| /* |
| * ARM AdvSIMD / SVE Vector Operations |
| * |
| * Copyright (c) 2018 Linaro |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "cpu.h" |
| #include "exec/helper-proto.h" |
| #include "tcg/tcg-gvec-desc.h" |
| #include "fpu/softfloat.h" |
| |
| |
| /* Note that vector data is stored in host-endian 64-bit chunks, |
| so addressing units smaller than that needs a host-endian fixup. */ |
| #ifdef HOST_WORDS_BIGENDIAN |
| #define H1(x) ((x) ^ 7) |
| #define H2(x) ((x) ^ 3) |
| #define H4(x) ((x) ^ 1) |
| #else |
| #define H1(x) (x) |
| #define H2(x) (x) |
| #define H4(x) (x) |
| #endif |
| |
| #define SET_QC() env->vfp.qc[0] = 1 |
| |
| static void clear_tail(void *vd, uintptr_t opr_sz, uintptr_t max_sz) |
| { |
| uint64_t *d = vd + opr_sz; |
| uintptr_t i; |
| |
| for (i = opr_sz; i < max_sz; i += 8) { |
| *d++ = 0; |
| } |
| } |
| |
| /* Signed saturating rounding doubling multiply-accumulate high half, 16-bit */ |
| static uint16_t inl_qrdmlah_s16(CPUARMState *env, int16_t src1, |
| int16_t src2, int16_t src3) |
| { |
| /* Simplify: |
| * = ((a3 << 16) + ((e1 * e2) << 1) + (1 << 15)) >> 16 |
| * = ((a3 << 15) + (e1 * e2) + (1 << 14)) >> 15 |
| */ |
| int32_t ret = (int32_t)src1 * src2; |
| ret = ((int32_t)src3 << 15) + ret + (1 << 14); |
| ret >>= 15; |
| if (ret != (int16_t)ret) { |
| SET_QC(); |
| ret = (ret < 0 ? -0x8000 : 0x7fff); |
| } |
| return ret; |
| } |
| |
| uint32_t HELPER(neon_qrdmlah_s16)(CPUARMState *env, uint32_t src1, |
| uint32_t src2, uint32_t src3) |
| { |
| uint16_t e1 = inl_qrdmlah_s16(env, src1, src2, src3); |
| uint16_t e2 = inl_qrdmlah_s16(env, src1 >> 16, src2 >> 16, src3 >> 16); |
| return deposit32(e1, 16, 16, e2); |
| } |
| |
| void HELPER(gvec_qrdmlah_s16)(void *vd, void *vn, void *vm, |
| void *ve, uint32_t desc) |
| { |
| uintptr_t opr_sz = simd_oprsz(desc); |
| int16_t *d = vd; |
| int16_t *n = vn; |
| int16_t *m = vm; |
| CPUARMState *env = ve; |
| uintptr_t i; |
| |
| for (i = 0; i < opr_sz / 2; ++i) { |
| d[i] = inl_qrdmlah_s16(env, n[i], m[i], d[i]); |
| } |
| clear_tail(d, opr_sz, simd_maxsz(desc)); |
| } |
| |
| /* Signed saturating rounding doubling multiply-subtract high half, 16-bit */ |
| static uint16_t inl_qrdmlsh_s16(CPUARMState *env, int16_t src1, |
| int16_t src2, int16_t src3) |
| { |
| /* Similarly, using subtraction: |
| * = ((a3 << 16) - ((e1 * e2) << 1) + (1 << 15)) >> 16 |
| * = ((a3 << 15) - (e1 * e2) + (1 << 14)) >> 15 |
| */ |
| int32_t ret = (int32_t)src1 * src2; |
| ret = ((int32_t)src3 << 15) - ret + (1 << 14); |
| ret >>= 15; |
| if (ret != (int16_t)ret) { |
| SET_QC(); |
| ret = (ret < 0 ? -0x8000 : 0x7fff); |
| } |
| return ret; |
| } |
| |
| uint32_t HELPER(neon_qrdmlsh_s16)(CPUARMState *env, uint32_t src1, |
| uint32_t src2, uint32_t src3) |
| { |
| uint16_t e1 = inl_qrdmlsh_s16(env, src1, src2, src3); |
| uint16_t e2 = inl_qrdmlsh_s16(env, src1 >> 16, src2 >> 16, src3 >> 16); |
| return deposit32(e1, 16, 16, e2); |
| } |
| |
| void HELPER(gvec_qrdmlsh_s16)(void *vd, void *vn, void *vm, |
| void *ve, uint32_t desc) |
| { |
| uintptr_t opr_sz = simd_oprsz(desc); |
| int16_t *d = vd; |
| int16_t *n = vn; |
| int16_t *m = vm; |
| CPUARMState *env = ve; |
| uintptr_t i; |
| |
| for (i = 0; i < opr_sz / 2; ++i) { |
| d[i] = inl_qrdmlsh_s16(env, n[i], m[i], d[i]); |
| } |
| clear_tail(d, opr_sz, simd_maxsz(desc)); |
| } |
| |
| /* Signed saturating rounding doubling multiply-accumulate high half, 32-bit */ |
| uint32_t HELPER(neon_qrdmlah_s32)(CPUARMState *env, int32_t src1, |
| int32_t src2, int32_t src3) |
| { |
| /* Simplify similarly to int_qrdmlah_s16 above. */ |
| int64_t ret = (int64_t)src1 * src2; |
| ret = ((int64_t)src3 << 31) + ret + (1 << 30); |
| ret >>= 31; |
| if (ret != (int32_t)ret) { |
| SET_QC(); |
| ret = (ret < 0 ? INT32_MIN : INT32_MAX); |
| } |
| return ret; |
| } |
| |
| void HELPER(gvec_qrdmlah_s32)(void *vd, void *vn, void *vm, |
| void *ve, uint32_t desc) |
| { |
| uintptr_t opr_sz = simd_oprsz(desc); |
| int32_t *d = vd; |
| int32_t *n = vn; |
| int32_t *m = vm; |
| CPUARMState *env = ve; |
| uintptr_t i; |
| |
| for (i = 0; i < opr_sz / 4; ++i) { |
| d[i] = helper_neon_qrdmlah_s32(env, n[i], m[i], d[i]); |
| } |
| clear_tail(d, opr_sz, simd_maxsz(desc)); |
| } |
| |
| /* Signed saturating rounding doubling multiply-subtract high half, 32-bit */ |
| uint32_t HELPER(neon_qrdmlsh_s32)(CPUARMState *env, int32_t src1, |
| int32_t src2, int32_t src3) |
| { |
| /* Simplify similarly to int_qrdmlsh_s16 above. */ |
| int64_t ret = (int64_t)src1 * src2; |
| ret = ((int64_t)src3 << 31) - ret + (1 << 30); |
| ret >>= 31; |
| if (ret != (int32_t)ret) { |
| SET_QC(); |
| ret = (ret < 0 ? INT32_MIN : INT32_MAX); |
| } |
| return ret; |
| } |
| |
| void HELPER(gvec_qrdmlsh_s32)(void *vd, void *vn, void *vm, |
| void *ve, uint32_t desc) |
| { |
| uintptr_t opr_sz = simd_oprsz(desc); |
| int32_t *d = vd; |
| int32_t *n = vn; |
| int32_t *m = vm; |
| CPUARMState *env = ve; |
| uintptr_t i; |
| |
| for (i = 0; i < opr_sz / 4; ++i) { |
| d[i] = helper_neon_qrdmlsh_s32(env, n[i], m[i], d[i]); |
| } |
| clear_tail(d, opr_sz, simd_maxsz(desc)); |
| } |
| |
| /* Integer 8 and 16-bit dot-product. |
| * |
| * Note that for the loops herein, host endianness does not matter |
| * with respect to the ordering of data within the 64-bit lanes. |
| * All elements are treated equally, no matter where they are. |
| */ |
| |
| void HELPER(gvec_sdot_b)(void *vd, void *vn, void *vm, uint32_t desc) |
| { |
| intptr_t i, opr_sz = simd_oprsz(desc); |
| uint32_t *d = vd; |
| int8_t *n = vn, *m = vm; |
| |
| for (i = 0; i < opr_sz / 4; ++i) { |
| d[i] += n[i * 4 + 0] * m[i * 4 + 0] |
| + n[i * 4 + 1] * m[i * 4 + 1] |
| + n[i * 4 + 2] * m[i * 4 + 2] |
| + n[i * 4 + 3] * m[i * 4 + 3]; |
| } |
| clear_tail(d, opr_sz, simd_maxsz(desc)); |
| } |
| |
| void HELPER(gvec_udot_b)(void *vd, void *vn, void *vm, uint32_t desc) |
| { |
| intptr_t i, opr_sz = simd_oprsz(desc); |
| uint32_t *d = vd; |
| uint8_t *n = vn, *m = vm; |
| |
| for (i = 0; i < opr_sz / 4; ++i) { |
| d[i] += n[i * 4 + 0] * m[i * 4 + 0] |
| + n[i * 4 + 1] * m[i * 4 + 1] |
| + n[i * 4 + 2] * m[i * 4 + 2] |
| + n[i * 4 + 3] * m[i * 4 + 3]; |
| } |
| clear_tail(d, opr_sz, simd_maxsz(desc)); |
| } |
| |
| void HELPER(gvec_sdot_h)(void *vd, void *vn, void *vm, uint32_t desc) |
| { |
| intptr_t i, opr_sz = simd_oprsz(desc); |
| uint64_t *d = vd; |
| int16_t *n = vn, *m = vm; |
| |
| for (i = 0; i < opr_sz / 8; ++i) { |
| d[i] += (int64_t)n[i * 4 + 0] * m[i * 4 + 0] |
| + (int64_t)n[i * 4 + 1] * m[i * 4 + 1] |
| + (int64_t)n[i * 4 + 2] * m[i * 4 + 2] |
| + (int64_t)n[i * 4 + 3] * m[i * 4 + 3]; |
| } |
| clear_tail(d, opr_sz, simd_maxsz(desc)); |
| } |
| |
| void HELPER(gvec_udot_h)(void *vd, void *vn, void *vm, uint32_t desc) |
| { |
| intptr_t i, opr_sz = simd_oprsz(desc); |
| uint64_t *d = vd; |
| uint16_t *n = vn, *m = vm; |
| |
| for (i = 0; i < opr_sz / 8; ++i) { |
| d[i] += (uint64_t)n[i * 4 + 0] * m[i * 4 + 0] |
| + (uint64_t)n[i * 4 + 1] * m[i * 4 + 1] |
| + (uint64_t)n[i * 4 + 2] * m[i * 4 + 2] |
| + (uint64_t)n[i * 4 + 3] * m[i * 4 + 3]; |
| } |
| clear_tail(d, opr_sz, simd_maxsz(desc)); |
| } |
| |
| void HELPER(gvec_sdot_idx_b)(void *vd, void *vn, void *vm, uint32_t desc) |
| { |
| intptr_t i, segend, opr_sz = simd_oprsz(desc), opr_sz_4 = opr_sz / 4; |
| intptr_t index = simd_data(desc); |
| uint32_t *d = vd; |
| int8_t *n = vn; |
| int8_t *m_indexed = (int8_t *)vm + index * 4; |
| |
| /* Notice the special case of opr_sz == 8, from aa64/aa32 advsimd. |
| * Otherwise opr_sz is a multiple of 16. |
| */ |
| segend = MIN(4, opr_sz_4); |
| i = 0; |
| do { |
| int8_t m0 = m_indexed[i * 4 + 0]; |
| int8_t m1 = m_indexed[i * 4 + 1]; |
| int8_t m2 = m_indexed[i * 4 + 2]; |
| int8_t m3 = m_indexed[i * 4 + 3]; |
| |
| do { |
| d[i] += n[i * 4 + 0] * m0 |
| + n[i * 4 + 1] * m1 |
| + n[i * 4 + 2] * m2 |
| + n[i * 4 + 3] * m3; |
| } while (++i < segend); |
| segend = i + 4; |
| } while (i < opr_sz_4); |
| |
| clear_tail(d, opr_sz, simd_maxsz(desc)); |
| } |
| |
| void HELPER(gvec_udot_idx_b)(void *vd, void *vn, void *vm, uint32_t desc) |
| { |
| intptr_t i, segend, opr_sz = simd_oprsz(desc), opr_sz_4 = opr_sz / 4; |
| intptr_t index = simd_data(desc); |
| uint32_t *d = vd; |
| uint8_t *n = vn; |
| uint8_t *m_indexed = (uint8_t *)vm + index * 4; |
| |
| /* Notice the special case of opr_sz == 8, from aa64/aa32 advsimd. |
| * Otherwise opr_sz is a multiple of 16. |
| */ |
| segend = MIN(4, opr_sz_4); |
| i = 0; |
| do { |
| uint8_t m0 = m_indexed[i * 4 + 0]; |
| uint8_t m1 = m_indexed[i * 4 + 1]; |
| uint8_t m2 = m_indexed[i * 4 + 2]; |
| uint8_t m3 = m_indexed[i * 4 + 3]; |
| |
| do { |
| d[i] += n[i * 4 + 0] * m0 |
| + n[i * 4 + 1] * m1 |
| + n[i * 4 + 2] * m2 |
| + n[i * 4 + 3] * m3; |
| } while (++i < segend); |
| segend = i + 4; |
| } while (i < opr_sz_4); |
| |
| clear_tail(d, opr_sz, simd_maxsz(desc)); |
| } |
| |
| void HELPER(gvec_sdot_idx_h)(void *vd, void *vn, void *vm, uint32_t desc) |
| { |
| intptr_t i, opr_sz = simd_oprsz(desc), opr_sz_8 = opr_sz / 8; |
| intptr_t index = simd_data(desc); |
| uint64_t *d = vd; |
| int16_t *n = vn; |
| int16_t *m_indexed = (int16_t *)vm + index * 4; |
| |
| /* This is supported by SVE only, so opr_sz is always a multiple of 16. |
| * Process the entire segment all at once, writing back the results |
| * only after we've consumed all of the inputs. |
| */ |
| for (i = 0; i < opr_sz_8 ; i += 2) { |
| uint64_t d0, d1; |
| |
| d0 = n[i * 4 + 0] * (int64_t)m_indexed[i * 4 + 0]; |
| d0 += n[i * 4 + 1] * (int64_t)m_indexed[i * 4 + 1]; |
| d0 += n[i * 4 + 2] * (int64_t)m_indexed[i * 4 + 2]; |
| d0 += n[i * 4 + 3] * (int64_t)m_indexed[i * 4 + 3]; |
| d1 = n[i * 4 + 4] * (int64_t)m_indexed[i * 4 + 0]; |
| d1 += n[i * 4 + 5] * (int64_t)m_indexed[i * 4 + 1]; |
| d1 += n[i * 4 + 6] * (int64_t)m_indexed[i * 4 + 2]; |
| d1 += n[i * 4 + 7] * (int64_t)m_indexed[i * 4 + 3]; |
| |
| d[i + 0] += d0; |
| d[i + 1] += d1; |
| } |
| |
| clear_tail(d, opr_sz, simd_maxsz(desc)); |
| } |
| |
| void HELPER(gvec_udot_idx_h)(void *vd, void *vn, void *vm, uint32_t desc) |
| { |
| intptr_t i, opr_sz = simd_oprsz(desc), opr_sz_8 = opr_sz / 8; |
| intptr_t index = simd_data(desc); |
| uint64_t *d = vd; |
| uint16_t *n = vn; |
| uint16_t *m_indexed = (uint16_t *)vm + index * 4; |
| |
| /* This is supported by SVE only, so opr_sz is always a multiple of 16. |
| * Process the entire segment all at once, writing back the results |
| * only after we've consumed all of the inputs. |
| */ |
| for (i = 0; i < opr_sz_8 ; i += 2) { |
| uint64_t d0, d1; |
| |
| d0 = n[i * 4 + 0] * (uint64_t)m_indexed[i * 4 + 0]; |
| d0 += n[i * 4 + 1] * (uint64_t)m_indexed[i * 4 + 1]; |
| d0 += n[i * 4 + 2] * (uint64_t)m_indexed[i * 4 + 2]; |
| d0 += n[i * 4 + 3] * (uint64_t)m_indexed[i * 4 + 3]; |
| d1 = n[i * 4 + 4] * (uint64_t)m_indexed[i * 4 + 0]; |
| d1 += n[i * 4 + 5] * (uint64_t)m_indexed[i * 4 + 1]; |
| d1 += n[i * 4 + 6] * (uint64_t)m_indexed[i * 4 + 2]; |
| d1 += n[i * 4 + 7] * (uint64_t)m_indexed[i * 4 + 3]; |
| |
| d[i + 0] += d0; |
| d[i + 1] += d1; |
| } |
| |
| clear_tail(d, opr_sz, simd_maxsz(desc)); |
| } |
| |
| void HELPER(gvec_fcaddh)(void *vd, void *vn, void *vm, |
| void *vfpst, uint32_t desc) |
| { |
| uintptr_t opr_sz = simd_oprsz(desc); |
| float16 *d = vd; |
| float16 *n = vn; |
| float16 *m = vm; |
| float_status *fpst = vfpst; |
| uint32_t neg_real = extract32(desc, SIMD_DATA_SHIFT, 1); |
| uint32_t neg_imag = neg_real ^ 1; |
| uintptr_t i; |
| |
| /* Shift boolean to the sign bit so we can xor to negate. */ |
| neg_real <<= 15; |
| neg_imag <<= 15; |
| |
| for (i = 0; i < opr_sz / 2; i += 2) { |
| float16 e0 = n[H2(i)]; |
| float16 e1 = m[H2(i + 1)] ^ neg_imag; |
| float16 e2 = n[H2(i + 1)]; |
| float16 e3 = m[H2(i)] ^ neg_real; |
| |
| d[H2(i)] = float16_add(e0, e1, fpst); |
| d[H2(i + 1)] = float16_add(e2, e3, fpst); |
| } |
| clear_tail(d, opr_sz, simd_maxsz(desc)); |
| } |
| |
| void HELPER(gvec_fcadds)(void *vd, void *vn, void *vm, |
| void *vfpst, uint32_t desc) |
| { |
| uintptr_t opr_sz = simd_oprsz(desc); |
| float32 *d = vd; |
| float32 *n = vn; |
| float32 *m = vm; |
| float_status *fpst = vfpst; |
| uint32_t neg_real = extract32(desc, SIMD_DATA_SHIFT, 1); |
| uint32_t neg_imag = neg_real ^ 1; |
| uintptr_t i; |
| |
| /* Shift boolean to the sign bit so we can xor to negate. */ |
| neg_real <<= 31; |
| neg_imag <<= 31; |
| |
| for (i = 0; i < opr_sz / 4; i += 2) { |
| float32 e0 = n[H4(i)]; |
| float32 e1 = m[H4(i + 1)] ^ neg_imag; |
| float32 e2 = n[H4(i + 1)]; |
| float32 e3 = m[H4(i)] ^ neg_real; |
| |
| d[H4(i)] = float32_add(e0, e1, fpst); |
| d[H4(i + 1)] = float32_add(e2, e3, fpst); |
| } |
| clear_tail(d, opr_sz, simd_maxsz(desc)); |
| } |
| |
| void HELPER(gvec_fcaddd)(void *vd, void *vn, void *vm, |
| void *vfpst, uint32_t desc) |
| { |
| uintptr_t opr_sz = simd_oprsz(desc); |
| float64 *d = vd; |
| float64 *n = vn; |
| float64 *m = vm; |
| float_status *fpst = vfpst; |
| uint64_t neg_real = extract64(desc, SIMD_DATA_SHIFT, 1); |
| uint64_t neg_imag = neg_real ^ 1; |
| uintptr_t i; |
| |
| /* Shift boolean to the sign bit so we can xor to negate. */ |
| neg_real <<= 63; |
| neg_imag <<= 63; |
| |
| for (i = 0; i < opr_sz / 8; i += 2) { |
| float64 e0 = n[i]; |
| float64 e1 = m[i + 1] ^ neg_imag; |
| float64 e2 = n[i + 1]; |
| float64 e3 = m[i] ^ neg_real; |
| |
| d[i] = float64_add(e0, e1, fpst); |
| d[i + 1] = float64_add(e2, e3, fpst); |
| } |
| clear_tail(d, opr_sz, simd_maxsz(desc)); |
| } |
| |
| void HELPER(gvec_fcmlah)(void *vd, void *vn, void *vm, |
| void *vfpst, uint32_t desc) |
| { |
| uintptr_t opr_sz = simd_oprsz(desc); |
| float16 *d = vd; |
| float16 *n = vn; |
| float16 *m = vm; |
| float_status *fpst = vfpst; |
| intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1); |
| uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1); |
| uint32_t neg_real = flip ^ neg_imag; |
| uintptr_t i; |
| |
| /* Shift boolean to the sign bit so we can xor to negate. */ |
| neg_real <<= 15; |
| neg_imag <<= 15; |
| |
| for (i = 0; i < opr_sz / 2; i += 2) { |
| float16 e2 = n[H2(i + flip)]; |
| float16 e1 = m[H2(i + flip)] ^ neg_real; |
| float16 e4 = e2; |
| float16 e3 = m[H2(i + 1 - flip)] ^ neg_imag; |
| |
| d[H2(i)] = float16_muladd(e2, e1, d[H2(i)], 0, fpst); |
| d[H2(i + 1)] = float16_muladd(e4, e3, d[H2(i + 1)], 0, fpst); |
| } |
| clear_tail(d, opr_sz, simd_maxsz(desc)); |
| } |
| |
| void HELPER(gvec_fcmlah_idx)(void *vd, void *vn, void *vm, |
| void *vfpst, uint32_t desc) |
| { |
| uintptr_t opr_sz = simd_oprsz(desc); |
| float16 *d = vd; |
| float16 *n = vn; |
| float16 *m = vm; |
| float_status *fpst = vfpst; |
| intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1); |
| uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1); |
| intptr_t index = extract32(desc, SIMD_DATA_SHIFT + 2, 2); |
| uint32_t neg_real = flip ^ neg_imag; |
| intptr_t elements = opr_sz / sizeof(float16); |
| intptr_t eltspersegment = 16 / sizeof(float16); |
| intptr_t i, j; |
| |
| /* Shift boolean to the sign bit so we can xor to negate. */ |
| neg_real <<= 15; |
| neg_imag <<= 15; |
| |
| for (i = 0; i < elements; i += eltspersegment) { |
| float16 mr = m[H2(i + 2 * index + 0)]; |
| float16 mi = m[H2(i + 2 * index + 1)]; |
| float16 e1 = neg_real ^ (flip ? mi : mr); |
| float16 e3 = neg_imag ^ (flip ? mr : mi); |
| |
| for (j = i; j < i + eltspersegment; j += 2) { |
| float16 e2 = n[H2(j + flip)]; |
| float16 e4 = e2; |
| |
| d[H2(j)] = float16_muladd(e2, e1, d[H2(j)], 0, fpst); |
| d[H2(j + 1)] = float16_muladd(e4, e3, d[H2(j + 1)], 0, fpst); |
| } |
| } |
| clear_tail(d, opr_sz, simd_maxsz(desc)); |
| } |
| |
| void HELPER(gvec_fcmlas)(void *vd, void *vn, void *vm, |
| void *vfpst, uint32_t desc) |
| { |
| uintptr_t opr_sz = simd_oprsz(desc); |
| float32 *d = vd; |
| float32 *n = vn; |
| float32 *m = vm; |
| float_status *fpst = vfpst; |
| intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1); |
| uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1); |
| uint32_t neg_real = flip ^ neg_imag; |
| uintptr_t i; |
| |
| /* Shift boolean to the sign bit so we can xor to negate. */ |
| neg_real <<= 31; |
| neg_imag <<= 31; |
| |
| for (i = 0; i < opr_sz / 4; i += 2) { |
| float32 e2 = n[H4(i + flip)]; |
| float32 e1 = m[H4(i + flip)] ^ neg_real; |
| float32 e4 = e2; |
| float32 e3 = m[H4(i + 1 - flip)] ^ neg_imag; |
| |
| d[H4(i)] = float32_muladd(e2, e1, d[H4(i)], 0, fpst); |
| d[H4(i + 1)] = float32_muladd(e4, e3, d[H4(i + 1)], 0, fpst); |
| } |
| clear_tail(d, opr_sz, simd_maxsz(desc)); |
| } |
| |
| void HELPER(gvec_fcmlas_idx)(void *vd, void *vn, void *vm, |
| void *vfpst, uint32_t desc) |
| { |
| uintptr_t opr_sz = simd_oprsz(desc); |
| float32 *d = vd; |
| float32 *n = vn; |
| float32 *m = vm; |
| float_status *fpst = vfpst; |
| intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1); |
| uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1); |
| intptr_t index = extract32(desc, SIMD_DATA_SHIFT + 2, 2); |
| uint32_t neg_real = flip ^ neg_imag; |
| intptr_t elements = opr_sz / sizeof(float32); |
| intptr_t eltspersegment = 16 / sizeof(float32); |
| intptr_t i, j; |
| |
| /* Shift boolean to the sign bit so we can xor to negate. */ |
| neg_real <<= 31; |
| neg_imag <<= 31; |
| |
| for (i = 0; i < elements; i += eltspersegment) { |
| float32 mr = m[H4(i + 2 * index + 0)]; |
| float32 mi = m[H4(i + 2 * index + 1)]; |
| float32 e1 = neg_real ^ (flip ? mi : mr); |
| float32 e3 = neg_imag ^ (flip ? mr : mi); |
| |
| for (j = i; j < i + eltspersegment; j += 2) { |
| float32 e2 = n[H4(j + flip)]; |
| float32 e4 = e2; |
| |
| d[H4(j)] = float32_muladd(e2, e1, d[H4(j)], 0, fpst); |
| d[H4(j + 1)] = float32_muladd(e4, e3, d[H4(j + 1)], 0, fpst); |
| } |
| } |
| clear_tail(d, opr_sz, simd_maxsz(desc)); |
| } |
| |
| void HELPER(gvec_fcmlad)(void *vd, void *vn, void *vm, |
| void *vfpst, uint32_t desc) |
| { |
| uintptr_t opr_sz = simd_oprsz(desc); |
| float64 *d = vd; |
| float64 *n = vn; |
| float64 *m = vm; |
| float_status *fpst = vfpst; |
| intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1); |
| uint64_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1); |
| uint64_t neg_real = flip ^ neg_imag; |
| uintptr_t i; |
| |
| /* Shift boolean to the sign bit so we can xor to negate. */ |
| neg_real <<= 63; |
| neg_imag <<= 63; |
| |
| for (i = 0; i < opr_sz / 8; i += 2) { |
| float64 e2 = n[i + flip]; |
| float64 e1 = m[i + flip] ^ neg_real; |
| float64 e4 = e2; |
| float64 e3 = m[i + 1 - flip] ^ neg_imag; |
| |
| d[i] = float64_muladd(e2, e1, d[i], 0, fpst); |
| d[i + 1] = float64_muladd(e4, e3, d[i + 1], 0, fpst); |
| } |
| clear_tail(d, opr_sz, simd_maxsz(desc)); |
| } |
| |
| #define DO_2OP(NAME, FUNC, TYPE) \ |
| void HELPER(NAME)(void *vd, void *vn, void *stat, uint32_t desc) \ |
| { \ |
| intptr_t i, oprsz = simd_oprsz(desc); \ |
| TYPE *d = vd, *n = vn; \ |
| for (i = 0; i < oprsz / sizeof(TYPE); i++) { \ |
| d[i] = FUNC(n[i], stat); \ |
| } \ |
| clear_tail(d, oprsz, simd_maxsz(desc)); \ |
| } |
| |
| DO_2OP(gvec_frecpe_h, helper_recpe_f16, float16) |
| DO_2OP(gvec_frecpe_s, helper_recpe_f32, float32) |
| DO_2OP(gvec_frecpe_d, helper_recpe_f64, float64) |
| |
| DO_2OP(gvec_frsqrte_h, helper_rsqrte_f16, float16) |
| DO_2OP(gvec_frsqrte_s, helper_rsqrte_f32, float32) |
| DO_2OP(gvec_frsqrte_d, helper_rsqrte_f64, float64) |
| |
| #undef DO_2OP |
| |
| /* Floating-point trigonometric starting value. |
| * See the ARM ARM pseudocode function FPTrigSMul. |
| */ |
| static float16 float16_ftsmul(float16 op1, uint16_t op2, float_status *stat) |
| { |
| float16 result = float16_mul(op1, op1, stat); |
| if (!float16_is_any_nan(result)) { |
| result = float16_set_sign(result, op2 & 1); |
| } |
| return result; |
| } |
| |
| static float32 float32_ftsmul(float32 op1, uint32_t op2, float_status *stat) |
| { |
| float32 result = float32_mul(op1, op1, stat); |
| if (!float32_is_any_nan(result)) { |
| result = float32_set_sign(result, op2 & 1); |
| } |
| return result; |
| } |
| |
| static float64 float64_ftsmul(float64 op1, uint64_t op2, float_status *stat) |
| { |
| float64 result = float64_mul(op1, op1, stat); |
| if (!float64_is_any_nan(result)) { |
| result = float64_set_sign(result, op2 & 1); |
| } |
| return result; |
| } |
| |
| #define DO_3OP(NAME, FUNC, TYPE) \ |
| void HELPER(NAME)(void *vd, void *vn, void *vm, void *stat, uint32_t desc) \ |
| { \ |
| intptr_t i, oprsz = simd_oprsz(desc); \ |
| TYPE *d = vd, *n = vn, *m = vm; \ |
| for (i = 0; i < oprsz / sizeof(TYPE); i++) { \ |
| d[i] = FUNC(n[i], m[i], stat); \ |
| } \ |
| clear_tail(d, oprsz, simd_maxsz(desc)); \ |
| } |
| |
| DO_3OP(gvec_fadd_h, float16_add, float16) |
| DO_3OP(gvec_fadd_s, float32_add, float32) |
| DO_3OP(gvec_fadd_d, float64_add, float64) |
| |
| DO_3OP(gvec_fsub_h, float16_sub, float16) |
| DO_3OP(gvec_fsub_s, float32_sub, float32) |
| DO_3OP(gvec_fsub_d, float64_sub, float64) |
| |
| DO_3OP(gvec_fmul_h, float16_mul, float16) |
| DO_3OP(gvec_fmul_s, float32_mul, float32) |
| DO_3OP(gvec_fmul_d, float64_mul, float64) |
| |
| DO_3OP(gvec_ftsmul_h, float16_ftsmul, float16) |
| DO_3OP(gvec_ftsmul_s, float32_ftsmul, float32) |
| DO_3OP(gvec_ftsmul_d, float64_ftsmul, float64) |
| |
| #ifdef TARGET_AARCH64 |
| |
| DO_3OP(gvec_recps_h, helper_recpsf_f16, float16) |
| DO_3OP(gvec_recps_s, helper_recpsf_f32, float32) |
| DO_3OP(gvec_recps_d, helper_recpsf_f64, float64) |
| |
| DO_3OP(gvec_rsqrts_h, helper_rsqrtsf_f16, float16) |
| DO_3OP(gvec_rsqrts_s, helper_rsqrtsf_f32, float32) |
| DO_3OP(gvec_rsqrts_d, helper_rsqrtsf_f64, float64) |
| |
| #endif |
| #undef DO_3OP |
| |
| /* For the indexed ops, SVE applies the index per 128-bit vector segment. |
| * For AdvSIMD, there is of course only one such vector segment. |
| */ |
| |
| #define DO_MUL_IDX(NAME, TYPE, H) \ |
| void HELPER(NAME)(void *vd, void *vn, void *vm, void *stat, uint32_t desc) \ |
| { \ |
| intptr_t i, j, oprsz = simd_oprsz(desc), segment = 16 / sizeof(TYPE); \ |
| intptr_t idx = simd_data(desc); \ |
| TYPE *d = vd, *n = vn, *m = vm; \ |
| for (i = 0; i < oprsz / sizeof(TYPE); i += segment) { \ |
| TYPE mm = m[H(i + idx)]; \ |
| for (j = 0; j < segment; j++) { \ |
| d[i + j] = TYPE##_mul(n[i + j], mm, stat); \ |
| } \ |
| } \ |
| } |
| |
| DO_MUL_IDX(gvec_fmul_idx_h, float16, H2) |
| DO_MUL_IDX(gvec_fmul_idx_s, float32, H4) |
| DO_MUL_IDX(gvec_fmul_idx_d, float64, ) |
| |
| #undef DO_MUL_IDX |
| |
| #define DO_FMLA_IDX(NAME, TYPE, H) \ |
| void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, \ |
| void *stat, uint32_t desc) \ |
| { \ |
| intptr_t i, j, oprsz = simd_oprsz(desc), segment = 16 / sizeof(TYPE); \ |
| TYPE op1_neg = extract32(desc, SIMD_DATA_SHIFT, 1); \ |
| intptr_t idx = desc >> (SIMD_DATA_SHIFT + 1); \ |
| TYPE *d = vd, *n = vn, *m = vm, *a = va; \ |
| op1_neg <<= (8 * sizeof(TYPE) - 1); \ |
| for (i = 0; i < oprsz / sizeof(TYPE); i += segment) { \ |
| TYPE mm = m[H(i + idx)]; \ |
| for (j = 0; j < segment; j++) { \ |
| d[i + j] = TYPE##_muladd(n[i + j] ^ op1_neg, \ |
| mm, a[i + j], 0, stat); \ |
| } \ |
| } \ |
| } |
| |
| DO_FMLA_IDX(gvec_fmla_idx_h, float16, H2) |
| DO_FMLA_IDX(gvec_fmla_idx_s, float32, H4) |
| DO_FMLA_IDX(gvec_fmla_idx_d, float64, ) |
| |
| #undef DO_FMLA_IDX |
| |
| #define DO_SAT(NAME, WTYPE, TYPEN, TYPEM, OP, MIN, MAX) \ |
| void HELPER(NAME)(void *vd, void *vq, void *vn, void *vm, uint32_t desc) \ |
| { \ |
| intptr_t i, oprsz = simd_oprsz(desc); \ |
| TYPEN *d = vd, *n = vn; TYPEM *m = vm; \ |
| bool q = false; \ |
| for (i = 0; i < oprsz / sizeof(TYPEN); i++) { \ |
| WTYPE dd = (WTYPE)n[i] OP m[i]; \ |
| if (dd < MIN) { \ |
| dd = MIN; \ |
| q = true; \ |
| } else if (dd > MAX) { \ |
| dd = MAX; \ |
| q = true; \ |
| } \ |
| d[i] = dd; \ |
| } \ |
| if (q) { \ |
| uint32_t *qc = vq; \ |
| qc[0] = 1; \ |
| } \ |
| clear_tail(d, oprsz, simd_maxsz(desc)); \ |
| } |
| |
| DO_SAT(gvec_uqadd_b, int, uint8_t, uint8_t, +, 0, UINT8_MAX) |
| DO_SAT(gvec_uqadd_h, int, uint16_t, uint16_t, +, 0, UINT16_MAX) |
| DO_SAT(gvec_uqadd_s, int64_t, uint32_t, uint32_t, +, 0, UINT32_MAX) |
| |
| DO_SAT(gvec_sqadd_b, int, int8_t, int8_t, +, INT8_MIN, INT8_MAX) |
| DO_SAT(gvec_sqadd_h, int, int16_t, int16_t, +, INT16_MIN, INT16_MAX) |
| DO_SAT(gvec_sqadd_s, int64_t, int32_t, int32_t, +, INT32_MIN, INT32_MAX) |
| |
| DO_SAT(gvec_uqsub_b, int, uint8_t, uint8_t, -, 0, UINT8_MAX) |
| DO_SAT(gvec_uqsub_h, int, uint16_t, uint16_t, -, 0, UINT16_MAX) |
| DO_SAT(gvec_uqsub_s, int64_t, uint32_t, uint32_t, -, 0, UINT32_MAX) |
| |
| DO_SAT(gvec_sqsub_b, int, int8_t, int8_t, -, INT8_MIN, INT8_MAX) |
| DO_SAT(gvec_sqsub_h, int, int16_t, int16_t, -, INT16_MIN, INT16_MAX) |
| DO_SAT(gvec_sqsub_s, int64_t, int32_t, int32_t, -, INT32_MIN, INT32_MAX) |
| |
| #undef DO_SAT |
| |
| void HELPER(gvec_uqadd_d)(void *vd, void *vq, void *vn, |
| void *vm, uint32_t desc) |
| { |
| intptr_t i, oprsz = simd_oprsz(desc); |
| uint64_t *d = vd, *n = vn, *m = vm; |
| bool q = false; |
| |
| for (i = 0; i < oprsz / 8; i++) { |
| uint64_t nn = n[i], mm = m[i], dd = nn + mm; |
| if (dd < nn) { |
| dd = UINT64_MAX; |
| q = true; |
| } |
| d[i] = dd; |
| } |
| if (q) { |
| uint32_t *qc = vq; |
| qc[0] = 1; |
| } |
| clear_tail(d, oprsz, simd_maxsz(desc)); |
| } |
| |
| void HELPER(gvec_uqsub_d)(void *vd, void *vq, void *vn, |
| void *vm, uint32_t desc) |
| { |
| intptr_t i, oprsz = simd_oprsz(desc); |
| uint64_t *d = vd, *n = vn, *m = vm; |
| bool q = false; |
| |
| for (i = 0; i < oprsz / 8; i++) { |
| uint64_t nn = n[i], mm = m[i], dd = nn - mm; |
| if (nn < mm) { |
| dd = 0; |
| q = true; |
| } |
| d[i] = dd; |
| } |
| if (q) { |
| uint32_t *qc = vq; |
| qc[0] = 1; |
| } |
| clear_tail(d, oprsz, simd_maxsz(desc)); |
| } |
| |
| void HELPER(gvec_sqadd_d)(void *vd, void *vq, void *vn, |
| void *vm, uint32_t desc) |
| { |
| intptr_t i, oprsz = simd_oprsz(desc); |
| int64_t *d = vd, *n = vn, *m = vm; |
| bool q = false; |
| |
| for (i = 0; i < oprsz / 8; i++) { |
| int64_t nn = n[i], mm = m[i], dd = nn + mm; |
| if (((dd ^ nn) & ~(nn ^ mm)) & INT64_MIN) { |
| dd = (nn >> 63) ^ ~INT64_MIN; |
| q = true; |
| } |
| d[i] = dd; |
| } |
| if (q) { |
| uint32_t *qc = vq; |
| qc[0] = 1; |
| } |
| clear_tail(d, oprsz, simd_maxsz(desc)); |
| } |
| |
| void HELPER(gvec_sqsub_d)(void *vd, void *vq, void *vn, |
| void *vm, uint32_t desc) |
| { |
| intptr_t i, oprsz = simd_oprsz(desc); |
| int64_t *d = vd, *n = vn, *m = vm; |
| bool q = false; |
| |
| for (i = 0; i < oprsz / 8; i++) { |
| int64_t nn = n[i], mm = m[i], dd = nn - mm; |
| if (((dd ^ nn) & (nn ^ mm)) & INT64_MIN) { |
| dd = (nn >> 63) ^ ~INT64_MIN; |
| q = true; |
| } |
| d[i] = dd; |
| } |
| if (q) { |
| uint32_t *qc = vq; |
| qc[0] = 1; |
| } |
| clear_tail(d, oprsz, simd_maxsz(desc)); |
| } |
| |
| /* |
| * Convert float16 to float32, raising no exceptions and |
| * preserving exceptional values, including SNaN. |
| * This is effectively an unpack+repack operation. |
| */ |
| static float32 float16_to_float32_by_bits(uint32_t f16, bool fz16) |
| { |
| const int f16_bias = 15; |
| const int f32_bias = 127; |
| uint32_t sign = extract32(f16, 15, 1); |
| uint32_t exp = extract32(f16, 10, 5); |
| uint32_t frac = extract32(f16, 0, 10); |
| |
| if (exp == 0x1f) { |
| /* Inf or NaN */ |
| exp = 0xff; |
| } else if (exp == 0) { |
| /* Zero or denormal. */ |
| if (frac != 0) { |
| if (fz16) { |
| frac = 0; |
| } else { |
| /* |
| * Denormal; these are all normal float32. |
| * Shift the fraction so that the msb is at bit 11, |
| * then remove bit 11 as the implicit bit of the |
| * normalized float32. Note that we still go through |
| * the shift for normal numbers below, to put the |
| * float32 fraction at the right place. |
| */ |
| int shift = clz32(frac) - 21; |
| frac = (frac << shift) & 0x3ff; |
| exp = f32_bias - f16_bias - shift + 1; |
| } |
| } |
| } else { |
| /* Normal number; adjust the bias. */ |
| exp += f32_bias - f16_bias; |
| } |
| sign <<= 31; |
| exp <<= 23; |
| frac <<= 23 - 10; |
| |
| return sign | exp | frac; |
| } |
| |
| static uint64_t load4_f16(uint64_t *ptr, int is_q, int is_2) |
| { |
| /* |
| * Branchless load of u32[0], u64[0], u32[1], or u64[1]. |
| * Load the 2nd qword iff is_q & is_2. |
| * Shift to the 2nd dword iff !is_q & is_2. |
| * For !is_q & !is_2, the upper bits of the result are garbage. |
| */ |
| return ptr[is_q & is_2] >> ((is_2 & ~is_q) << 5); |
| } |
| |
| /* |
| * Note that FMLAL requires oprsz == 8 or oprsz == 16, |
| * as there is not yet SVE versions that might use blocking. |
| */ |
| |
| static void do_fmlal(float32 *d, void *vn, void *vm, float_status *fpst, |
| uint32_t desc, bool fz16) |
| { |
| intptr_t i, oprsz = simd_oprsz(desc); |
| int is_s = extract32(desc, SIMD_DATA_SHIFT, 1); |
| int is_2 = extract32(desc, SIMD_DATA_SHIFT + 1, 1); |
| int is_q = oprsz == 16; |
| uint64_t n_4, m_4; |
| |
| /* Pre-load all of the f16 data, avoiding overlap issues. */ |
| n_4 = load4_f16(vn, is_q, is_2); |
| m_4 = load4_f16(vm, is_q, is_2); |
| |
| /* Negate all inputs for FMLSL at once. */ |
| if (is_s) { |
| n_4 ^= 0x8000800080008000ull; |
| } |
| |
| for (i = 0; i < oprsz / 4; i++) { |
| float32 n_1 = float16_to_float32_by_bits(n_4 >> (i * 16), fz16); |
| float32 m_1 = float16_to_float32_by_bits(m_4 >> (i * 16), fz16); |
| d[H4(i)] = float32_muladd(n_1, m_1, d[H4(i)], 0, fpst); |
| } |
| clear_tail(d, oprsz, simd_maxsz(desc)); |
| } |
| |
| void HELPER(gvec_fmlal_a32)(void *vd, void *vn, void *vm, |
| void *venv, uint32_t desc) |
| { |
| CPUARMState *env = venv; |
| do_fmlal(vd, vn, vm, &env->vfp.standard_fp_status, desc, |
| get_flush_inputs_to_zero(&env->vfp.fp_status_f16)); |
| } |
| |
| void HELPER(gvec_fmlal_a64)(void *vd, void *vn, void *vm, |
| void *venv, uint32_t desc) |
| { |
| CPUARMState *env = venv; |
| do_fmlal(vd, vn, vm, &env->vfp.fp_status, desc, |
| get_flush_inputs_to_zero(&env->vfp.fp_status_f16)); |
| } |
| |
| static void do_fmlal_idx(float32 *d, void *vn, void *vm, float_status *fpst, |
| uint32_t desc, bool fz16) |
| { |
| intptr_t i, oprsz = simd_oprsz(desc); |
| int is_s = extract32(desc, SIMD_DATA_SHIFT, 1); |
| int is_2 = extract32(desc, SIMD_DATA_SHIFT + 1, 1); |
| int index = extract32(desc, SIMD_DATA_SHIFT + 2, 3); |
| int is_q = oprsz == 16; |
| uint64_t n_4; |
| float32 m_1; |
| |
| /* Pre-load all of the f16 data, avoiding overlap issues. */ |
| n_4 = load4_f16(vn, is_q, is_2); |
| |
| /* Negate all inputs for FMLSL at once. */ |
| if (is_s) { |
| n_4 ^= 0x8000800080008000ull; |
| } |
| |
| m_1 = float16_to_float32_by_bits(((float16 *)vm)[H2(index)], fz16); |
| |
| for (i = 0; i < oprsz / 4; i++) { |
| float32 n_1 = float16_to_float32_by_bits(n_4 >> (i * 16), fz16); |
| d[H4(i)] = float32_muladd(n_1, m_1, d[H4(i)], 0, fpst); |
| } |
| clear_tail(d, oprsz, simd_maxsz(desc)); |
| } |
| |
| void HELPER(gvec_fmlal_idx_a32)(void *vd, void *vn, void *vm, |
| void *venv, uint32_t desc) |
| { |
| CPUARMState *env = venv; |
| do_fmlal_idx(vd, vn, vm, &env->vfp.standard_fp_status, desc, |
| get_flush_inputs_to_zero(&env->vfp.fp_status_f16)); |
| } |
| |
| void HELPER(gvec_fmlal_idx_a64)(void *vd, void *vn, void *vm, |
| void *venv, uint32_t desc) |
| { |
| CPUARMState *env = venv; |
| do_fmlal_idx(vd, vn, vm, &env->vfp.fp_status, desc, |
| get_flush_inputs_to_zero(&env->vfp.fp_status_f16)); |
| } |
| |
| void HELPER(gvec_sshl_b)(void *vd, void *vn, void *vm, uint32_t desc) |
| { |
| intptr_t i, opr_sz = simd_oprsz(desc); |
| int8_t *d = vd, *n = vn, *m = vm; |
| |
| for (i = 0; i < opr_sz; ++i) { |
| int8_t mm = m[i]; |
| int8_t nn = n[i]; |
| int8_t res = 0; |
| if (mm >= 0) { |
| if (mm < 8) { |
| res = nn << mm; |
| } |
| } else { |
| res = nn >> (mm > -8 ? -mm : 7); |
| } |
| d[i] = res; |
| } |
| clear_tail(d, opr_sz, simd_maxsz(desc)); |
| } |
| |
| void HELPER(gvec_sshl_h)(void *vd, void *vn, void *vm, uint32_t desc) |
| { |
| intptr_t i, opr_sz = simd_oprsz(desc); |
| int16_t *d = vd, *n = vn, *m = vm; |
| |
| for (i = 0; i < opr_sz / 2; ++i) { |
| int8_t mm = m[i]; /* only 8 bits of shift are significant */ |
| int16_t nn = n[i]; |
| int16_t res = 0; |
| if (mm >= 0) { |
| if (mm < 16) { |
| res = nn << mm; |
| } |
| } else { |
| res = nn >> (mm > -16 ? -mm : 15); |
| } |
| d[i] = res; |
| } |
| clear_tail(d, opr_sz, simd_maxsz(desc)); |
| } |
| |
| void HELPER(gvec_ushl_b)(void *vd, void *vn, void *vm, uint32_t desc) |
| { |
| intptr_t i, opr_sz = simd_oprsz(desc); |
| uint8_t *d = vd, *n = vn, *m = vm; |
| |
| for (i = 0; i < opr_sz; ++i) { |
| int8_t mm = m[i]; |
| uint8_t nn = n[i]; |
| uint8_t res = 0; |
| if (mm >= 0) { |
| if (mm < 8) { |
| res = nn << mm; |
| } |
| } else { |
| if (mm > -8) { |
| res = nn >> -mm; |
| } |
| } |
| d[i] = res; |
| } |
| clear_tail(d, opr_sz, simd_maxsz(desc)); |
| } |
| |
| void HELPER(gvec_ushl_h)(void *vd, void *vn, void *vm, uint32_t desc) |
| { |
| intptr_t i, opr_sz = simd_oprsz(desc); |
| uint16_t *d = vd, *n = vn, *m = vm; |
| |
| for (i = 0; i < opr_sz / 2; ++i) { |
| int8_t mm = m[i]; /* only 8 bits of shift are significant */ |
| uint16_t nn = n[i]; |
| uint16_t res = 0; |
| if (mm >= 0) { |
| if (mm < 16) { |
| res = nn << mm; |
| } |
| } else { |
| if (mm > -16) { |
| res = nn >> -mm; |
| } |
| } |
| d[i] = res; |
| } |
| clear_tail(d, opr_sz, simd_maxsz(desc)); |
| } |
| |
| /* |
| * 8x8->8 polynomial multiply. |
| * |
| * Polynomial multiplication is like integer multiplication except the |
| * partial products are XORed, not added. |
| * |
| * TODO: expose this as a generic vector operation, as it is a common |
| * crypto building block. |
| */ |
| void HELPER(gvec_pmul_b)(void *vd, void *vn, void *vm, uint32_t desc) |
| { |
| intptr_t i, j, opr_sz = simd_oprsz(desc); |
| uint64_t *d = vd, *n = vn, *m = vm; |
| |
| for (i = 0; i < opr_sz / 8; ++i) { |
| uint64_t nn = n[i]; |
| uint64_t mm = m[i]; |
| uint64_t rr = 0; |
| |
| for (j = 0; j < 8; ++j) { |
| uint64_t mask = (nn & 0x0101010101010101ull) * 0xff; |
| rr ^= mm & mask; |
| mm = (mm << 1) & 0xfefefefefefefefeull; |
| nn >>= 1; |
| } |
| d[i] = rr; |
| } |
| clear_tail(d, opr_sz, simd_maxsz(desc)); |
| } |
| |
| /* |
| * 64x64->128 polynomial multiply. |
| * Because of the lanes are not accessed in strict columns, |
| * this probably cannot be turned into a generic helper. |
| */ |
| void HELPER(gvec_pmull_q)(void *vd, void *vn, void *vm, uint32_t desc) |
| { |
| intptr_t i, j, opr_sz = simd_oprsz(desc); |
| intptr_t hi = simd_data(desc); |
| uint64_t *d = vd, *n = vn, *m = vm; |
| |
| for (i = 0; i < opr_sz / 8; i += 2) { |
| uint64_t nn = n[i + hi]; |
| uint64_t mm = m[i + hi]; |
| uint64_t rhi = 0; |
| uint64_t rlo = 0; |
| |
| /* Bit 0 can only influence the low 64-bit result. */ |
| if (nn & 1) { |
| rlo = mm; |
| } |
| |
| for (j = 1; j < 64; ++j) { |
| uint64_t mask = -((nn >> j) & 1); |
| rlo ^= (mm << j) & mask; |
| rhi ^= (mm >> (64 - j)) & mask; |
| } |
| d[i] = rlo; |
| d[i + 1] = rhi; |
| } |
| clear_tail(d, opr_sz, simd_maxsz(desc)); |
| } |
| |
| /* |
| * 8x8->16 polynomial multiply. |
| * |
| * The byte inputs are expanded to (or extracted from) half-words. |
| * Note that neon and sve2 get the inputs from different positions. |
| * This allows 4 bytes to be processed in parallel with uint64_t. |
| */ |
| |
| static uint64_t expand_byte_to_half(uint64_t x) |
| { |
| return (x & 0x000000ff) |
| | ((x & 0x0000ff00) << 8) |
| | ((x & 0x00ff0000) << 16) |
| | ((x & 0xff000000) << 24); |
| } |
| |
| static uint64_t pmull_h(uint64_t op1, uint64_t op2) |
| { |
| uint64_t result = 0; |
| int i; |
| |
| for (i = 0; i < 8; ++i) { |
| uint64_t mask = (op1 & 0x0001000100010001ull) * 0xffff; |
| result ^= op2 & mask; |
| op1 >>= 1; |
| op2 <<= 1; |
| } |
| return result; |
| } |
| |
| void HELPER(neon_pmull_h)(void *vd, void *vn, void *vm, uint32_t desc) |
| { |
| int hi = simd_data(desc); |
| uint64_t *d = vd, *n = vn, *m = vm; |
| uint64_t nn = n[hi], mm = m[hi]; |
| |
| d[0] = pmull_h(expand_byte_to_half(nn), expand_byte_to_half(mm)); |
| nn >>= 32; |
| mm >>= 32; |
| d[1] = pmull_h(expand_byte_to_half(nn), expand_byte_to_half(mm)); |
| |
| clear_tail(d, 16, simd_maxsz(desc)); |
| } |
| |
| #ifdef TARGET_AARCH64 |
| void HELPER(sve2_pmull_h)(void *vd, void *vn, void *vm, uint32_t desc) |
| { |
| int shift = simd_data(desc) * 8; |
| intptr_t i, opr_sz = simd_oprsz(desc); |
| uint64_t *d = vd, *n = vn, *m = vm; |
| |
| for (i = 0; i < opr_sz / 8; ++i) { |
| uint64_t nn = (n[i] >> shift) & 0x00ff00ff00ff00ffull; |
| uint64_t mm = (m[i] >> shift) & 0x00ff00ff00ff00ffull; |
| |
| d[i] = pmull_h(nn, mm); |
| } |
| } |
| #endif |