s->dma_as, desc, MEMTXATTRS_UNSPECIFIED, &outd, sizeof outd); |
| } |
| |
| static void msf2_dma_tx(MSF2EmacState *s) |
| { |
| NetClientState *nc = qemu_get_queue(s->nic); |
| hwaddr desc = s->regs[R_DMA_TX_DESC]; |
| uint8_t buf[MAX_PKT_SIZE]; |
| EmacDesc d; |
| int size; |
| uint8_t pktcnt; |
| uint32_t status; |
| |
| if (!(s->regs[R_CFG1] & R_CFG1_TX_EN_MASK)) { |
| return; |
| } |
| |
| while (1) { |
| emac_load_desc(s, &d, desc); |
| if (d.pktsize & EMPTY_MASK) { |
| break; |
| } |
| size = d.pktsize & PKT_SIZE; |
| address_space_read(&s->dma_as, d.pktaddr, MEMTXATTRS_UNSPECIFIED, |
| buf, size); |
| /* |
| * This is very basic way to send packets. Ideally there should be |
| * a FIFO and packets should be sent out from FIFO only when |
| * R_CFG1 bit 0 is set. |
| */ |
| if (s->regs[R_CFG1] & R_CFG1_LB_EN_MASK) { |
| qemu_receive_packet(nc, buf, size); |
| } else { |
| qemu_send_packet(nc, buf, size); |
| } |
| d.pktsize |= EMPTY_MASK; |
| emac_store_desc(s, &d, desc); |
| /* update sent packets count */ |
| status = s->regs[R_DMA_TX_STATUS]; |
| pktcnt = FIELD_EX32(status, DMA_TX_STATUS, PKTCNT); |
| pktcnt++; |
| s->regs[R_DMA_TX_STATUS] = FIELD_DP32(status, DMA_TX_STATUS, |
| PKTCNT, pktcnt); |
| s->regs[R_DMA_TX_STATUS] |= R_DMA_TX_STATUS_PKT_SENT_MASK; |
| desc = d.next; |
| } |
| s->regs[R_DMA_TX_STATUS] |= R_DMA_TX_STATUS_UNDERRUN_MASK; |
| s->regs[R_DMA_TX_CTL] &= ~R_DMA_TX_CTL_EN_MASK; |
| } |
| |
| static void msf2_phy_update_link(MSF2EmacState *s) |
| { |
| /* Autonegotiation status mirrors link status. */ |
| if (qemu_get_queue(s->nic)->link_down) { |
| s->phy_regs[MII_BMSR] &= ~(MII_BMSR_AN_COMP | |
| MII_BMSR_LINK_ST); |
| } else { |
| s->phy_regs[MII_BMSR] |= (MII_BMSR_AN_COMP | |
| MII_BMSR_LINK_ST); |
| } |
| } |
| |
| static void msf2_phy_reset(MSF2EmacState *s) |
| { |
| memset(&s->phy_regs[0], 0, sizeof(s->phy_regs)); |
| s->phy_regs[MII_BMCR] = 0x1140; |
| s->phy_regs[MII_BMSR] = 0x7968; |
| s->phy_regs[MII_PHYID1] = 0x0022; |
| s->phy_regs[MII_PHYID2] = 0x1550; |
| s->phy_regs[MII_ANAR] = 0x01E1; |
| s->phy_regs[MII_ANLPAR] = 0xCDE1; |
| |
| msf2_phy_update_link(s); |
| } |
| |
| static void write_to_phy(MSF2EmacState *s) |
| { |
| uint8_t reg_addr = s->regs[R_MII_ADDR] & R_MII_ADDR_REGADDR_MASK; |
| uint8_t phy_addr = (s->regs[R_MII_ADDR] >> R_MII_ADDR_PHYADDR_SHIFT) & |
| R_MII_ADDR_REGADDR_MASK; |
| uint16_t data = s->regs[R_MII_CTL] & 0xFFFF; |
| |
| if (phy_addr != PHYADDR) { |
| return; |
| } |
| |
| switch (reg_addr) { |
| case MII_BMCR: |
| if (data & MII_BMCR_RESET) { |
| /* Phy reset */ |
| msf2_phy_reset(s); |
| data &= ~MII_BMCR_RESET; |
| } |
| if (data & MII_BMCR_AUTOEN) { |
| /* Complete autonegotiation immediately */ |
| data &= ~MII_BMCR_AUTOEN; |
| s->phy_regs[MII_BMSR] |= MII_BMSR_AN_COMP; |
| } |
| break; |
| } |
| |
| s->phy_regs[reg_addr] = data; |
| } |
| |
| static uint16_t read_from_phy(MSF2EmacState *s) |
| { |
| uint8_t reg_addr = s->regs[R_MII_ADDR] & R_MII_ADDR_REGADDR_MASK; |
| uint8_t phy_addr = (s->regs[R_MII_ADDR] >> R_MII_ADDR_PHYADDR_SHIFT) & |
| R_MII_ADDR_REGADDR_MASK; |
| |
| if (phy_addr == PHYADDR) { |
| return s->phy_regs[reg_addr]; |
| } else { |
| return 0xFFFF; |
| } |
| } |
| |
| static void msf2_emac_do_reset(MSF2EmacState *s) |
| { |
| memset(&s->regs[0], 0, sizeof(s->regs)); |
| s->regs[R_CFG1] = 0x80000000; |
| s->regs[R_CFG2] = 0x00007000; |
| s->regs[R_IFG] = 0x40605060; |
| s->regs[R_HALF_DUPLEX] = 0x00A1F037; |
| s->regs[R_MAX_FRAME_LENGTH] = 0x00000600; |
| s->regs[R_FIFO_CFG5] = 0X3FFFF; |
| |
| msf2_phy_reset(s); |
| } |
| |
| static uint64_t emac_read(void *opaque, hwaddr addr, unsigned int size) |
| { |
| MSF2EmacState *s = opaque; |
| uint32_t r = 0; |
| |
| addr >>= 2; |
| |
| switch (addr) { |
| case R_DMA_IRQ: |
| r = emac_get_isr(s); |
| break; |
| default: |
| if (addr >= ARRAY_SIZE(s->regs)) { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "%s: Bad offset 0x%" HWADDR_PRIx "\n", __func__, |
| addr * 4); |
| return r; |
| } |
| r = s->regs[addr]; |
| break; |
| } |
| return r; |
| } |
| |
| static void emac_write(void *opaque, hwaddr addr, uint64_t val64, |
| unsigned int size) |
| { |
| MSF2EmacState *s = opaque; |
| uint32_t value = val64; |
| uint32_t enreqbits; |
| uint8_t pktcnt; |
| |
| addr >>= 2; |
| switch (addr) { |
| case R_DMA_TX_CTL: |
| s->regs[addr] = value; |
| if (value & R_DMA_TX_CTL_EN_MASK) { |
| msf2_dma_tx(s); |
| } |
| break; |
| case R_DMA_RX_CTL: |
| s->regs[addr] = value; |
| if (value & R_DMA_RX_CTL_EN_MASK) { |
| s->rx_desc = s->regs[R_DMA_RX_DESC]; |
| qemu_flush_queued_packets(qemu_get_queue(s->nic)); |
| } |
| break; |
| case R_CFG1: |
| s->regs[addr] = value; |
| if (value & R_CFG1_RESET_MASK) { |
| msf2_emac_do_reset(s); |
| } |
| break; |
| case R_FIFO_CFG0: |
| /* |
| * For our implementation, turning on modules is instantaneous, |
| * so the states requested via the *ENREQ bits appear in the |
| * *ENRPLY bits immediately. Also the reset bits to reset PE-MCXMAC |
| * module are not emulated here since it deals with start of frames, |
| * inter-packet gap and control frames. |
| */ |
| enreqbits = extract32(value, 8, 5); |
| s->regs[addr] = deposit32(value, 16, 5, enreqbits); |
| break; |
| case R_DMA_TX_DESC: |
| if (value & 0x3) { |
| qemu_log_mask(LOG_GUEST_ERROR, "Tx Descriptor address should be" |
| " 32 bit aligned\n"); |
| } |
| /* Ignore [1:0] bits */ |
| s->regs[addr] = value & ~3; |
| break; |
| case R_DMA_RX_DESC: |
| if (value & 0x3) { |
| qemu_log_mask(LOG_GUEST_ERROR, "Rx Descriptor address should be" |
| " 32 bit aligned\n"); |
| } |
| /* Ignore [1:0] bits */ |
| s->regs[addr] = value & ~3; |
| break; |
| case R_DMA_TX_STATUS: |
| if (value & R_DMA_TX_STATUS_UNDERRUN_MASK) { |
| s->regs[addr] &= ~R_DMA_TX_STATUS_UNDERRUN_MASK; |
| } |
| if (value & R_DMA_TX_STATUS_PKT_SENT_MASK) { |
| pktcnt = FIELD_EX32(s->regs[addr], DMA_TX_STATUS, PKTCNT); |
| pktcnt--; |
| s->regs[addr] = FIELD_DP32(s->regs[addr], DMA_TX_STATUS, |
| PKTCNT, pktcnt); |
| if (pktcnt == 0) { |
| s->regs[addr] &= ~R_DMA_TX_STATUS_PKT_SENT_MASK; |
| } |
| } |
| break; |
| case R_DMA_RX_STATUS: |
| if (value & R_DMA_RX_STATUS_OVERFLOW_MASK) { |
| s->regs[addr] &= ~R_DMA_RX_STATUS_OVERFLOW_MASK; |
| } |
| if (value & R_DMA_RX_STATUS_PKT_RCVD_MASK) { |
| pktcnt = FIELD_EX32(s->regs[addr], DMA_RX_STATUS, PKTCNT); |
| pktcnt--; |
| s->regs[addr] = FIELD_DP32(s->regs[addr], DMA_RX_STATUS, |
| PKTCNT, pktcnt); |
| if (pktcnt == 0) { |
| s->regs[addr] &= ~R_DMA_RX_STATUS_PKT_RCVD_MASK; |
| } |
| } |
| break; |
| case R_DMA_IRQ: |
| break; |
| case R_MII_CMD: |
| if (value & R_MII_CMD_READ_MASK) { |
| s->regs[R_MII_STS] = read_from_phy(s); |
| } |
| break; |
| case R_MII_CTL: |
| s->regs[addr] = value; |
| write_to_phy(s); |
| break; |
| case R_STA1: |
| s->regs[addr] = value; |
| /* |
| * R_STA1 [31:24] : octet 1 of mac address |
| * R_STA1 [23:16] : octet 2 of mac address |
| * R_STA1 [15:8] : octet 3 of mac address |
| * R_STA1 [7:0] : octet 4 of mac address |
| */ |
| stl_be_p(s->mac_addr, value); |
| break; |
| case R_STA2: |
| s->regs[addr] = value; |
| /* |
| * R_STA2 [31:24] : octet 5 of mac address |
| * R_STA2 [23:16] : octet 6 of mac address |
| */ |
| stw_be_p(s->mac_addr + 4, value >> 16); |
| break; |
| default: |
| if (addr >= ARRAY_SIZE(s->regs)) { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "%s: Bad offset 0x%" HWADDR_PRIx "\n", __func__, |
| addr * 4); |
| return; |
| } |
| s->regs[addr] = value; |
| break; |
| } |
| emac_update_irq(s); |
| } |
| |
| static const MemoryRegionOps emac_ops = { |
| .read = emac_read, |
| .write = emac_write, |
| .endianness = DEVICE_NATIVE_ENDIAN, |
| .impl = { |
| .min_access_size = 4, |
| .max_access_size = 4 |
| } |
| }; |
| |
| static bool emac_can_rx(NetClientState *nc) |
| { |
| MSF2EmacState *s = qemu_get_nic_opaque(nc); |
| |
| return (s->regs[R_CFG1] & R_CFG1_RX_EN_MASK) && |
| (s->regs[R_DMA_RX_CTL] & R_DMA_RX_CTL_EN_MASK); |
| } |
| |
| static bool addr_filter_ok(MSF2EmacState *s, const uint8_t *buf) |
| { |
| /* The broadcast MAC address: FF:FF:FF:FF:FF:FF */ |
| const uint8_t broadcast_addr[] = { 0xFF, 0xFF, 0xFF, 0xFF, |
| 0xFF, 0xFF }; |
| bool bcast_en = true; |
| bool mcast_en = true; |
| |
| if (s->regs[R_FIFO_CFG5] & R_FIFO_CFG5_BCAST_MASK) { |
| bcast_en = true; /* Broadcast dont care for drop circuitry */ |
| } else if (s->regs[R_FIFO_CFG4] & R_FIFO_CFG4_BCAST_MASK) { |
| bcast_en = false; |
| } |
| |
| if (s->regs[R_FIFO_CFG5] & R_FIFO_CFG5_MCAST_MASK) { |
| mcast_en = true; /* Multicast dont care for drop circuitry */ |
| } else if (s->regs[R_FIFO_CFG4] & R_FIFO_CFG4_MCAST_MASK) { |
| mcast_en = false; |
| } |
| |
| if (!memcmp(buf, broadcast_addr, sizeof(broadcast_addr))) { |
| return bcast_en; |
| } |
| |
| if (buf[0] & 1) { |
| return mcast_en; |
| } |
| |
| return !memcmp(buf, s->mac_addr, sizeof(s->mac_addr)); |
| } |
| |
| static ssize_t emac_rx(NetClientState *nc, const uint8_t *buf, size_t size) |
| { |
| MSF2EmacState *s = qemu_get_nic_opaque(nc); |
| EmacDesc d; |
| uint8_t pktcnt; |
| uint32_t status; |
| |
| if (size > (s->regs[R_MAX_FRAME_LENGTH] & 0xFFFF)) { |
| return size; |
| } |
| if (!addr_filter_ok(s, buf)) { |
| return size; |
| } |
| |
| emac_load_desc(s, &d, s->rx_desc); |
| |
| if (d.pktsize & EMPTY_MASK) { |
| address_space_write(&s->dma_as, d.pktaddr, MEMTXATTRS_UNSPECIFIED, |
| buf, size & PKT_SIZE); |
| d.pktsize = size & PKT_SIZE; |
| emac_store_desc(s, &d, s->rx_desc); |
| /* update received packets count */ |
| status = s->regs[R_DMA_RX_STATUS]; |
| pktcnt = FIELD_EX32(status, DMA_RX_STATUS, PKTCNT); |
| pktcnt++; |
| s->regs[R_DMA_RX_STATUS] = FIELD_DP32(status, DMA_RX_STATUS, |
| PKTCNT, pktcnt); |
| s->regs[R_DMA_RX_STATUS] |= R_DMA_RX_STATUS_PKT_RCVD_MASK; |
| s->rx_desc = d.next; |
| } else { |
| s->regs[R_DMA_RX_CTL] &= ~R_DMA_RX_CTL_EN_MASK; |
| s->regs[R_DMA_RX_STATUS] |= R_DMA_RX_STATUS_OVERFLOW_MASK; |
| } |
| emac_update_irq(s); |
| return size; |
| } |
| |
| static void msf2_emac_reset(DeviceState *dev) |
| { |
| MSF2EmacState *s = MSS_EMAC(dev); |
| |
| msf2_emac_do_reset(s); |
| } |
| |
| static void emac_set_link(NetClientState *nc) |
| { |
| MSF2EmacState *s = qemu_get_nic_opaque(nc); |
| |
| msf2_phy_update_link(s); |
| } |
| |
| static NetClientInfo net_msf2_emac_info = { |
| .type = NET_CLIENT_DRIVER_NIC, |
| .size = sizeof(NICState), |
| .can_receive = emac_can_rx, |
| .receive = emac_rx, |
| .link_status_changed = emac_set_link, |
| }; |
| |
| static void msf2_emac_realize(DeviceState *dev, Error **errp) |
| { |
| MSF2EmacState *s = MSS_EMAC(dev); |
| |
| if (!s->dma_mr) { |
| error_setg(errp, "MSS_EMAC 'ahb-bus' link not set"); |
| return; |
| } |
| |
| address_space_init(&s->dma_as, s->dma_mr, "emac-ahb"); |
| |
| qemu_macaddr_default_if_unset(&s->conf.macaddr); |
| s->nic = qemu_new_nic(&net_msf2_emac_info, &s->conf, |
| object_get_typename(OBJECT(dev)), dev->id, |
| &dev->mem_reentrancy_guard, s); |
| qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a); |
| } |
| |
| static void msf2_emac_init(Object *obj) |
| { |
| MSF2EmacState *s = MSS_EMAC(obj); |
| |
| sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->irq); |
| |
| memory_region_init_io(&s->mmio, obj, &emac_ops, s, |
| "msf2-emac", R_MAX * 4); |
| sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->mmio); |
| } |
| |
| static Property msf2_emac_properties[] = { |
| DEFINE_PROP_LINK("ahb-bus", MSF2EmacState, dma_mr, |
| TYPE_MEMORY_REGION, MemoryRegion *), |
| DEFINE_NIC_PROPERTIES(MSF2EmacState, conf), |
| DEFINE_PROP_END_OF_LIST(), |
| }; |
| |
| static const VMStateDescription vmstate_msf2_emac = { |
| .name = TYPE_MSS_EMAC, |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .fields = (const VMStateField[]) { |
| VMSTATE_UINT8_ARRAY(mac_addr, MSF2EmacState, ETH_ALEN), |
| VMSTATE_UINT32(rx_desc, MSF2EmacState), |
| VMSTATE_UINT16_ARRAY(phy_regs, MSF2EmacState, PHY_MAX_REGS), |
| VMSTATE_UINT32_ARRAY(regs, MSF2EmacState, R_MAX), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| static void msf2_emac_class_init(ObjectClass *klass, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| |
| dc->realize = msf2_emac_realize; |
| device_class_set_legacy_reset(dc, msf2_emac_reset); |
| dc->vmsd = &vmstate_msf2_emac; |
| device_class_set_props(dc, msf2_emac_properties); |
| } |
| |
| static const TypeInfo msf2_emac_info = { |
| .name = TYPE_MSS_EMAC, |
| .parent = TYPE_SYS_BUS_DEVICE, |
| .instance_size = sizeof(MSF2EmacState), |
| .instance_init = msf2_emac_init, |
| .class_init = msf2_emac_class_init, |
| }; |
| |
| static void msf2_emac_register_types(void) |
| { |
| type_register_static(&msf2_emac_info); |
| } |
| |
| type_init(msf2_emac_register_types) |