| /* |
| * QEMU PowerPC pSeries Logical Partition NUMA associativity handling |
| * |
| * Copyright IBM Corp. 2020 |
| * |
| * Authors: |
| * Daniel Henrique Barboza <danielhb413@gmail.com> |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2 or later. |
| * See the COPYING file in the top-level directory. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu-common.h" |
| #include "hw/ppc/spapr_numa.h" |
| #include "hw/pci-host/spapr.h" |
| #include "hw/ppc/fdt.h" |
| |
| /* Moved from hw/ppc/spapr_pci_nvlink2.c */ |
| #define SPAPR_GPU_NUMA_ID (cpu_to_be32(1)) |
| |
| static bool spapr_numa_is_symmetrical(MachineState *ms) |
| { |
| int src, dst; |
| int nb_numa_nodes = ms->numa_state->num_nodes; |
| NodeInfo *numa_info = ms->numa_state->nodes; |
| |
| for (src = 0; src < nb_numa_nodes; src++) { |
| for (dst = src; dst < nb_numa_nodes; dst++) { |
| if (numa_info[src].distance[dst] != |
| numa_info[dst].distance[src]) { |
| return false; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| /* |
| * This function will translate the user distances into |
| * what the kernel understand as possible values: 10 |
| * (local distance), 20, 40, 80 and 160, and return the equivalent |
| * NUMA level for each. Current heuristic is: |
| * - local distance (10) returns numa_level = 0x4, meaning there is |
| * no rounding for local distance |
| * - distances between 11 and 30 inclusive -> rounded to 20, |
| * numa_level = 0x3 |
| * - distances between 31 and 60 inclusive -> rounded to 40, |
| * numa_level = 0x2 |
| * - distances between 61 and 120 inclusive -> rounded to 80, |
| * numa_level = 0x1 |
| * - everything above 120 returns numa_level = 0 to indicate that |
| * there is no match. This will be calculated as disntace = 160 |
| * by the kernel (as of v5.9) |
| */ |
| static uint8_t spapr_numa_get_numa_level(uint8_t distance) |
| { |
| if (distance == 10) { |
| return 0x4; |
| } else if (distance > 11 && distance <= 30) { |
| return 0x3; |
| } else if (distance > 31 && distance <= 60) { |
| return 0x2; |
| } else if (distance > 61 && distance <= 120) { |
| return 0x1; |
| } |
| |
| return 0; |
| } |
| |
| static void spapr_numa_define_associativity_domains(SpaprMachineState *spapr) |
| { |
| MachineState *ms = MACHINE(spapr); |
| NodeInfo *numa_info = ms->numa_state->nodes; |
| int nb_numa_nodes = ms->numa_state->num_nodes; |
| int src, dst, i; |
| |
| for (src = 0; src < nb_numa_nodes; src++) { |
| for (dst = src; dst < nb_numa_nodes; dst++) { |
| /* |
| * This is how the associativity domain between A and B |
| * is calculated: |
| * |
| * - get the distance D between them |
| * - get the correspondent NUMA level 'n_level' for D |
| * - all associativity arrays were initialized with their own |
| * numa_ids, and we're calculating the distance in node_id |
| * ascending order, starting from node id 0 (the first node |
| * retrieved by numa_state). This will have a cascade effect in |
| * the algorithm because the associativity domains that node 0 |
| * defines will be carried over to other nodes, and node 1 |
| * associativities will be carried over after taking node 0 |
| * associativities into account, and so on. This happens because |
| * we'll assign assoc_src as the associativity domain of dst |
| * as well, for all NUMA levels beyond and including n_level. |
| * |
| * The PPC kernel expects the associativity domains of node 0 to |
| * be always 0, and this algorithm will grant that by default. |
| */ |
| uint8_t distance = numa_info[src].distance[dst]; |
| uint8_t n_level = spapr_numa_get_numa_level(distance); |
| uint32_t assoc_src; |
| |
| /* |
| * n_level = 0 means that the distance is greater than our last |
| * rounded value (120). In this case there is no NUMA level match |
| * between src and dst and we can skip the remaining of the loop. |
| * |
| * The Linux kernel will assume that the distance between src and |
| * dst, in this case of no match, is 10 (local distance) doubled |
| * for each NUMA it didn't match. We have MAX_DISTANCE_REF_POINTS |
| * levels (4), so this gives us 10*2*2*2*2 = 160. |
| * |
| * This logic can be seen in the Linux kernel source code, as of |
| * v5.9, in arch/powerpc/mm/numa.c, function __node_distance(). |
| */ |
| if (n_level == 0) { |
| continue; |
| } |
| |
| /* |
| * We must assign all assoc_src to dst, starting from n_level |
| * and going up to 0x1. |
| */ |
| for (i = n_level; i > 0; i--) { |
| assoc_src = spapr->numa_assoc_array[src][i]; |
| spapr->numa_assoc_array[dst][i] = assoc_src; |
| } |
| } |
| } |
| |
| } |
| |
| void spapr_numa_associativity_init(SpaprMachineState *spapr, |
| MachineState *machine) |
| { |
| SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); |
| int nb_numa_nodes = machine->numa_state->num_nodes; |
| int i, j, max_nodes_with_gpus; |
| bool using_legacy_numa = spapr_machine_using_legacy_numa(spapr); |
| |
| /* |
| * For all associativity arrays: first position is the size, |
| * position MAX_DISTANCE_REF_POINTS is always the numa_id, |
| * represented by the index 'i'. |
| * |
| * This will break on sparse NUMA setups, when/if QEMU starts |
| * to support it, because there will be no more guarantee that |
| * 'i' will be a valid node_id set by the user. |
| */ |
| for (i = 0; i < nb_numa_nodes; i++) { |
| spapr->numa_assoc_array[i][0] = cpu_to_be32(MAX_DISTANCE_REF_POINTS); |
| spapr->numa_assoc_array[i][MAX_DISTANCE_REF_POINTS] = cpu_to_be32(i); |
| |
| /* |
| * Fill all associativity domains of non-zero NUMA nodes with |
| * node_id. This is required because the default value (0) is |
| * considered a match with associativity domains of node 0. |
| */ |
| if (!using_legacy_numa && i != 0) { |
| for (j = 1; j < MAX_DISTANCE_REF_POINTS; j++) { |
| spapr->numa_assoc_array[i][j] = cpu_to_be32(i); |
| } |
| } |
| } |
| |
| /* |
| * Initialize NVLink GPU associativity arrays. We know that |
| * the first GPU will take the first available NUMA id, and |
| * we'll have a maximum of NVGPU_MAX_NUM GPUs in the machine. |
| * At this point we're not sure if there are GPUs or not, but |
| * let's initialize the associativity arrays and allow NVLink |
| * GPUs to be handled like regular NUMA nodes later on. |
| */ |
| max_nodes_with_gpus = nb_numa_nodes + NVGPU_MAX_NUM; |
| |
| for (i = nb_numa_nodes; i < max_nodes_with_gpus; i++) { |
| spapr->numa_assoc_array[i][0] = cpu_to_be32(MAX_DISTANCE_REF_POINTS); |
| |
| for (j = 1; j < MAX_DISTANCE_REF_POINTS; j++) { |
| uint32_t gpu_assoc = smc->pre_5_1_assoc_refpoints ? |
| SPAPR_GPU_NUMA_ID : cpu_to_be32(i); |
| spapr->numa_assoc_array[i][j] = gpu_assoc; |
| } |
| |
| spapr->numa_assoc_array[i][MAX_DISTANCE_REF_POINTS] = cpu_to_be32(i); |
| } |
| |
| /* |
| * Legacy NUMA guests (pseries-5.1 and older, or guests with only |
| * 1 NUMA node) will not benefit from anything we're going to do |
| * after this point. |
| */ |
| if (using_legacy_numa) { |
| return; |
| } |
| |
| if (!spapr_numa_is_symmetrical(machine)) { |
| error_report("Asymmetrical NUMA topologies aren't supported " |
| "in the pSeries machine"); |
| exit(EXIT_FAILURE); |
| } |
| |
| spapr_numa_define_associativity_domains(spapr); |
| } |
| |
| void spapr_numa_write_associativity_dt(SpaprMachineState *spapr, void *fdt, |
| int offset, int nodeid) |
| { |
| _FDT((fdt_setprop(fdt, offset, "ibm,associativity", |
| spapr->numa_assoc_array[nodeid], |
| sizeof(spapr->numa_assoc_array[nodeid])))); |
| } |
| |
| static uint32_t *spapr_numa_get_vcpu_assoc(SpaprMachineState *spapr, |
| PowerPCCPU *cpu) |
| { |
| uint32_t *vcpu_assoc = g_new(uint32_t, VCPU_ASSOC_SIZE); |
| int index = spapr_get_vcpu_id(cpu); |
| |
| /* |
| * VCPUs have an extra 'cpu_id' value in ibm,associativity |
| * compared to other resources. Increment the size at index |
| * 0, put cpu_id last, then copy the remaining associativity |
| * domains. |
| */ |
| vcpu_assoc[0] = cpu_to_be32(MAX_DISTANCE_REF_POINTS + 1); |
| vcpu_assoc[VCPU_ASSOC_SIZE - 1] = cpu_to_be32(index); |
| memcpy(vcpu_assoc + 1, spapr->numa_assoc_array[cpu->node_id] + 1, |
| (VCPU_ASSOC_SIZE - 2) * sizeof(uint32_t)); |
| |
| return vcpu_assoc; |
| } |
| |
| int spapr_numa_fixup_cpu_dt(SpaprMachineState *spapr, void *fdt, |
| int offset, PowerPCCPU *cpu) |
| { |
| g_autofree uint32_t *vcpu_assoc = NULL; |
| |
| vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, cpu); |
| |
| /* Advertise NUMA via ibm,associativity */ |
| return fdt_setprop(fdt, offset, "ibm,associativity", vcpu_assoc, |
| VCPU_ASSOC_SIZE * sizeof(uint32_t)); |
| } |
| |
| |
| int spapr_numa_write_assoc_lookup_arrays(SpaprMachineState *spapr, void *fdt, |
| int offset) |
| { |
| MachineState *machine = MACHINE(spapr); |
| int nb_numa_nodes = machine->numa_state->num_nodes; |
| int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1; |
| uint32_t *int_buf, *cur_index, buf_len; |
| int ret, i; |
| |
| /* ibm,associativity-lookup-arrays */ |
| buf_len = (nr_nodes * MAX_DISTANCE_REF_POINTS + 2) * sizeof(uint32_t); |
| cur_index = int_buf = g_malloc0(buf_len); |
| int_buf[0] = cpu_to_be32(nr_nodes); |
| /* Number of entries per associativity list */ |
| int_buf[1] = cpu_to_be32(MAX_DISTANCE_REF_POINTS); |
| cur_index += 2; |
| for (i = 0; i < nr_nodes; i++) { |
| /* |
| * For the lookup-array we use the ibm,associativity array, |
| * from numa_assoc_array. without the first element (size). |
| */ |
| uint32_t *associativity = spapr->numa_assoc_array[i]; |
| memcpy(cur_index, ++associativity, |
| sizeof(uint32_t) * MAX_DISTANCE_REF_POINTS); |
| cur_index += MAX_DISTANCE_REF_POINTS; |
| } |
| ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf, |
| (cur_index - int_buf) * sizeof(uint32_t)); |
| g_free(int_buf); |
| |
| return ret; |
| } |
| |
| /* |
| * Helper that writes ibm,associativity-reference-points and |
| * max-associativity-domains in the RTAS pointed by @rtas |
| * in the DT @fdt. |
| */ |
| void spapr_numa_write_rtas_dt(SpaprMachineState *spapr, void *fdt, int rtas) |
| { |
| MachineState *ms = MACHINE(spapr); |
| SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); |
| uint32_t refpoints[] = { |
| cpu_to_be32(0x4), |
| cpu_to_be32(0x3), |
| cpu_to_be32(0x2), |
| cpu_to_be32(0x1), |
| }; |
| uint32_t nr_refpoints = ARRAY_SIZE(refpoints); |
| uint32_t maxdomain = ms->numa_state->num_nodes + spapr->gpu_numa_id; |
| uint32_t maxdomains[] = { |
| cpu_to_be32(4), |
| cpu_to_be32(maxdomain), |
| cpu_to_be32(maxdomain), |
| cpu_to_be32(maxdomain), |
| cpu_to_be32(maxdomain) |
| }; |
| |
| if (spapr_machine_using_legacy_numa(spapr)) { |
| uint32_t legacy_refpoints[] = { |
| cpu_to_be32(0x4), |
| cpu_to_be32(0x4), |
| cpu_to_be32(0x2), |
| }; |
| uint32_t legacy_maxdomain = spapr->gpu_numa_id > 1 ? 1 : 0; |
| uint32_t legacy_maxdomains[] = { |
| cpu_to_be32(4), |
| cpu_to_be32(legacy_maxdomain), |
| cpu_to_be32(legacy_maxdomain), |
| cpu_to_be32(legacy_maxdomain), |
| cpu_to_be32(spapr->gpu_numa_id), |
| }; |
| |
| G_STATIC_ASSERT(sizeof(legacy_refpoints) <= sizeof(refpoints)); |
| G_STATIC_ASSERT(sizeof(legacy_maxdomains) <= sizeof(maxdomains)); |
| |
| nr_refpoints = 3; |
| |
| memcpy(refpoints, legacy_refpoints, sizeof(legacy_refpoints)); |
| memcpy(maxdomains, legacy_maxdomains, sizeof(legacy_maxdomains)); |
| |
| /* pseries-5.0 and older reference-points array is {0x4, 0x4} */ |
| if (smc->pre_5_1_assoc_refpoints) { |
| nr_refpoints = 2; |
| } |
| } |
| |
| _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points", |
| refpoints, nr_refpoints * sizeof(refpoints[0]))); |
| |
| _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains", |
| maxdomains, sizeof(maxdomains))); |
| } |
| |
| static target_ulong h_home_node_associativity(PowerPCCPU *cpu, |
| SpaprMachineState *spapr, |
| target_ulong opcode, |
| target_ulong *args) |
| { |
| g_autofree uint32_t *vcpu_assoc = NULL; |
| target_ulong flags = args[0]; |
| target_ulong procno = args[1]; |
| PowerPCCPU *tcpu; |
| int idx, assoc_idx; |
| |
| /* only support procno from H_REGISTER_VPA */ |
| if (flags != 0x1) { |
| return H_FUNCTION; |
| } |
| |
| tcpu = spapr_find_cpu(procno); |
| if (tcpu == NULL) { |
| return H_P2; |
| } |
| |
| /* |
| * Given that we want to be flexible with the sizes and indexes, |
| * we must consider that there is a hard limit of how many |
| * associativities domain we can fit in R4 up to R9, which would be |
| * 12 associativity domains for vcpus. Assert and bail if that's |
| * not the case. |
| */ |
| G_STATIC_ASSERT((VCPU_ASSOC_SIZE - 1) <= 12); |
| |
| vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, tcpu); |
| /* assoc_idx starts at 1 to skip associativity size */ |
| assoc_idx = 1; |
| |
| #define ASSOCIATIVITY(a, b) (((uint64_t)(a) << 32) | \ |
| ((uint64_t)(b) & 0xffffffff)) |
| |
| for (idx = 0; idx < 6; idx++) { |
| int32_t a, b; |
| |
| /* |
| * vcpu_assoc[] will contain the associativity domains for tcpu, |
| * including tcpu->node_id and procno, meaning that we don't |
| * need to use these variables here. |
| * |
| * We'll read 2 values at a time to fill up the ASSOCIATIVITY() |
| * macro. The ternary will fill the remaining registers with -1 |
| * after we went through vcpu_assoc[]. |
| */ |
| a = assoc_idx < VCPU_ASSOC_SIZE ? |
| be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1; |
| b = assoc_idx < VCPU_ASSOC_SIZE ? |
| be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1; |
| |
| args[idx] = ASSOCIATIVITY(a, b); |
| } |
| #undef ASSOCIATIVITY |
| |
| return H_SUCCESS; |
| } |
| |
| static void spapr_numa_register_types(void) |
| { |
| /* Virtual Processor Home Node */ |
| spapr_register_hypercall(H_HOME_NODE_ASSOCIATIVITY, |
| h_home_node_associativity); |
| } |
| |
| type_init(spapr_numa_register_types) |