| /* | 
 |  *  PowerPC floating point and SPE emulation helpers for QEMU. | 
 |  * | 
 |  *  Copyright (c) 2003-2007 Jocelyn Mayer | 
 |  * | 
 |  * This library is free software; you can redistribute it and/or | 
 |  * modify it under the terms of the GNU Lesser General Public | 
 |  * License as published by the Free Software Foundation; either | 
 |  * version 2.1 of the License, or (at your option) any later version. | 
 |  * | 
 |  * This library is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
 |  * Lesser General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU Lesser General Public | 
 |  * License along with this library; if not, see <http://www.gnu.org/licenses/>. | 
 |  */ | 
 | #include "qemu/osdep.h" | 
 | #include "cpu.h" | 
 | #include "exec/helper-proto.h" | 
 | #include "internal.h" | 
 | #include "fpu/softfloat.h" | 
 |  | 
 | static inline float128 float128_snan_to_qnan(float128 x) | 
 | { | 
 |     float128 r; | 
 |  | 
 |     r.high = x.high | 0x0000800000000000; | 
 |     r.low = x.low; | 
 |     return r; | 
 | } | 
 |  | 
 | #define float64_snan_to_qnan(x) ((x) | 0x0008000000000000ULL) | 
 | #define float32_snan_to_qnan(x) ((x) | 0x00400000) | 
 | #define float16_snan_to_qnan(x) ((x) | 0x0200) | 
 |  | 
 | static inline float32 bfp32_neg(float32 a) | 
 | { | 
 |     if (unlikely(float32_is_any_nan(a))) { | 
 |         return a; | 
 |     } else { | 
 |         return float32_chs(a); | 
 |     } | 
 | } | 
 |  | 
 | static inline bool fp_exceptions_enabled(CPUPPCState *env) | 
 | { | 
 | #ifdef CONFIG_USER_ONLY | 
 |     return true; | 
 | #else | 
 |     return (env->msr & ((1U << MSR_FE0) | (1U << MSR_FE1))) != 0; | 
 | #endif | 
 | } | 
 |  | 
 | /*****************************************************************************/ | 
 | /* Floating point operations helpers */ | 
 |  | 
 | /* | 
 |  * This is the non-arithmatic conversion that happens e.g. on loads. | 
 |  * In the Power ISA pseudocode, this is called DOUBLE. | 
 |  */ | 
 | uint64_t helper_todouble(uint32_t arg) | 
 | { | 
 |     uint32_t abs_arg = arg & 0x7fffffff; | 
 |     uint64_t ret; | 
 |  | 
 |     if (likely(abs_arg >= 0x00800000)) { | 
 |         if (unlikely(extract32(arg, 23, 8) == 0xff)) { | 
 |             /* Inf or NAN.  */ | 
 |             ret  = (uint64_t)extract32(arg, 31, 1) << 63; | 
 |             ret |= (uint64_t)0x7ff << 52; | 
 |             ret |= (uint64_t)extract32(arg, 0, 23) << 29; | 
 |         } else { | 
 |             /* Normalized operand.  */ | 
 |             ret  = (uint64_t)extract32(arg, 30, 2) << 62; | 
 |             ret |= ((extract32(arg, 30, 1) ^ 1) * (uint64_t)7) << 59; | 
 |             ret |= (uint64_t)extract32(arg, 0, 30) << 29; | 
 |         } | 
 |     } else { | 
 |         /* Zero or Denormalized operand.  */ | 
 |         ret = (uint64_t)extract32(arg, 31, 1) << 63; | 
 |         if (unlikely(abs_arg != 0)) { | 
 |             /* | 
 |              * Denormalized operand. | 
 |              * Shift fraction so that the msb is in the implicit bit position. | 
 |              * Thus, shift is in the range [1:23]. | 
 |              */ | 
 |             int shift = clz32(abs_arg) - 8; | 
 |             /* | 
 |              * The first 3 terms compute the float64 exponent.  We then bias | 
 |              * this result by -1 so that we can swallow the implicit bit below. | 
 |              */ | 
 |             int exp = -126 - shift + 1023 - 1; | 
 |  | 
 |             ret |= (uint64_t)exp << 52; | 
 |             ret += (uint64_t)abs_arg << (52 - 23 + shift); | 
 |         } | 
 |     } | 
 |     return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * This is the non-arithmatic conversion that happens e.g. on stores. | 
 |  * In the Power ISA pseudocode, this is called SINGLE. | 
 |  */ | 
 | uint32_t helper_tosingle(uint64_t arg) | 
 | { | 
 |     int exp = extract64(arg, 52, 11); | 
 |     uint32_t ret; | 
 |  | 
 |     if (likely(exp > 896)) { | 
 |         /* No denormalization required (includes Inf, NaN).  */ | 
 |         ret  = extract64(arg, 62, 2) << 30; | 
 |         ret |= extract64(arg, 29, 30); | 
 |     } else { | 
 |         /* | 
 |          * Zero or Denormal result.  If the exponent is in bounds for | 
 |          * a single-precision denormal result, extract the proper | 
 |          * bits.  If the input is not zero, and the exponent is out of | 
 |          * bounds, then the result is undefined; this underflows to | 
 |          * zero. | 
 |          */ | 
 |         ret = extract64(arg, 63, 1) << 31; | 
 |         if (unlikely(exp >= 874)) { | 
 |             /* Denormal result.  */ | 
 |             ret |= ((1ULL << 52) | extract64(arg, 0, 52)) >> (896 + 30 - exp); | 
 |         } | 
 |     } | 
 |     return ret; | 
 | } | 
 |  | 
 | static inline int ppc_float32_get_unbiased_exp(float32 f) | 
 | { | 
 |     return ((f >> 23) & 0xFF) - 127; | 
 | } | 
 |  | 
 | static inline int ppc_float64_get_unbiased_exp(float64 f) | 
 | { | 
 |     return ((f >> 52) & 0x7FF) - 1023; | 
 | } | 
 |  | 
 | #define COMPUTE_FPRF(tp)                                          \ | 
 | void helper_compute_fprf_##tp(CPUPPCState *env, tp arg)           \ | 
 | {                                                                 \ | 
 |     bool neg = tp##_is_neg(arg);                                  \ | 
 |     target_ulong fprf;                                            \ | 
 |     if (likely(tp##_is_normal(arg))) {                            \ | 
 |         fprf = neg ? 0x08 << FPSCR_FPRF : 0x04 << FPSCR_FPRF;     \ | 
 |     } else if (tp##_is_zero(arg)) {                               \ | 
 |         fprf = neg ? 0x12 << FPSCR_FPRF : 0x02 << FPSCR_FPRF;     \ | 
 |     } else if (tp##_is_zero_or_denormal(arg)) {                   \ | 
 |         fprf = neg ? 0x18 << FPSCR_FPRF : 0x14 << FPSCR_FPRF;     \ | 
 |     } else if (tp##_is_infinity(arg)) {                           \ | 
 |         fprf = neg ? 0x09 << FPSCR_FPRF : 0x05 << FPSCR_FPRF;     \ | 
 |     } else {                                                      \ | 
 |         if (tp##_is_signaling_nan(arg, &env->fp_status)) {        \ | 
 |             fprf = 0x00 << FPSCR_FPRF;                            \ | 
 |         } else {                                                  \ | 
 |             fprf = 0x11 << FPSCR_FPRF;                            \ | 
 |         }                                                         \ | 
 |     }                                                             \ | 
 |     env->fpscr = (env->fpscr & ~FP_FPRF) | fprf;                  \ | 
 | } | 
 |  | 
 | COMPUTE_FPRF(float16) | 
 | COMPUTE_FPRF(float32) | 
 | COMPUTE_FPRF(float64) | 
 | COMPUTE_FPRF(float128) | 
 |  | 
 | /* Floating-point invalid operations exception */ | 
 | static void finish_invalid_op_excp(CPUPPCState *env, int op, uintptr_t retaddr) | 
 | { | 
 |     /* Update the floating-point invalid operation summary */ | 
 |     env->fpscr |= FP_VX; | 
 |     /* Update the floating-point exception summary */ | 
 |     env->fpscr |= FP_FX; | 
 |     if (env->fpscr & FP_VE) { | 
 |         /* Update the floating-point enabled exception summary */ | 
 |         env->fpscr |= FP_FEX; | 
 |         if (fp_exceptions_enabled(env)) { | 
 |             raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM, | 
 |                                    POWERPC_EXCP_FP | op, retaddr); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | static void finish_invalid_op_arith(CPUPPCState *env, int op, | 
 |                                     bool set_fpcc, uintptr_t retaddr) | 
 | { | 
 |     env->fpscr &= ~(FP_FR | FP_FI); | 
 |     if (!(env->fpscr & FP_VE)) { | 
 |         if (set_fpcc) { | 
 |             env->fpscr &= ~FP_FPCC; | 
 |             env->fpscr |= (FP_C | FP_FU); | 
 |         } | 
 |     } | 
 |     finish_invalid_op_excp(env, op, retaddr); | 
 | } | 
 |  | 
 | /* Signalling NaN */ | 
 | static void float_invalid_op_vxsnan(CPUPPCState *env, uintptr_t retaddr) | 
 | { | 
 |     env->fpscr |= FP_VXSNAN; | 
 |     finish_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, retaddr); | 
 | } | 
 |  | 
 | /* Magnitude subtraction of infinities */ | 
 | static void float_invalid_op_vxisi(CPUPPCState *env, bool set_fpcc, | 
 |                                    uintptr_t retaddr) | 
 | { | 
 |     env->fpscr |= FP_VXISI; | 
 |     finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXISI, set_fpcc, retaddr); | 
 | } | 
 |  | 
 | /* Division of infinity by infinity */ | 
 | static void float_invalid_op_vxidi(CPUPPCState *env, bool set_fpcc, | 
 |                                    uintptr_t retaddr) | 
 | { | 
 |     env->fpscr |= FP_VXIDI; | 
 |     finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXIDI, set_fpcc, retaddr); | 
 | } | 
 |  | 
 | /* Division of zero by zero */ | 
 | static void float_invalid_op_vxzdz(CPUPPCState *env, bool set_fpcc, | 
 |                                    uintptr_t retaddr) | 
 | { | 
 |     env->fpscr |= FP_VXZDZ; | 
 |     finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXZDZ, set_fpcc, retaddr); | 
 | } | 
 |  | 
 | /* Multiplication of zero by infinity */ | 
 | static void float_invalid_op_vximz(CPUPPCState *env, bool set_fpcc, | 
 |                                    uintptr_t retaddr) | 
 | { | 
 |     env->fpscr |= FP_VXIMZ; | 
 |     finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXIMZ, set_fpcc, retaddr); | 
 | } | 
 |  | 
 | /* Square root of a negative number */ | 
 | static void float_invalid_op_vxsqrt(CPUPPCState *env, bool set_fpcc, | 
 |                                     uintptr_t retaddr) | 
 | { | 
 |     env->fpscr |= FP_VXSQRT; | 
 |     finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXSQRT, set_fpcc, retaddr); | 
 | } | 
 |  | 
 | /* Ordered comparison of NaN */ | 
 | static void float_invalid_op_vxvc(CPUPPCState *env, bool set_fpcc, | 
 |                                   uintptr_t retaddr) | 
 | { | 
 |     env->fpscr |= FP_VXVC; | 
 |     if (set_fpcc) { | 
 |         env->fpscr &= ~FP_FPCC; | 
 |         env->fpscr |= (FP_C | FP_FU); | 
 |     } | 
 |     /* Update the floating-point invalid operation summary */ | 
 |     env->fpscr |= FP_VX; | 
 |     /* Update the floating-point exception summary */ | 
 |     env->fpscr |= FP_FX; | 
 |     /* We must update the target FPR before raising the exception */ | 
 |     if (env->fpscr & FP_VE) { | 
 |         CPUState *cs = env_cpu(env); | 
 |  | 
 |         cs->exception_index = POWERPC_EXCP_PROGRAM; | 
 |         env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC; | 
 |         /* Update the floating-point enabled exception summary */ | 
 |         env->fpscr |= FP_FEX; | 
 |         /* Exception is deferred */ | 
 |     } | 
 | } | 
 |  | 
 | /* Invalid conversion */ | 
 | static void float_invalid_op_vxcvi(CPUPPCState *env, bool set_fpcc, | 
 |                                    uintptr_t retaddr) | 
 | { | 
 |     env->fpscr |= FP_VXCVI; | 
 |     env->fpscr &= ~(FP_FR | FP_FI); | 
 |     if (!(env->fpscr & FP_VE)) { | 
 |         if (set_fpcc) { | 
 |             env->fpscr &= ~FP_FPCC; | 
 |             env->fpscr |= (FP_C | FP_FU); | 
 |         } | 
 |     } | 
 |     finish_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, retaddr); | 
 | } | 
 |  | 
 | static inline void float_zero_divide_excp(CPUPPCState *env, uintptr_t raddr) | 
 | { | 
 |     env->fpscr |= FP_ZX; | 
 |     env->fpscr &= ~(FP_FR | FP_FI); | 
 |     /* Update the floating-point exception summary */ | 
 |     env->fpscr |= FP_FX; | 
 |     if (env->fpscr & FP_ZE) { | 
 |         /* Update the floating-point enabled exception summary */ | 
 |         env->fpscr |= FP_FEX; | 
 |         if (fp_exceptions_enabled(env)) { | 
 |             raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM, | 
 |                                    POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX, | 
 |                                    raddr); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | static inline int float_overflow_excp(CPUPPCState *env) | 
 | { | 
 |     CPUState *cs = env_cpu(env); | 
 |  | 
 |     env->fpscr |= FP_OX; | 
 |     /* Update the floating-point exception summary */ | 
 |     env->fpscr |= FP_FX; | 
 |  | 
 |     bool overflow_enabled = !!(env->fpscr & FP_OE); | 
 |     if (overflow_enabled) { | 
 |         /* Update the floating-point enabled exception summary */ | 
 |         env->fpscr |= FP_FEX; | 
 |         /* We must update the target FPR before raising the exception */ | 
 |         cs->exception_index = POWERPC_EXCP_PROGRAM; | 
 |         env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX; | 
 |     } | 
 |  | 
 |     return overflow_enabled ? 0 : float_flag_inexact; | 
 | } | 
 |  | 
 | static inline void float_underflow_excp(CPUPPCState *env) | 
 | { | 
 |     CPUState *cs = env_cpu(env); | 
 |  | 
 |     env->fpscr |= FP_UX; | 
 |     /* Update the floating-point exception summary */ | 
 |     env->fpscr |= FP_FX; | 
 |     if (env->fpscr & FP_UE) { | 
 |         /* Update the floating-point enabled exception summary */ | 
 |         env->fpscr |= FP_FEX; | 
 |         /* We must update the target FPR before raising the exception */ | 
 |         cs->exception_index = POWERPC_EXCP_PROGRAM; | 
 |         env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX; | 
 |     } | 
 | } | 
 |  | 
 | static inline void float_inexact_excp(CPUPPCState *env) | 
 | { | 
 |     CPUState *cs = env_cpu(env); | 
 |  | 
 |     env->fpscr |= FP_XX; | 
 |     /* Update the floating-point exception summary */ | 
 |     env->fpscr |= FP_FX; | 
 |     if (env->fpscr & FP_XE) { | 
 |         /* Update the floating-point enabled exception summary */ | 
 |         env->fpscr |= FP_FEX; | 
 |         /* We must update the target FPR before raising the exception */ | 
 |         cs->exception_index = POWERPC_EXCP_PROGRAM; | 
 |         env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX; | 
 |     } | 
 | } | 
 |  | 
 | void helper_fpscr_clrbit(CPUPPCState *env, uint32_t bit) | 
 | { | 
 |     uint32_t mask = 1u << bit; | 
 |     if (env->fpscr & mask) { | 
 |         ppc_store_fpscr(env, env->fpscr & ~(target_ulong)mask); | 
 |     } | 
 | } | 
 |  | 
 | void helper_fpscr_setbit(CPUPPCState *env, uint32_t bit) | 
 | { | 
 |     uint32_t mask = 1u << bit; | 
 |     if (!(env->fpscr & mask)) { | 
 |         ppc_store_fpscr(env, env->fpscr | mask); | 
 |     } | 
 | } | 
 |  | 
 | void helper_store_fpscr(CPUPPCState *env, uint64_t val, uint32_t nibbles) | 
 | { | 
 |     target_ulong mask = 0; | 
 |     int i; | 
 |  | 
 |     /* TODO: push this extension back to translation time */ | 
 |     for (i = 0; i < sizeof(target_ulong) * 2; i++) { | 
 |         if (nibbles & (1 << i)) { | 
 |             mask |= (target_ulong) 0xf << (4 * i); | 
 |         } | 
 |     } | 
 |     val = (val & mask) | (env->fpscr & ~mask); | 
 |     ppc_store_fpscr(env, val); | 
 | } | 
 |  | 
 | static void do_fpscr_check_status(CPUPPCState *env, uintptr_t raddr) | 
 | { | 
 |     CPUState *cs = env_cpu(env); | 
 |     target_ulong fpscr = env->fpscr; | 
 |     int error = 0; | 
 |  | 
 |     if ((fpscr & FP_OX) && (fpscr & FP_OE)) { | 
 |         error = POWERPC_EXCP_FP_OX; | 
 |     } else if ((fpscr & FP_UX) && (fpscr & FP_UE)) { | 
 |         error = POWERPC_EXCP_FP_UX; | 
 |     } else if ((fpscr & FP_XX) && (fpscr & FP_XE)) { | 
 |         error = POWERPC_EXCP_FP_XX; | 
 |     } else if ((fpscr & FP_ZX) && (fpscr & FP_ZE)) { | 
 |         error = POWERPC_EXCP_FP_ZX; | 
 |     } else if (fpscr & FP_VE) { | 
 |         if (fpscr & FP_VXSOFT) { | 
 |             error = POWERPC_EXCP_FP_VXSOFT; | 
 |         } else if (fpscr & FP_VXSNAN) { | 
 |             error = POWERPC_EXCP_FP_VXSNAN; | 
 |         } else if (fpscr & FP_VXISI) { | 
 |             error = POWERPC_EXCP_FP_VXISI; | 
 |         } else if (fpscr & FP_VXIDI) { | 
 |             error = POWERPC_EXCP_FP_VXIDI; | 
 |         } else if (fpscr & FP_VXZDZ) { | 
 |             error = POWERPC_EXCP_FP_VXZDZ; | 
 |         } else if (fpscr & FP_VXIMZ) { | 
 |             error = POWERPC_EXCP_FP_VXIMZ; | 
 |         } else if (fpscr & FP_VXVC) { | 
 |             error = POWERPC_EXCP_FP_VXVC; | 
 |         } else if (fpscr & FP_VXSQRT) { | 
 |             error = POWERPC_EXCP_FP_VXSQRT; | 
 |         } else if (fpscr & FP_VXCVI) { | 
 |             error = POWERPC_EXCP_FP_VXCVI; | 
 |         } else { | 
 |             return; | 
 |         } | 
 |     } else { | 
 |         return; | 
 |     } | 
 |     cs->exception_index = POWERPC_EXCP_PROGRAM; | 
 |     env->error_code = error | POWERPC_EXCP_FP; | 
 |     env->fpscr |= FP_FEX; | 
 |     /* Deferred floating-point exception after target FPSCR update */ | 
 |     if (fp_exceptions_enabled(env)) { | 
 |         raise_exception_err_ra(env, cs->exception_index, | 
 |                                env->error_code, raddr); | 
 |     } | 
 | } | 
 |  | 
 | void helper_fpscr_check_status(CPUPPCState *env) | 
 | { | 
 |     do_fpscr_check_status(env, GETPC()); | 
 | } | 
 |  | 
 | static void do_float_check_status(CPUPPCState *env, bool change_fi, | 
 |                                   uintptr_t raddr) | 
 | { | 
 |     CPUState *cs = env_cpu(env); | 
 |     int status = get_float_exception_flags(&env->fp_status); | 
 |  | 
 |     if (status & float_flag_overflow) { | 
 |         status |= float_overflow_excp(env); | 
 |     } else if (status & float_flag_underflow) { | 
 |         float_underflow_excp(env); | 
 |     } | 
 |     if (status & float_flag_inexact) { | 
 |         float_inexact_excp(env); | 
 |     } | 
 |     if (change_fi) { | 
 |         env->fpscr = FIELD_DP64(env->fpscr, FPSCR, FI, | 
 |                                 !!(status & float_flag_inexact)); | 
 |     } | 
 |  | 
 |     if (cs->exception_index == POWERPC_EXCP_PROGRAM && | 
 |         (env->error_code & POWERPC_EXCP_FP)) { | 
 |         /* Deferred floating-point exception after target FPR update */ | 
 |         if (fp_exceptions_enabled(env)) { | 
 |             raise_exception_err_ra(env, cs->exception_index, | 
 |                                    env->error_code, raddr); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | void helper_float_check_status(CPUPPCState *env) | 
 | { | 
 |     do_float_check_status(env, true, GETPC()); | 
 | } | 
 |  | 
 | void helper_reset_fpstatus(CPUPPCState *env) | 
 | { | 
 |     set_float_exception_flags(0, &env->fp_status); | 
 | } | 
 |  | 
 | static void float_invalid_op_addsub(CPUPPCState *env, int flags, | 
 |                                     bool set_fpcc, uintptr_t retaddr) | 
 | { | 
 |     if (flags & float_flag_invalid_isi) { | 
 |         float_invalid_op_vxisi(env, set_fpcc, retaddr); | 
 |     } else if (flags & float_flag_invalid_snan) { | 
 |         float_invalid_op_vxsnan(env, retaddr); | 
 |     } | 
 | } | 
 |  | 
 | static inline void addsub_flags_handler(CPUPPCState *env, int flags, | 
 |                                         uintptr_t ra) | 
 | { | 
 |     if (unlikely(flags & float_flag_invalid)) { | 
 |         float_invalid_op_addsub(env, flags, 1, ra); | 
 |     } | 
 | } | 
 |  | 
 | static void float_invalid_op_mul(CPUPPCState *env, int flags, | 
 |                                  bool set_fprc, uintptr_t retaddr) | 
 | { | 
 |     if (flags & float_flag_invalid_imz) { | 
 |         float_invalid_op_vximz(env, set_fprc, retaddr); | 
 |     } else if (flags & float_flag_invalid_snan) { | 
 |         float_invalid_op_vxsnan(env, retaddr); | 
 |     } | 
 | } | 
 |  | 
 | static inline void mul_flags_handler(CPUPPCState *env, int flags, uintptr_t ra) | 
 | { | 
 |     if (unlikely(flags & float_flag_invalid)) { | 
 |         float_invalid_op_mul(env, flags, 1, ra); | 
 |     } | 
 | } | 
 |  | 
 | static void float_invalid_op_div(CPUPPCState *env, int flags, | 
 |                                  bool set_fprc, uintptr_t retaddr) | 
 | { | 
 |     if (flags & float_flag_invalid_idi) { | 
 |         float_invalid_op_vxidi(env, set_fprc, retaddr); | 
 |     } else if (flags & float_flag_invalid_zdz) { | 
 |         float_invalid_op_vxzdz(env, set_fprc, retaddr); | 
 |     } else if (flags & float_flag_invalid_snan) { | 
 |         float_invalid_op_vxsnan(env, retaddr); | 
 |     } | 
 | } | 
 |  | 
 | static inline void div_flags_handler(CPUPPCState *env, int flags, uintptr_t ra) | 
 | { | 
 |     if (unlikely(flags & float_flag_invalid)) { | 
 |         float_invalid_op_div(env, flags, 1, ra); | 
 |     } | 
 |     if (unlikely(flags & float_flag_divbyzero)) { | 
 |         float_zero_divide_excp(env, ra); | 
 |     } | 
 | } | 
 |  | 
 | static uint64_t float_invalid_cvt(CPUPPCState *env, int flags, | 
 |                                   uint64_t ret, uint64_t ret_nan, | 
 |                                   bool set_fprc, uintptr_t retaddr) | 
 | { | 
 |     /* | 
 |      * VXCVI is different from most in that it sets two exception bits, | 
 |      * VXCVI and VXSNAN for an SNaN input. | 
 |      */ | 
 |     if (flags & float_flag_invalid_snan) { | 
 |         env->fpscr |= FP_VXSNAN; | 
 |     } | 
 |     float_invalid_op_vxcvi(env, set_fprc, retaddr); | 
 |  | 
 |     return flags & float_flag_invalid_cvti ? ret : ret_nan; | 
 | } | 
 |  | 
 | #define FPU_FCTI(op, cvt, nanval)                                      \ | 
 | uint64_t helper_##op(CPUPPCState *env, float64 arg)                    \ | 
 | {                                                                      \ | 
 |     uint64_t ret = float64_to_##cvt(arg, &env->fp_status);             \ | 
 |     int flags = get_float_exception_flags(&env->fp_status);            \ | 
 |     if (unlikely(flags & float_flag_invalid)) {                        \ | 
 |         ret = float_invalid_cvt(env, flags, ret, nanval, 1, GETPC());  \ | 
 |     }                                                                  \ | 
 |     return ret;                                                        \ | 
 | } | 
 |  | 
 | FPU_FCTI(fctiw, int32, 0x80000000U) | 
 | FPU_FCTI(fctiwz, int32_round_to_zero, 0x80000000U) | 
 | FPU_FCTI(fctiwu, uint32, 0x00000000U) | 
 | FPU_FCTI(fctiwuz, uint32_round_to_zero, 0x00000000U) | 
 | FPU_FCTI(fctid, int64, 0x8000000000000000ULL) | 
 | FPU_FCTI(fctidz, int64_round_to_zero, 0x8000000000000000ULL) | 
 | FPU_FCTI(fctidu, uint64, 0x0000000000000000ULL) | 
 | FPU_FCTI(fctiduz, uint64_round_to_zero, 0x0000000000000000ULL) | 
 |  | 
 | #define FPU_FCFI(op, cvtr, is_single)                      \ | 
 | uint64_t helper_##op(CPUPPCState *env, uint64_t arg)       \ | 
 | {                                                          \ | 
 |     CPU_DoubleU farg;                                      \ | 
 |                                                            \ | 
 |     if (is_single) {                                       \ | 
 |         float32 tmp = cvtr(arg, &env->fp_status);          \ | 
 |         farg.d = float32_to_float64(tmp, &env->fp_status); \ | 
 |     } else {                                               \ | 
 |         farg.d = cvtr(arg, &env->fp_status);               \ | 
 |     }                                                      \ | 
 |     do_float_check_status(env, true, GETPC());             \ | 
 |     return farg.ll;                                        \ | 
 | } | 
 |  | 
 | FPU_FCFI(fcfid, int64_to_float64, 0) | 
 | FPU_FCFI(fcfids, int64_to_float32, 1) | 
 | FPU_FCFI(fcfidu, uint64_to_float64, 0) | 
 | FPU_FCFI(fcfidus, uint64_to_float32, 1) | 
 |  | 
 | static uint64_t do_fri(CPUPPCState *env, uint64_t arg, | 
 |                        FloatRoundMode rounding_mode) | 
 | { | 
 |     FloatRoundMode old_rounding_mode = get_float_rounding_mode(&env->fp_status); | 
 |     int flags; | 
 |  | 
 |     set_float_rounding_mode(rounding_mode, &env->fp_status); | 
 |     arg = float64_round_to_int(arg, &env->fp_status); | 
 |     set_float_rounding_mode(old_rounding_mode, &env->fp_status); | 
 |  | 
 |     flags = get_float_exception_flags(&env->fp_status); | 
 |     if (flags & float_flag_invalid_snan) { | 
 |         float_invalid_op_vxsnan(env, GETPC()); | 
 |     } | 
 |  | 
 |     /* fri* does not set FPSCR[XX] */ | 
 |     set_float_exception_flags(flags & ~float_flag_inexact, &env->fp_status); | 
 |     do_float_check_status(env, true, GETPC()); | 
 |  | 
 |     return arg; | 
 | } | 
 |  | 
 | uint64_t helper_frin(CPUPPCState *env, uint64_t arg) | 
 | { | 
 |     return do_fri(env, arg, float_round_ties_away); | 
 | } | 
 |  | 
 | uint64_t helper_friz(CPUPPCState *env, uint64_t arg) | 
 | { | 
 |     return do_fri(env, arg, float_round_to_zero); | 
 | } | 
 |  | 
 | uint64_t helper_frip(CPUPPCState *env, uint64_t arg) | 
 | { | 
 |     return do_fri(env, arg, float_round_up); | 
 | } | 
 |  | 
 | uint64_t helper_frim(CPUPPCState *env, uint64_t arg) | 
 | { | 
 |     return do_fri(env, arg, float_round_down); | 
 | } | 
 |  | 
 | static void float_invalid_op_madd(CPUPPCState *env, int flags, | 
 |                                   bool set_fpcc, uintptr_t retaddr) | 
 | { | 
 |     if (flags & float_flag_invalid_imz) { | 
 |         float_invalid_op_vximz(env, set_fpcc, retaddr); | 
 |     } else { | 
 |         float_invalid_op_addsub(env, flags, set_fpcc, retaddr); | 
 |     } | 
 | } | 
 |  | 
 | static float64 do_fmadd(CPUPPCState *env, float64 a, float64 b, | 
 |                          float64 c, int madd_flags, uintptr_t retaddr) | 
 | { | 
 |     float64 ret = float64_muladd(a, b, c, madd_flags, &env->fp_status); | 
 |     int flags = get_float_exception_flags(&env->fp_status); | 
 |  | 
 |     if (unlikely(flags & float_flag_invalid)) { | 
 |         float_invalid_op_madd(env, flags, 1, retaddr); | 
 |     } | 
 |     return ret; | 
 | } | 
 |  | 
 | static uint64_t do_fmadds(CPUPPCState *env, float64 a, float64 b, | 
 |                           float64 c, int madd_flags, uintptr_t retaddr) | 
 | { | 
 |     float64 ret = float64r32_muladd(a, b, c, madd_flags, &env->fp_status); | 
 |     int flags = get_float_exception_flags(&env->fp_status); | 
 |  | 
 |     if (unlikely(flags & float_flag_invalid)) { | 
 |         float_invalid_op_madd(env, flags, 1, retaddr); | 
 |     } | 
 |     return ret; | 
 | } | 
 |  | 
 | #define FPU_FMADD(op, madd_flags)                                    \ | 
 |     uint64_t helper_##op(CPUPPCState *env, uint64_t arg1,            \ | 
 |                          uint64_t arg2, uint64_t arg3)               \ | 
 |     { return do_fmadd(env, arg1, arg2, arg3, madd_flags, GETPC()); } \ | 
 |     uint64_t helper_##op##S(CPUPPCState *env, uint64_t arg1,         \ | 
 |                          uint64_t arg2, uint64_t arg3)               \ | 
 |     { return do_fmadds(env, arg1, arg2, arg3, madd_flags, GETPC()); } | 
 |  | 
 | #define MADD_FLGS 0 | 
 | #define MSUB_FLGS float_muladd_negate_c | 
 | #define NMADD_FLGS float_muladd_negate_result | 
 | #define NMSUB_FLGS (float_muladd_negate_c | float_muladd_negate_result) | 
 |  | 
 | FPU_FMADD(FMADD, MADD_FLGS) | 
 | FPU_FMADD(FNMADD, NMADD_FLGS) | 
 | FPU_FMADD(FMSUB, MSUB_FLGS) | 
 | FPU_FMADD(FNMSUB, NMSUB_FLGS) | 
 |  | 
 | /* frsp - frsp. */ | 
 | static uint64_t do_frsp(CPUPPCState *env, uint64_t arg, uintptr_t retaddr) | 
 | { | 
 |     float32 f32 = float64_to_float32(arg, &env->fp_status); | 
 |     int flags = get_float_exception_flags(&env->fp_status); | 
 |  | 
 |     if (unlikely(flags & float_flag_invalid_snan)) { | 
 |         float_invalid_op_vxsnan(env, retaddr); | 
 |     } | 
 |     return helper_todouble(f32); | 
 | } | 
 |  | 
 | uint64_t helper_frsp(CPUPPCState *env, uint64_t arg) | 
 | { | 
 |     return do_frsp(env, arg, GETPC()); | 
 | } | 
 |  | 
 | static void float_invalid_op_sqrt(CPUPPCState *env, int flags, | 
 |                                   bool set_fpcc, uintptr_t retaddr) | 
 | { | 
 |     if (unlikely(flags & float_flag_invalid_sqrt)) { | 
 |         float_invalid_op_vxsqrt(env, set_fpcc, retaddr); | 
 |     } else if (unlikely(flags & float_flag_invalid_snan)) { | 
 |         float_invalid_op_vxsnan(env, retaddr); | 
 |     } | 
 | } | 
 |  | 
 | #define FPU_FSQRT(name, op)                                                   \ | 
 | float64 helper_##name(CPUPPCState *env, float64 arg)                          \ | 
 | {                                                                             \ | 
 |     float64 ret = op(arg, &env->fp_status);                                   \ | 
 |     int flags = get_float_exception_flags(&env->fp_status);                   \ | 
 |                                                                               \ | 
 |     if (unlikely(flags & float_flag_invalid)) {                               \ | 
 |         float_invalid_op_sqrt(env, flags, 1, GETPC());                        \ | 
 |     }                                                                         \ | 
 |                                                                               \ | 
 |     return ret;                                                               \ | 
 | } | 
 |  | 
 | FPU_FSQRT(FSQRT, float64_sqrt) | 
 | FPU_FSQRT(FSQRTS, float64r32_sqrt) | 
 |  | 
 | #define FPU_FRE(name, op)                                                     \ | 
 | float64 helper_##name(CPUPPCState *env, float64 arg)                          \ | 
 | {                                                                             \ | 
 |     /* "Estimate" the reciprocal with actual division.  */                    \ | 
 |     float64 ret = op(float64_one, arg, &env->fp_status);                      \ | 
 |     int flags = get_float_exception_flags(&env->fp_status);                   \ | 
 |                                                                               \ | 
 |     if (unlikely(flags & float_flag_invalid_snan)) {                          \ | 
 |         float_invalid_op_vxsnan(env, GETPC());                                \ | 
 |     }                                                                         \ | 
 |     if (unlikely(flags & float_flag_divbyzero)) {                             \ | 
 |         float_zero_divide_excp(env, GETPC());                                 \ | 
 |         /* For FPSCR.ZE == 0, the result is 1/2.  */                          \ | 
 |         ret = float64_set_sign(float64_half, float64_is_neg(arg));            \ | 
 |     }                                                                         \ | 
 |                                                                               \ | 
 |     return ret;                                                               \ | 
 | } | 
 |  | 
 | #define FPU_FRSQRTE(name, op)                                                 \ | 
 | float64 helper_##name(CPUPPCState *env, float64 arg)                          \ | 
 | {                                                                             \ | 
 |     /* "Estimate" the reciprocal with actual division.  */                    \ | 
 |     float64 rets = float64_sqrt(arg, &env->fp_status);                        \ | 
 |     float64 retd = op(float64_one, rets, &env->fp_status);                    \ | 
 |     int flags = get_float_exception_flags(&env->fp_status);                   \ | 
 |                                                                               \ | 
 |     if (unlikely(flags & float_flag_invalid)) {                               \ | 
 |         float_invalid_op_sqrt(env, flags, 1, GETPC());                        \ | 
 |     }                                                                         \ | 
 |     if (unlikely(flags & float_flag_divbyzero)) {                             \ | 
 |         /* Reciprocal of (square root of) zero.  */                           \ | 
 |         float_zero_divide_excp(env, GETPC());                                 \ | 
 |     }                                                                         \ | 
 |                                                                               \ | 
 |     return retd;                                                              \ | 
 | } | 
 |  | 
 | #define FPU_HELPER(name, op, flags_handler)                                   \ | 
 | float64 helper_##name(CPUPPCState *env, float64 arg1, float64 arg2)           \ | 
 | {                                                                             \ | 
 |     float64 ret = op(arg1, arg2, &env->fp_status);                            \ | 
 |     int flags = get_float_exception_flags(&env->fp_status);                   \ | 
 |     uintptr_t ra = GETPC();                                                   \ | 
 |     flags_handler(env, flags, ra);                                            \ | 
 |     return ret;                                                               \ | 
 | } | 
 |  | 
 | FPU_FRE(FRE, float64_div) | 
 | FPU_FRE(FRES, float64r32_div) | 
 | FPU_FRSQRTE(FRSQRTE, float64_div) | 
 | FPU_FRSQRTE(FRSQRTES, float64r32_div) | 
 | FPU_HELPER(FADD, float64_add, addsub_flags_handler) | 
 | FPU_HELPER(FADDS, float64r32_add, addsub_flags_handler) | 
 | FPU_HELPER(FSUB, float64_sub, addsub_flags_handler) | 
 | FPU_HELPER(FSUBS, float64r32_sub, addsub_flags_handler) | 
 | FPU_HELPER(FMUL, float64_mul, mul_flags_handler) | 
 | FPU_HELPER(FMULS, float64r32_mul, mul_flags_handler) | 
 | FPU_HELPER(FDIV, float64_div, div_flags_handler) | 
 | FPU_HELPER(FDIVS, float64r32_div, div_flags_handler) | 
 |  | 
 | /* fsel - fsel. */ | 
 | uint64_t helper_FSEL(uint64_t a, uint64_t b, uint64_t c) | 
 | { | 
 |     CPU_DoubleU fa; | 
 |  | 
 |     fa.ll = a; | 
 |  | 
 |     if ((!float64_is_neg(fa.d) || float64_is_zero(fa.d)) && | 
 |         !float64_is_any_nan(fa.d)) { | 
 |         return c; | 
 |     } else { | 
 |         return b; | 
 |     } | 
 | } | 
 |  | 
 | uint32_t helper_FTDIV(uint64_t fra, uint64_t frb) | 
 | { | 
 |     int fe_flag = 0; | 
 |     int fg_flag = 0; | 
 |  | 
 |     if (unlikely(float64_is_infinity(fra) || | 
 |                  float64_is_infinity(frb) || | 
 |                  float64_is_zero(frb))) { | 
 |         fe_flag = 1; | 
 |         fg_flag = 1; | 
 |     } else { | 
 |         int e_a = ppc_float64_get_unbiased_exp(fra); | 
 |         int e_b = ppc_float64_get_unbiased_exp(frb); | 
 |  | 
 |         if (unlikely(float64_is_any_nan(fra) || | 
 |                      float64_is_any_nan(frb))) { | 
 |             fe_flag = 1; | 
 |         } else if ((e_b <= -1022) || (e_b >= 1021)) { | 
 |             fe_flag = 1; | 
 |         } else if (!float64_is_zero(fra) && | 
 |                    (((e_a - e_b) >= 1023) || | 
 |                     ((e_a - e_b) <= -1021) || | 
 |                     (e_a <= -970))) { | 
 |             fe_flag = 1; | 
 |         } | 
 |  | 
 |         if (unlikely(float64_is_zero_or_denormal(frb))) { | 
 |             /* XB is not zero because of the above check and */ | 
 |             /* so must be denormalized.                      */ | 
 |             fg_flag = 1; | 
 |         } | 
 |     } | 
 |  | 
 |     return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); | 
 | } | 
 |  | 
 | uint32_t helper_FTSQRT(uint64_t frb) | 
 | { | 
 |     int fe_flag = 0; | 
 |     int fg_flag = 0; | 
 |  | 
 |     if (unlikely(float64_is_infinity(frb) || float64_is_zero(frb))) { | 
 |         fe_flag = 1; | 
 |         fg_flag = 1; | 
 |     } else { | 
 |         int e_b = ppc_float64_get_unbiased_exp(frb); | 
 |  | 
 |         if (unlikely(float64_is_any_nan(frb))) { | 
 |             fe_flag = 1; | 
 |         } else if (unlikely(float64_is_zero(frb))) { | 
 |             fe_flag = 1; | 
 |         } else if (unlikely(float64_is_neg(frb))) { | 
 |             fe_flag = 1; | 
 |         } else if (!float64_is_zero(frb) && (e_b <= (-1022 + 52))) { | 
 |             fe_flag = 1; | 
 |         } | 
 |  | 
 |         if (unlikely(float64_is_zero_or_denormal(frb))) { | 
 |             /* XB is not zero because of the above check and */ | 
 |             /* therefore must be denormalized.               */ | 
 |             fg_flag = 1; | 
 |         } | 
 |     } | 
 |  | 
 |     return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); | 
 | } | 
 |  | 
 | void helper_fcmpu(CPUPPCState *env, uint64_t arg1, uint64_t arg2, | 
 |                   uint32_t crfD) | 
 | { | 
 |     CPU_DoubleU farg1, farg2; | 
 |     uint32_t ret = 0; | 
 |  | 
 |     farg1.ll = arg1; | 
 |     farg2.ll = arg2; | 
 |  | 
 |     if (unlikely(float64_is_any_nan(farg1.d) || | 
 |                  float64_is_any_nan(farg2.d))) { | 
 |         ret = 0x01UL; | 
 |     } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) { | 
 |         ret = 0x08UL; | 
 |     } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) { | 
 |         ret = 0x04UL; | 
 |     } else { | 
 |         ret = 0x02UL; | 
 |     } | 
 |  | 
 |     env->fpscr &= ~FP_FPCC; | 
 |     env->fpscr |= ret << FPSCR_FPCC; | 
 |     env->crf[crfD] = ret; | 
 |     if (unlikely(ret == 0x01UL | 
 |                  && (float64_is_signaling_nan(farg1.d, &env->fp_status) || | 
 |                      float64_is_signaling_nan(farg2.d, &env->fp_status)))) { | 
 |         /* sNaN comparison */ | 
 |         float_invalid_op_vxsnan(env, GETPC()); | 
 |     } | 
 | } | 
 |  | 
 | void helper_fcmpo(CPUPPCState *env, uint64_t arg1, uint64_t arg2, | 
 |                   uint32_t crfD) | 
 | { | 
 |     CPU_DoubleU farg1, farg2; | 
 |     uint32_t ret = 0; | 
 |  | 
 |     farg1.ll = arg1; | 
 |     farg2.ll = arg2; | 
 |  | 
 |     if (unlikely(float64_is_any_nan(farg1.d) || | 
 |                  float64_is_any_nan(farg2.d))) { | 
 |         ret = 0x01UL; | 
 |     } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) { | 
 |         ret = 0x08UL; | 
 |     } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) { | 
 |         ret = 0x04UL; | 
 |     } else { | 
 |         ret = 0x02UL; | 
 |     } | 
 |  | 
 |     env->fpscr &= ~FP_FPCC; | 
 |     env->fpscr |= ret << FPSCR_FPCC; | 
 |     env->crf[crfD] = (uint32_t) ret; | 
 |     if (unlikely(ret == 0x01UL)) { | 
 |         float_invalid_op_vxvc(env, 1, GETPC()); | 
 |         if (float64_is_signaling_nan(farg1.d, &env->fp_status) || | 
 |             float64_is_signaling_nan(farg2.d, &env->fp_status)) { | 
 |             /* sNaN comparison */ | 
 |             float_invalid_op_vxsnan(env, GETPC()); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | /* Single-precision floating-point conversions */ | 
 | static inline uint32_t efscfsi(CPUPPCState *env, uint32_t val) | 
 | { | 
 |     CPU_FloatU u; | 
 |  | 
 |     u.f = int32_to_float32(val, &env->vec_status); | 
 |  | 
 |     return u.l; | 
 | } | 
 |  | 
 | static inline uint32_t efscfui(CPUPPCState *env, uint32_t val) | 
 | { | 
 |     CPU_FloatU u; | 
 |  | 
 |     u.f = uint32_to_float32(val, &env->vec_status); | 
 |  | 
 |     return u.l; | 
 | } | 
 |  | 
 | static inline int32_t efsctsi(CPUPPCState *env, uint32_t val) | 
 | { | 
 |     CPU_FloatU u; | 
 |  | 
 |     u.l = val; | 
 |     /* NaN are not treated the same way IEEE 754 does */ | 
 |     if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) { | 
 |         return 0; | 
 |     } | 
 |  | 
 |     return float32_to_int32(u.f, &env->vec_status); | 
 | } | 
 |  | 
 | static inline uint32_t efsctui(CPUPPCState *env, uint32_t val) | 
 | { | 
 |     CPU_FloatU u; | 
 |  | 
 |     u.l = val; | 
 |     /* NaN are not treated the same way IEEE 754 does */ | 
 |     if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) { | 
 |         return 0; | 
 |     } | 
 |  | 
 |     return float32_to_uint32(u.f, &env->vec_status); | 
 | } | 
 |  | 
 | static inline uint32_t efsctsiz(CPUPPCState *env, uint32_t val) | 
 | { | 
 |     CPU_FloatU u; | 
 |  | 
 |     u.l = val; | 
 |     /* NaN are not treated the same way IEEE 754 does */ | 
 |     if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) { | 
 |         return 0; | 
 |     } | 
 |  | 
 |     return float32_to_int32_round_to_zero(u.f, &env->vec_status); | 
 | } | 
 |  | 
 | static inline uint32_t efsctuiz(CPUPPCState *env, uint32_t val) | 
 | { | 
 |     CPU_FloatU u; | 
 |  | 
 |     u.l = val; | 
 |     /* NaN are not treated the same way IEEE 754 does */ | 
 |     if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) { | 
 |         return 0; | 
 |     } | 
 |  | 
 |     return float32_to_uint32_round_to_zero(u.f, &env->vec_status); | 
 | } | 
 |  | 
 | static inline uint32_t efscfsf(CPUPPCState *env, uint32_t val) | 
 | { | 
 |     CPU_FloatU u; | 
 |     float32 tmp; | 
 |  | 
 |     u.f = int32_to_float32(val, &env->vec_status); | 
 |     tmp = int64_to_float32(1ULL << 32, &env->vec_status); | 
 |     u.f = float32_div(u.f, tmp, &env->vec_status); | 
 |  | 
 |     return u.l; | 
 | } | 
 |  | 
 | static inline uint32_t efscfuf(CPUPPCState *env, uint32_t val) | 
 | { | 
 |     CPU_FloatU u; | 
 |     float32 tmp; | 
 |  | 
 |     u.f = uint32_to_float32(val, &env->vec_status); | 
 |     tmp = uint64_to_float32(1ULL << 32, &env->vec_status); | 
 |     u.f = float32_div(u.f, tmp, &env->vec_status); | 
 |  | 
 |     return u.l; | 
 | } | 
 |  | 
 | static inline uint32_t efsctsf(CPUPPCState *env, uint32_t val) | 
 | { | 
 |     CPU_FloatU u; | 
 |     float32 tmp; | 
 |  | 
 |     u.l = val; | 
 |     /* NaN are not treated the same way IEEE 754 does */ | 
 |     if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) { | 
 |         return 0; | 
 |     } | 
 |     tmp = uint64_to_float32(1ULL << 32, &env->vec_status); | 
 |     u.f = float32_mul(u.f, tmp, &env->vec_status); | 
 |  | 
 |     return float32_to_int32(u.f, &env->vec_status); | 
 | } | 
 |  | 
 | static inline uint32_t efsctuf(CPUPPCState *env, uint32_t val) | 
 | { | 
 |     CPU_FloatU u; | 
 |     float32 tmp; | 
 |  | 
 |     u.l = val; | 
 |     /* NaN are not treated the same way IEEE 754 does */ | 
 |     if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) { | 
 |         return 0; | 
 |     } | 
 |     tmp = uint64_to_float32(1ULL << 32, &env->vec_status); | 
 |     u.f = float32_mul(u.f, tmp, &env->vec_status); | 
 |  | 
 |     return float32_to_uint32(u.f, &env->vec_status); | 
 | } | 
 |  | 
 | #define HELPER_SPE_SINGLE_CONV(name)                              \ | 
 |     uint32_t helper_e##name(CPUPPCState *env, uint32_t val)       \ | 
 |     {                                                             \ | 
 |         return e##name(env, val);                                 \ | 
 |     } | 
 | /* efscfsi */ | 
 | HELPER_SPE_SINGLE_CONV(fscfsi); | 
 | /* efscfui */ | 
 | HELPER_SPE_SINGLE_CONV(fscfui); | 
 | /* efscfuf */ | 
 | HELPER_SPE_SINGLE_CONV(fscfuf); | 
 | /* efscfsf */ | 
 | HELPER_SPE_SINGLE_CONV(fscfsf); | 
 | /* efsctsi */ | 
 | HELPER_SPE_SINGLE_CONV(fsctsi); | 
 | /* efsctui */ | 
 | HELPER_SPE_SINGLE_CONV(fsctui); | 
 | /* efsctsiz */ | 
 | HELPER_SPE_SINGLE_CONV(fsctsiz); | 
 | /* efsctuiz */ | 
 | HELPER_SPE_SINGLE_CONV(fsctuiz); | 
 | /* efsctsf */ | 
 | HELPER_SPE_SINGLE_CONV(fsctsf); | 
 | /* efsctuf */ | 
 | HELPER_SPE_SINGLE_CONV(fsctuf); | 
 |  | 
 | #define HELPER_SPE_VECTOR_CONV(name)                            \ | 
 |     uint64_t helper_ev##name(CPUPPCState *env, uint64_t val)    \ | 
 |     {                                                           \ | 
 |         return ((uint64_t)e##name(env, val >> 32) << 32) |      \ | 
 |             (uint64_t)e##name(env, val);                        \ | 
 |     } | 
 | /* evfscfsi */ | 
 | HELPER_SPE_VECTOR_CONV(fscfsi); | 
 | /* evfscfui */ | 
 | HELPER_SPE_VECTOR_CONV(fscfui); | 
 | /* evfscfuf */ | 
 | HELPER_SPE_VECTOR_CONV(fscfuf); | 
 | /* evfscfsf */ | 
 | HELPER_SPE_VECTOR_CONV(fscfsf); | 
 | /* evfsctsi */ | 
 | HELPER_SPE_VECTOR_CONV(fsctsi); | 
 | /* evfsctui */ | 
 | HELPER_SPE_VECTOR_CONV(fsctui); | 
 | /* evfsctsiz */ | 
 | HELPER_SPE_VECTOR_CONV(fsctsiz); | 
 | /* evfsctuiz */ | 
 | HELPER_SPE_VECTOR_CONV(fsctuiz); | 
 | /* evfsctsf */ | 
 | HELPER_SPE_VECTOR_CONV(fsctsf); | 
 | /* evfsctuf */ | 
 | HELPER_SPE_VECTOR_CONV(fsctuf); | 
 |  | 
 | /* Single-precision floating-point arithmetic */ | 
 | static inline uint32_t efsadd(CPUPPCState *env, uint32_t op1, uint32_t op2) | 
 | { | 
 |     CPU_FloatU u1, u2; | 
 |  | 
 |     u1.l = op1; | 
 |     u2.l = op2; | 
 |     u1.f = float32_add(u1.f, u2.f, &env->vec_status); | 
 |     return u1.l; | 
 | } | 
 |  | 
 | static inline uint32_t efssub(CPUPPCState *env, uint32_t op1, uint32_t op2) | 
 | { | 
 |     CPU_FloatU u1, u2; | 
 |  | 
 |     u1.l = op1; | 
 |     u2.l = op2; | 
 |     u1.f = float32_sub(u1.f, u2.f, &env->vec_status); | 
 |     return u1.l; | 
 | } | 
 |  | 
 | static inline uint32_t efsmul(CPUPPCState *env, uint32_t op1, uint32_t op2) | 
 | { | 
 |     CPU_FloatU u1, u2; | 
 |  | 
 |     u1.l = op1; | 
 |     u2.l = op2; | 
 |     u1.f = float32_mul(u1.f, u2.f, &env->vec_status); | 
 |     return u1.l; | 
 | } | 
 |  | 
 | static inline uint32_t efsdiv(CPUPPCState *env, uint32_t op1, uint32_t op2) | 
 | { | 
 |     CPU_FloatU u1, u2; | 
 |  | 
 |     u1.l = op1; | 
 |     u2.l = op2; | 
 |     u1.f = float32_div(u1.f, u2.f, &env->vec_status); | 
 |     return u1.l; | 
 | } | 
 |  | 
 | #define HELPER_SPE_SINGLE_ARITH(name)                                   \ | 
 |     uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \ | 
 |     {                                                                   \ | 
 |         return e##name(env, op1, op2);                                  \ | 
 |     } | 
 | /* efsadd */ | 
 | HELPER_SPE_SINGLE_ARITH(fsadd); | 
 | /* efssub */ | 
 | HELPER_SPE_SINGLE_ARITH(fssub); | 
 | /* efsmul */ | 
 | HELPER_SPE_SINGLE_ARITH(fsmul); | 
 | /* efsdiv */ | 
 | HELPER_SPE_SINGLE_ARITH(fsdiv); | 
 |  | 
 | #define HELPER_SPE_VECTOR_ARITH(name)                                   \ | 
 |     uint64_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \ | 
 |     {                                                                   \ | 
 |         return ((uint64_t)e##name(env, op1 >> 32, op2 >> 32) << 32) |   \ | 
 |             (uint64_t)e##name(env, op1, op2);                           \ | 
 |     } | 
 | /* evfsadd */ | 
 | HELPER_SPE_VECTOR_ARITH(fsadd); | 
 | /* evfssub */ | 
 | HELPER_SPE_VECTOR_ARITH(fssub); | 
 | /* evfsmul */ | 
 | HELPER_SPE_VECTOR_ARITH(fsmul); | 
 | /* evfsdiv */ | 
 | HELPER_SPE_VECTOR_ARITH(fsdiv); | 
 |  | 
 | /* Single-precision floating-point comparisons */ | 
 | static inline uint32_t efscmplt(CPUPPCState *env, uint32_t op1, uint32_t op2) | 
 | { | 
 |     CPU_FloatU u1, u2; | 
 |  | 
 |     u1.l = op1; | 
 |     u2.l = op2; | 
 |     return float32_lt(u1.f, u2.f, &env->vec_status) ? 4 : 0; | 
 | } | 
 |  | 
 | static inline uint32_t efscmpgt(CPUPPCState *env, uint32_t op1, uint32_t op2) | 
 | { | 
 |     CPU_FloatU u1, u2; | 
 |  | 
 |     u1.l = op1; | 
 |     u2.l = op2; | 
 |     return float32_le(u1.f, u2.f, &env->vec_status) ? 0 : 4; | 
 | } | 
 |  | 
 | static inline uint32_t efscmpeq(CPUPPCState *env, uint32_t op1, uint32_t op2) | 
 | { | 
 |     CPU_FloatU u1, u2; | 
 |  | 
 |     u1.l = op1; | 
 |     u2.l = op2; | 
 |     return float32_eq(u1.f, u2.f, &env->vec_status) ? 4 : 0; | 
 | } | 
 |  | 
 | static inline uint32_t efststlt(CPUPPCState *env, uint32_t op1, uint32_t op2) | 
 | { | 
 |     /* XXX: TODO: ignore special values (NaN, infinites, ...) */ | 
 |     return efscmplt(env, op1, op2); | 
 | } | 
 |  | 
 | static inline uint32_t efststgt(CPUPPCState *env, uint32_t op1, uint32_t op2) | 
 | { | 
 |     /* XXX: TODO: ignore special values (NaN, infinites, ...) */ | 
 |     return efscmpgt(env, op1, op2); | 
 | } | 
 |  | 
 | static inline uint32_t efststeq(CPUPPCState *env, uint32_t op1, uint32_t op2) | 
 | { | 
 |     /* XXX: TODO: ignore special values (NaN, infinites, ...) */ | 
 |     return efscmpeq(env, op1, op2); | 
 | } | 
 |  | 
 | #define HELPER_SINGLE_SPE_CMP(name)                                     \ | 
 |     uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \ | 
 |     {                                                                   \ | 
 |         return e##name(env, op1, op2);                                  \ | 
 |     } | 
 | /* efststlt */ | 
 | HELPER_SINGLE_SPE_CMP(fststlt); | 
 | /* efststgt */ | 
 | HELPER_SINGLE_SPE_CMP(fststgt); | 
 | /* efststeq */ | 
 | HELPER_SINGLE_SPE_CMP(fststeq); | 
 | /* efscmplt */ | 
 | HELPER_SINGLE_SPE_CMP(fscmplt); | 
 | /* efscmpgt */ | 
 | HELPER_SINGLE_SPE_CMP(fscmpgt); | 
 | /* efscmpeq */ | 
 | HELPER_SINGLE_SPE_CMP(fscmpeq); | 
 |  | 
 | static inline uint32_t evcmp_merge(int t0, int t1) | 
 | { | 
 |     return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1); | 
 | } | 
 |  | 
 | #define HELPER_VECTOR_SPE_CMP(name)                                     \ | 
 |     uint32_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \ | 
 |     {                                                                   \ | 
 |         return evcmp_merge(e##name(env, op1 >> 32, op2 >> 32),          \ | 
 |                            e##name(env, op1, op2));                     \ | 
 |     } | 
 | /* evfststlt */ | 
 | HELPER_VECTOR_SPE_CMP(fststlt); | 
 | /* evfststgt */ | 
 | HELPER_VECTOR_SPE_CMP(fststgt); | 
 | /* evfststeq */ | 
 | HELPER_VECTOR_SPE_CMP(fststeq); | 
 | /* evfscmplt */ | 
 | HELPER_VECTOR_SPE_CMP(fscmplt); | 
 | /* evfscmpgt */ | 
 | HELPER_VECTOR_SPE_CMP(fscmpgt); | 
 | /* evfscmpeq */ | 
 | HELPER_VECTOR_SPE_CMP(fscmpeq); | 
 |  | 
 | /* Double-precision floating-point conversion */ | 
 | uint64_t helper_efdcfsi(CPUPPCState *env, uint32_t val) | 
 | { | 
 |     CPU_DoubleU u; | 
 |  | 
 |     u.d = int32_to_float64(val, &env->vec_status); | 
 |  | 
 |     return u.ll; | 
 | } | 
 |  | 
 | uint64_t helper_efdcfsid(CPUPPCState *env, uint64_t val) | 
 | { | 
 |     CPU_DoubleU u; | 
 |  | 
 |     u.d = int64_to_float64(val, &env->vec_status); | 
 |  | 
 |     return u.ll; | 
 | } | 
 |  | 
 | uint64_t helper_efdcfui(CPUPPCState *env, uint32_t val) | 
 | { | 
 |     CPU_DoubleU u; | 
 |  | 
 |     u.d = uint32_to_float64(val, &env->vec_status); | 
 |  | 
 |     return u.ll; | 
 | } | 
 |  | 
 | uint64_t helper_efdcfuid(CPUPPCState *env, uint64_t val) | 
 | { | 
 |     CPU_DoubleU u; | 
 |  | 
 |     u.d = uint64_to_float64(val, &env->vec_status); | 
 |  | 
 |     return u.ll; | 
 | } | 
 |  | 
 | uint32_t helper_efdctsi(CPUPPCState *env, uint64_t val) | 
 | { | 
 |     CPU_DoubleU u; | 
 |  | 
 |     u.ll = val; | 
 |     /* NaN are not treated the same way IEEE 754 does */ | 
 |     if (unlikely(float64_is_any_nan(u.d))) { | 
 |         return 0; | 
 |     } | 
 |  | 
 |     return float64_to_int32(u.d, &env->vec_status); | 
 | } | 
 |  | 
 | uint32_t helper_efdctui(CPUPPCState *env, uint64_t val) | 
 | { | 
 |     CPU_DoubleU u; | 
 |  | 
 |     u.ll = val; | 
 |     /* NaN are not treated the same way IEEE 754 does */ | 
 |     if (unlikely(float64_is_any_nan(u.d))) { | 
 |         return 0; | 
 |     } | 
 |  | 
 |     return float64_to_uint32(u.d, &env->vec_status); | 
 | } | 
 |  | 
 | uint32_t helper_efdctsiz(CPUPPCState *env, uint64_t val) | 
 | { | 
 |     CPU_DoubleU u; | 
 |  | 
 |     u.ll = val; | 
 |     /* NaN are not treated the same way IEEE 754 does */ | 
 |     if (unlikely(float64_is_any_nan(u.d))) { | 
 |         return 0; | 
 |     } | 
 |  | 
 |     return float64_to_int32_round_to_zero(u.d, &env->vec_status); | 
 | } | 
 |  | 
 | uint64_t helper_efdctsidz(CPUPPCState *env, uint64_t val) | 
 | { | 
 |     CPU_DoubleU u; | 
 |  | 
 |     u.ll = val; | 
 |     /* NaN are not treated the same way IEEE 754 does */ | 
 |     if (unlikely(float64_is_any_nan(u.d))) { | 
 |         return 0; | 
 |     } | 
 |  | 
 |     return float64_to_int64_round_to_zero(u.d, &env->vec_status); | 
 | } | 
 |  | 
 | uint32_t helper_efdctuiz(CPUPPCState *env, uint64_t val) | 
 | { | 
 |     CPU_DoubleU u; | 
 |  | 
 |     u.ll = val; | 
 |     /* NaN are not treated the same way IEEE 754 does */ | 
 |     if (unlikely(float64_is_any_nan(u.d))) { | 
 |         return 0; | 
 |     } | 
 |  | 
 |     return float64_to_uint32_round_to_zero(u.d, &env->vec_status); | 
 | } | 
 |  | 
 | uint64_t helper_efdctuidz(CPUPPCState *env, uint64_t val) | 
 | { | 
 |     CPU_DoubleU u; | 
 |  | 
 |     u.ll = val; | 
 |     /* NaN are not treated the same way IEEE 754 does */ | 
 |     if (unlikely(float64_is_any_nan(u.d))) { | 
 |         return 0; | 
 |     } | 
 |  | 
 |     return float64_to_uint64_round_to_zero(u.d, &env->vec_status); | 
 | } | 
 |  | 
 | uint64_t helper_efdcfsf(CPUPPCState *env, uint32_t val) | 
 | { | 
 |     CPU_DoubleU u; | 
 |     float64 tmp; | 
 |  | 
 |     u.d = int32_to_float64(val, &env->vec_status); | 
 |     tmp = int64_to_float64(1ULL << 32, &env->vec_status); | 
 |     u.d = float64_div(u.d, tmp, &env->vec_status); | 
 |  | 
 |     return u.ll; | 
 | } | 
 |  | 
 | uint64_t helper_efdcfuf(CPUPPCState *env, uint32_t val) | 
 | { | 
 |     CPU_DoubleU u; | 
 |     float64 tmp; | 
 |  | 
 |     u.d = uint32_to_float64(val, &env->vec_status); | 
 |     tmp = int64_to_float64(1ULL << 32, &env->vec_status); | 
 |     u.d = float64_div(u.d, tmp, &env->vec_status); | 
 |  | 
 |     return u.ll; | 
 | } | 
 |  | 
 | uint32_t helper_efdctsf(CPUPPCState *env, uint64_t val) | 
 | { | 
 |     CPU_DoubleU u; | 
 |     float64 tmp; | 
 |  | 
 |     u.ll = val; | 
 |     /* NaN are not treated the same way IEEE 754 does */ | 
 |     if (unlikely(float64_is_any_nan(u.d))) { | 
 |         return 0; | 
 |     } | 
 |     tmp = uint64_to_float64(1ULL << 32, &env->vec_status); | 
 |     u.d = float64_mul(u.d, tmp, &env->vec_status); | 
 |  | 
 |     return float64_to_int32(u.d, &env->vec_status); | 
 | } | 
 |  | 
 | uint32_t helper_efdctuf(CPUPPCState *env, uint64_t val) | 
 | { | 
 |     CPU_DoubleU u; | 
 |     float64 tmp; | 
 |  | 
 |     u.ll = val; | 
 |     /* NaN are not treated the same way IEEE 754 does */ | 
 |     if (unlikely(float64_is_any_nan(u.d))) { | 
 |         return 0; | 
 |     } | 
 |     tmp = uint64_to_float64(1ULL << 32, &env->vec_status); | 
 |     u.d = float64_mul(u.d, tmp, &env->vec_status); | 
 |  | 
 |     return float64_to_uint32(u.d, &env->vec_status); | 
 | } | 
 |  | 
 | uint32_t helper_efscfd(CPUPPCState *env, uint64_t val) | 
 | { | 
 |     CPU_DoubleU u1; | 
 |     CPU_FloatU u2; | 
 |  | 
 |     u1.ll = val; | 
 |     u2.f = float64_to_float32(u1.d, &env->vec_status); | 
 |  | 
 |     return u2.l; | 
 | } | 
 |  | 
 | uint64_t helper_efdcfs(CPUPPCState *env, uint32_t val) | 
 | { | 
 |     CPU_DoubleU u2; | 
 |     CPU_FloatU u1; | 
 |  | 
 |     u1.l = val; | 
 |     u2.d = float32_to_float64(u1.f, &env->vec_status); | 
 |  | 
 |     return u2.ll; | 
 | } | 
 |  | 
 | /* Double precision fixed-point arithmetic */ | 
 | uint64_t helper_efdadd(CPUPPCState *env, uint64_t op1, uint64_t op2) | 
 | { | 
 |     CPU_DoubleU u1, u2; | 
 |  | 
 |     u1.ll = op1; | 
 |     u2.ll = op2; | 
 |     u1.d = float64_add(u1.d, u2.d, &env->vec_status); | 
 |     return u1.ll; | 
 | } | 
 |  | 
 | uint64_t helper_efdsub(CPUPPCState *env, uint64_t op1, uint64_t op2) | 
 | { | 
 |     CPU_DoubleU u1, u2; | 
 |  | 
 |     u1.ll = op1; | 
 |     u2.ll = op2; | 
 |     u1.d = float64_sub(u1.d, u2.d, &env->vec_status); | 
 |     return u1.ll; | 
 | } | 
 |  | 
 | uint64_t helper_efdmul(CPUPPCState *env, uint64_t op1, uint64_t op2) | 
 | { | 
 |     CPU_DoubleU u1, u2; | 
 |  | 
 |     u1.ll = op1; | 
 |     u2.ll = op2; | 
 |     u1.d = float64_mul(u1.d, u2.d, &env->vec_status); | 
 |     return u1.ll; | 
 | } | 
 |  | 
 | uint64_t helper_efddiv(CPUPPCState *env, uint64_t op1, uint64_t op2) | 
 | { | 
 |     CPU_DoubleU u1, u2; | 
 |  | 
 |     u1.ll = op1; | 
 |     u2.ll = op2; | 
 |     u1.d = float64_div(u1.d, u2.d, &env->vec_status); | 
 |     return u1.ll; | 
 | } | 
 |  | 
 | /* Double precision floating point helpers */ | 
 | uint32_t helper_efdtstlt(CPUPPCState *env, uint64_t op1, uint64_t op2) | 
 | { | 
 |     CPU_DoubleU u1, u2; | 
 |  | 
 |     u1.ll = op1; | 
 |     u2.ll = op2; | 
 |     return float64_lt(u1.d, u2.d, &env->vec_status) ? 4 : 0; | 
 | } | 
 |  | 
 | uint32_t helper_efdtstgt(CPUPPCState *env, uint64_t op1, uint64_t op2) | 
 | { | 
 |     CPU_DoubleU u1, u2; | 
 |  | 
 |     u1.ll = op1; | 
 |     u2.ll = op2; | 
 |     return float64_le(u1.d, u2.d, &env->vec_status) ? 0 : 4; | 
 | } | 
 |  | 
 | uint32_t helper_efdtsteq(CPUPPCState *env, uint64_t op1, uint64_t op2) | 
 | { | 
 |     CPU_DoubleU u1, u2; | 
 |  | 
 |     u1.ll = op1; | 
 |     u2.ll = op2; | 
 |     return float64_eq_quiet(u1.d, u2.d, &env->vec_status) ? 4 : 0; | 
 | } | 
 |  | 
 | uint32_t helper_efdcmplt(CPUPPCState *env, uint64_t op1, uint64_t op2) | 
 | { | 
 |     /* XXX: TODO: test special values (NaN, infinites, ...) */ | 
 |     return helper_efdtstlt(env, op1, op2); | 
 | } | 
 |  | 
 | uint32_t helper_efdcmpgt(CPUPPCState *env, uint64_t op1, uint64_t op2) | 
 | { | 
 |     /* XXX: TODO: test special values (NaN, infinites, ...) */ | 
 |     return helper_efdtstgt(env, op1, op2); | 
 | } | 
 |  | 
 | uint32_t helper_efdcmpeq(CPUPPCState *env, uint64_t op1, uint64_t op2) | 
 | { | 
 |     /* XXX: TODO: test special values (NaN, infinites, ...) */ | 
 |     return helper_efdtsteq(env, op1, op2); | 
 | } | 
 |  | 
 | #define float64_to_float64(x, env) x | 
 |  | 
 |  | 
 | /* | 
 |  * VSX_ADD_SUB - VSX floating point add/subtract | 
 |  *   name  - instruction mnemonic | 
 |  *   op    - operation (add or sub) | 
 |  *   nels  - number of elements (1, 2 or 4) | 
 |  *   tp    - type (float32 or float64) | 
 |  *   fld   - vsr_t field (VsrD(*) or VsrW(*)) | 
 |  *   sfifprf - set FI and FPRF | 
 |  */ | 
 | #define VSX_ADD_SUB(name, op, nels, tp, fld, sfifprf, r2sp)                  \ | 
 | void helper_##name(CPUPPCState *env, ppc_vsr_t *xt,                          \ | 
 |                    ppc_vsr_t *xa, ppc_vsr_t *xb)                             \ | 
 | {                                                                            \ | 
 |     ppc_vsr_t t = { };                                                       \ | 
 |     int i;                                                                   \ | 
 |                                                                              \ | 
 |     helper_reset_fpstatus(env);                                              \ | 
 |                                                                              \ | 
 |     for (i = 0; i < nels; i++) {                                             \ | 
 |         float_status tstat = env->fp_status;                                 \ | 
 |         set_float_exception_flags(0, &tstat);                                \ | 
 |         t.fld = tp##_##op(xa->fld, xb->fld, &tstat);                         \ | 
 |         env->fp_status.float_exception_flags |= tstat.float_exception_flags; \ | 
 |                                                                              \ | 
 |         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \ | 
 |             float_invalid_op_addsub(env, tstat.float_exception_flags,        \ | 
 |                                     sfifprf, GETPC());                       \ | 
 |         }                                                                    \ | 
 |                                                                              \ | 
 |         if (r2sp) {                                                          \ | 
 |             t.fld = do_frsp(env, t.fld, GETPC());                            \ | 
 |         }                                                                    \ | 
 |                                                                              \ | 
 |         if (sfifprf) {                                                       \ | 
 |             helper_compute_fprf_float64(env, t.fld);                         \ | 
 |         }                                                                    \ | 
 |     }                                                                        \ | 
 |     *xt = t;                                                                 \ | 
 |     do_float_check_status(env, sfifprf, GETPC());                            \ | 
 | } | 
 |  | 
 | VSX_ADD_SUB(XSADDDP, add, 1, float64, VsrD(0), 1, 0) | 
 | VSX_ADD_SUB(XSADDSP, add, 1, float64, VsrD(0), 1, 1) | 
 | VSX_ADD_SUB(XVADDDP, add, 2, float64, VsrD(i), 0, 0) | 
 | VSX_ADD_SUB(XVADDSP, add, 4, float32, VsrW(i), 0, 0) | 
 | VSX_ADD_SUB(XSSUBDP, sub, 1, float64, VsrD(0), 1, 0) | 
 | VSX_ADD_SUB(XSSUBSP, sub, 1, float64, VsrD(0), 1, 1) | 
 | VSX_ADD_SUB(XVSUBDP, sub, 2, float64, VsrD(i), 0, 0) | 
 | VSX_ADD_SUB(XVSUBSP, sub, 4, float32, VsrW(i), 0, 0) | 
 |  | 
 | void helper_xsaddqp(CPUPPCState *env, uint32_t opcode, | 
 |                     ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb) | 
 | { | 
 |     ppc_vsr_t t = *xt; | 
 |     float_status tstat; | 
 |  | 
 |     helper_reset_fpstatus(env); | 
 |  | 
 |     tstat = env->fp_status; | 
 |     if (unlikely(Rc(opcode) != 0)) { | 
 |         tstat.float_rounding_mode = float_round_to_odd; | 
 |     } | 
 |  | 
 |     set_float_exception_flags(0, &tstat); | 
 |     t.f128 = float128_add(xa->f128, xb->f128, &tstat); | 
 |     env->fp_status.float_exception_flags |= tstat.float_exception_flags; | 
 |  | 
 |     if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { | 
 |         float_invalid_op_addsub(env, tstat.float_exception_flags, 1, GETPC()); | 
 |     } | 
 |  | 
 |     helper_compute_fprf_float128(env, t.f128); | 
 |  | 
 |     *xt = t; | 
 |     do_float_check_status(env, true, GETPC()); | 
 | } | 
 |  | 
 | /* | 
 |  * VSX_MUL - VSX floating point multiply | 
 |  *   op    - instruction mnemonic | 
 |  *   nels  - number of elements (1, 2 or 4) | 
 |  *   tp    - type (float32 or float64) | 
 |  *   fld   - vsr_t field (VsrD(*) or VsrW(*)) | 
 |  *   sfifprf - set FI and FPRF | 
 |  */ | 
 | #define VSX_MUL(op, nels, tp, fld, sfifprf, r2sp)                            \ | 
 | void helper_##op(CPUPPCState *env, ppc_vsr_t *xt,                            \ | 
 |                  ppc_vsr_t *xa, ppc_vsr_t *xb)                               \ | 
 | {                                                                            \ | 
 |     ppc_vsr_t t = { };                                                       \ | 
 |     int i;                                                                   \ | 
 |                                                                              \ | 
 |     helper_reset_fpstatus(env);                                              \ | 
 |                                                                              \ | 
 |     for (i = 0; i < nels; i++) {                                             \ | 
 |         float_status tstat = env->fp_status;                                 \ | 
 |         set_float_exception_flags(0, &tstat);                                \ | 
 |         t.fld = tp##_mul(xa->fld, xb->fld, &tstat);                          \ | 
 |         env->fp_status.float_exception_flags |= tstat.float_exception_flags; \ | 
 |                                                                              \ | 
 |         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \ | 
 |             float_invalid_op_mul(env, tstat.float_exception_flags,           \ | 
 |                                  sfifprf, GETPC());                          \ | 
 |         }                                                                    \ | 
 |                                                                              \ | 
 |         if (r2sp) {                                                          \ | 
 |             t.fld = do_frsp(env, t.fld, GETPC());                            \ | 
 |         }                                                                    \ | 
 |                                                                              \ | 
 |         if (sfifprf) {                                                       \ | 
 |             helper_compute_fprf_float64(env, t.fld);                         \ | 
 |         }                                                                    \ | 
 |     }                                                                        \ | 
 |                                                                              \ | 
 |     *xt = t;                                                                 \ | 
 |     do_float_check_status(env, sfifprf, GETPC());                            \ | 
 | } | 
 |  | 
 | VSX_MUL(XSMULDP, 1, float64, VsrD(0), 1, 0) | 
 | VSX_MUL(XSMULSP, 1, float64, VsrD(0), 1, 1) | 
 | VSX_MUL(XVMULDP, 2, float64, VsrD(i), 0, 0) | 
 | VSX_MUL(XVMULSP, 4, float32, VsrW(i), 0, 0) | 
 |  | 
 | void helper_xsmulqp(CPUPPCState *env, uint32_t opcode, | 
 |                     ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb) | 
 | { | 
 |     ppc_vsr_t t = *xt; | 
 |     float_status tstat; | 
 |  | 
 |     helper_reset_fpstatus(env); | 
 |     tstat = env->fp_status; | 
 |     if (unlikely(Rc(opcode) != 0)) { | 
 |         tstat.float_rounding_mode = float_round_to_odd; | 
 |     } | 
 |  | 
 |     set_float_exception_flags(0, &tstat); | 
 |     t.f128 = float128_mul(xa->f128, xb->f128, &tstat); | 
 |     env->fp_status.float_exception_flags |= tstat.float_exception_flags; | 
 |  | 
 |     if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { | 
 |         float_invalid_op_mul(env, tstat.float_exception_flags, 1, GETPC()); | 
 |     } | 
 |     helper_compute_fprf_float128(env, t.f128); | 
 |  | 
 |     *xt = t; | 
 |     do_float_check_status(env, true, GETPC()); | 
 | } | 
 |  | 
 | /* | 
 |  * VSX_DIV - VSX floating point divide | 
 |  *   op    - instruction mnemonic | 
 |  *   nels  - number of elements (1, 2 or 4) | 
 |  *   tp    - type (float32 or float64) | 
 |  *   fld   - vsr_t field (VsrD(*) or VsrW(*)) | 
 |  *   sfifprf - set FI and FPRF | 
 |  */ | 
 | #define VSX_DIV(op, nels, tp, fld, sfifprf, r2sp)                             \ | 
 | void helper_##op(CPUPPCState *env, ppc_vsr_t *xt,                             \ | 
 |                  ppc_vsr_t *xa, ppc_vsr_t *xb)                                \ | 
 | {                                                                             \ | 
 |     ppc_vsr_t t = { };                                                        \ | 
 |     int i;                                                                    \ | 
 |                                                                               \ | 
 |     helper_reset_fpstatus(env);                                               \ | 
 |                                                                               \ | 
 |     for (i = 0; i < nels; i++) {                                              \ | 
 |         float_status tstat = env->fp_status;                                  \ | 
 |         set_float_exception_flags(0, &tstat);                                 \ | 
 |         t.fld = tp##_div(xa->fld, xb->fld, &tstat);                           \ | 
 |         env->fp_status.float_exception_flags |= tstat.float_exception_flags;  \ | 
 |                                                                               \ | 
 |         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {     \ | 
 |             float_invalid_op_div(env, tstat.float_exception_flags,            \ | 
 |                                  sfifprf, GETPC());                           \ | 
 |         }                                                                     \ | 
 |         if (unlikely(tstat.float_exception_flags & float_flag_divbyzero)) {   \ | 
 |             float_zero_divide_excp(env, GETPC());                             \ | 
 |         }                                                                     \ | 
 |                                                                               \ | 
 |         if (r2sp) {                                                           \ | 
 |             t.fld = do_frsp(env, t.fld, GETPC());                             \ | 
 |         }                                                                     \ | 
 |                                                                               \ | 
 |         if (sfifprf) {                                                        \ | 
 |             helper_compute_fprf_float64(env, t.fld);                          \ | 
 |         }                                                                     \ | 
 |     }                                                                         \ | 
 |                                                                               \ | 
 |     *xt = t;                                                                  \ | 
 |     do_float_check_status(env, sfifprf, GETPC());                             \ | 
 | } | 
 |  | 
 | VSX_DIV(XSDIVDP, 1, float64, VsrD(0), 1, 0) | 
 | VSX_DIV(XSDIVSP, 1, float64, VsrD(0), 1, 1) | 
 | VSX_DIV(XVDIVDP, 2, float64, VsrD(i), 0, 0) | 
 | VSX_DIV(XVDIVSP, 4, float32, VsrW(i), 0, 0) | 
 |  | 
 | void helper_xsdivqp(CPUPPCState *env, uint32_t opcode, | 
 |                     ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb) | 
 | { | 
 |     ppc_vsr_t t = *xt; | 
 |     float_status tstat; | 
 |  | 
 |     helper_reset_fpstatus(env); | 
 |     tstat = env->fp_status; | 
 |     if (unlikely(Rc(opcode) != 0)) { | 
 |         tstat.float_rounding_mode = float_round_to_odd; | 
 |     } | 
 |  | 
 |     set_float_exception_flags(0, &tstat); | 
 |     t.f128 = float128_div(xa->f128, xb->f128, &tstat); | 
 |     env->fp_status.float_exception_flags |= tstat.float_exception_flags; | 
 |  | 
 |     if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { | 
 |         float_invalid_op_div(env, tstat.float_exception_flags, 1, GETPC()); | 
 |     } | 
 |     if (unlikely(tstat.float_exception_flags & float_flag_divbyzero)) { | 
 |         float_zero_divide_excp(env, GETPC()); | 
 |     } | 
 |  | 
 |     helper_compute_fprf_float128(env, t.f128); | 
 |     *xt = t; | 
 |     do_float_check_status(env, true, GETPC()); | 
 | } | 
 |  | 
 | /* | 
 |  * VSX_RE  - VSX floating point reciprocal estimate | 
 |  *   op    - instruction mnemonic | 
 |  *   nels  - number of elements (1, 2 or 4) | 
 |  *   tp    - type (float32 or float64) | 
 |  *   fld   - vsr_t field (VsrD(*) or VsrW(*)) | 
 |  *   sfifprf - set FI and FPRF | 
 |  */ | 
 | #define VSX_RE(op, nels, tp, fld, sfifprf, r2sp)                              \ | 
 | void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)              \ | 
 | {                                                                             \ | 
 |     ppc_vsr_t t = { };                                                        \ | 
 |     int i;                                                                    \ | 
 |                                                                               \ | 
 |     helper_reset_fpstatus(env);                                               \ | 
 |                                                                               \ | 
 |     for (i = 0; i < nels; i++) {                                              \ | 
 |         if (unlikely(tp##_is_signaling_nan(xb->fld, &env->fp_status))) {      \ | 
 |             float_invalid_op_vxsnan(env, GETPC());                            \ | 
 |         }                                                                     \ | 
 |         t.fld = tp##_div(tp##_one, xb->fld, &env->fp_status);                 \ | 
 |                                                                               \ | 
 |         if (r2sp) {                                                           \ | 
 |             t.fld = do_frsp(env, t.fld, GETPC());                             \ | 
 |         }                                                                     \ | 
 |                                                                               \ | 
 |         if (sfifprf) {                                                        \ | 
 |             helper_compute_fprf_float64(env, t.fld);                          \ | 
 |         }                                                                     \ | 
 |     }                                                                         \ | 
 |                                                                               \ | 
 |     *xt = t;                                                                  \ | 
 |     do_float_check_status(env, sfifprf, GETPC());                             \ | 
 | } | 
 |  | 
 | VSX_RE(xsredp, 1, float64, VsrD(0), 1, 0) | 
 | VSX_RE(xsresp, 1, float64, VsrD(0), 1, 1) | 
 | VSX_RE(xvredp, 2, float64, VsrD(i), 0, 0) | 
 | VSX_RE(xvresp, 4, float32, VsrW(i), 0, 0) | 
 |  | 
 | /* | 
 |  * VSX_SQRT - VSX floating point square root | 
 |  *   op    - instruction mnemonic | 
 |  *   nels  - number of elements (1, 2 or 4) | 
 |  *   tp    - type (float32 or float64) | 
 |  *   fld   - vsr_t field (VsrD(*) or VsrW(*)) | 
 |  *   sfifprf - set FI and FPRF | 
 |  */ | 
 | #define VSX_SQRT(op, nels, tp, fld, sfifprf, r2sp)                           \ | 
 | void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)             \ | 
 | {                                                                            \ | 
 |     ppc_vsr_t t = { };                                                       \ | 
 |     int i;                                                                   \ | 
 |                                                                              \ | 
 |     helper_reset_fpstatus(env);                                              \ | 
 |                                                                              \ | 
 |     for (i = 0; i < nels; i++) {                                             \ | 
 |         float_status tstat = env->fp_status;                                 \ | 
 |         set_float_exception_flags(0, &tstat);                                \ | 
 |         t.fld = tp##_sqrt(xb->fld, &tstat);                                  \ | 
 |         env->fp_status.float_exception_flags |= tstat.float_exception_flags; \ | 
 |                                                                              \ | 
 |         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \ | 
 |             float_invalid_op_sqrt(env, tstat.float_exception_flags,          \ | 
 |                                   sfifprf, GETPC());                         \ | 
 |         }                                                                    \ | 
 |                                                                              \ | 
 |         if (r2sp) {                                                          \ | 
 |             t.fld = do_frsp(env, t.fld, GETPC());                            \ | 
 |         }                                                                    \ | 
 |                                                                              \ | 
 |         if (sfifprf) {                                                       \ | 
 |             helper_compute_fprf_float64(env, t.fld);                         \ | 
 |         }                                                                    \ | 
 |     }                                                                        \ | 
 |                                                                              \ | 
 |     *xt = t;                                                                 \ | 
 |     do_float_check_status(env, sfifprf, GETPC());                            \ | 
 | } | 
 |  | 
 | VSX_SQRT(xssqrtdp, 1, float64, VsrD(0), 1, 0) | 
 | VSX_SQRT(xssqrtsp, 1, float64, VsrD(0), 1, 1) | 
 | VSX_SQRT(xvsqrtdp, 2, float64, VsrD(i), 0, 0) | 
 | VSX_SQRT(xvsqrtsp, 4, float32, VsrW(i), 0, 0) | 
 |  | 
 | /* | 
 |  *VSX_RSQRTE - VSX floating point reciprocal square root estimate | 
 |  *   op    - instruction mnemonic | 
 |  *   nels  - number of elements (1, 2 or 4) | 
 |  *   tp    - type (float32 or float64) | 
 |  *   fld   - vsr_t field (VsrD(*) or VsrW(*)) | 
 |  *   sfifprf - set FI and FPRF | 
 |  */ | 
 | #define VSX_RSQRTE(op, nels, tp, fld, sfifprf, r2sp)                         \ | 
 | void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)             \ | 
 | {                                                                            \ | 
 |     ppc_vsr_t t = { };                                                       \ | 
 |     int i;                                                                   \ | 
 |                                                                              \ | 
 |     helper_reset_fpstatus(env);                                              \ | 
 |                                                                              \ | 
 |     for (i = 0; i < nels; i++) {                                             \ | 
 |         float_status tstat = env->fp_status;                                 \ | 
 |         set_float_exception_flags(0, &tstat);                                \ | 
 |         t.fld = tp##_sqrt(xb->fld, &tstat);                                  \ | 
 |         t.fld = tp##_div(tp##_one, t.fld, &tstat);                           \ | 
 |         env->fp_status.float_exception_flags |= tstat.float_exception_flags; \ | 
 |         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \ | 
 |             float_invalid_op_sqrt(env, tstat.float_exception_flags,          \ | 
 |                                   sfifprf, GETPC());                         \ | 
 |         }                                                                    \ | 
 |         if (r2sp) {                                                          \ | 
 |             t.fld = do_frsp(env, t.fld, GETPC());                            \ | 
 |         }                                                                    \ | 
 |                                                                              \ | 
 |         if (sfifprf) {                                                       \ | 
 |             helper_compute_fprf_float64(env, t.fld);                         \ | 
 |         }                                                                    \ | 
 |     }                                                                        \ | 
 |                                                                              \ | 
 |     *xt = t;                                                                 \ | 
 |     do_float_check_status(env, sfifprf, GETPC());                            \ | 
 | } | 
 |  | 
 | VSX_RSQRTE(xsrsqrtedp, 1, float64, VsrD(0), 1, 0) | 
 | VSX_RSQRTE(xsrsqrtesp, 1, float64, VsrD(0), 1, 1) | 
 | VSX_RSQRTE(xvrsqrtedp, 2, float64, VsrD(i), 0, 0) | 
 | VSX_RSQRTE(xvrsqrtesp, 4, float32, VsrW(i), 0, 0) | 
 |  | 
 | /* | 
 |  * VSX_TDIV - VSX floating point test for divide | 
 |  *   op    - instruction mnemonic | 
 |  *   nels  - number of elements (1, 2 or 4) | 
 |  *   tp    - type (float32 or float64) | 
 |  *   fld   - vsr_t field (VsrD(*) or VsrW(*)) | 
 |  *   emin  - minimum unbiased exponent | 
 |  *   emax  - maximum unbiased exponent | 
 |  *   nbits - number of fraction bits | 
 |  */ | 
 | #define VSX_TDIV(op, nels, tp, fld, emin, emax, nbits)                  \ | 
 | void helper_##op(CPUPPCState *env, uint32_t opcode,                     \ | 
 |                  ppc_vsr_t *xa, ppc_vsr_t *xb)                          \ | 
 | {                                                                       \ | 
 |     int i;                                                              \ | 
 |     int fe_flag = 0;                                                    \ | 
 |     int fg_flag = 0;                                                    \ | 
 |                                                                         \ | 
 |     for (i = 0; i < nels; i++) {                                        \ | 
 |         if (unlikely(tp##_is_infinity(xa->fld) ||                       \ | 
 |                      tp##_is_infinity(xb->fld) ||                       \ | 
 |                      tp##_is_zero(xb->fld))) {                          \ | 
 |             fe_flag = 1;                                                \ | 
 |             fg_flag = 1;                                                \ | 
 |         } else {                                                        \ | 
 |             int e_a = ppc_##tp##_get_unbiased_exp(xa->fld);             \ | 
 |             int e_b = ppc_##tp##_get_unbiased_exp(xb->fld);             \ | 
 |                                                                         \ | 
 |             if (unlikely(tp##_is_any_nan(xa->fld) ||                    \ | 
 |                          tp##_is_any_nan(xb->fld))) {                   \ | 
 |                 fe_flag = 1;                                            \ | 
 |             } else if ((e_b <= emin) || (e_b >= (emax - 2))) {          \ | 
 |                 fe_flag = 1;                                            \ | 
 |             } else if (!tp##_is_zero(xa->fld) &&                        \ | 
 |                        (((e_a - e_b) >= emax) ||                        \ | 
 |                         ((e_a - e_b) <= (emin + 1)) ||                  \ | 
 |                         (e_a <= (emin + nbits)))) {                     \ | 
 |                 fe_flag = 1;                                            \ | 
 |             }                                                           \ | 
 |                                                                         \ | 
 |             if (unlikely(tp##_is_zero_or_denormal(xb->fld))) {          \ | 
 |                 /*                                                      \ | 
 |                  * XB is not zero because of the above check and so     \ | 
 |                  * must be denormalized.                                \ | 
 |                  */                                                     \ | 
 |                 fg_flag = 1;                                            \ | 
 |             }                                                           \ | 
 |         }                                                               \ | 
 |     }                                                                   \ | 
 |                                                                         \ | 
 |     env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \ | 
 | } | 
 |  | 
 | VSX_TDIV(xstdivdp, 1, float64, VsrD(0), -1022, 1023, 52) | 
 | VSX_TDIV(xvtdivdp, 2, float64, VsrD(i), -1022, 1023, 52) | 
 | VSX_TDIV(xvtdivsp, 4, float32, VsrW(i), -126, 127, 23) | 
 |  | 
 | /* | 
 |  * VSX_TSQRT - VSX floating point test for square root | 
 |  *   op    - instruction mnemonic | 
 |  *   nels  - number of elements (1, 2 or 4) | 
 |  *   tp    - type (float32 or float64) | 
 |  *   fld   - vsr_t field (VsrD(*) or VsrW(*)) | 
 |  *   emin  - minimum unbiased exponent | 
 |  *   emax  - maximum unbiased exponent | 
 |  *   nbits - number of fraction bits | 
 |  */ | 
 | #define VSX_TSQRT(op, nels, tp, fld, emin, nbits)                       \ | 
 | void helper_##op(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xb)      \ | 
 | {                                                                       \ | 
 |     int i;                                                              \ | 
 |     int fe_flag = 0;                                                    \ | 
 |     int fg_flag = 0;                                                    \ | 
 |                                                                         \ | 
 |     for (i = 0; i < nels; i++) {                                        \ | 
 |         if (unlikely(tp##_is_infinity(xb->fld) ||                       \ | 
 |                      tp##_is_zero(xb->fld))) {                          \ | 
 |             fe_flag = 1;                                                \ | 
 |             fg_flag = 1;                                                \ | 
 |         } else {                                                        \ | 
 |             int e_b = ppc_##tp##_get_unbiased_exp(xb->fld);             \ | 
 |                                                                         \ | 
 |             if (unlikely(tp##_is_any_nan(xb->fld))) {                   \ | 
 |                 fe_flag = 1;                                            \ | 
 |             } else if (unlikely(tp##_is_zero(xb->fld))) {               \ | 
 |                 fe_flag = 1;                                            \ | 
 |             } else if (unlikely(tp##_is_neg(xb->fld))) {                \ | 
 |                 fe_flag = 1;                                            \ | 
 |             } else if (!tp##_is_zero(xb->fld) &&                        \ | 
 |                        (e_b <= (emin + nbits))) {                       \ | 
 |                 fe_flag = 1;                                            \ | 
 |             }                                                           \ | 
 |                                                                         \ | 
 |             if (unlikely(tp##_is_zero_or_denormal(xb->fld))) {          \ | 
 |                 /*                                                      \ | 
 |                  * XB is not zero because of the above check and        \ | 
 |                  * therefore must be denormalized.                      \ | 
 |                  */                                                     \ | 
 |                 fg_flag = 1;                                            \ | 
 |             }                                                           \ | 
 |         }                                                               \ | 
 |     }                                                                   \ | 
 |                                                                         \ | 
 |     env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \ | 
 | } | 
 |  | 
 | VSX_TSQRT(xstsqrtdp, 1, float64, VsrD(0), -1022, 52) | 
 | VSX_TSQRT(xvtsqrtdp, 2, float64, VsrD(i), -1022, 52) | 
 | VSX_TSQRT(xvtsqrtsp, 4, float32, VsrW(i), -126, 23) | 
 |  | 
 | /* | 
 |  * VSX_MADD - VSX floating point muliply/add variations | 
 |  *   op    - instruction mnemonic | 
 |  *   nels  - number of elements (1, 2 or 4) | 
 |  *   tp    - type (float32 or float64) | 
 |  *   fld   - vsr_t field (VsrD(*) or VsrW(*)) | 
 |  *   maddflgs - flags for the float*muladd routine that control the | 
 |  *           various forms (madd, msub, nmadd, nmsub) | 
 |  *   sfifprf - set FI and FPRF | 
 |  */ | 
 | #define VSX_MADD(op, nels, tp, fld, maddflgs, sfifprf)                        \ | 
 | void helper_##op(CPUPPCState *env, ppc_vsr_t *xt,                             \ | 
 |                  ppc_vsr_t *s1, ppc_vsr_t *s2, ppc_vsr_t *s3)                 \ | 
 | {                                                                             \ | 
 |     ppc_vsr_t t = { };                                                        \ | 
 |     int i;                                                                    \ | 
 |                                                                               \ | 
 |     helper_reset_fpstatus(env);                                               \ | 
 |                                                                               \ | 
 |     for (i = 0; i < nels; i++) {                                              \ | 
 |         float_status tstat = env->fp_status;                                  \ | 
 |         set_float_exception_flags(0, &tstat);                                 \ | 
 |         t.fld = tp##_muladd(s1->fld, s3->fld, s2->fld, maddflgs, &tstat);     \ | 
 |         env->fp_status.float_exception_flags |= tstat.float_exception_flags;  \ | 
 |                                                                               \ | 
 |         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {     \ | 
 |             float_invalid_op_madd(env, tstat.float_exception_flags,           \ | 
 |                                   sfifprf, GETPC());                          \ | 
 |         }                                                                     \ | 
 |                                                                               \ | 
 |         if (sfifprf) {                                                        \ | 
 |             helper_compute_fprf_float64(env, t.fld);                          \ | 
 |         }                                                                     \ | 
 |     }                                                                         \ | 
 |     *xt = t;                                                                  \ | 
 |     do_float_check_status(env, sfifprf, GETPC());                             \ | 
 | } | 
 |  | 
 | VSX_MADD(XSMADDDP, 1, float64, VsrD(0), MADD_FLGS, 1) | 
 | VSX_MADD(XSMSUBDP, 1, float64, VsrD(0), MSUB_FLGS, 1) | 
 | VSX_MADD(XSNMADDDP, 1, float64, VsrD(0), NMADD_FLGS, 1) | 
 | VSX_MADD(XSNMSUBDP, 1, float64, VsrD(0), NMSUB_FLGS, 1) | 
 | VSX_MADD(XSMADDSP, 1, float64r32, VsrD(0), MADD_FLGS, 1) | 
 | VSX_MADD(XSMSUBSP, 1, float64r32, VsrD(0), MSUB_FLGS, 1) | 
 | VSX_MADD(XSNMADDSP, 1, float64r32, VsrD(0), NMADD_FLGS, 1) | 
 | VSX_MADD(XSNMSUBSP, 1, float64r32, VsrD(0), NMSUB_FLGS, 1) | 
 |  | 
 | VSX_MADD(xvmadddp, 2, float64, VsrD(i), MADD_FLGS, 0) | 
 | VSX_MADD(xvmsubdp, 2, float64, VsrD(i), MSUB_FLGS, 0) | 
 | VSX_MADD(xvnmadddp, 2, float64, VsrD(i), NMADD_FLGS, 0) | 
 | VSX_MADD(xvnmsubdp, 2, float64, VsrD(i), NMSUB_FLGS, 0) | 
 |  | 
 | VSX_MADD(xvmaddsp, 4, float32, VsrW(i), MADD_FLGS, 0) | 
 | VSX_MADD(xvmsubsp, 4, float32, VsrW(i), MSUB_FLGS, 0) | 
 | VSX_MADD(xvnmaddsp, 4, float32, VsrW(i), NMADD_FLGS, 0) | 
 | VSX_MADD(xvnmsubsp, 4, float32, VsrW(i), NMSUB_FLGS, 0) | 
 |  | 
 | /* | 
 |  * VSX_MADDQ - VSX floating point quad-precision muliply/add | 
 |  *   op    - instruction mnemonic | 
 |  *   maddflgs - flags for the float*muladd routine that control the | 
 |  *           various forms (madd, msub, nmadd, nmsub) | 
 |  *   ro    - round to odd | 
 |  */ | 
 | #define VSX_MADDQ(op, maddflgs, ro)                                            \ | 
 | void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *s1, ppc_vsr_t *s2,\ | 
 |                  ppc_vsr_t *s3)                                                \ | 
 | {                                                                              \ | 
 |     ppc_vsr_t t = *xt;                                                         \ | 
 |                                                                                \ | 
 |     helper_reset_fpstatus(env);                                                \ | 
 |                                                                                \ | 
 |     float_status tstat = env->fp_status;                                       \ | 
 |     set_float_exception_flags(0, &tstat);                                      \ | 
 |     if (ro) {                                                                  \ | 
 |         tstat.float_rounding_mode = float_round_to_odd;                        \ | 
 |     }                                                                          \ | 
 |     t.f128 = float128_muladd(s1->f128, s3->f128, s2->f128, maddflgs, &tstat);  \ | 
 |     env->fp_status.float_exception_flags |= tstat.float_exception_flags;       \ | 
 |                                                                                \ | 
 |     if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {          \ | 
 |         float_invalid_op_madd(env, tstat.float_exception_flags,                \ | 
 |                               false, GETPC());                                 \ | 
 |     }                                                                          \ | 
 |                                                                                \ | 
 |     helper_compute_fprf_float128(env, t.f128);                                 \ | 
 |     *xt = t;                                                                   \ | 
 |     do_float_check_status(env, true, GETPC());                                 \ | 
 | } | 
 |  | 
 | VSX_MADDQ(XSMADDQP, MADD_FLGS, 0) | 
 | VSX_MADDQ(XSMADDQPO, MADD_FLGS, 1) | 
 | VSX_MADDQ(XSMSUBQP, MSUB_FLGS, 0) | 
 | VSX_MADDQ(XSMSUBQPO, MSUB_FLGS, 1) | 
 | VSX_MADDQ(XSNMADDQP, NMADD_FLGS, 0) | 
 | VSX_MADDQ(XSNMADDQPO, NMADD_FLGS, 1) | 
 | VSX_MADDQ(XSNMSUBQP, NMSUB_FLGS, 0) | 
 | VSX_MADDQ(XSNMSUBQPO, NMSUB_FLGS, 0) | 
 |  | 
 | /* | 
 |  * VSX_SCALAR_CMP - VSX scalar floating point compare | 
 |  *   op    - instruction mnemonic | 
 |  *   tp    - type | 
 |  *   cmp   - comparison operation | 
 |  *   fld   - vsr_t field | 
 |  *   svxvc - set VXVC bit | 
 |  */ | 
 | #define VSX_SCALAR_CMP(op, tp, cmp, fld, svxvc)                               \ | 
 |         void helper_##op(CPUPPCState *env, ppc_vsr_t *xt,                     \ | 
 |                 ppc_vsr_t *xa, ppc_vsr_t *xb)                                 \ | 
 | {                                                                             \ | 
 |     int flags;                                                                \ | 
 |     bool r, vxvc;                                                             \ | 
 |                                                                               \ | 
 |     helper_reset_fpstatus(env);                                               \ | 
 |                                                                               \ | 
 |     if (svxvc) {                                                              \ | 
 |         r = tp##_##cmp(xb->fld, xa->fld, &env->fp_status);                    \ | 
 |     } else {                                                                  \ | 
 |         r = tp##_##cmp##_quiet(xb->fld, xa->fld, &env->fp_status);            \ | 
 |     }                                                                         \ | 
 |                                                                               \ | 
 |     flags = get_float_exception_flags(&env->fp_status);                       \ | 
 |     if (unlikely(flags & float_flag_invalid)) {                               \ | 
 |         vxvc = svxvc;                                                         \ | 
 |         if (flags & float_flag_invalid_snan) {                                \ | 
 |             float_invalid_op_vxsnan(env, GETPC());                            \ | 
 |             vxvc &= !(env->fpscr & FP_VE);                                    \ | 
 |         }                                                                     \ | 
 |         if (vxvc) {                                                           \ | 
 |             float_invalid_op_vxvc(env, 0, GETPC());                           \ | 
 |         }                                                                     \ | 
 |     }                                                                         \ | 
 |                                                                               \ | 
 |     memset(xt, 0, sizeof(*xt));                                               \ | 
 |     memset(&xt->fld, -r, sizeof(xt->fld));                                    \ | 
 |     do_float_check_status(env, false, GETPC());                               \ | 
 | } | 
 |  | 
 | VSX_SCALAR_CMP(XSCMPEQDP, float64, eq, VsrD(0), 0) | 
 | VSX_SCALAR_CMP(XSCMPGEDP, float64, le, VsrD(0), 1) | 
 | VSX_SCALAR_CMP(XSCMPGTDP, float64, lt, VsrD(0), 1) | 
 | VSX_SCALAR_CMP(XSCMPEQQP, float128, eq, f128, 0) | 
 | VSX_SCALAR_CMP(XSCMPGEQP, float128, le, f128, 1) | 
 | VSX_SCALAR_CMP(XSCMPGTQP, float128, lt, f128, 1) | 
 |  | 
 | void helper_xscmpexpdp(CPUPPCState *env, uint32_t opcode, | 
 |                        ppc_vsr_t *xa, ppc_vsr_t *xb) | 
 | { | 
 |     int64_t exp_a, exp_b; | 
 |     uint32_t cc; | 
 |  | 
 |     exp_a = extract64(xa->VsrD(0), 52, 11); | 
 |     exp_b = extract64(xb->VsrD(0), 52, 11); | 
 |  | 
 |     if (unlikely(float64_is_any_nan(xa->VsrD(0)) || | 
 |                  float64_is_any_nan(xb->VsrD(0)))) { | 
 |         cc = CRF_SO; | 
 |     } else { | 
 |         if (exp_a < exp_b) { | 
 |             cc = CRF_LT; | 
 |         } else if (exp_a > exp_b) { | 
 |             cc = CRF_GT; | 
 |         } else { | 
 |             cc = CRF_EQ; | 
 |         } | 
 |     } | 
 |  | 
 |     env->fpscr &= ~FP_FPCC; | 
 |     env->fpscr |= cc << FPSCR_FPCC; | 
 |     env->crf[BF(opcode)] = cc; | 
 |  | 
 |     do_float_check_status(env, false, GETPC()); | 
 | } | 
 |  | 
 | void helper_xscmpexpqp(CPUPPCState *env, uint32_t opcode, | 
 |                        ppc_vsr_t *xa, ppc_vsr_t *xb) | 
 | { | 
 |     int64_t exp_a, exp_b; | 
 |     uint32_t cc; | 
 |  | 
 |     exp_a = extract64(xa->VsrD(0), 48, 15); | 
 |     exp_b = extract64(xb->VsrD(0), 48, 15); | 
 |  | 
 |     if (unlikely(float128_is_any_nan(xa->f128) || | 
 |                  float128_is_any_nan(xb->f128))) { | 
 |         cc = CRF_SO; | 
 |     } else { | 
 |         if (exp_a < exp_b) { | 
 |             cc = CRF_LT; | 
 |         } else if (exp_a > exp_b) { | 
 |             cc = CRF_GT; | 
 |         } else { | 
 |             cc = CRF_EQ; | 
 |         } | 
 |     } | 
 |  | 
 |     env->fpscr &= ~FP_FPCC; | 
 |     env->fpscr |= cc << FPSCR_FPCC; | 
 |     env->crf[BF(opcode)] = cc; | 
 |  | 
 |     do_float_check_status(env, false, GETPC()); | 
 | } | 
 |  | 
 | static inline void do_scalar_cmp(CPUPPCState *env, ppc_vsr_t *xa, ppc_vsr_t *xb, | 
 |                                  int crf_idx, bool ordered) | 
 | { | 
 |     uint32_t cc; | 
 |     bool vxsnan_flag = false, vxvc_flag = false; | 
 |  | 
 |     helper_reset_fpstatus(env); | 
 |  | 
 |     switch (float64_compare(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) { | 
 |     case float_relation_less: | 
 |         cc = CRF_LT; | 
 |         break; | 
 |     case float_relation_equal: | 
 |         cc = CRF_EQ; | 
 |         break; | 
 |     case float_relation_greater: | 
 |         cc = CRF_GT; | 
 |         break; | 
 |     case float_relation_unordered: | 
 |         cc = CRF_SO; | 
 |  | 
 |         if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status) || | 
 |             float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) { | 
 |             vxsnan_flag = true; | 
 |             if (!(env->fpscr & FP_VE) && ordered) { | 
 |                 vxvc_flag = true; | 
 |             } | 
 |         } else if (float64_is_quiet_nan(xa->VsrD(0), &env->fp_status) || | 
 |                    float64_is_quiet_nan(xb->VsrD(0), &env->fp_status)) { | 
 |             if (ordered) { | 
 |                 vxvc_flag = true; | 
 |             } | 
 |         } | 
 |  | 
 |         break; | 
 |     default: | 
 |         g_assert_not_reached(); | 
 |     } | 
 |  | 
 |     env->fpscr &= ~FP_FPCC; | 
 |     env->fpscr |= cc << FPSCR_FPCC; | 
 |     env->crf[crf_idx] = cc; | 
 |  | 
 |     if (vxsnan_flag) { | 
 |         float_invalid_op_vxsnan(env, GETPC()); | 
 |     } | 
 |     if (vxvc_flag) { | 
 |         float_invalid_op_vxvc(env, 0, GETPC()); | 
 |     } | 
 |  | 
 |     do_float_check_status(env, false, GETPC()); | 
 | } | 
 |  | 
 | void helper_xscmpodp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xa, | 
 |                      ppc_vsr_t *xb) | 
 | { | 
 |     do_scalar_cmp(env, xa, xb, BF(opcode), true); | 
 | } | 
 |  | 
 | void helper_xscmpudp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xa, | 
 |                      ppc_vsr_t *xb) | 
 | { | 
 |     do_scalar_cmp(env, xa, xb, BF(opcode), false); | 
 | } | 
 |  | 
 | static inline void do_scalar_cmpq(CPUPPCState *env, ppc_vsr_t *xa, | 
 |                                   ppc_vsr_t *xb, int crf_idx, bool ordered) | 
 | { | 
 |     uint32_t cc; | 
 |     bool vxsnan_flag = false, vxvc_flag = false; | 
 |  | 
 |     helper_reset_fpstatus(env); | 
 |  | 
 |     switch (float128_compare(xa->f128, xb->f128, &env->fp_status)) { | 
 |     case float_relation_less: | 
 |         cc = CRF_LT; | 
 |         break; | 
 |     case float_relation_equal: | 
 |         cc = CRF_EQ; | 
 |         break; | 
 |     case float_relation_greater: | 
 |         cc = CRF_GT; | 
 |         break; | 
 |     case float_relation_unordered: | 
 |         cc = CRF_SO; | 
 |  | 
 |         if (float128_is_signaling_nan(xa->f128, &env->fp_status) || | 
 |             float128_is_signaling_nan(xb->f128, &env->fp_status)) { | 
 |             vxsnan_flag = true; | 
 |             if (!(env->fpscr & FP_VE) && ordered) { | 
 |                 vxvc_flag = true; | 
 |             } | 
 |         } else if (float128_is_quiet_nan(xa->f128, &env->fp_status) || | 
 |                    float128_is_quiet_nan(xb->f128, &env->fp_status)) { | 
 |             if (ordered) { | 
 |                 vxvc_flag = true; | 
 |             } | 
 |         } | 
 |  | 
 |         break; | 
 |     default: | 
 |         g_assert_not_reached(); | 
 |     } | 
 |  | 
 |     env->fpscr &= ~FP_FPCC; | 
 |     env->fpscr |= cc << FPSCR_FPCC; | 
 |     env->crf[crf_idx] = cc; | 
 |  | 
 |     if (vxsnan_flag) { | 
 |         float_invalid_op_vxsnan(env, GETPC()); | 
 |     } | 
 |     if (vxvc_flag) { | 
 |         float_invalid_op_vxvc(env, 0, GETPC()); | 
 |     } | 
 |  | 
 |     do_float_check_status(env, false, GETPC()); | 
 | } | 
 |  | 
 | void helper_xscmpoqp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xa, | 
 |                      ppc_vsr_t *xb) | 
 | { | 
 |     do_scalar_cmpq(env, xa, xb, BF(opcode), true); | 
 | } | 
 |  | 
 | void helper_xscmpuqp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xa, | 
 |                      ppc_vsr_t *xb) | 
 | { | 
 |     do_scalar_cmpq(env, xa, xb, BF(opcode), false); | 
 | } | 
 |  | 
 | /* | 
 |  * VSX_MAX_MIN - VSX floating point maximum/minimum | 
 |  *   name  - instruction mnemonic | 
 |  *   op    - operation (max or min) | 
 |  *   nels  - number of elements (1, 2 or 4) | 
 |  *   tp    - type (float32 or float64) | 
 |  *   fld   - vsr_t field (VsrD(*) or VsrW(*)) | 
 |  */ | 
 | #define VSX_MAX_MIN(name, op, nels, tp, fld)                                  \ | 
 | void helper_##name(CPUPPCState *env, ppc_vsr_t *xt,                           \ | 
 |                    ppc_vsr_t *xa, ppc_vsr_t *xb)                              \ | 
 | {                                                                             \ | 
 |     ppc_vsr_t t = { };                                                        \ | 
 |     int i;                                                                    \ | 
 |                                                                               \ | 
 |     for (i = 0; i < nels; i++) {                                              \ | 
 |         t.fld = tp##_##op(xa->fld, xb->fld, &env->fp_status);                 \ | 
 |         if (unlikely(tp##_is_signaling_nan(xa->fld, &env->fp_status) ||       \ | 
 |                      tp##_is_signaling_nan(xb->fld, &env->fp_status))) {      \ | 
 |             float_invalid_op_vxsnan(env, GETPC());                            \ | 
 |         }                                                                     \ | 
 |     }                                                                         \ | 
 |                                                                               \ | 
 |     *xt = t;                                                                  \ | 
 |     do_float_check_status(env, false, GETPC());                               \ | 
 | } | 
 |  | 
 | VSX_MAX_MIN(XSMAXDP, maxnum, 1, float64, VsrD(0)) | 
 | VSX_MAX_MIN(XVMAXDP, maxnum, 2, float64, VsrD(i)) | 
 | VSX_MAX_MIN(XVMAXSP, maxnum, 4, float32, VsrW(i)) | 
 | VSX_MAX_MIN(XSMINDP, minnum, 1, float64, VsrD(0)) | 
 | VSX_MAX_MIN(XVMINDP, minnum, 2, float64, VsrD(i)) | 
 | VSX_MAX_MIN(XVMINSP, minnum, 4, float32, VsrW(i)) | 
 |  | 
 | #define VSX_MAX_MINC(name, max, tp, fld)                                      \ | 
 | void helper_##name(CPUPPCState *env,                                          \ | 
 |                    ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)               \ | 
 | {                                                                             \ | 
 |     ppc_vsr_t t = { };                                                        \ | 
 |     bool first;                                                               \ | 
 |                                                                               \ | 
 |     helper_reset_fpstatus(env);                                               \ | 
 |                                                                               \ | 
 |     if (max) {                                                                \ | 
 |         first = tp##_le_quiet(xb->fld, xa->fld, &env->fp_status);             \ | 
 |     } else {                                                                  \ | 
 |         first = tp##_lt_quiet(xa->fld, xb->fld, &env->fp_status);             \ | 
 |     }                                                                         \ | 
 |                                                                               \ | 
 |     if (first) {                                                              \ | 
 |         t.fld = xa->fld;                                                      \ | 
 |     } else {                                                                  \ | 
 |         t.fld = xb->fld;                                                      \ | 
 |         if (env->fp_status.float_exception_flags & float_flag_invalid_snan) { \ | 
 |             float_invalid_op_vxsnan(env, GETPC());                            \ | 
 |         }                                                                     \ | 
 |     }                                                                         \ | 
 |                                                                               \ | 
 |     *xt = t;                                                                  \ | 
 | } | 
 |  | 
 | VSX_MAX_MINC(XSMAXCDP, true, float64, VsrD(0)); | 
 | VSX_MAX_MINC(XSMINCDP, false, float64, VsrD(0)); | 
 | VSX_MAX_MINC(XSMAXCQP, true, float128, f128); | 
 | VSX_MAX_MINC(XSMINCQP, false, float128, f128); | 
 |  | 
 | #define VSX_MAX_MINJ(name, max)                                               \ | 
 | void helper_##name(CPUPPCState *env,                                          \ | 
 |                    ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)               \ | 
 | {                                                                             \ | 
 |     ppc_vsr_t t = { };                                                        \ | 
 |     bool vxsnan_flag = false, vex_flag = false;                               \ | 
 |                                                                               \ | 
 |     if (unlikely(float64_is_any_nan(xa->VsrD(0)))) {                          \ | 
 |         if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status)) {         \ | 
 |             vxsnan_flag = true;                                               \ | 
 |         }                                                                     \ | 
 |         t.VsrD(0) = xa->VsrD(0);                                              \ | 
 |     } else if (unlikely(float64_is_any_nan(xb->VsrD(0)))) {                   \ | 
 |         if (float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) {         \ | 
 |             vxsnan_flag = true;                                               \ | 
 |         }                                                                     \ | 
 |         t.VsrD(0) = xb->VsrD(0);                                              \ | 
 |     } else if (float64_is_zero(xa->VsrD(0)) &&                                \ | 
 |                float64_is_zero(xb->VsrD(0))) {                                \ | 
 |         if (max) {                                                            \ | 
 |             if (!float64_is_neg(xa->VsrD(0)) ||                               \ | 
 |                 !float64_is_neg(xb->VsrD(0))) {                               \ | 
 |                 t.VsrD(0) = 0ULL;                                             \ | 
 |             } else {                                                          \ | 
 |                 t.VsrD(0) = 0x8000000000000000ULL;                            \ | 
 |             }                                                                 \ | 
 |         } else {                                                              \ | 
 |             if (float64_is_neg(xa->VsrD(0)) ||                                \ | 
 |                 float64_is_neg(xb->VsrD(0))) {                                \ | 
 |                 t.VsrD(0) = 0x8000000000000000ULL;                            \ | 
 |             } else {                                                          \ | 
 |                 t.VsrD(0) = 0ULL;                                             \ | 
 |             }                                                                 \ | 
 |         }                                                                     \ | 
 |     } else if ((max &&                                                        \ | 
 |                !float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) ||     \ | 
 |                (!max &&                                                       \ | 
 |                float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status))) {      \ | 
 |         t.VsrD(0) = xa->VsrD(0);                                              \ | 
 |     } else {                                                                  \ | 
 |         t.VsrD(0) = xb->VsrD(0);                                              \ | 
 |     }                                                                         \ | 
 |                                                                               \ | 
 |     vex_flag = (env->fpscr & FP_VE) && vxsnan_flag;                           \ | 
 |     if (vxsnan_flag) {                                                        \ | 
 |         float_invalid_op_vxsnan(env, GETPC());                                \ | 
 |     }                                                                         \ | 
 |     if (!vex_flag) {                                                          \ | 
 |         *xt = t;                                                              \ | 
 |     }                                                                         \ | 
 | }                                                                             \ | 
 |  | 
 | VSX_MAX_MINJ(XSMAXJDP, 1); | 
 | VSX_MAX_MINJ(XSMINJDP, 0); | 
 |  | 
 | /* | 
 |  * VSX_CMP - VSX floating point compare | 
 |  *   op    - instruction mnemonic | 
 |  *   nels  - number of elements (1, 2 or 4) | 
 |  *   tp    - type (float32 or float64) | 
 |  *   fld   - vsr_t field (VsrD(*) or VsrW(*)) | 
 |  *   cmp   - comparison operation | 
 |  *   svxvc - set VXVC bit | 
 |  *   exp   - expected result of comparison | 
 |  */ | 
 | #define VSX_CMP(op, nels, tp, fld, cmp, svxvc, exp)                       \ | 
 | uint32_t helper_##op(CPUPPCState *env, ppc_vsr_t *xt,                     \ | 
 |                      ppc_vsr_t *xa, ppc_vsr_t *xb)                        \ | 
 | {                                                                         \ | 
 |     ppc_vsr_t t = *xt;                                                    \ | 
 |     uint32_t crf6 = 0;                                                    \ | 
 |     int i;                                                                \ | 
 |     int all_true = 1;                                                     \ | 
 |     int all_false = 1;                                                    \ | 
 |                                                                           \ | 
 |     helper_reset_fpstatus(env);                                           \ | 
 |                                                                           \ | 
 |     for (i = 0; i < nels; i++) {                                          \ | 
 |         if (unlikely(tp##_is_any_nan(xa->fld) ||                          \ | 
 |                      tp##_is_any_nan(xb->fld))) {                         \ | 
 |             if (tp##_is_signaling_nan(xa->fld, &env->fp_status) ||        \ | 
 |                 tp##_is_signaling_nan(xb->fld, &env->fp_status)) {        \ | 
 |                 float_invalid_op_vxsnan(env, GETPC());                    \ | 
 |             }                                                             \ | 
 |             if (svxvc) {                                                  \ | 
 |                 float_invalid_op_vxvc(env, 0, GETPC());                   \ | 
 |             }                                                             \ | 
 |             t.fld = 0;                                                    \ | 
 |             all_true = 0;                                                 \ | 
 |         } else {                                                          \ | 
 |             if (tp##_##cmp(xb->fld, xa->fld, &env->fp_status) == exp) {   \ | 
 |                 t.fld = -1;                                               \ | 
 |                 all_false = 0;                                            \ | 
 |             } else {                                                      \ | 
 |                 t.fld = 0;                                                \ | 
 |                 all_true = 0;                                             \ | 
 |             }                                                             \ | 
 |         }                                                                 \ | 
 |     }                                                                     \ | 
 |                                                                           \ | 
 |     *xt = t;                                                              \ | 
 |     crf6 = (all_true ? 0x8 : 0) | (all_false ? 0x2 : 0);                  \ | 
 |     return crf6;                                                          \ | 
 | } | 
 |  | 
 | VSX_CMP(XVCMPEQDP, 2, float64, VsrD(i), eq, 0, 1) | 
 | VSX_CMP(XVCMPGEDP, 2, float64, VsrD(i), le, 1, 1) | 
 | VSX_CMP(XVCMPGTDP, 2, float64, VsrD(i), lt, 1, 1) | 
 | VSX_CMP(XVCMPNEDP, 2, float64, VsrD(i), eq, 0, 0) | 
 | VSX_CMP(XVCMPEQSP, 4, float32, VsrW(i), eq, 0, 1) | 
 | VSX_CMP(XVCMPGESP, 4, float32, VsrW(i), le, 1, 1) | 
 | VSX_CMP(XVCMPGTSP, 4, float32, VsrW(i), lt, 1, 1) | 
 | VSX_CMP(XVCMPNESP, 4, float32, VsrW(i), eq, 0, 0) | 
 |  | 
 | /* | 
 |  * VSX_CVT_FP_TO_FP - VSX floating point/floating point conversion | 
 |  *   op    - instruction mnemonic | 
 |  *   nels  - number of elements (1, 2 or 4) | 
 |  *   stp   - source type (float32 or float64) | 
 |  *   ttp   - target type (float32 or float64) | 
 |  *   sfld  - source vsr_t field | 
 |  *   tfld  - target vsr_t field (f32 or f64) | 
 |  *   sfifprf - set FI and FPRF | 
 |  */ | 
 | #define VSX_CVT_FP_TO_FP(op, nels, stp, ttp, sfld, tfld, sfifprf)  \ | 
 | void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)   \ | 
 | {                                                                  \ | 
 |     ppc_vsr_t t = { };                                             \ | 
 |     int i;                                                         \ | 
 |                                                                    \ | 
 |     helper_reset_fpstatus(env);                                    \ | 
 |                                                                    \ | 
 |     for (i = 0; i < nels; i++) {                                   \ | 
 |         t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status);        \ | 
 |         if (unlikely(stp##_is_signaling_nan(xb->sfld,              \ | 
 |                                             &env->fp_status))) {   \ | 
 |             float_invalid_op_vxsnan(env, GETPC());                 \ | 
 |             t.tfld = ttp##_snan_to_qnan(t.tfld);                   \ | 
 |         }                                                          \ | 
 |         if (sfifprf) {                                             \ | 
 |             helper_compute_fprf_##ttp(env, t.tfld);                \ | 
 |         }                                                          \ | 
 |     }                                                              \ | 
 |                                                                    \ | 
 |     *xt = t;                                                       \ | 
 |     do_float_check_status(env, sfifprf, GETPC());                  \ | 
 | } | 
 |  | 
 | VSX_CVT_FP_TO_FP(xscvspdp, 1, float32, float64, VsrW(0), VsrD(0), 1) | 
 | VSX_CVT_FP_TO_FP(xvcvspdp, 2, float32, float64, VsrW(2 * i), VsrD(i), 0) | 
 |  | 
 | #define VSX_CVT_FP_TO_FP2(op, nels, stp, ttp, sfifprf)                \ | 
 | void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)      \ | 
 | {                                                                     \ | 
 |     ppc_vsr_t t = { };                                                \ | 
 |     int i;                                                            \ | 
 |                                                                       \ | 
 |     helper_reset_fpstatus(env);                                       \ | 
 |                                                                       \ | 
 |     for (i = 0; i < nels; i++) {                                      \ | 
 |         t.VsrW(2 * i) = stp##_to_##ttp(xb->VsrD(i), &env->fp_status); \ | 
 |         if (unlikely(stp##_is_signaling_nan(xb->VsrD(i),              \ | 
 |                                             &env->fp_status))) {      \ | 
 |             float_invalid_op_vxsnan(env, GETPC());                    \ | 
 |             t.VsrW(2 * i) = ttp##_snan_to_qnan(t.VsrW(2 * i));        \ | 
 |         }                                                             \ | 
 |         if (sfifprf) {                                                \ | 
 |             helper_compute_fprf_##ttp(env, t.VsrW(2 * i));            \ | 
 |         }                                                             \ | 
 |         t.VsrW(2 * i + 1) = t.VsrW(2 * i);                            \ | 
 |     }                                                                 \ | 
 |                                                                       \ | 
 |     *xt = t;                                                          \ | 
 |     do_float_check_status(env, sfifprf, GETPC());                     \ | 
 | } | 
 |  | 
 | VSX_CVT_FP_TO_FP2(xvcvdpsp, 2, float64, float32, 0) | 
 | VSX_CVT_FP_TO_FP2(xscvdpsp, 1, float64, float32, 1) | 
 |  | 
 | /* | 
 |  * VSX_CVT_FP_TO_FP_VECTOR - VSX floating point/floating point conversion | 
 |  *   op    - instruction mnemonic | 
 |  *   nels  - number of elements (1, 2 or 4) | 
 |  *   stp   - source type (float32 or float64) | 
 |  *   ttp   - target type (float32 or float64) | 
 |  *   sfld  - source vsr_t field | 
 |  *   tfld  - target vsr_t field (f32 or f64) | 
 |  *   sfprf - set FPRF | 
 |  */ | 
 | #define VSX_CVT_FP_TO_FP_VECTOR(op, nels, stp, ttp, sfld, tfld, sfprf)  \ | 
 | void helper_##op(CPUPPCState *env, uint32_t opcode,                     \ | 
 |                  ppc_vsr_t *xt, ppc_vsr_t *xb)                          \ | 
 | {                                                                       \ | 
 |     ppc_vsr_t t = *xt;                                                  \ | 
 |     int i;                                                              \ | 
 |                                                                         \ | 
 |     helper_reset_fpstatus(env);                                         \ | 
 |                                                                         \ | 
 |     for (i = 0; i < nels; i++) {                                        \ | 
 |         t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status);             \ | 
 |         if (unlikely(stp##_is_signaling_nan(xb->sfld,                   \ | 
 |                                             &env->fp_status))) {        \ | 
 |             float_invalid_op_vxsnan(env, GETPC());                      \ | 
 |             t.tfld = ttp##_snan_to_qnan(t.tfld);                        \ | 
 |         }                                                               \ | 
 |         if (sfprf) {                                                    \ | 
 |             helper_compute_fprf_##ttp(env, t.tfld);                     \ | 
 |         }                                                               \ | 
 |     }                                                                   \ | 
 |                                                                         \ | 
 |     *xt = t;                                                            \ | 
 |     do_float_check_status(env, true, GETPC());                          \ | 
 | } | 
 |  | 
 | VSX_CVT_FP_TO_FP_VECTOR(xscvdpqp, 1, float64, float128, VsrD(0), f128, 1) | 
 |  | 
 | /* | 
 |  * VSX_CVT_FP_TO_FP_HP - VSX floating point/floating point conversion | 
 |  *                       involving one half precision value | 
 |  *   op    - instruction mnemonic | 
 |  *   nels  - number of elements (1, 2 or 4) | 
 |  *   stp   - source type | 
 |  *   ttp   - target type | 
 |  *   sfld  - source vsr_t field | 
 |  *   tfld  - target vsr_t field | 
 |  *   sfifprf - set FI and FPRF | 
 |  */ | 
 | #define VSX_CVT_FP_TO_FP_HP(op, nels, stp, ttp, sfld, tfld, sfifprf) \ | 
 | void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)   \ | 
 | {                                                                  \ | 
 |     ppc_vsr_t t = { };                                             \ | 
 |     int i;                                                         \ | 
 |                                                                    \ | 
 |     helper_reset_fpstatus(env);                                    \ | 
 |                                                                    \ | 
 |     for (i = 0; i < nels; i++) {                                   \ | 
 |         t.tfld = stp##_to_##ttp(xb->sfld, 1, &env->fp_status);     \ | 
 |         if (unlikely(stp##_is_signaling_nan(xb->sfld,              \ | 
 |                                             &env->fp_status))) {   \ | 
 |             float_invalid_op_vxsnan(env, GETPC());                 \ | 
 |             t.tfld = ttp##_snan_to_qnan(t.tfld);                   \ | 
 |         }                                                          \ | 
 |         if (sfifprf) {                                             \ | 
 |             helper_compute_fprf_##ttp(env, t.tfld);                \ | 
 |         }                                                          \ | 
 |     }                                                              \ | 
 |                                                                    \ | 
 |     *xt = t;                                                       \ | 
 |     do_float_check_status(env, sfifprf, GETPC());                  \ | 
 | } | 
 |  | 
 | VSX_CVT_FP_TO_FP_HP(xscvdphp, 1, float64, float16, VsrD(0), VsrH(3), 1) | 
 | VSX_CVT_FP_TO_FP_HP(xscvhpdp, 1, float16, float64, VsrH(3), VsrD(0), 1) | 
 | VSX_CVT_FP_TO_FP_HP(xvcvsphp, 4, float32, float16, VsrW(i), VsrH(2 * i  + 1), 0) | 
 | VSX_CVT_FP_TO_FP_HP(xvcvhpsp, 4, float16, float32, VsrH(2 * i + 1), VsrW(i), 0) | 
 |  | 
 | void helper_XVCVSPBF16(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) | 
 | { | 
 |     ppc_vsr_t t = { }; | 
 |     int i, status; | 
 |  | 
 |     helper_reset_fpstatus(env); | 
 |  | 
 |     for (i = 0; i < 4; i++) { | 
 |         t.VsrH(2 * i + 1) = float32_to_bfloat16(xb->VsrW(i), &env->fp_status); | 
 |     } | 
 |  | 
 |     status = get_float_exception_flags(&env->fp_status); | 
 |     if (unlikely(status & float_flag_invalid_snan)) { | 
 |         float_invalid_op_vxsnan(env, GETPC()); | 
 |     } | 
 |  | 
 |     *xt = t; | 
 |     do_float_check_status(env, false, GETPC()); | 
 | } | 
 |  | 
 | void helper_XSCVQPDP(CPUPPCState *env, uint32_t ro, ppc_vsr_t *xt, | 
 |                      ppc_vsr_t *xb) | 
 | { | 
 |     ppc_vsr_t t = { }; | 
 |     float_status tstat; | 
 |  | 
 |     helper_reset_fpstatus(env); | 
 |  | 
 |     tstat = env->fp_status; | 
 |     if (ro != 0) { | 
 |         tstat.float_rounding_mode = float_round_to_odd; | 
 |     } | 
 |  | 
 |     t.VsrD(0) = float128_to_float64(xb->f128, &tstat); | 
 |     env->fp_status.float_exception_flags |= tstat.float_exception_flags; | 
 |     if (unlikely(float128_is_signaling_nan(xb->f128, &tstat))) { | 
 |         float_invalid_op_vxsnan(env, GETPC()); | 
 |         t.VsrD(0) = float64_snan_to_qnan(t.VsrD(0)); | 
 |     } | 
 |     helper_compute_fprf_float64(env, t.VsrD(0)); | 
 |  | 
 |     *xt = t; | 
 |     do_float_check_status(env, true, GETPC()); | 
 | } | 
 |  | 
 | uint64_t helper_xscvdpspn(CPUPPCState *env, uint64_t xb) | 
 | { | 
 |     uint64_t result, sign, exp, frac; | 
 |  | 
 |     helper_reset_fpstatus(env); | 
 |     float_status tstat = env->fp_status; | 
 |     set_float_exception_flags(0, &tstat); | 
 |  | 
 |     sign = extract64(xb, 63,  1); | 
 |     exp  = extract64(xb, 52, 11); | 
 |     frac = extract64(xb,  0, 52) | 0x10000000000000ULL; | 
 |  | 
 |     if (unlikely(exp == 0 && extract64(frac, 0, 52) != 0)) { | 
 |         /* DP denormal operand.  */ | 
 |         /* Exponent override to DP min exp.  */ | 
 |         exp = 1; | 
 |         /* Implicit bit override to 0.  */ | 
 |         frac = deposit64(frac, 53, 1, 0); | 
 |     } | 
 |  | 
 |     if (unlikely(exp < 897 && frac != 0)) { | 
 |         /* SP tiny operand.  */ | 
 |         if (897 - exp > 63) { | 
 |             frac = 0; | 
 |         } else { | 
 |             /* Denormalize until exp = SP min exp.  */ | 
 |             frac >>= (897 - exp); | 
 |         } | 
 |         /* Exponent override to SP min exp - 1.  */ | 
 |         exp = 896; | 
 |     } | 
 |  | 
 |     result = sign << 31; | 
 |     result |= extract64(exp, 10, 1) << 30; | 
 |     result |= extract64(exp, 0, 7) << 23; | 
 |     result |= extract64(frac, 29, 23); | 
 |  | 
 |     /* hardware replicates result to both words of the doubleword result.  */ | 
 |     return (result << 32) | result; | 
 | } | 
 |  | 
 | uint64_t helper_XSCVSPDPN(uint64_t xb) | 
 | { | 
 |     return helper_todouble(xb >> 32); | 
 | } | 
 |  | 
 | /* | 
 |  * VSX_CVT_FP_TO_INT - VSX floating point to integer conversion | 
 |  *   op    - instruction mnemonic | 
 |  *   nels  - number of elements (1, 2 or 4) | 
 |  *   stp   - source type (float32 or float64) | 
 |  *   ttp   - target type (int32, uint32, int64 or uint64) | 
 |  *   sfld  - source vsr_t field | 
 |  *   tfld  - target vsr_t field | 
 |  *   sfi   - set FI | 
 |  *   rnan  - resulting NaN | 
 |  */ | 
 | #define VSX_CVT_FP_TO_INT(op, nels, stp, ttp, sfld, tfld, sfi, rnan)         \ | 
 | void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)             \ | 
 | {                                                                            \ | 
 |     int all_flags = 0;                                                       \ | 
 |     ppc_vsr_t t = { };                                                       \ | 
 |     int i, flags;                                                            \ | 
 |                                                                              \ | 
 |     for (i = 0; i < nels; i++) {                                             \ | 
 |         helper_reset_fpstatus(env);                                          \ | 
 |         t.tfld = stp##_to_##ttp##_round_to_zero(xb->sfld, &env->fp_status);  \ | 
 |         flags = env->fp_status.float_exception_flags;                        \ | 
 |         all_flags |= flags;                                                  \ | 
 |         if (unlikely(flags & float_flag_invalid)) {                          \ | 
 |             t.tfld = float_invalid_cvt(env, flags, t.tfld, rnan, 0, GETPC());\ | 
 |         }                                                                    \ | 
 |     }                                                                        \ | 
 |                                                                              \ | 
 |     *xt = t;                                                                 \ | 
 |     env->fp_status.float_exception_flags = all_flags;                        \ | 
 |     do_float_check_status(env, sfi, GETPC());                                \ | 
 | } | 
 |  | 
 | VSX_CVT_FP_TO_INT(xscvdpsxds, 1, float64, int64, VsrD(0), VsrD(0), true, \ | 
 |                   0x8000000000000000ULL) | 
 | VSX_CVT_FP_TO_INT(xscvdpuxds, 1, float64, uint64, VsrD(0), VsrD(0), true, 0ULL) | 
 | VSX_CVT_FP_TO_INT(xvcvdpsxds, 2, float64, int64, VsrD(i), VsrD(i), false, \ | 
 |                   0x8000000000000000ULL) | 
 | VSX_CVT_FP_TO_INT(xvcvdpuxds, 2, float64, uint64, VsrD(i), VsrD(i), false, \ | 
 |                   0ULL) | 
 | VSX_CVT_FP_TO_INT(xvcvspsxds, 2, float32, int64, VsrW(2 * i), VsrD(i), false, \ | 
 |                   0x8000000000000000ULL) | 
 | VSX_CVT_FP_TO_INT(xvcvspsxws, 4, float32, int32, VsrW(i), VsrW(i), false, \ | 
 |                   0x80000000ULL) | 
 | VSX_CVT_FP_TO_INT(xvcvspuxds, 2, float32, uint64, VsrW(2 * i), VsrD(i), \ | 
 |                   false, 0ULL) | 
 | VSX_CVT_FP_TO_INT(xvcvspuxws, 4, float32, uint32, VsrW(i), VsrW(i), false, 0U) | 
 |  | 
 | #define VSX_CVT_FP_TO_INT128(op, tp, rnan)                                     \ | 
 | void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)               \ | 
 | {                                                                              \ | 
 |     ppc_vsr_t t;                                                               \ | 
 |     int flags;                                                                 \ | 
 |                                                                                \ | 
 |     helper_reset_fpstatus(env);                                                \ | 
 |     t.s128 = float128_to_##tp##_round_to_zero(xb->f128, &env->fp_status);      \ | 
 |     flags = get_float_exception_flags(&env->fp_status);                        \ | 
 |     if (unlikely(flags & float_flag_invalid)) {                                \ | 
 |         t.VsrD(0) = float_invalid_cvt(env, flags, t.VsrD(0), rnan, 0, GETPC());\ | 
 |         t.VsrD(1) = -(t.VsrD(0) & 1);                                          \ | 
 |     }                                                                          \ | 
 |                                                                                \ | 
 |     *xt = t;                                                                   \ | 
 |     do_float_check_status(env, true, GETPC());                                 \ | 
 | } | 
 |  | 
 | VSX_CVT_FP_TO_INT128(XSCVQPUQZ, uint128, 0) | 
 | VSX_CVT_FP_TO_INT128(XSCVQPSQZ, int128, 0x8000000000000000ULL); | 
 |  | 
 | /* | 
 |  * Likewise, except that the result is duplicated into both subwords. | 
 |  * Power ISA v3.1 has Programming Notes for these insns: | 
 |  *     Previous versions of the architecture allowed the contents of | 
 |  *     word 0 of the result register to be undefined. However, all | 
 |  *     processors that support this instruction write the result into | 
 |  *     words 0 and 1 (and words 2 and 3) of the result register, as | 
 |  *     is required by this version of the architecture. | 
 |  */ | 
 | #define VSX_CVT_FP_TO_INT2(op, nels, stp, ttp, sfi, rnan)                    \ | 
 | void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)             \ | 
 | {                                                                            \ | 
 |     int all_flags = 0;                                                       \ | 
 |     ppc_vsr_t t = { };                                                       \ | 
 |     int i, flags;                                                            \ | 
 |                                                                              \ | 
 |     for (i = 0; i < nels; i++) {                                             \ | 
 |         helper_reset_fpstatus(env);                                          \ | 
 |         t.VsrW(2 * i) = stp##_to_##ttp##_round_to_zero(xb->VsrD(i),          \ | 
 |                                                        &env->fp_status);     \ | 
 |         flags = env->fp_status.float_exception_flags;                        \ | 
 |         all_flags |= flags;                                                  \ | 
 |         if (unlikely(flags & float_flag_invalid)) {                          \ | 
 |             t.VsrW(2 * i) = float_invalid_cvt(env, flags, t.VsrW(2 * i),     \ | 
 |                                               rnan, 0, GETPC());             \ | 
 |         }                                                                    \ | 
 |         t.VsrW(2 * i + 1) = t.VsrW(2 * i);                                   \ | 
 |     }                                                                        \ | 
 |                                                                              \ | 
 |     *xt = t;                                                                 \ | 
 |     env->fp_status.float_exception_flags = all_flags;                        \ | 
 |     do_float_check_status(env, sfi, GETPC());                                \ | 
 | } | 
 |  | 
 | VSX_CVT_FP_TO_INT2(xscvdpsxws, 1, float64, int32, true, 0x80000000U) | 
 | VSX_CVT_FP_TO_INT2(xscvdpuxws, 1, float64, uint32, true, 0U) | 
 | VSX_CVT_FP_TO_INT2(xvcvdpsxws, 2, float64, int32, false, 0x80000000U) | 
 | VSX_CVT_FP_TO_INT2(xvcvdpuxws, 2, float64, uint32, false, 0U) | 
 |  | 
 | /* | 
 |  * VSX_CVT_FP_TO_INT_VECTOR - VSX floating point to integer conversion | 
 |  *   op    - instruction mnemonic | 
 |  *   stp   - source type (float32 or float64) | 
 |  *   ttp   - target type (int32, uint32, int64 or uint64) | 
 |  *   sfld  - source vsr_t field | 
 |  *   tfld  - target vsr_t field | 
 |  *   rnan  - resulting NaN | 
 |  */ | 
 | #define VSX_CVT_FP_TO_INT_VECTOR(op, stp, ttp, sfld, tfld, rnan)             \ | 
 | void helper_##op(CPUPPCState *env, uint32_t opcode,                          \ | 
 |                  ppc_vsr_t *xt, ppc_vsr_t *xb)                               \ | 
 | {                                                                            \ | 
 |     ppc_vsr_t t = { };                                                       \ | 
 |     int flags;                                                               \ | 
 |                                                                              \ | 
 |     helper_reset_fpstatus(env);                                              \ | 
 |                                                                              \ | 
 |     t.tfld = stp##_to_##ttp##_round_to_zero(xb->sfld, &env->fp_status);      \ | 
 |     flags = get_float_exception_flags(&env->fp_status);                      \ | 
 |     if (flags & float_flag_invalid) {                                        \ | 
 |         t.tfld = float_invalid_cvt(env, flags, t.tfld, rnan, 0, GETPC());    \ | 
 |     }                                                                        \ | 
 |                                                                              \ | 
 |     *xt = t;                                                                 \ | 
 |     do_float_check_status(env, true, GETPC());                               \ | 
 | } | 
 |  | 
 | VSX_CVT_FP_TO_INT_VECTOR(xscvqpsdz, float128, int64, f128, VsrD(0),          \ | 
 |                   0x8000000000000000ULL) | 
 | VSX_CVT_FP_TO_INT_VECTOR(xscvqpswz, float128, int32, f128, VsrD(0),          \ | 
 |                   0xffffffff80000000ULL) | 
 | VSX_CVT_FP_TO_INT_VECTOR(xscvqpudz, float128, uint64, f128, VsrD(0), 0x0ULL) | 
 | VSX_CVT_FP_TO_INT_VECTOR(xscvqpuwz, float128, uint32, f128, VsrD(0), 0x0ULL) | 
 |  | 
 | /* | 
 |  * VSX_CVT_INT_TO_FP - VSX integer to floating point conversion | 
 |  *   op    - instruction mnemonic | 
 |  *   nels  - number of elements (1, 2 or 4) | 
 |  *   stp   - source type (int32, uint32, int64 or uint64) | 
 |  *   ttp   - target type (float32 or float64) | 
 |  *   sfld  - source vsr_t field | 
 |  *   tfld  - target vsr_t field | 
 |  *   jdef  - definition of the j index (i or 2*i) | 
 |  *   sfifprf - set FI and FPRF | 
 |  */ | 
 | #define VSX_CVT_INT_TO_FP(op, nels, stp, ttp, sfld, tfld, sfifprf, r2sp)\ | 
 | void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)        \ | 
 | {                                                                       \ | 
 |     ppc_vsr_t t = { };                                                  \ | 
 |     int i;                                                              \ | 
 |                                                                         \ | 
 |     helper_reset_fpstatus(env);                                         \ | 
 |                                                                         \ | 
 |     for (i = 0; i < nels; i++) {                                        \ | 
 |         t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status);             \ | 
 |         if (r2sp) {                                                     \ | 
 |             t.tfld = do_frsp(env, t.tfld, GETPC());                     \ | 
 |         }                                                               \ | 
 |         if (sfifprf) {                                                  \ | 
 |             helper_compute_fprf_float64(env, t.tfld);                   \ | 
 |         }                                                               \ | 
 |     }                                                                   \ | 
 |                                                                         \ | 
 |     *xt = t;                                                            \ | 
 |     do_float_check_status(env, sfifprf, GETPC());                       \ | 
 | } | 
 |  | 
 | VSX_CVT_INT_TO_FP(xscvsxddp, 1, int64, float64, VsrD(0), VsrD(0), 1, 0) | 
 | VSX_CVT_INT_TO_FP(xscvuxddp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 0) | 
 | VSX_CVT_INT_TO_FP(xscvsxdsp, 1, int64, float64, VsrD(0), VsrD(0), 1, 1) | 
 | VSX_CVT_INT_TO_FP(xscvuxdsp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 1) | 
 | VSX_CVT_INT_TO_FP(xvcvsxddp, 2, int64, float64, VsrD(i), VsrD(i), 0, 0) | 
 | VSX_CVT_INT_TO_FP(xvcvuxddp, 2, uint64, float64, VsrD(i), VsrD(i), 0, 0) | 
 | VSX_CVT_INT_TO_FP(xvcvsxwdp, 2, int32, float64, VsrW(2 * i), VsrD(i), 0, 0) | 
 | VSX_CVT_INT_TO_FP(xvcvuxwdp, 2, uint64, float64, VsrW(2 * i), VsrD(i), 0, 0) | 
 | VSX_CVT_INT_TO_FP(xvcvsxwsp, 4, int32, float32, VsrW(i), VsrW(i), 0, 0) | 
 | VSX_CVT_INT_TO_FP(xvcvuxwsp, 4, uint32, float32, VsrW(i), VsrW(i), 0, 0) | 
 |  | 
 | #define VSX_CVT_INT_TO_FP2(op, stp, ttp)                                \ | 
 | void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)        \ | 
 | {                                                                       \ | 
 |     ppc_vsr_t t = { };                                                  \ | 
 |     int i;                                                              \ | 
 |                                                                         \ | 
 |     for (i = 0; i < 2; i++) {                                           \ | 
 |         t.VsrW(2 * i) = stp##_to_##ttp(xb->VsrD(i), &env->fp_status);   \ | 
 |         t.VsrW(2 * i + 1) = t.VsrW(2 * i);                              \ | 
 |     }                                                                   \ | 
 |                                                                         \ | 
 |     *xt = t;                                                            \ | 
 |     do_float_check_status(env, false, GETPC());                         \ | 
 | } | 
 |  | 
 | VSX_CVT_INT_TO_FP2(xvcvsxdsp, int64, float32) | 
 | VSX_CVT_INT_TO_FP2(xvcvuxdsp, uint64, float32) | 
 |  | 
 | #define VSX_CVT_INT128_TO_FP(op, tp)                            \ | 
 | void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)\ | 
 | {                                                               \ | 
 |     helper_reset_fpstatus(env);                                 \ | 
 |     xt->f128 = tp##_to_float128(xb->s128, &env->fp_status);     \ | 
 |     helper_compute_fprf_float128(env, xt->f128);                \ | 
 |     do_float_check_status(env, true, GETPC());                  \ | 
 | } | 
 |  | 
 | VSX_CVT_INT128_TO_FP(XSCVUQQP, uint128); | 
 | VSX_CVT_INT128_TO_FP(XSCVSQQP, int128); | 
 |  | 
 | /* | 
 |  * VSX_CVT_INT_TO_FP_VECTOR - VSX integer to floating point conversion | 
 |  *   op    - instruction mnemonic | 
 |  *   stp   - source type (int32, uint32, int64 or uint64) | 
 |  *   ttp   - target type (float32 or float64) | 
 |  *   sfld  - source vsr_t field | 
 |  *   tfld  - target vsr_t field | 
 |  */ | 
 | #define VSX_CVT_INT_TO_FP_VECTOR(op, stp, ttp, sfld, tfld)              \ | 
 | void helper_##op(CPUPPCState *env, uint32_t opcode,                     \ | 
 |                  ppc_vsr_t *xt, ppc_vsr_t *xb)                          \ | 
 | {                                                                       \ | 
 |     ppc_vsr_t t = *xt;                                                  \ | 
 |                                                                         \ | 
 |     helper_reset_fpstatus(env);                                         \ | 
 |     t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status);                 \ | 
 |     helper_compute_fprf_##ttp(env, t.tfld);                             \ | 
 |                                                                         \ | 
 |     *xt = t;                                                            \ | 
 |     do_float_check_status(env, true, GETPC());                          \ | 
 | } | 
 |  | 
 | VSX_CVT_INT_TO_FP_VECTOR(xscvsdqp, int64, float128, VsrD(0), f128) | 
 | VSX_CVT_INT_TO_FP_VECTOR(xscvudqp, uint64, float128, VsrD(0), f128) | 
 |  | 
 | /* | 
 |  * For "use current rounding mode", define a value that will not be | 
 |  * one of the existing rounding model enums. | 
 |  */ | 
 | #define FLOAT_ROUND_CURRENT (float_round_nearest_even + float_round_down + \ | 
 |   float_round_up + float_round_to_zero) | 
 |  | 
 | /* | 
 |  * VSX_ROUND - VSX floating point round | 
 |  *   op    - instruction mnemonic | 
 |  *   nels  - number of elements (1, 2 or 4) | 
 |  *   tp    - type (float32 or float64) | 
 |  *   fld   - vsr_t field (VsrD(*) or VsrW(*)) | 
 |  *   rmode - rounding mode | 
 |  *   sfifprf - set FI and FPRF | 
 |  */ | 
 | #define VSX_ROUND(op, nels, tp, fld, rmode, sfifprf)                   \ | 
 | void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)       \ | 
 | {                                                                      \ | 
 |     ppc_vsr_t t = { };                                                 \ | 
 |     int i;                                                             \ | 
 |     FloatRoundMode curr_rounding_mode;                                 \ | 
 |                                                                        \ | 
 |     helper_reset_fpstatus(env);                                        \ | 
 |                                                                        \ | 
 |     if (rmode != FLOAT_ROUND_CURRENT) {                                \ | 
 |         curr_rounding_mode = get_float_rounding_mode(&env->fp_status); \ | 
 |         set_float_rounding_mode(rmode, &env->fp_status);               \ | 
 |     }                                                                  \ | 
 |                                                                        \ | 
 |     for (i = 0; i < nels; i++) {                                       \ | 
 |         if (unlikely(tp##_is_signaling_nan(xb->fld,                    \ | 
 |                                            &env->fp_status))) {        \ | 
 |             float_invalid_op_vxsnan(env, GETPC());                     \ | 
 |             t.fld = tp##_snan_to_qnan(xb->fld);                        \ | 
 |         } else {                                                       \ | 
 |             t.fld = tp##_round_to_int(xb->fld, &env->fp_status);       \ | 
 |         }                                                              \ | 
 |         if (sfifprf) {                                                 \ | 
 |             helper_compute_fprf_float64(env, t.fld);                   \ | 
 |         }                                                              \ | 
 |     }                                                                  \ | 
 |                                                                        \ | 
 |     /*                                                                 \ | 
 |      * If this is not a "use current rounding mode" instruction,       \ | 
 |      * then inhibit setting of the XX bit and restore rounding         \ | 
 |      * mode from FPSCR                                                 \ | 
 |      */                                                                \ | 
 |     if (rmode != FLOAT_ROUND_CURRENT) {                                \ | 
 |         set_float_rounding_mode(curr_rounding_mode, &env->fp_status);  \ | 
 |         env->fp_status.float_exception_flags &= ~float_flag_inexact;   \ | 
 |     }                                                                  \ | 
 |                                                                        \ | 
 |     *xt = t;                                                           \ | 
 |     do_float_check_status(env, sfifprf, GETPC());                      \ | 
 | } | 
 |  | 
 | VSX_ROUND(xsrdpi, 1, float64, VsrD(0), float_round_ties_away, 1) | 
 | VSX_ROUND(xsrdpic, 1, float64, VsrD(0), FLOAT_ROUND_CURRENT, 1) | 
 | VSX_ROUND(xsrdpim, 1, float64, VsrD(0), float_round_down, 1) | 
 | VSX_ROUND(xsrdpip, 1, float64, VsrD(0), float_round_up, 1) | 
 | VSX_ROUND(xsrdpiz, 1, float64, VsrD(0), float_round_to_zero, 1) | 
 |  | 
 | VSX_ROUND(xvrdpi, 2, float64, VsrD(i), float_round_ties_away, 0) | 
 | VSX_ROUND(xvrdpic, 2, float64, VsrD(i), FLOAT_ROUND_CURRENT, 0) | 
 | VSX_ROUND(xvrdpim, 2, float64, VsrD(i), float_round_down, 0) | 
 | VSX_ROUND(xvrdpip, 2, float64, VsrD(i), float_round_up, 0) | 
 | VSX_ROUND(xvrdpiz, 2, float64, VsrD(i), float_round_to_zero, 0) | 
 |  | 
 | VSX_ROUND(xvrspi, 4, float32, VsrW(i), float_round_ties_away, 0) | 
 | VSX_ROUND(xvrspic, 4, float32, VsrW(i), FLOAT_ROUND_CURRENT, 0) | 
 | VSX_ROUND(xvrspim, 4, float32, VsrW(i), float_round_down, 0) | 
 | VSX_ROUND(xvrspip, 4, float32, VsrW(i), float_round_up, 0) | 
 | VSX_ROUND(xvrspiz, 4, float32, VsrW(i), float_round_to_zero, 0) | 
 |  | 
 | uint64_t helper_xsrsp(CPUPPCState *env, uint64_t xb) | 
 | { | 
 |     helper_reset_fpstatus(env); | 
 |  | 
 |     uint64_t xt = do_frsp(env, xb, GETPC()); | 
 |  | 
 |     helper_compute_fprf_float64(env, xt); | 
 |     do_float_check_status(env, true, GETPC()); | 
 |     return xt; | 
 | } | 
 |  | 
 | void helper_XVXSIGSP(ppc_vsr_t *xt, ppc_vsr_t *xb) | 
 | { | 
 |     ppc_vsr_t t = { }; | 
 |     uint32_t exp, i, fraction; | 
 |  | 
 |     for (i = 0; i < 4; i++) { | 
 |         exp = (xb->VsrW(i) >> 23) & 0xFF; | 
 |         fraction = xb->VsrW(i) & 0x7FFFFF; | 
 |         if (exp != 0 && exp != 255) { | 
 |             t.VsrW(i) = fraction | 0x00800000; | 
 |         } else { | 
 |             t.VsrW(i) = fraction; | 
 |         } | 
 |     } | 
 |     *xt = t; | 
 | } | 
 |  | 
 | #define VSX_TSTDC(tp)                                       \ | 
 | static int32_t tp##_tstdc(tp b, uint32_t dcmx)              \ | 
 | {                                                           \ | 
 |     uint32_t match = 0;                                     \ | 
 |     uint32_t sign = tp##_is_neg(b);                         \ | 
 |     if (tp##_is_any_nan(b)) {                               \ | 
 |         match = extract32(dcmx, 6, 1);                      \ | 
 |     } else if (tp##_is_infinity(b)) {                       \ | 
 |         match = extract32(dcmx, 4 + !sign, 1);              \ | 
 |     } else if (tp##_is_zero(b)) {                           \ | 
 |         match = extract32(dcmx, 2 + !sign, 1);              \ | 
 |     } else if (tp##_is_zero_or_denormal(b)) {               \ | 
 |         match = extract32(dcmx, 0 + !sign, 1);              \ | 
 |     }                                                       \ | 
 |     return (match != 0);                                    \ | 
 | } | 
 |  | 
 | VSX_TSTDC(float32) | 
 | VSX_TSTDC(float64) | 
 | VSX_TSTDC(float128) | 
 | #undef VSX_TSTDC | 
 |  | 
 | void helper_XVTSTDCDP(ppc_vsr_t *t, ppc_vsr_t *b, uint64_t dcmx, uint32_t v) | 
 | { | 
 |     int i; | 
 |     for (i = 0; i < 2; i++) { | 
 |         t->s64[i] = (int64_t)-float64_tstdc(b->f64[i], dcmx); | 
 |     } | 
 | } | 
 |  | 
 | void helper_XVTSTDCSP(ppc_vsr_t *t, ppc_vsr_t *b, uint64_t dcmx, uint32_t v) | 
 | { | 
 |     int i; | 
 |     for (i = 0; i < 4; i++) { | 
 |         t->s32[i] = (int32_t)-float32_tstdc(b->f32[i], dcmx); | 
 |     } | 
 | } | 
 |  | 
 | static bool not_SP_value(float64 val) | 
 | { | 
 |     return val != helper_todouble(helper_tosingle(val)); | 
 | } | 
 |  | 
 | /* | 
 |  * VSX_XS_TSTDC - VSX Scalar Test Data Class | 
 |  *   NAME  - instruction name | 
 |  *   FLD   - vsr_t field (VsrD(0) or f128) | 
 |  *   TP    - type (float64 or float128) | 
 |  */ | 
 | #define VSX_XS_TSTDC(NAME, FLD, TP)                                         \ | 
 |     void helper_##NAME(CPUPPCState *env, uint32_t bf,                       \ | 
 |                        uint32_t dcmx, ppc_vsr_t *b)                         \ | 
 |     {                                                                       \ | 
 |         uint32_t cc, match, sign = TP##_is_neg(b->FLD);                     \ | 
 |         match = TP##_tstdc(b->FLD, dcmx);                                   \ | 
 |         cc = sign << CRF_LT_BIT | match << CRF_EQ_BIT;                      \ | 
 |         env->fpscr &= ~FP_FPCC;                                             \ | 
 |         env->fpscr |= cc << FPSCR_FPCC;                                     \ | 
 |         env->crf[bf] = cc;                                                  \ | 
 |     } | 
 |  | 
 | VSX_XS_TSTDC(XSTSTDCDP, VsrD(0), float64) | 
 | VSX_XS_TSTDC(XSTSTDCQP, f128, float128) | 
 | #undef VSX_XS_TSTDC | 
 |  | 
 | void helper_XSTSTDCSP(CPUPPCState *env, uint32_t bf, | 
 |                       uint32_t dcmx, ppc_vsr_t *b) | 
 | { | 
 |     uint32_t cc, match, sign = float64_is_neg(b->VsrD(0)); | 
 |     uint32_t exp = (b->VsrD(0) >> 52) & 0x7FF; | 
 |     int not_sp = (int)not_SP_value(b->VsrD(0)); | 
 |     match = float64_tstdc(b->VsrD(0), dcmx) || (exp > 0 && exp < 0x381); | 
 |     cc = sign << CRF_LT_BIT | match << CRF_EQ_BIT | not_sp << CRF_SO_BIT; | 
 |     env->fpscr &= ~FP_FPCC; | 
 |     env->fpscr |= cc << FPSCR_FPCC; | 
 |     env->crf[bf] = cc; | 
 | } | 
 |  | 
 | void helper_xsrqpi(CPUPPCState *env, uint32_t opcode, | 
 |                    ppc_vsr_t *xt, ppc_vsr_t *xb) | 
 | { | 
 |     ppc_vsr_t t = { }; | 
 |     uint8_t r = Rrm(opcode); | 
 |     uint8_t ex = Rc(opcode); | 
 |     uint8_t rmc = RMC(opcode); | 
 |     uint8_t rmode = 0; | 
 |     float_status tstat; | 
 |  | 
 |     helper_reset_fpstatus(env); | 
 |  | 
 |     if (r == 0 && rmc == 0) { | 
 |         rmode = float_round_ties_away; | 
 |     } else if (r == 0 && rmc == 0x3) { | 
 |         rmode = env->fpscr & FP_RN; | 
 |     } else if (r == 1) { | 
 |         switch (rmc) { | 
 |         case 0: | 
 |             rmode = float_round_nearest_even; | 
 |             break; | 
 |         case 1: | 
 |             rmode = float_round_to_zero; | 
 |             break; | 
 |         case 2: | 
 |             rmode = float_round_up; | 
 |             break; | 
 |         case 3: | 
 |             rmode = float_round_down; | 
 |             break; | 
 |         default: | 
 |             abort(); | 
 |         } | 
 |     } | 
 |  | 
 |     tstat = env->fp_status; | 
 |     set_float_exception_flags(0, &tstat); | 
 |     set_float_rounding_mode(rmode, &tstat); | 
 |     t.f128 = float128_round_to_int(xb->f128, &tstat); | 
 |     env->fp_status.float_exception_flags |= tstat.float_exception_flags; | 
 |  | 
 |     if (unlikely(tstat.float_exception_flags & float_flag_invalid_snan)) { | 
 |         float_invalid_op_vxsnan(env, GETPC()); | 
 |     } | 
 |  | 
 |     if (ex == 0 && (tstat.float_exception_flags & float_flag_inexact)) { | 
 |         env->fp_status.float_exception_flags &= ~float_flag_inexact; | 
 |     } | 
 |  | 
 |     helper_compute_fprf_float128(env, t.f128); | 
 |     do_float_check_status(env, true, GETPC()); | 
 |     *xt = t; | 
 | } | 
 |  | 
 | void helper_xsrqpxp(CPUPPCState *env, uint32_t opcode, | 
 |                     ppc_vsr_t *xt, ppc_vsr_t *xb) | 
 | { | 
 |     ppc_vsr_t t = { }; | 
 |     uint8_t r = Rrm(opcode); | 
 |     uint8_t rmc = RMC(opcode); | 
 |     uint8_t rmode = 0; | 
 |     floatx80 round_res; | 
 |     float_status tstat; | 
 |  | 
 |     helper_reset_fpstatus(env); | 
 |  | 
 |     if (r == 0 && rmc == 0) { | 
 |         rmode = float_round_ties_away; | 
 |     } else if (r == 0 && rmc == 0x3) { | 
 |         rmode = env->fpscr & FP_RN; | 
 |     } else if (r == 1) { | 
 |         switch (rmc) { | 
 |         case 0: | 
 |             rmode = float_round_nearest_even; | 
 |             break; | 
 |         case 1: | 
 |             rmode = float_round_to_zero; | 
 |             break; | 
 |         case 2: | 
 |             rmode = float_round_up; | 
 |             break; | 
 |         case 3: | 
 |             rmode = float_round_down; | 
 |             break; | 
 |         default: | 
 |             abort(); | 
 |         } | 
 |     } | 
 |  | 
 |     tstat = env->fp_status; | 
 |     set_float_exception_flags(0, &tstat); | 
 |     set_float_rounding_mode(rmode, &tstat); | 
 |     round_res = float128_to_floatx80(xb->f128, &tstat); | 
 |     t.f128 = floatx80_to_float128(round_res, &tstat); | 
 |     env->fp_status.float_exception_flags |= tstat.float_exception_flags; | 
 |  | 
 |     if (unlikely(tstat.float_exception_flags & float_flag_invalid_snan)) { | 
 |         float_invalid_op_vxsnan(env, GETPC()); | 
 |         t.f128 = float128_snan_to_qnan(t.f128); | 
 |     } | 
 |  | 
 |     helper_compute_fprf_float128(env, t.f128); | 
 |     *xt = t; | 
 |     do_float_check_status(env, true, GETPC()); | 
 | } | 
 |  | 
 | void helper_xssqrtqp(CPUPPCState *env, uint32_t opcode, | 
 |                      ppc_vsr_t *xt, ppc_vsr_t *xb) | 
 | { | 
 |     ppc_vsr_t t = { }; | 
 |     float_status tstat; | 
 |  | 
 |     helper_reset_fpstatus(env); | 
 |  | 
 |     tstat = env->fp_status; | 
 |     if (unlikely(Rc(opcode) != 0)) { | 
 |         tstat.float_rounding_mode = float_round_to_odd; | 
 |     } | 
 |  | 
 |     set_float_exception_flags(0, &tstat); | 
 |     t.f128 = float128_sqrt(xb->f128, &tstat); | 
 |     env->fp_status.float_exception_flags |= tstat.float_exception_flags; | 
 |  | 
 |     if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { | 
 |         float_invalid_op_sqrt(env, tstat.float_exception_flags, 1, GETPC()); | 
 |     } | 
 |  | 
 |     helper_compute_fprf_float128(env, t.f128); | 
 |     *xt = t; | 
 |     do_float_check_status(env, true, GETPC()); | 
 | } | 
 |  | 
 | void helper_xssubqp(CPUPPCState *env, uint32_t opcode, | 
 |                     ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb) | 
 | { | 
 |     ppc_vsr_t t = *xt; | 
 |     float_status tstat; | 
 |  | 
 |     helper_reset_fpstatus(env); | 
 |  | 
 |     tstat = env->fp_status; | 
 |     if (unlikely(Rc(opcode) != 0)) { | 
 |         tstat.float_rounding_mode = float_round_to_odd; | 
 |     } | 
 |  | 
 |     set_float_exception_flags(0, &tstat); | 
 |     t.f128 = float128_sub(xa->f128, xb->f128, &tstat); | 
 |     env->fp_status.float_exception_flags |= tstat.float_exception_flags; | 
 |  | 
 |     if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { | 
 |         float_invalid_op_addsub(env, tstat.float_exception_flags, 1, GETPC()); | 
 |     } | 
 |  | 
 |     helper_compute_fprf_float128(env, t.f128); | 
 |     *xt = t; | 
 |     do_float_check_status(env, true, GETPC()); | 
 | } | 
 |  | 
 | static inline void vsxger_excp(CPUPPCState *env, uintptr_t retaddr) | 
 | { | 
 |     /* | 
 |      * XV*GER instructions execute and set the FPSCR as if exceptions | 
 |      * are disabled and only at the end throw an exception | 
 |      */ | 
 |     target_ulong enable; | 
 |     enable = env->fpscr & (FP_ENABLES | FP_FI | FP_FR); | 
 |     env->fpscr &= ~(FP_ENABLES | FP_FI | FP_FR); | 
 |     int status = get_float_exception_flags(&env->fp_status); | 
 |     if (unlikely(status & float_flag_invalid)) { | 
 |         if (status & float_flag_invalid_snan) { | 
 |             float_invalid_op_vxsnan(env, 0); | 
 |         } | 
 |         if (status & float_flag_invalid_imz) { | 
 |             float_invalid_op_vximz(env, false, 0); | 
 |         } | 
 |         if (status & float_flag_invalid_isi) { | 
 |             float_invalid_op_vxisi(env, false, 0); | 
 |         } | 
 |     } | 
 |     do_float_check_status(env, false, retaddr); | 
 |     env->fpscr |= enable; | 
 |     do_fpscr_check_status(env, retaddr); | 
 | } | 
 |  | 
 | typedef float64 extract_f16(float16, float_status *); | 
 |  | 
 | static float64 extract_hf16(float16 in, float_status *fp_status) | 
 | { | 
 |     return float16_to_float64(in, true, fp_status); | 
 | } | 
 |  | 
 | static float64 extract_bf16(bfloat16 in, float_status *fp_status) | 
 | { | 
 |     return bfloat16_to_float64(in, fp_status); | 
 | } | 
 |  | 
 | static void vsxger16(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b, | 
 |                      ppc_acc_t  *at, uint32_t mask, bool acc, | 
 |                      bool neg_mul, bool neg_acc, extract_f16 extract) | 
 | { | 
 |     float32 r, aux_acc; | 
 |     float64 psum, va, vb, vc, vd; | 
 |     int i, j, xmsk_bit, ymsk_bit; | 
 |     uint8_t pmsk = FIELD_EX32(mask, GER_MSK, PMSK), | 
 |             xmsk = FIELD_EX32(mask, GER_MSK, XMSK), | 
 |             ymsk = FIELD_EX32(mask, GER_MSK, YMSK); | 
 |     float_status *excp_ptr = &env->fp_status; | 
 |     for (i = 0, xmsk_bit = 1 << 3; i < 4; i++, xmsk_bit >>= 1) { | 
 |         for (j = 0, ymsk_bit = 1 << 3; j < 4; j++, ymsk_bit >>= 1) { | 
 |             if ((xmsk_bit & xmsk) && (ymsk_bit & ymsk)) { | 
 |                 va = !(pmsk & 2) ? float64_zero : | 
 |                                    extract(a->VsrHF(2 * i), excp_ptr); | 
 |                 vb = !(pmsk & 2) ? float64_zero : | 
 |                                    extract(b->VsrHF(2 * j), excp_ptr); | 
 |                 vc = !(pmsk & 1) ? float64_zero : | 
 |                                    extract(a->VsrHF(2 * i + 1), excp_ptr); | 
 |                 vd = !(pmsk & 1) ? float64_zero : | 
 |                                    extract(b->VsrHF(2 * j + 1), excp_ptr); | 
 |                 psum = float64_mul(va, vb, excp_ptr); | 
 |                 psum = float64r32_muladd(vc, vd, psum, 0, excp_ptr); | 
 |                 r = float64_to_float32(psum, excp_ptr); | 
 |                 if (acc) { | 
 |                     aux_acc = at[i].VsrSF(j); | 
 |                     if (neg_mul) { | 
 |                         r = bfp32_neg(r); | 
 |                     } | 
 |                     if (neg_acc) { | 
 |                         aux_acc = bfp32_neg(aux_acc); | 
 |                     } | 
 |                     r = float32_add(r, aux_acc, excp_ptr); | 
 |                 } | 
 |                 at[i].VsrSF(j) = r; | 
 |             } else { | 
 |                 at[i].VsrSF(j) = float32_zero; | 
 |             } | 
 |         } | 
 |     } | 
 |     vsxger_excp(env, GETPC()); | 
 | } | 
 |  | 
 | typedef void vsxger_zero(ppc_vsr_t *at, int, int); | 
 |  | 
 | typedef void vsxger_muladd_f(ppc_vsr_t *, ppc_vsr_t *, ppc_vsr_t *, int, int, | 
 |                              int flags, float_status *s); | 
 |  | 
 | static void vsxger_muladd32(ppc_vsr_t *at, ppc_vsr_t *a, ppc_vsr_t *b, int i, | 
 |                             int j, int flags, float_status *s) | 
 | { | 
 |     at[i].VsrSF(j) = float32_muladd(a->VsrSF(i), b->VsrSF(j), | 
 |                                     at[i].VsrSF(j), flags, s); | 
 | } | 
 |  | 
 | static void vsxger_mul32(ppc_vsr_t *at, ppc_vsr_t *a, ppc_vsr_t *b, int i, | 
 |                          int j, int flags, float_status *s) | 
 | { | 
 |     at[i].VsrSF(j) = float32_mul(a->VsrSF(i), b->VsrSF(j), s); | 
 | } | 
 |  | 
 | static void vsxger_zero32(ppc_vsr_t *at, int i, int j) | 
 | { | 
 |     at[i].VsrSF(j) = float32_zero; | 
 | } | 
 |  | 
 | static void vsxger_muladd64(ppc_vsr_t *at, ppc_vsr_t *a, ppc_vsr_t *b, int i, | 
 |                             int j, int flags, float_status *s) | 
 | { | 
 |     if (j >= 2) { | 
 |         j -= 2; | 
 |         at[i].VsrDF(j) = float64_muladd(a[i / 2].VsrDF(i % 2), b->VsrDF(j), | 
 |                                         at[i].VsrDF(j), flags, s); | 
 |     } | 
 | } | 
 |  | 
 | static void vsxger_mul64(ppc_vsr_t *at, ppc_vsr_t *a, ppc_vsr_t *b, int i, | 
 |                          int j, int flags, float_status *s) | 
 | { | 
 |     if (j >= 2) { | 
 |         j -= 2; | 
 |         at[i].VsrDF(j) = float64_mul(a[i / 2].VsrDF(i % 2), b->VsrDF(j), s); | 
 |     } | 
 | } | 
 |  | 
 | static void vsxger_zero64(ppc_vsr_t *at, int i, int j) | 
 | { | 
 |     if (j >= 2) { | 
 |         j -= 2; | 
 |         at[i].VsrDF(j) = float64_zero; | 
 |     } | 
 | } | 
 |  | 
 | static void vsxger(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b, | 
 |                    ppc_acc_t  *at, uint32_t mask, bool acc, bool neg_mul, | 
 |                    bool neg_acc, vsxger_muladd_f mul, vsxger_muladd_f muladd, | 
 |                    vsxger_zero zero) | 
 | { | 
 |     int i, j, xmsk_bit, ymsk_bit, op_flags; | 
 |     uint8_t xmsk = mask & 0x0F; | 
 |     uint8_t ymsk = (mask >> 4) & 0x0F; | 
 |     float_status *excp_ptr = &env->fp_status; | 
 |     op_flags = (neg_acc ^ neg_mul) ? float_muladd_negate_c : 0; | 
 |     op_flags |= (neg_mul) ? float_muladd_negate_result : 0; | 
 |     helper_reset_fpstatus(env); | 
 |     for (i = 0, xmsk_bit = 1 << 3; i < 4; i++, xmsk_bit >>= 1) { | 
 |         for (j = 0, ymsk_bit = 1 << 3; j < 4; j++, ymsk_bit >>= 1) { | 
 |             if ((xmsk_bit & xmsk) && (ymsk_bit & ymsk)) { | 
 |                 if (acc) { | 
 |                     muladd(at, a, b, i, j, op_flags, excp_ptr); | 
 |                 } else { | 
 |                     mul(at, a, b, i, j, op_flags, excp_ptr); | 
 |                 } | 
 |             } else { | 
 |                 zero(at, i, j); | 
 |             } | 
 |         } | 
 |     } | 
 |     vsxger_excp(env, GETPC()); | 
 | } | 
 |  | 
 | QEMU_FLATTEN | 
 | void helper_XVBF16GER2(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b, | 
 |                        ppc_acc_t *at, uint32_t mask) | 
 | { | 
 |     vsxger16(env, a, b, at, mask, false, false, false, extract_bf16); | 
 | } | 
 |  | 
 | QEMU_FLATTEN | 
 | void helper_XVBF16GER2PP(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b, | 
 |                          ppc_acc_t *at, uint32_t mask) | 
 | { | 
 |     vsxger16(env, a, b, at, mask, true, false, false, extract_bf16); | 
 | } | 
 |  | 
 | QEMU_FLATTEN | 
 | void helper_XVBF16GER2PN(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b, | 
 |                          ppc_acc_t *at, uint32_t mask) | 
 | { | 
 |     vsxger16(env, a, b, at, mask, true, false, true, extract_bf16); | 
 | } | 
 |  | 
 | QEMU_FLATTEN | 
 | void helper_XVBF16GER2NP(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b, | 
 |                          ppc_acc_t *at, uint32_t mask) | 
 | { | 
 |     vsxger16(env, a, b, at, mask, true, true, false, extract_bf16); | 
 | } | 
 |  | 
 | QEMU_FLATTEN | 
 | void helper_XVBF16GER2NN(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b, | 
 |                          ppc_acc_t *at, uint32_t mask) | 
 | { | 
 |     vsxger16(env, a, b, at, mask, true, true, true, extract_bf16); | 
 | } | 
 |  | 
 | QEMU_FLATTEN | 
 | void helper_XVF16GER2(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b, | 
 |                      ppc_acc_t *at, uint32_t mask) | 
 | { | 
 |     vsxger16(env, a, b, at, mask, false, false, false, extract_hf16); | 
 | } | 
 |  | 
 | QEMU_FLATTEN | 
 | void helper_XVF16GER2PP(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b, | 
 |                         ppc_acc_t *at, uint32_t mask) | 
 | { | 
 |     vsxger16(env, a, b, at, mask, true, false, false, extract_hf16); | 
 | } | 
 |  | 
 | QEMU_FLATTEN | 
 | void helper_XVF16GER2PN(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b, | 
 |                         ppc_acc_t *at, uint32_t mask) | 
 | { | 
 |     vsxger16(env, a, b, at, mask, true, false, true, extract_hf16); | 
 | } | 
 |  | 
 | QEMU_FLATTEN | 
 | void helper_XVF16GER2NP(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b, | 
 |                         ppc_acc_t *at, uint32_t mask) | 
 | { | 
 |     vsxger16(env, a, b, at, mask, true, true, false, extract_hf16); | 
 | } | 
 |  | 
 | QEMU_FLATTEN | 
 | void helper_XVF16GER2NN(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b, | 
 |                         ppc_acc_t *at, uint32_t mask) | 
 | { | 
 |     vsxger16(env, a, b, at, mask, true, true, true, extract_hf16); | 
 | } | 
 |  | 
 | QEMU_FLATTEN | 
 | void helper_XVF32GER(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b, | 
 |                      ppc_acc_t *at, uint32_t mask) | 
 | { | 
 |     vsxger(env, a, b, at, mask, false, false, false, vsxger_mul32, | 
 |            vsxger_muladd32, vsxger_zero32); | 
 | } | 
 |  | 
 | QEMU_FLATTEN | 
 | void helper_XVF32GERPP(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b, | 
 |                        ppc_acc_t *at, uint32_t mask) | 
 | { | 
 |     vsxger(env, a, b, at, mask, true, false, false, vsxger_mul32, | 
 |            vsxger_muladd32, vsxger_zero32); | 
 | } | 
 |  | 
 | QEMU_FLATTEN | 
 | void helper_XVF32GERPN(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b, | 
 |                        ppc_acc_t *at, uint32_t mask) | 
 | { | 
 |     vsxger(env, a, b, at, mask, true, false, true, vsxger_mul32, | 
 |            vsxger_muladd32, vsxger_zero32); | 
 | } | 
 |  | 
 | QEMU_FLATTEN | 
 | void helper_XVF32GERNP(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b, | 
 |                        ppc_acc_t *at, uint32_t mask) | 
 | { | 
 |     vsxger(env, a, b, at, mask, true, true, false, vsxger_mul32, | 
 |            vsxger_muladd32, vsxger_zero32); | 
 | } | 
 |  | 
 | QEMU_FLATTEN | 
 | void helper_XVF32GERNN(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b, | 
 |                        ppc_acc_t *at, uint32_t mask) | 
 | { | 
 |     vsxger(env, a, b, at, mask, true, true, true, vsxger_mul32, | 
 |            vsxger_muladd32, vsxger_zero32); | 
 | } | 
 |  | 
 | QEMU_FLATTEN | 
 | void helper_XVF64GER(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b, | 
 |                      ppc_acc_t *at, uint32_t mask) | 
 | { | 
 |     vsxger(env, a, b, at, mask, false, false, false, vsxger_mul64, | 
 |            vsxger_muladd64, vsxger_zero64); | 
 | } | 
 |  | 
 | QEMU_FLATTEN | 
 | void helper_XVF64GERPP(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b, | 
 |                        ppc_acc_t *at, uint32_t mask) | 
 | { | 
 |     vsxger(env, a, b, at, mask, true, false, false, vsxger_mul64, | 
 |            vsxger_muladd64, vsxger_zero64); | 
 | } | 
 |  | 
 | QEMU_FLATTEN | 
 | void helper_XVF64GERPN(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b, | 
 |                        ppc_acc_t *at, uint32_t mask) | 
 | { | 
 |     vsxger(env, a, b, at, mask, true, false, true, vsxger_mul64, | 
 |            vsxger_muladd64, vsxger_zero64); | 
 | } | 
 |  | 
 | QEMU_FLATTEN | 
 | void helper_XVF64GERNP(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b, | 
 |                        ppc_acc_t *at, uint32_t mask) | 
 | { | 
 |     vsxger(env, a, b, at, mask, true, true, false, vsxger_mul64, | 
 |            vsxger_muladd64, vsxger_zero64); | 
 | } | 
 |  | 
 | QEMU_FLATTEN | 
 | void helper_XVF64GERNN(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b, | 
 |                        ppc_acc_t *at, uint32_t mask) | 
 | { | 
 |     vsxger(env, a, b, at, mask, true, true, true, vsxger_mul64, | 
 |            vsxger_muladd64, vsxger_zero64); | 
 | } |