| /* |
| * Utility compute operations used by translated code. |
| * |
| * Copyright (c) 2007 Thiemo Seufer |
| * Copyright (c) 2007 Jocelyn Mayer |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| #ifndef HOST_UTILS_H |
| #define HOST_UTILS_H |
| |
| #include "qemu/bswap.h" |
| |
| #ifdef CONFIG_INT128 |
| static inline void mulu64(uint64_t *plow, uint64_t *phigh, |
| uint64_t a, uint64_t b) |
| { |
| __uint128_t r = (__uint128_t)a * b; |
| *plow = r; |
| *phigh = r >> 64; |
| } |
| |
| static inline void muls64(uint64_t *plow, uint64_t *phigh, |
| int64_t a, int64_t b) |
| { |
| __int128_t r = (__int128_t)a * b; |
| *plow = r; |
| *phigh = r >> 64; |
| } |
| |
| /* compute with 96 bit intermediate result: (a*b)/c */ |
| static inline uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c) |
| { |
| return (__int128_t)a * b / c; |
| } |
| |
| static inline int divu128(uint64_t *plow, uint64_t *phigh, uint64_t divisor) |
| { |
| if (divisor == 0) { |
| return 1; |
| } else { |
| __uint128_t dividend = ((__uint128_t)*phigh << 64) | *plow; |
| __uint128_t result = dividend / divisor; |
| *plow = result; |
| *phigh = dividend % divisor; |
| return result > UINT64_MAX; |
| } |
| } |
| |
| static inline int divs128(int64_t *plow, int64_t *phigh, int64_t divisor) |
| { |
| if (divisor == 0) { |
| return 1; |
| } else { |
| __int128_t dividend = ((__int128_t)*phigh << 64) | *plow; |
| __int128_t result = dividend / divisor; |
| *plow = result; |
| *phigh = dividend % divisor; |
| return result != *plow; |
| } |
| } |
| #else |
| void muls64(uint64_t *phigh, uint64_t *plow, int64_t a, int64_t b); |
| void mulu64(uint64_t *phigh, uint64_t *plow, uint64_t a, uint64_t b); |
| int divu128(uint64_t *plow, uint64_t *phigh, uint64_t divisor); |
| int divs128(int64_t *plow, int64_t *phigh, int64_t divisor); |
| |
| static inline uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c) |
| { |
| union { |
| uint64_t ll; |
| struct { |
| #ifdef HOST_WORDS_BIGENDIAN |
| uint32_t high, low; |
| #else |
| uint32_t low, high; |
| #endif |
| } l; |
| } u, res; |
| uint64_t rl, rh; |
| |
| u.ll = a; |
| rl = (uint64_t)u.l.low * (uint64_t)b; |
| rh = (uint64_t)u.l.high * (uint64_t)b; |
| rh += (rl >> 32); |
| res.l.high = rh / c; |
| res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c; |
| return res.ll; |
| } |
| #endif |
| |
| /** |
| * clz32 - count leading zeros in a 32-bit value. |
| * @val: The value to search |
| * |
| * Returns 32 if the value is zero. Note that the GCC builtin is |
| * undefined if the value is zero. |
| */ |
| static inline int clz32(uint32_t val) |
| { |
| #if QEMU_GNUC_PREREQ(3, 4) |
| return val ? __builtin_clz(val) : 32; |
| #else |
| /* Binary search for the leading one bit. */ |
| int cnt = 0; |
| |
| if (!(val & 0xFFFF0000U)) { |
| cnt += 16; |
| val <<= 16; |
| } |
| if (!(val & 0xFF000000U)) { |
| cnt += 8; |
| val <<= 8; |
| } |
| if (!(val & 0xF0000000U)) { |
| cnt += 4; |
| val <<= 4; |
| } |
| if (!(val & 0xC0000000U)) { |
| cnt += 2; |
| val <<= 2; |
| } |
| if (!(val & 0x80000000U)) { |
| cnt++; |
| val <<= 1; |
| } |
| if (!(val & 0x80000000U)) { |
| cnt++; |
| } |
| return cnt; |
| #endif |
| } |
| |
| /** |
| * clo32 - count leading ones in a 32-bit value. |
| * @val: The value to search |
| * |
| * Returns 32 if the value is -1. |
| */ |
| static inline int clo32(uint32_t val) |
| { |
| return clz32(~val); |
| } |
| |
| /** |
| * clz64 - count leading zeros in a 64-bit value. |
| * @val: The value to search |
| * |
| * Returns 64 if the value is zero. Note that the GCC builtin is |
| * undefined if the value is zero. |
| */ |
| static inline int clz64(uint64_t val) |
| { |
| #if QEMU_GNUC_PREREQ(3, 4) |
| return val ? __builtin_clzll(val) : 64; |
| #else |
| int cnt = 0; |
| |
| if (!(val >> 32)) { |
| cnt += 32; |
| } else { |
| val >>= 32; |
| } |
| |
| return cnt + clz32(val); |
| #endif |
| } |
| |
| /** |
| * clo64 - count leading ones in a 64-bit value. |
| * @val: The value to search |
| * |
| * Returns 64 if the value is -1. |
| */ |
| static inline int clo64(uint64_t val) |
| { |
| return clz64(~val); |
| } |
| |
| /** |
| * ctz32 - count trailing zeros in a 32-bit value. |
| * @val: The value to search |
| * |
| * Returns 32 if the value is zero. Note that the GCC builtin is |
| * undefined if the value is zero. |
| */ |
| static inline int ctz32(uint32_t val) |
| { |
| #if QEMU_GNUC_PREREQ(3, 4) |
| return val ? __builtin_ctz(val) : 32; |
| #else |
| /* Binary search for the trailing one bit. */ |
| int cnt; |
| |
| cnt = 0; |
| if (!(val & 0x0000FFFFUL)) { |
| cnt += 16; |
| val >>= 16; |
| } |
| if (!(val & 0x000000FFUL)) { |
| cnt += 8; |
| val >>= 8; |
| } |
| if (!(val & 0x0000000FUL)) { |
| cnt += 4; |
| val >>= 4; |
| } |
| if (!(val & 0x00000003UL)) { |
| cnt += 2; |
| val >>= 2; |
| } |
| if (!(val & 0x00000001UL)) { |
| cnt++; |
| val >>= 1; |
| } |
| if (!(val & 0x00000001UL)) { |
| cnt++; |
| } |
| |
| return cnt; |
| #endif |
| } |
| |
| /** |
| * cto32 - count trailing ones in a 32-bit value. |
| * @val: The value to search |
| * |
| * Returns 32 if the value is -1. |
| */ |
| static inline int cto32(uint32_t val) |
| { |
| return ctz32(~val); |
| } |
| |
| /** |
| * ctz64 - count trailing zeros in a 64-bit value. |
| * @val: The value to search |
| * |
| * Returns 64 if the value is zero. Note that the GCC builtin is |
| * undefined if the value is zero. |
| */ |
| static inline int ctz64(uint64_t val) |
| { |
| #if QEMU_GNUC_PREREQ(3, 4) |
| return val ? __builtin_ctzll(val) : 64; |
| #else |
| int cnt; |
| |
| cnt = 0; |
| if (!((uint32_t)val)) { |
| cnt += 32; |
| val >>= 32; |
| } |
| |
| return cnt + ctz32(val); |
| #endif |
| } |
| |
| /** |
| * cto64 - count trailing ones in a 64-bit value. |
| * @val: The value to search |
| * |
| * Returns 64 if the value is -1. |
| */ |
| static inline int cto64(uint64_t val) |
| { |
| return ctz64(~val); |
| } |
| |
| /** |
| * clrsb32 - count leading redundant sign bits in a 32-bit value. |
| * @val: The value to search |
| * |
| * Returns the number of bits following the sign bit that are equal to it. |
| * No special cases; output range is [0-31]. |
| */ |
| static inline int clrsb32(uint32_t val) |
| { |
| #if QEMU_GNUC_PREREQ(4, 7) |
| return __builtin_clrsb(val); |
| #else |
| return clz32(val ^ ((int32_t)val >> 1)) - 1; |
| #endif |
| } |
| |
| /** |
| * clrsb64 - count leading redundant sign bits in a 64-bit value. |
| * @val: The value to search |
| * |
| * Returns the number of bits following the sign bit that are equal to it. |
| * No special cases; output range is [0-63]. |
| */ |
| static inline int clrsb64(uint64_t val) |
| { |
| #if QEMU_GNUC_PREREQ(4, 7) |
| return __builtin_clrsbll(val); |
| #else |
| return clz64(val ^ ((int64_t)val >> 1)) - 1; |
| #endif |
| } |
| |
| /** |
| * ctpop8 - count the population of one bits in an 8-bit value. |
| * @val: The value to search |
| */ |
| static inline int ctpop8(uint8_t val) |
| { |
| #if QEMU_GNUC_PREREQ(3, 4) |
| return __builtin_popcount(val); |
| #else |
| val = (val & 0x55) + ((val >> 1) & 0x55); |
| val = (val & 0x33) + ((val >> 2) & 0x33); |
| val = (val + (val >> 4)) & 0x0f; |
| |
| return val; |
| #endif |
| } |
| |
| /** |
| * ctpop16 - count the population of one bits in a 16-bit value. |
| * @val: The value to search |
| */ |
| static inline int ctpop16(uint16_t val) |
| { |
| #if QEMU_GNUC_PREREQ(3, 4) |
| return __builtin_popcount(val); |
| #else |
| val = (val & 0x5555) + ((val >> 1) & 0x5555); |
| val = (val & 0x3333) + ((val >> 2) & 0x3333); |
| val = (val + (val >> 4)) & 0x0f0f; |
| val = (val + (val >> 8)) & 0x00ff; |
| |
| return val; |
| #endif |
| } |
| |
| /** |
| * ctpop32 - count the population of one bits in a 32-bit value. |
| * @val: The value to search |
| */ |
| static inline int ctpop32(uint32_t val) |
| { |
| #if QEMU_GNUC_PREREQ(3, 4) |
| return __builtin_popcount(val); |
| #else |
| val = (val & 0x55555555) + ((val >> 1) & 0x55555555); |
| val = (val & 0x33333333) + ((val >> 2) & 0x33333333); |
| val = (val + (val >> 4)) & 0x0f0f0f0f; |
| val = (val * 0x01010101) >> 24; |
| |
| return val; |
| #endif |
| } |
| |
| /** |
| * ctpop64 - count the population of one bits in a 64-bit value. |
| * @val: The value to search |
| */ |
| static inline int ctpop64(uint64_t val) |
| { |
| #if QEMU_GNUC_PREREQ(3, 4) |
| return __builtin_popcountll(val); |
| #else |
| val = (val & 0x5555555555555555ULL) + ((val >> 1) & 0x5555555555555555ULL); |
| val = (val & 0x3333333333333333ULL) + ((val >> 2) & 0x3333333333333333ULL); |
| val = (val + (val >> 4)) & 0x0f0f0f0f0f0f0f0fULL; |
| val = (val * 0x0101010101010101ULL) >> 56; |
| |
| return val; |
| #endif |
| } |
| |
| /** |
| * revbit8 - reverse the bits in an 8-bit value. |
| * @x: The value to modify. |
| */ |
| static inline uint8_t revbit8(uint8_t x) |
| { |
| /* Assign the correct nibble position. */ |
| x = ((x & 0xf0) >> 4) |
| | ((x & 0x0f) << 4); |
| /* Assign the correct bit position. */ |
| x = ((x & 0x88) >> 3) |
| | ((x & 0x44) >> 1) |
| | ((x & 0x22) << 1) |
| | ((x & 0x11) << 3); |
| return x; |
| } |
| |
| /** |
| * revbit16 - reverse the bits in a 16-bit value. |
| * @x: The value to modify. |
| */ |
| static inline uint16_t revbit16(uint16_t x) |
| { |
| /* Assign the correct byte position. */ |
| x = bswap16(x); |
| /* Assign the correct nibble position. */ |
| x = ((x & 0xf0f0) >> 4) |
| | ((x & 0x0f0f) << 4); |
| /* Assign the correct bit position. */ |
| x = ((x & 0x8888) >> 3) |
| | ((x & 0x4444) >> 1) |
| | ((x & 0x2222) << 1) |
| | ((x & 0x1111) << 3); |
| return x; |
| } |
| |
| /** |
| * revbit32 - reverse the bits in a 32-bit value. |
| * @x: The value to modify. |
| */ |
| static inline uint32_t revbit32(uint32_t x) |
| { |
| /* Assign the correct byte position. */ |
| x = bswap32(x); |
| /* Assign the correct nibble position. */ |
| x = ((x & 0xf0f0f0f0u) >> 4) |
| | ((x & 0x0f0f0f0fu) << 4); |
| /* Assign the correct bit position. */ |
| x = ((x & 0x88888888u) >> 3) |
| | ((x & 0x44444444u) >> 1) |
| | ((x & 0x22222222u) << 1) |
| | ((x & 0x11111111u) << 3); |
| return x; |
| } |
| |
| /** |
| * revbit64 - reverse the bits in a 64-bit value. |
| * @x: The value to modify. |
| */ |
| static inline uint64_t revbit64(uint64_t x) |
| { |
| /* Assign the correct byte position. */ |
| x = bswap64(x); |
| /* Assign the correct nibble position. */ |
| x = ((x & 0xf0f0f0f0f0f0f0f0ull) >> 4) |
| | ((x & 0x0f0f0f0f0f0f0f0full) << 4); |
| /* Assign the correct bit position. */ |
| x = ((x & 0x8888888888888888ull) >> 3) |
| | ((x & 0x4444444444444444ull) >> 1) |
| | ((x & 0x2222222222222222ull) << 1) |
| | ((x & 0x1111111111111111ull) << 3); |
| return x; |
| } |
| |
| /* Host type specific sizes of these routines. */ |
| |
| #if ULONG_MAX == UINT32_MAX |
| # define clzl clz32 |
| # define ctzl ctz32 |
| # define clol clo32 |
| # define ctol cto32 |
| # define ctpopl ctpop32 |
| # define revbitl revbit32 |
| #elif ULONG_MAX == UINT64_MAX |
| # define clzl clz64 |
| # define ctzl ctz64 |
| # define clol clo64 |
| # define ctol cto64 |
| # define ctpopl ctpop64 |
| # define revbitl revbit64 |
| #else |
| # error Unknown sizeof long |
| #endif |
| |
| static inline bool is_power_of_2(uint64_t value) |
| { |
| if (!value) { |
| return false; |
| } |
| |
| return !(value & (value - 1)); |
| } |
| |
| /* round down to the nearest power of 2*/ |
| static inline int64_t pow2floor(int64_t value) |
| { |
| if (!is_power_of_2(value)) { |
| value = 0x8000000000000000ULL >> clz64(value); |
| } |
| return value; |
| } |
| |
| /* round up to the nearest power of 2 (0 if overflow) */ |
| static inline uint64_t pow2ceil(uint64_t value) |
| { |
| uint8_t nlz = clz64(value); |
| |
| if (is_power_of_2(value)) { |
| return value; |
| } |
| if (!nlz) { |
| return 0; |
| } |
| return 1ULL << (64 - nlz); |
| } |
| |
| /** |
| * urshift - 128-bit Unsigned Right Shift. |
| * @plow: in/out - lower 64-bit integer. |
| * @phigh: in/out - higher 64-bit integer. |
| * @shift: in - bytes to shift, between 0 and 127. |
| * |
| * Result is zero-extended and stored in plow/phigh, which are |
| * input/output variables. Shift values outside the range will |
| * be mod to 128. In other words, the caller is responsible to |
| * verify/assert both the shift range and plow/phigh pointers. |
| */ |
| void urshift(uint64_t *plow, uint64_t *phigh, int32_t shift); |
| |
| /** |
| * ulshift - 128-bit Unsigned Left Shift. |
| * @plow: in/out - lower 64-bit integer. |
| * @phigh: in/out - higher 64-bit integer. |
| * @shift: in - bytes to shift, between 0 and 127. |
| * @overflow: out - true if any 1-bit is shifted out. |
| * |
| * Result is zero-extended and stored in plow/phigh, which are |
| * input/output variables. Shift values outside the range will |
| * be mod to 128. In other words, the caller is responsible to |
| * verify/assert both the shift range and plow/phigh pointers. |
| */ |
| void ulshift(uint64_t *plow, uint64_t *phigh, int32_t shift, bool *overflow); |
| |
| #endif |