| /* |
| * QEMU KVM support |
| * |
| * Copyright (C) 2006-2008 Qumranet Technologies |
| * Copyright IBM, Corp. 2008 |
| * |
| * Authors: |
| * Anthony Liguori <aliguori@us.ibm.com> |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2 or later. |
| * See the COPYING file in the top-level directory. |
| * |
| */ |
| |
| #include <sys/types.h> |
| #include <sys/ioctl.h> |
| #include <sys/mman.h> |
| #include <sys/utsname.h> |
| |
| #include <linux/kvm.h> |
| |
| #include "qemu-common.h" |
| #include "sysemu.h" |
| #include "kvm.h" |
| #include "cpu.h" |
| #include "gdbstub.h" |
| #include "host-utils.h" |
| #include "hw/pc.h" |
| #include "hw/apic.h" |
| #include "ioport.h" |
| #include "kvm_x86.h" |
| |
| #ifdef CONFIG_KVM_PARA |
| #include <linux/kvm_para.h> |
| #endif |
| // |
| //#define DEBUG_KVM |
| |
| #ifdef DEBUG_KVM |
| #define DPRINTF(fmt, ...) \ |
| do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) |
| #else |
| #define DPRINTF(fmt, ...) \ |
| do { } while (0) |
| #endif |
| |
| #define MSR_KVM_WALL_CLOCK 0x11 |
| #define MSR_KVM_SYSTEM_TIME 0x12 |
| |
| #ifndef BUS_MCEERR_AR |
| #define BUS_MCEERR_AR 4 |
| #endif |
| #ifndef BUS_MCEERR_AO |
| #define BUS_MCEERR_AO 5 |
| #endif |
| |
| const KVMCapabilityInfo kvm_arch_required_capabilities[] = { |
| KVM_CAP_INFO(SET_TSS_ADDR), |
| KVM_CAP_INFO(EXT_CPUID), |
| KVM_CAP_INFO(MP_STATE), |
| KVM_CAP_LAST_INFO |
| }; |
| |
| static bool has_msr_star; |
| static bool has_msr_hsave_pa; |
| #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF) |
| static bool has_msr_async_pf_en; |
| #endif |
| static int lm_capable_kernel; |
| |
| static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max) |
| { |
| struct kvm_cpuid2 *cpuid; |
| int r, size; |
| |
| size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); |
| cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size); |
| cpuid->nent = max; |
| r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid); |
| if (r == 0 && cpuid->nent >= max) { |
| r = -E2BIG; |
| } |
| if (r < 0) { |
| if (r == -E2BIG) { |
| qemu_free(cpuid); |
| return NULL; |
| } else { |
| fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n", |
| strerror(-r)); |
| exit(1); |
| } |
| } |
| return cpuid; |
| } |
| |
| uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, |
| uint32_t index, int reg) |
| { |
| struct kvm_cpuid2 *cpuid; |
| int i, max; |
| uint32_t ret = 0; |
| uint32_t cpuid_1_edx; |
| |
| max = 1; |
| while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) { |
| max *= 2; |
| } |
| |
| for (i = 0; i < cpuid->nent; ++i) { |
| if (cpuid->entries[i].function == function && |
| cpuid->entries[i].index == index) { |
| switch (reg) { |
| case R_EAX: |
| ret = cpuid->entries[i].eax; |
| break; |
| case R_EBX: |
| ret = cpuid->entries[i].ebx; |
| break; |
| case R_ECX: |
| ret = cpuid->entries[i].ecx; |
| break; |
| case R_EDX: |
| ret = cpuid->entries[i].edx; |
| switch (function) { |
| case 1: |
| /* KVM before 2.6.30 misreports the following features */ |
| ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA; |
| break; |
| case 0x80000001: |
| /* On Intel, kvm returns cpuid according to the Intel spec, |
| * so add missing bits according to the AMD spec: |
| */ |
| cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX); |
| ret |= cpuid_1_edx & 0x183f7ff; |
| break; |
| } |
| break; |
| } |
| } |
| } |
| |
| qemu_free(cpuid); |
| |
| return ret; |
| } |
| |
| #ifdef CONFIG_KVM_PARA |
| struct kvm_para_features { |
| int cap; |
| int feature; |
| } para_features[] = { |
| { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE }, |
| { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY }, |
| { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP }, |
| #ifdef KVM_CAP_ASYNC_PF |
| { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF }, |
| #endif |
| { -1, -1 } |
| }; |
| |
| static int get_para_features(CPUState *env) |
| { |
| int i, features = 0; |
| |
| for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) { |
| if (kvm_check_extension(env->kvm_state, para_features[i].cap)) { |
| features |= (1 << para_features[i].feature); |
| } |
| } |
| #ifdef KVM_CAP_ASYNC_PF |
| has_msr_async_pf_en = features & (1 << KVM_FEATURE_ASYNC_PF); |
| #endif |
| return features; |
| } |
| #endif |
| |
| #ifdef KVM_CAP_MCE |
| static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap, |
| int *max_banks) |
| { |
| int r; |
| |
| r = kvm_check_extension(s, KVM_CAP_MCE); |
| if (r > 0) { |
| *max_banks = r; |
| return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap); |
| } |
| return -ENOSYS; |
| } |
| |
| static int kvm_setup_mce(CPUState *env, uint64_t *mcg_cap) |
| { |
| return kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, mcg_cap); |
| } |
| |
| static int kvm_set_mce(CPUState *env, struct kvm_x86_mce *m) |
| { |
| return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, m); |
| } |
| |
| static int kvm_get_msr(CPUState *env, struct kvm_msr_entry *msrs, int n) |
| { |
| struct kvm_msrs *kmsrs = qemu_malloc(sizeof *kmsrs + n * sizeof *msrs); |
| int r; |
| |
| kmsrs->nmsrs = n; |
| memcpy(kmsrs->entries, msrs, n * sizeof *msrs); |
| r = kvm_vcpu_ioctl(env, KVM_GET_MSRS, kmsrs); |
| memcpy(msrs, kmsrs->entries, n * sizeof *msrs); |
| free(kmsrs); |
| return r; |
| } |
| |
| /* FIXME: kill this and kvm_get_msr, use env->mcg_status instead */ |
| static int kvm_mce_in_progress(CPUState *env) |
| { |
| struct kvm_msr_entry msr_mcg_status = { |
| .index = MSR_MCG_STATUS, |
| }; |
| int r; |
| |
| r = kvm_get_msr(env, &msr_mcg_status, 1); |
| if (r == -1 || r == 0) { |
| fprintf(stderr, "Failed to get MCE status\n"); |
| return 0; |
| } |
| return !!(msr_mcg_status.data & MCG_STATUS_MCIP); |
| } |
| |
| struct kvm_x86_mce_data |
| { |
| CPUState *env; |
| struct kvm_x86_mce *mce; |
| int abort_on_error; |
| }; |
| |
| static void kvm_do_inject_x86_mce(void *_data) |
| { |
| struct kvm_x86_mce_data *data = _data; |
| int r; |
| |
| /* If there is an MCE exception being processed, ignore this SRAO MCE */ |
| if ((data->env->mcg_cap & MCG_SER_P) && |
| !(data->mce->status & MCI_STATUS_AR)) { |
| if (kvm_mce_in_progress(data->env)) { |
| return; |
| } |
| } |
| |
| r = kvm_set_mce(data->env, data->mce); |
| if (r < 0) { |
| perror("kvm_set_mce FAILED"); |
| if (data->abort_on_error) { |
| abort(); |
| } |
| } |
| } |
| |
| static void kvm_inject_x86_mce_on(CPUState *env, struct kvm_x86_mce *mce, |
| int flag) |
| { |
| struct kvm_x86_mce_data data = { |
| .env = env, |
| .mce = mce, |
| .abort_on_error = (flag & ABORT_ON_ERROR), |
| }; |
| |
| if (!env->mcg_cap) { |
| fprintf(stderr, "MCE support is not enabled!\n"); |
| return; |
| } |
| |
| run_on_cpu(env, kvm_do_inject_x86_mce, &data); |
| } |
| |
| static void kvm_mce_broadcast_rest(CPUState *env); |
| #endif |
| |
| void kvm_inject_x86_mce(CPUState *cenv, int bank, uint64_t status, |
| uint64_t mcg_status, uint64_t addr, uint64_t misc, |
| int flag) |
| { |
| #ifdef KVM_CAP_MCE |
| struct kvm_x86_mce mce = { |
| .bank = bank, |
| .status = status, |
| .mcg_status = mcg_status, |
| .addr = addr, |
| .misc = misc, |
| }; |
| |
| if (flag & MCE_BROADCAST) { |
| kvm_mce_broadcast_rest(cenv); |
| } |
| |
| kvm_inject_x86_mce_on(cenv, &mce, flag); |
| #else |
| if (flag & ABORT_ON_ERROR) { |
| abort(); |
| } |
| #endif |
| } |
| |
| int kvm_arch_init_vcpu(CPUState *env) |
| { |
| struct { |
| struct kvm_cpuid2 cpuid; |
| struct kvm_cpuid_entry2 entries[100]; |
| } __attribute__((packed)) cpuid_data; |
| uint32_t limit, i, j, cpuid_i; |
| uint32_t unused; |
| struct kvm_cpuid_entry2 *c; |
| #ifdef CONFIG_KVM_PARA |
| uint32_t signature[3]; |
| #endif |
| |
| env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX); |
| |
| i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR; |
| env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX); |
| env->cpuid_ext_features |= i; |
| |
| env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001, |
| 0, R_EDX); |
| env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001, |
| 0, R_ECX); |
| env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(env, 0x8000000A, |
| 0, R_EDX); |
| |
| |
| cpuid_i = 0; |
| |
| #ifdef CONFIG_KVM_PARA |
| /* Paravirtualization CPUIDs */ |
| memcpy(signature, "KVMKVMKVM\0\0\0", 12); |
| c = &cpuid_data.entries[cpuid_i++]; |
| memset(c, 0, sizeof(*c)); |
| c->function = KVM_CPUID_SIGNATURE; |
| c->eax = 0; |
| c->ebx = signature[0]; |
| c->ecx = signature[1]; |
| c->edx = signature[2]; |
| |
| c = &cpuid_data.entries[cpuid_i++]; |
| memset(c, 0, sizeof(*c)); |
| c->function = KVM_CPUID_FEATURES; |
| c->eax = env->cpuid_kvm_features & get_para_features(env); |
| #endif |
| |
| cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused); |
| |
| for (i = 0; i <= limit; i++) { |
| c = &cpuid_data.entries[cpuid_i++]; |
| |
| switch (i) { |
| case 2: { |
| /* Keep reading function 2 till all the input is received */ |
| int times; |
| |
| c->function = i; |
| c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC | |
| KVM_CPUID_FLAG_STATE_READ_NEXT; |
| cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); |
| times = c->eax & 0xff; |
| |
| for (j = 1; j < times; ++j) { |
| c = &cpuid_data.entries[cpuid_i++]; |
| c->function = i; |
| c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC; |
| cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); |
| } |
| break; |
| } |
| case 4: |
| case 0xb: |
| case 0xd: |
| for (j = 0; ; j++) { |
| c->function = i; |
| c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; |
| c->index = j; |
| cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); |
| |
| if (i == 4 && c->eax == 0) { |
| break; |
| } |
| if (i == 0xb && !(c->ecx & 0xff00)) { |
| break; |
| } |
| if (i == 0xd && c->eax == 0) { |
| break; |
| } |
| c = &cpuid_data.entries[cpuid_i++]; |
| } |
| break; |
| default: |
| c->function = i; |
| c->flags = 0; |
| cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); |
| break; |
| } |
| } |
| cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused); |
| |
| for (i = 0x80000000; i <= limit; i++) { |
| c = &cpuid_data.entries[cpuid_i++]; |
| |
| c->function = i; |
| c->flags = 0; |
| cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); |
| } |
| |
| cpuid_data.cpuid.nent = cpuid_i; |
| |
| #ifdef KVM_CAP_MCE |
| if (((env->cpuid_version >> 8)&0xF) >= 6 |
| && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA) |
| && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) { |
| uint64_t mcg_cap; |
| int banks; |
| |
| if (kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks)) { |
| perror("kvm_get_mce_cap_supported FAILED"); |
| } else { |
| if (banks > MCE_BANKS_DEF) |
| banks = MCE_BANKS_DEF; |
| mcg_cap &= MCE_CAP_DEF; |
| mcg_cap |= banks; |
| if (kvm_setup_mce(env, &mcg_cap)) { |
| perror("kvm_setup_mce FAILED"); |
| } else { |
| env->mcg_cap = mcg_cap; |
| } |
| } |
| } |
| #endif |
| |
| return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data); |
| } |
| |
| void kvm_arch_reset_vcpu(CPUState *env) |
| { |
| env->exception_injected = -1; |
| env->interrupt_injected = -1; |
| env->xcr0 = 1; |
| if (kvm_irqchip_in_kernel()) { |
| env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE : |
| KVM_MP_STATE_UNINITIALIZED; |
| } else { |
| env->mp_state = KVM_MP_STATE_RUNNABLE; |
| } |
| } |
| |
| static int kvm_get_supported_msrs(KVMState *s) |
| { |
| static int kvm_supported_msrs; |
| int ret = 0; |
| |
| /* first time */ |
| if (kvm_supported_msrs == 0) { |
| struct kvm_msr_list msr_list, *kvm_msr_list; |
| |
| kvm_supported_msrs = -1; |
| |
| /* Obtain MSR list from KVM. These are the MSRs that we must |
| * save/restore */ |
| msr_list.nmsrs = 0; |
| ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list); |
| if (ret < 0 && ret != -E2BIG) { |
| return ret; |
| } |
| /* Old kernel modules had a bug and could write beyond the provided |
| memory. Allocate at least a safe amount of 1K. */ |
| kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) + |
| msr_list.nmsrs * |
| sizeof(msr_list.indices[0]))); |
| |
| kvm_msr_list->nmsrs = msr_list.nmsrs; |
| ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list); |
| if (ret >= 0) { |
| int i; |
| |
| for (i = 0; i < kvm_msr_list->nmsrs; i++) { |
| if (kvm_msr_list->indices[i] == MSR_STAR) { |
| has_msr_star = true; |
| continue; |
| } |
| if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) { |
| has_msr_hsave_pa = true; |
| continue; |
| } |
| } |
| } |
| |
| free(kvm_msr_list); |
| } |
| |
| return ret; |
| } |
| |
| int kvm_arch_init(KVMState *s) |
| { |
| uint64_t identity_base = 0xfffbc000; |
| int ret; |
| struct utsname utsname; |
| |
| ret = kvm_get_supported_msrs(s); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| uname(&utsname); |
| lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0; |
| |
| /* |
| * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly. |
| * In order to use vm86 mode, an EPT identity map and a TSS are needed. |
| * Since these must be part of guest physical memory, we need to allocate |
| * them, both by setting their start addresses in the kernel and by |
| * creating a corresponding e820 entry. We need 4 pages before the BIOS. |
| * |
| * Older KVM versions may not support setting the identity map base. In |
| * that case we need to stick with the default, i.e. a 256K maximum BIOS |
| * size. |
| */ |
| #ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR |
| if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) { |
| /* Allows up to 16M BIOSes. */ |
| identity_base = 0xfeffc000; |
| |
| ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base); |
| if (ret < 0) { |
| return ret; |
| } |
| } |
| #endif |
| /* Set TSS base one page after EPT identity map. */ |
| ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| /* Tell fw_cfg to notify the BIOS to reserve the range. */ |
| ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED); |
| if (ret < 0) { |
| fprintf(stderr, "e820_add_entry() table is full\n"); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs) |
| { |
| lhs->selector = rhs->selector; |
| lhs->base = rhs->base; |
| lhs->limit = rhs->limit; |
| lhs->type = 3; |
| lhs->present = 1; |
| lhs->dpl = 3; |
| lhs->db = 0; |
| lhs->s = 1; |
| lhs->l = 0; |
| lhs->g = 0; |
| lhs->avl = 0; |
| lhs->unusable = 0; |
| } |
| |
| static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs) |
| { |
| unsigned flags = rhs->flags; |
| lhs->selector = rhs->selector; |
| lhs->base = rhs->base; |
| lhs->limit = rhs->limit; |
| lhs->type = (flags >> DESC_TYPE_SHIFT) & 15; |
| lhs->present = (flags & DESC_P_MASK) != 0; |
| lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3; |
| lhs->db = (flags >> DESC_B_SHIFT) & 1; |
| lhs->s = (flags & DESC_S_MASK) != 0; |
| lhs->l = (flags >> DESC_L_SHIFT) & 1; |
| lhs->g = (flags & DESC_G_MASK) != 0; |
| lhs->avl = (flags & DESC_AVL_MASK) != 0; |
| lhs->unusable = 0; |
| } |
| |
| static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs) |
| { |
| lhs->selector = rhs->selector; |
| lhs->base = rhs->base; |
| lhs->limit = rhs->limit; |
| lhs->flags = (rhs->type << DESC_TYPE_SHIFT) | |
| (rhs->present * DESC_P_MASK) | |
| (rhs->dpl << DESC_DPL_SHIFT) | |
| (rhs->db << DESC_B_SHIFT) | |
| (rhs->s * DESC_S_MASK) | |
| (rhs->l << DESC_L_SHIFT) | |
| (rhs->g * DESC_G_MASK) | |
| (rhs->avl * DESC_AVL_MASK); |
| } |
| |
| static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set) |
| { |
| if (set) { |
| *kvm_reg = *qemu_reg; |
| } else { |
| *qemu_reg = *kvm_reg; |
| } |
| } |
| |
| static int kvm_getput_regs(CPUState *env, int set) |
| { |
| struct kvm_regs regs; |
| int ret = 0; |
| |
| if (!set) { |
| ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, ®s); |
| if (ret < 0) { |
| return ret; |
| } |
| } |
| |
| kvm_getput_reg(®s.rax, &env->regs[R_EAX], set); |
| kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set); |
| kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set); |
| kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set); |
| kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set); |
| kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set); |
| kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set); |
| kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set); |
| #ifdef TARGET_X86_64 |
| kvm_getput_reg(®s.r8, &env->regs[8], set); |
| kvm_getput_reg(®s.r9, &env->regs[9], set); |
| kvm_getput_reg(®s.r10, &env->regs[10], set); |
| kvm_getput_reg(®s.r11, &env->regs[11], set); |
| kvm_getput_reg(®s.r12, &env->regs[12], set); |
| kvm_getput_reg(®s.r13, &env->regs[13], set); |
| kvm_getput_reg(®s.r14, &env->regs[14], set); |
| kvm_getput_reg(®s.r15, &env->regs[15], set); |
| #endif |
| |
| kvm_getput_reg(®s.rflags, &env->eflags, set); |
| kvm_getput_reg(®s.rip, &env->eip, set); |
| |
| if (set) { |
| ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, ®s); |
| } |
| |
| return ret; |
| } |
| |
| static int kvm_put_fpu(CPUState *env) |
| { |
| struct kvm_fpu fpu; |
| int i; |
| |
| memset(&fpu, 0, sizeof fpu); |
| fpu.fsw = env->fpus & ~(7 << 11); |
| fpu.fsw |= (env->fpstt & 7) << 11; |
| fpu.fcw = env->fpuc; |
| for (i = 0; i < 8; ++i) { |
| fpu.ftwx |= (!env->fptags[i]) << i; |
| } |
| memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs); |
| memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs); |
| fpu.mxcsr = env->mxcsr; |
| |
| return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu); |
| } |
| |
| #ifdef KVM_CAP_XSAVE |
| #define XSAVE_CWD_RIP 2 |
| #define XSAVE_CWD_RDP 4 |
| #define XSAVE_MXCSR 6 |
| #define XSAVE_ST_SPACE 8 |
| #define XSAVE_XMM_SPACE 40 |
| #define XSAVE_XSTATE_BV 128 |
| #define XSAVE_YMMH_SPACE 144 |
| #endif |
| |
| static int kvm_put_xsave(CPUState *env) |
| { |
| #ifdef KVM_CAP_XSAVE |
| int i, r; |
| struct kvm_xsave* xsave; |
| uint16_t cwd, swd, twd, fop; |
| |
| if (!kvm_has_xsave()) { |
| return kvm_put_fpu(env); |
| } |
| |
| xsave = qemu_memalign(4096, sizeof(struct kvm_xsave)); |
| memset(xsave, 0, sizeof(struct kvm_xsave)); |
| cwd = swd = twd = fop = 0; |
| swd = env->fpus & ~(7 << 11); |
| swd |= (env->fpstt & 7) << 11; |
| cwd = env->fpuc; |
| for (i = 0; i < 8; ++i) { |
| twd |= (!env->fptags[i]) << i; |
| } |
| xsave->region[0] = (uint32_t)(swd << 16) + cwd; |
| xsave->region[1] = (uint32_t)(fop << 16) + twd; |
| memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs, |
| sizeof env->fpregs); |
| memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs, |
| sizeof env->xmm_regs); |
| xsave->region[XSAVE_MXCSR] = env->mxcsr; |
| *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv; |
| memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs, |
| sizeof env->ymmh_regs); |
| r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave); |
| qemu_free(xsave); |
| return r; |
| #else |
| return kvm_put_fpu(env); |
| #endif |
| } |
| |
| static int kvm_put_xcrs(CPUState *env) |
| { |
| #ifdef KVM_CAP_XCRS |
| struct kvm_xcrs xcrs; |
| |
| if (!kvm_has_xcrs()) { |
| return 0; |
| } |
| |
| xcrs.nr_xcrs = 1; |
| xcrs.flags = 0; |
| xcrs.xcrs[0].xcr = 0; |
| xcrs.xcrs[0].value = env->xcr0; |
| return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs); |
| #else |
| return 0; |
| #endif |
| } |
| |
| static int kvm_put_sregs(CPUState *env) |
| { |
| struct kvm_sregs sregs; |
| |
| memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap)); |
| if (env->interrupt_injected >= 0) { |
| sregs.interrupt_bitmap[env->interrupt_injected / 64] |= |
| (uint64_t)1 << (env->interrupt_injected % 64); |
| } |
| |
| if ((env->eflags & VM_MASK)) { |
| set_v8086_seg(&sregs.cs, &env->segs[R_CS]); |
| set_v8086_seg(&sregs.ds, &env->segs[R_DS]); |
| set_v8086_seg(&sregs.es, &env->segs[R_ES]); |
| set_v8086_seg(&sregs.fs, &env->segs[R_FS]); |
| set_v8086_seg(&sregs.gs, &env->segs[R_GS]); |
| set_v8086_seg(&sregs.ss, &env->segs[R_SS]); |
| } else { |
| set_seg(&sregs.cs, &env->segs[R_CS]); |
| set_seg(&sregs.ds, &env->segs[R_DS]); |
| set_seg(&sregs.es, &env->segs[R_ES]); |
| set_seg(&sregs.fs, &env->segs[R_FS]); |
| set_seg(&sregs.gs, &env->segs[R_GS]); |
| set_seg(&sregs.ss, &env->segs[R_SS]); |
| } |
| |
| set_seg(&sregs.tr, &env->tr); |
| set_seg(&sregs.ldt, &env->ldt); |
| |
| sregs.idt.limit = env->idt.limit; |
| sregs.idt.base = env->idt.base; |
| sregs.gdt.limit = env->gdt.limit; |
| sregs.gdt.base = env->gdt.base; |
| |
| sregs.cr0 = env->cr[0]; |
| sregs.cr2 = env->cr[2]; |
| sregs.cr3 = env->cr[3]; |
| sregs.cr4 = env->cr[4]; |
| |
| sregs.cr8 = cpu_get_apic_tpr(env->apic_state); |
| sregs.apic_base = cpu_get_apic_base(env->apic_state); |
| |
| sregs.efer = env->efer; |
| |
| return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs); |
| } |
| |
| static void kvm_msr_entry_set(struct kvm_msr_entry *entry, |
| uint32_t index, uint64_t value) |
| { |
| entry->index = index; |
| entry->data = value; |
| } |
| |
| static int kvm_put_msrs(CPUState *env, int level) |
| { |
| struct { |
| struct kvm_msrs info; |
| struct kvm_msr_entry entries[100]; |
| } msr_data; |
| struct kvm_msr_entry *msrs = msr_data.entries; |
| int n = 0; |
| |
| kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs); |
| kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp); |
| kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip); |
| if (has_msr_star) { |
| kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star); |
| } |
| if (has_msr_hsave_pa) { |
| kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave); |
| } |
| #ifdef TARGET_X86_64 |
| if (lm_capable_kernel) { |
| kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar); |
| kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase); |
| kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask); |
| kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar); |
| } |
| #endif |
| if (level == KVM_PUT_FULL_STATE) { |
| /* |
| * KVM is yet unable to synchronize TSC values of multiple VCPUs on |
| * writeback. Until this is fixed, we only write the offset to SMP |
| * guests after migration, desynchronizing the VCPUs, but avoiding |
| * huge jump-backs that would occur without any writeback at all. |
| */ |
| if (smp_cpus == 1 || env->tsc != 0) { |
| kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc); |
| } |
| } |
| /* |
| * The following paravirtual MSRs have side effects on the guest or are |
| * too heavy for normal writeback. Limit them to reset or full state |
| * updates. |
| */ |
| if (level >= KVM_PUT_RESET_STATE) { |
| kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME, |
| env->system_time_msr); |
| kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr); |
| #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF) |
| if (has_msr_async_pf_en) { |
| kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN, |
| env->async_pf_en_msr); |
| } |
| #endif |
| } |
| #ifdef KVM_CAP_MCE |
| if (env->mcg_cap) { |
| int i; |
| |
| if (level == KVM_PUT_RESET_STATE) { |
| kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status); |
| } else if (level == KVM_PUT_FULL_STATE) { |
| kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status); |
| kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl); |
| for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { |
| kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]); |
| } |
| } |
| } |
| #endif |
| |
| msr_data.info.nmsrs = n; |
| |
| return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data); |
| |
| } |
| |
| |
| static int kvm_get_fpu(CPUState *env) |
| { |
| struct kvm_fpu fpu; |
| int i, ret; |
| |
| ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| env->fpstt = (fpu.fsw >> 11) & 7; |
| env->fpus = fpu.fsw; |
| env->fpuc = fpu.fcw; |
| for (i = 0; i < 8; ++i) { |
| env->fptags[i] = !((fpu.ftwx >> i) & 1); |
| } |
| memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs); |
| memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs); |
| env->mxcsr = fpu.mxcsr; |
| |
| return 0; |
| } |
| |
| static int kvm_get_xsave(CPUState *env) |
| { |
| #ifdef KVM_CAP_XSAVE |
| struct kvm_xsave* xsave; |
| int ret, i; |
| uint16_t cwd, swd, twd, fop; |
| |
| if (!kvm_has_xsave()) { |
| return kvm_get_fpu(env); |
| } |
| |
| xsave = qemu_memalign(4096, sizeof(struct kvm_xsave)); |
| ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave); |
| if (ret < 0) { |
| qemu_free(xsave); |
| return ret; |
| } |
| |
| cwd = (uint16_t)xsave->region[0]; |
| swd = (uint16_t)(xsave->region[0] >> 16); |
| twd = (uint16_t)xsave->region[1]; |
| fop = (uint16_t)(xsave->region[1] >> 16); |
| env->fpstt = (swd >> 11) & 7; |
| env->fpus = swd; |
| env->fpuc = cwd; |
| for (i = 0; i < 8; ++i) { |
| env->fptags[i] = !((twd >> i) & 1); |
| } |
| env->mxcsr = xsave->region[XSAVE_MXCSR]; |
| memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE], |
| sizeof env->fpregs); |
| memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE], |
| sizeof env->xmm_regs); |
| env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV]; |
| memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE], |
| sizeof env->ymmh_regs); |
| qemu_free(xsave); |
| return 0; |
| #else |
| return kvm_get_fpu(env); |
| #endif |
| } |
| |
| static int kvm_get_xcrs(CPUState *env) |
| { |
| #ifdef KVM_CAP_XCRS |
| int i, ret; |
| struct kvm_xcrs xcrs; |
| |
| if (!kvm_has_xcrs()) { |
| return 0; |
| } |
| |
| ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| for (i = 0; i < xcrs.nr_xcrs; i++) { |
| /* Only support xcr0 now */ |
| if (xcrs.xcrs[0].xcr == 0) { |
| env->xcr0 = xcrs.xcrs[0].value; |
| break; |
| } |
| } |
| return 0; |
| #else |
| return 0; |
| #endif |
| } |
| |
| static int kvm_get_sregs(CPUState *env) |
| { |
| struct kvm_sregs sregs; |
| uint32_t hflags; |
| int bit, i, ret; |
| |
| ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| /* There can only be one pending IRQ set in the bitmap at a time, so try |
| to find it and save its number instead (-1 for none). */ |
| env->interrupt_injected = -1; |
| for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) { |
| if (sregs.interrupt_bitmap[i]) { |
| bit = ctz64(sregs.interrupt_bitmap[i]); |
| env->interrupt_injected = i * 64 + bit; |
| break; |
| } |
| } |
| |
| get_seg(&env->segs[R_CS], &sregs.cs); |
| get_seg(&env->segs[R_DS], &sregs.ds); |
| get_seg(&env->segs[R_ES], &sregs.es); |
| get_seg(&env->segs[R_FS], &sregs.fs); |
| get_seg(&env->segs[R_GS], &sregs.gs); |
| get_seg(&env->segs[R_SS], &sregs.ss); |
| |
| get_seg(&env->tr, &sregs.tr); |
| get_seg(&env->ldt, &sregs.ldt); |
| |
| env->idt.limit = sregs.idt.limit; |
| env->idt.base = sregs.idt.base; |
| env->gdt.limit = sregs.gdt.limit; |
| env->gdt.base = sregs.gdt.base; |
| |
| env->cr[0] = sregs.cr0; |
| env->cr[2] = sregs.cr2; |
| env->cr[3] = sregs.cr3; |
| env->cr[4] = sregs.cr4; |
| |
| cpu_set_apic_base(env->apic_state, sregs.apic_base); |
| |
| env->efer = sregs.efer; |
| //cpu_set_apic_tpr(env->apic_state, sregs.cr8); |
| |
| #define HFLAG_COPY_MASK \ |
| ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \ |
| HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \ |
| HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \ |
| HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK) |
| |
| hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK; |
| hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT); |
| hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) & |
| (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK); |
| hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK)); |
| hflags |= (env->cr[4] & CR4_OSFXSR_MASK) << |
| (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT); |
| |
| if (env->efer & MSR_EFER_LMA) { |
| hflags |= HF_LMA_MASK; |
| } |
| |
| if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) { |
| hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK; |
| } else { |
| hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >> |
| (DESC_B_SHIFT - HF_CS32_SHIFT); |
| hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >> |
| (DESC_B_SHIFT - HF_SS32_SHIFT); |
| if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) || |
| !(hflags & HF_CS32_MASK)) { |
| hflags |= HF_ADDSEG_MASK; |
| } else { |
| hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base | |
| env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT; |
| } |
| } |
| env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags; |
| |
| return 0; |
| } |
| |
| static int kvm_get_msrs(CPUState *env) |
| { |
| struct { |
| struct kvm_msrs info; |
| struct kvm_msr_entry entries[100]; |
| } msr_data; |
| struct kvm_msr_entry *msrs = msr_data.entries; |
| int ret, i, n; |
| |
| n = 0; |
| msrs[n++].index = MSR_IA32_SYSENTER_CS; |
| msrs[n++].index = MSR_IA32_SYSENTER_ESP; |
| msrs[n++].index = MSR_IA32_SYSENTER_EIP; |
| if (has_msr_star) { |
| msrs[n++].index = MSR_STAR; |
| } |
| if (has_msr_hsave_pa) { |
| msrs[n++].index = MSR_VM_HSAVE_PA; |
| } |
| msrs[n++].index = MSR_IA32_TSC; |
| #ifdef TARGET_X86_64 |
| if (lm_capable_kernel) { |
| msrs[n++].index = MSR_CSTAR; |
| msrs[n++].index = MSR_KERNELGSBASE; |
| msrs[n++].index = MSR_FMASK; |
| msrs[n++].index = MSR_LSTAR; |
| } |
| #endif |
| msrs[n++].index = MSR_KVM_SYSTEM_TIME; |
| msrs[n++].index = MSR_KVM_WALL_CLOCK; |
| #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF) |
| if (has_msr_async_pf_en) { |
| msrs[n++].index = MSR_KVM_ASYNC_PF_EN; |
| } |
| #endif |
| |
| #ifdef KVM_CAP_MCE |
| if (env->mcg_cap) { |
| msrs[n++].index = MSR_MCG_STATUS; |
| msrs[n++].index = MSR_MCG_CTL; |
| for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { |
| msrs[n++].index = MSR_MC0_CTL + i; |
| } |
| } |
| #endif |
| |
| msr_data.info.nmsrs = n; |
| ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| for (i = 0; i < ret; i++) { |
| switch (msrs[i].index) { |
| case MSR_IA32_SYSENTER_CS: |
| env->sysenter_cs = msrs[i].data; |
| break; |
| case MSR_IA32_SYSENTER_ESP: |
| env->sysenter_esp = msrs[i].data; |
| break; |
| case MSR_IA32_SYSENTER_EIP: |
| env->sysenter_eip = msrs[i].data; |
| break; |
| case MSR_STAR: |
| env->star = msrs[i].data; |
| break; |
| #ifdef TARGET_X86_64 |
| case MSR_CSTAR: |
| env->cstar = msrs[i].data; |
| break; |
| case MSR_KERNELGSBASE: |
| env->kernelgsbase = msrs[i].data; |
| break; |
| case MSR_FMASK: |
| env->fmask = msrs[i].data; |
| break; |
| case MSR_LSTAR: |
| env->lstar = msrs[i].data; |
| break; |
| #endif |
| case MSR_IA32_TSC: |
| env->tsc = msrs[i].data; |
| break; |
| case MSR_VM_HSAVE_PA: |
| env->vm_hsave = msrs[i].data; |
| break; |
| case MSR_KVM_SYSTEM_TIME: |
| env->system_time_msr = msrs[i].data; |
| break; |
| case MSR_KVM_WALL_CLOCK: |
| env->wall_clock_msr = msrs[i].data; |
| break; |
| #ifdef KVM_CAP_MCE |
| case MSR_MCG_STATUS: |
| env->mcg_status = msrs[i].data; |
| break; |
| case MSR_MCG_CTL: |
| env->mcg_ctl = msrs[i].data; |
| break; |
| #endif |
| default: |
| #ifdef KVM_CAP_MCE |
| if (msrs[i].index >= MSR_MC0_CTL && |
| msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) { |
| env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data; |
| } |
| #endif |
| break; |
| #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF) |
| case MSR_KVM_ASYNC_PF_EN: |
| env->async_pf_en_msr = msrs[i].data; |
| break; |
| #endif |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int kvm_put_mp_state(CPUState *env) |
| { |
| struct kvm_mp_state mp_state = { .mp_state = env->mp_state }; |
| |
| return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state); |
| } |
| |
| static int kvm_get_mp_state(CPUState *env) |
| { |
| struct kvm_mp_state mp_state; |
| int ret; |
| |
| ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state); |
| if (ret < 0) { |
| return ret; |
| } |
| env->mp_state = mp_state.mp_state; |
| if (kvm_irqchip_in_kernel()) { |
| env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED); |
| } |
| return 0; |
| } |
| |
| static int kvm_put_vcpu_events(CPUState *env, int level) |
| { |
| #ifdef KVM_CAP_VCPU_EVENTS |
| struct kvm_vcpu_events events; |
| |
| if (!kvm_has_vcpu_events()) { |
| return 0; |
| } |
| |
| events.exception.injected = (env->exception_injected >= 0); |
| events.exception.nr = env->exception_injected; |
| events.exception.has_error_code = env->has_error_code; |
| events.exception.error_code = env->error_code; |
| |
| events.interrupt.injected = (env->interrupt_injected >= 0); |
| events.interrupt.nr = env->interrupt_injected; |
| events.interrupt.soft = env->soft_interrupt; |
| |
| events.nmi.injected = env->nmi_injected; |
| events.nmi.pending = env->nmi_pending; |
| events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK); |
| |
| events.sipi_vector = env->sipi_vector; |
| |
| events.flags = 0; |
| if (level >= KVM_PUT_RESET_STATE) { |
| events.flags |= |
| KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR; |
| } |
| |
| return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events); |
| #else |
| return 0; |
| #endif |
| } |
| |
| static int kvm_get_vcpu_events(CPUState *env) |
| { |
| #ifdef KVM_CAP_VCPU_EVENTS |
| struct kvm_vcpu_events events; |
| int ret; |
| |
| if (!kvm_has_vcpu_events()) { |
| return 0; |
| } |
| |
| ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events); |
| if (ret < 0) { |
| return ret; |
| } |
| env->exception_injected = |
| events.exception.injected ? events.exception.nr : -1; |
| env->has_error_code = events.exception.has_error_code; |
| env->error_code = events.exception.error_code; |
| |
| env->interrupt_injected = |
| events.interrupt.injected ? events.interrupt.nr : -1; |
| env->soft_interrupt = events.interrupt.soft; |
| |
| env->nmi_injected = events.nmi.injected; |
| env->nmi_pending = events.nmi.pending; |
| if (events.nmi.masked) { |
| env->hflags2 |= HF2_NMI_MASK; |
| } else { |
| env->hflags2 &= ~HF2_NMI_MASK; |
| } |
| |
| env->sipi_vector = events.sipi_vector; |
| #endif |
| |
| return 0; |
| } |
| |
| static int kvm_guest_debug_workarounds(CPUState *env) |
| { |
| int ret = 0; |
| #ifdef KVM_CAP_SET_GUEST_DEBUG |
| unsigned long reinject_trap = 0; |
| |
| if (!kvm_has_vcpu_events()) { |
| if (env->exception_injected == 1) { |
| reinject_trap = KVM_GUESTDBG_INJECT_DB; |
| } else if (env->exception_injected == 3) { |
| reinject_trap = KVM_GUESTDBG_INJECT_BP; |
| } |
| env->exception_injected = -1; |
| } |
| |
| /* |
| * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF |
| * injected via SET_GUEST_DEBUG while updating GP regs. Work around this |
| * by updating the debug state once again if single-stepping is on. |
| * Another reason to call kvm_update_guest_debug here is a pending debug |
| * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to |
| * reinject them via SET_GUEST_DEBUG. |
| */ |
| if (reinject_trap || |
| (!kvm_has_robust_singlestep() && env->singlestep_enabled)) { |
| ret = kvm_update_guest_debug(env, reinject_trap); |
| } |
| #endif /* KVM_CAP_SET_GUEST_DEBUG */ |
| return ret; |
| } |
| |
| static int kvm_put_debugregs(CPUState *env) |
| { |
| #ifdef KVM_CAP_DEBUGREGS |
| struct kvm_debugregs dbgregs; |
| int i; |
| |
| if (!kvm_has_debugregs()) { |
| return 0; |
| } |
| |
| for (i = 0; i < 4; i++) { |
| dbgregs.db[i] = env->dr[i]; |
| } |
| dbgregs.dr6 = env->dr[6]; |
| dbgregs.dr7 = env->dr[7]; |
| dbgregs.flags = 0; |
| |
| return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs); |
| #else |
| return 0; |
| #endif |
| } |
| |
| static int kvm_get_debugregs(CPUState *env) |
| { |
| #ifdef KVM_CAP_DEBUGREGS |
| struct kvm_debugregs dbgregs; |
| int i, ret; |
| |
| if (!kvm_has_debugregs()) { |
| return 0; |
| } |
| |
| ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs); |
| if (ret < 0) { |
| return ret; |
| } |
| for (i = 0; i < 4; i++) { |
| env->dr[i] = dbgregs.db[i]; |
| } |
| env->dr[4] = env->dr[6] = dbgregs.dr6; |
| env->dr[5] = env->dr[7] = dbgregs.dr7; |
| #endif |
| |
| return 0; |
| } |
| |
| int kvm_arch_put_registers(CPUState *env, int level) |
| { |
| int ret; |
| |
| assert(cpu_is_stopped(env) || qemu_cpu_self(env)); |
| |
| ret = kvm_getput_regs(env, 1); |
| if (ret < 0) { |
| return ret; |
| } |
| ret = kvm_put_xsave(env); |
| if (ret < 0) { |
| return ret; |
| } |
| ret = kvm_put_xcrs(env); |
| if (ret < 0) { |
| return ret; |
| } |
| ret = kvm_put_sregs(env); |
| if (ret < 0) { |
| return ret; |
| } |
| ret = kvm_put_msrs(env, level); |
| if (ret < 0) { |
| return ret; |
| } |
| if (level >= KVM_PUT_RESET_STATE) { |
| ret = kvm_put_mp_state(env); |
| if (ret < 0) { |
| return ret; |
| } |
| } |
| ret = kvm_put_vcpu_events(env, level); |
| if (ret < 0) { |
| return ret; |
| } |
| ret = kvm_put_debugregs(env); |
| if (ret < 0) { |
| return ret; |
| } |
| /* must be last */ |
| ret = kvm_guest_debug_workarounds(env); |
| if (ret < 0) { |
| return ret; |
| } |
| return 0; |
| } |
| |
| int kvm_arch_get_registers(CPUState *env) |
| { |
| int ret; |
| |
| assert(cpu_is_stopped(env) || qemu_cpu_self(env)); |
| |
| ret = kvm_getput_regs(env, 0); |
| if (ret < 0) { |
| return ret; |
| } |
| ret = kvm_get_xsave(env); |
| if (ret < 0) { |
| return ret; |
| } |
| ret = kvm_get_xcrs(env); |
| if (ret < 0) { |
| return ret; |
| } |
| ret = kvm_get_sregs(env); |
| if (ret < 0) { |
| return ret; |
| } |
| ret = kvm_get_msrs(env); |
| if (ret < 0) { |
| return ret; |
| } |
| ret = kvm_get_mp_state(env); |
| if (ret < 0) { |
| return ret; |
| } |
| ret = kvm_get_vcpu_events(env); |
| if (ret < 0) { |
| return ret; |
| } |
| ret = kvm_get_debugregs(env); |
| if (ret < 0) { |
| return ret; |
| } |
| return 0; |
| } |
| |
| int kvm_arch_pre_run(CPUState *env, struct kvm_run *run) |
| { |
| /* Inject NMI */ |
| if (env->interrupt_request & CPU_INTERRUPT_NMI) { |
| env->interrupt_request &= ~CPU_INTERRUPT_NMI; |
| DPRINTF("injected NMI\n"); |
| kvm_vcpu_ioctl(env, KVM_NMI); |
| } |
| |
| /* Try to inject an interrupt if the guest can accept it */ |
| if (run->ready_for_interrupt_injection && |
| (env->interrupt_request & CPU_INTERRUPT_HARD) && |
| (env->eflags & IF_MASK)) { |
| int irq; |
| |
| env->interrupt_request &= ~CPU_INTERRUPT_HARD; |
| irq = cpu_get_pic_interrupt(env); |
| if (irq >= 0) { |
| struct kvm_interrupt intr; |
| intr.irq = irq; |
| /* FIXME: errors */ |
| DPRINTF("injected interrupt %d\n", irq); |
| kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr); |
| } |
| } |
| |
| /* If we have an interrupt but the guest is not ready to receive an |
| * interrupt, request an interrupt window exit. This will |
| * cause a return to userspace as soon as the guest is ready to |
| * receive interrupts. */ |
| if ((env->interrupt_request & CPU_INTERRUPT_HARD)) { |
| run->request_interrupt_window = 1; |
| } else { |
| run->request_interrupt_window = 0; |
| } |
| |
| DPRINTF("setting tpr\n"); |
| run->cr8 = cpu_get_apic_tpr(env->apic_state); |
| |
| return 0; |
| } |
| |
| int kvm_arch_post_run(CPUState *env, struct kvm_run *run) |
| { |
| if (run->if_flag) { |
| env->eflags |= IF_MASK; |
| } else { |
| env->eflags &= ~IF_MASK; |
| } |
| cpu_set_apic_tpr(env->apic_state, run->cr8); |
| cpu_set_apic_base(env->apic_state, run->apic_base); |
| |
| return 0; |
| } |
| |
| int kvm_arch_process_irqchip_events(CPUState *env) |
| { |
| if (env->interrupt_request & CPU_INTERRUPT_INIT) { |
| kvm_cpu_synchronize_state(env); |
| do_cpu_init(env); |
| env->exception_index = EXCP_HALTED; |
| } |
| |
| if (env->interrupt_request & CPU_INTERRUPT_SIPI) { |
| kvm_cpu_synchronize_state(env); |
| do_cpu_sipi(env); |
| } |
| |
| return env->halted; |
| } |
| |
| static int kvm_handle_halt(CPUState *env) |
| { |
| if (!((env->interrupt_request & CPU_INTERRUPT_HARD) && |
| (env->eflags & IF_MASK)) && |
| !(env->interrupt_request & CPU_INTERRUPT_NMI)) { |
| env->halted = 1; |
| env->exception_index = EXCP_HLT; |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static bool host_supports_vmx(void) |
| { |
| uint32_t ecx, unused; |
| |
| host_cpuid(1, 0, &unused, &unused, &ecx, &unused); |
| return ecx & CPUID_EXT_VMX; |
| } |
| |
| #define VMX_INVALID_GUEST_STATE 0x80000021 |
| |
| int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run) |
| { |
| uint64_t code; |
| int ret = 0; |
| |
| switch (run->exit_reason) { |
| case KVM_EXIT_HLT: |
| DPRINTF("handle_hlt\n"); |
| ret = kvm_handle_halt(env); |
| break; |
| case KVM_EXIT_SET_TPR: |
| ret = 1; |
| break; |
| case KVM_EXIT_FAIL_ENTRY: |
| code = run->fail_entry.hardware_entry_failure_reason; |
| fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n", |
| code); |
| if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) { |
| fprintf(stderr, |
| "\nIf you're runnning a guest on an Intel machine without " |
| "unrestricted mode\n" |
| "support, the failure can be most likely due to the guest " |
| "entering an invalid\n" |
| "state for Intel VT. For example, the guest maybe running " |
| "in big real mode\n" |
| "which is not supported on less recent Intel processors." |
| "\n\n"); |
| } |
| ret = -1; |
| break; |
| case KVM_EXIT_EXCEPTION: |
| fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n", |
| run->ex.exception, run->ex.error_code); |
| ret = -1; |
| break; |
| default: |
| fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason); |
| ret = -1; |
| break; |
| } |
| |
| return ret; |
| } |
| |
| #ifdef KVM_CAP_SET_GUEST_DEBUG |
| int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp) |
| { |
| static const uint8_t int3 = 0xcc; |
| |
| if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) || |
| cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) { |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp) |
| { |
| uint8_t int3; |
| |
| if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc || |
| cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) { |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| static struct { |
| target_ulong addr; |
| int len; |
| int type; |
| } hw_breakpoint[4]; |
| |
| static int nb_hw_breakpoint; |
| |
| static int find_hw_breakpoint(target_ulong addr, int len, int type) |
| { |
| int n; |
| |
| for (n = 0; n < nb_hw_breakpoint; n++) { |
| if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type && |
| (hw_breakpoint[n].len == len || len == -1)) { |
| return n; |
| } |
| } |
| return -1; |
| } |
| |
| int kvm_arch_insert_hw_breakpoint(target_ulong addr, |
| target_ulong len, int type) |
| { |
| switch (type) { |
| case GDB_BREAKPOINT_HW: |
| len = 1; |
| break; |
| case GDB_WATCHPOINT_WRITE: |
| case GDB_WATCHPOINT_ACCESS: |
| switch (len) { |
| case 1: |
| break; |
| case 2: |
| case 4: |
| case 8: |
| if (addr & (len - 1)) { |
| return -EINVAL; |
| } |
| break; |
| default: |
| return -EINVAL; |
| } |
| break; |
| default: |
| return -ENOSYS; |
| } |
| |
| if (nb_hw_breakpoint == 4) { |
| return -ENOBUFS; |
| } |
| if (find_hw_breakpoint(addr, len, type) >= 0) { |
| return -EEXIST; |
| } |
| hw_breakpoint[nb_hw_breakpoint].addr = addr; |
| hw_breakpoint[nb_hw_breakpoint].len = len; |
| hw_breakpoint[nb_hw_breakpoint].type = type; |
| nb_hw_breakpoint++; |
| |
| return 0; |
| } |
| |
| int kvm_arch_remove_hw_breakpoint(target_ulong addr, |
| target_ulong len, int type) |
| { |
| int n; |
| |
| n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type); |
| if (n < 0) { |
| return -ENOENT; |
| } |
| nb_hw_breakpoint--; |
| hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint]; |
| |
| return 0; |
| } |
| |
| void kvm_arch_remove_all_hw_breakpoints(void) |
| { |
| nb_hw_breakpoint = 0; |
| } |
| |
| static CPUWatchpoint hw_watchpoint; |
| |
| int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info) |
| { |
| int handle = 0; |
| int n; |
| |
| if (arch_info->exception == 1) { |
| if (arch_info->dr6 & (1 << 14)) { |
| if (cpu_single_env->singlestep_enabled) { |
| handle = 1; |
| } |
| } else { |
| for (n = 0; n < 4; n++) { |
| if (arch_info->dr6 & (1 << n)) { |
| switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) { |
| case 0x0: |
| handle = 1; |
| break; |
| case 0x1: |
| handle = 1; |
| cpu_single_env->watchpoint_hit = &hw_watchpoint; |
| hw_watchpoint.vaddr = hw_breakpoint[n].addr; |
| hw_watchpoint.flags = BP_MEM_WRITE; |
| break; |
| case 0x3: |
| handle = 1; |
| cpu_single_env->watchpoint_hit = &hw_watchpoint; |
| hw_watchpoint.vaddr = hw_breakpoint[n].addr; |
| hw_watchpoint.flags = BP_MEM_ACCESS; |
| break; |
| } |
| } |
| } |
| } |
| } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) { |
| handle = 1; |
| } |
| if (!handle) { |
| cpu_synchronize_state(cpu_single_env); |
| assert(cpu_single_env->exception_injected == -1); |
| |
| cpu_single_env->exception_injected = arch_info->exception; |
| cpu_single_env->has_error_code = 0; |
| } |
| |
| return handle; |
| } |
| |
| void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg) |
| { |
| const uint8_t type_code[] = { |
| [GDB_BREAKPOINT_HW] = 0x0, |
| [GDB_WATCHPOINT_WRITE] = 0x1, |
| [GDB_WATCHPOINT_ACCESS] = 0x3 |
| }; |
| const uint8_t len_code[] = { |
| [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2 |
| }; |
| int n; |
| |
| if (kvm_sw_breakpoints_active(env)) { |
| dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; |
| } |
| if (nb_hw_breakpoint > 0) { |
| dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; |
| dbg->arch.debugreg[7] = 0x0600; |
| for (n = 0; n < nb_hw_breakpoint; n++) { |
| dbg->arch.debugreg[n] = hw_breakpoint[n].addr; |
| dbg->arch.debugreg[7] |= (2 << (n * 2)) | |
| (type_code[hw_breakpoint[n].type] << (16 + n*4)) | |
| ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4)); |
| } |
| } |
| } |
| #endif /* KVM_CAP_SET_GUEST_DEBUG */ |
| |
| bool kvm_arch_stop_on_emulation_error(CPUState *env) |
| { |
| return !(env->cr[0] & CR0_PE_MASK) || |
| ((env->segs[R_CS].selector & 3) != 3); |
| } |
| |
| static void hardware_memory_error(void) |
| { |
| fprintf(stderr, "Hardware memory error!\n"); |
| exit(1); |
| } |
| |
| #ifdef KVM_CAP_MCE |
| static void kvm_mce_broadcast_rest(CPUState *env) |
| { |
| struct kvm_x86_mce mce = { |
| .bank = 1, |
| .status = MCI_STATUS_VAL | MCI_STATUS_UC, |
| .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV, |
| .addr = 0, |
| .misc = 0, |
| }; |
| CPUState *cenv; |
| |
| /* Broadcast MCA signal for processor version 06H_EH and above */ |
| if (cpu_x86_support_mca_broadcast(env)) { |
| for (cenv = first_cpu; cenv != NULL; cenv = cenv->next_cpu) { |
| if (cenv == env) { |
| continue; |
| } |
| kvm_inject_x86_mce_on(cenv, &mce, ABORT_ON_ERROR); |
| } |
| } |
| } |
| |
| static void kvm_mce_inj_srar_dataload(CPUState *env, target_phys_addr_t paddr) |
| { |
| struct kvm_x86_mce mce = { |
| .bank = 9, |
| .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
| | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S |
| | MCI_STATUS_AR | 0x134, |
| .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_EIPV, |
| .addr = paddr, |
| .misc = (MCM_ADDR_PHYS << 6) | 0xc, |
| }; |
| int r; |
| |
| r = kvm_set_mce(env, &mce); |
| if (r < 0) { |
| fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno)); |
| abort(); |
| } |
| kvm_mce_broadcast_rest(env); |
| } |
| |
| static void kvm_mce_inj_srao_memscrub(CPUState *env, target_phys_addr_t paddr) |
| { |
| struct kvm_x86_mce mce = { |
| .bank = 9, |
| .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
| | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S |
| | 0xc0, |
| .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV, |
| .addr = paddr, |
| .misc = (MCM_ADDR_PHYS << 6) | 0xc, |
| }; |
| int r; |
| |
| r = kvm_set_mce(env, &mce); |
| if (r < 0) { |
| fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno)); |
| abort(); |
| } |
| kvm_mce_broadcast_rest(env); |
| } |
| |
| static void kvm_mce_inj_srao_memscrub2(CPUState *env, target_phys_addr_t paddr) |
| { |
| struct kvm_x86_mce mce = { |
| .bank = 9, |
| .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
| | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S |
| | 0xc0, |
| .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV, |
| .addr = paddr, |
| .misc = (MCM_ADDR_PHYS << 6) | 0xc, |
| }; |
| |
| kvm_inject_x86_mce_on(env, &mce, ABORT_ON_ERROR); |
| kvm_mce_broadcast_rest(env); |
| } |
| |
| #endif |
| |
| int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr) |
| { |
| #if defined(KVM_CAP_MCE) |
| void *vaddr; |
| ram_addr_t ram_addr; |
| target_phys_addr_t paddr; |
| |
| if ((env->mcg_cap & MCG_SER_P) && addr |
| && (code == BUS_MCEERR_AR |
| || code == BUS_MCEERR_AO)) { |
| vaddr = (void *)addr; |
| if (qemu_ram_addr_from_host(vaddr, &ram_addr) || |
| !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr, &paddr)) { |
| fprintf(stderr, "Hardware memory error for memory used by " |
| "QEMU itself instead of guest system!\n"); |
| /* Hope we are lucky for AO MCE */ |
| if (code == BUS_MCEERR_AO) { |
| return 0; |
| } else { |
| hardware_memory_error(); |
| } |
| } |
| |
| if (code == BUS_MCEERR_AR) { |
| /* Fake an Intel architectural Data Load SRAR UCR */ |
| kvm_mce_inj_srar_dataload(env, paddr); |
| } else { |
| /* |
| * If there is an MCE excpetion being processed, ignore |
| * this SRAO MCE |
| */ |
| if (!kvm_mce_in_progress(env)) { |
| /* Fake an Intel architectural Memory scrubbing UCR */ |
| kvm_mce_inj_srao_memscrub(env, paddr); |
| } |
| } |
| } else |
| #endif |
| { |
| if (code == BUS_MCEERR_AO) { |
| return 0; |
| } else if (code == BUS_MCEERR_AR) { |
| hardware_memory_error(); |
| } else { |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| int kvm_on_sigbus(int code, void *addr) |
| { |
| #if defined(KVM_CAP_MCE) |
| if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) { |
| void *vaddr; |
| ram_addr_t ram_addr; |
| target_phys_addr_t paddr; |
| |
| /* Hope we are lucky for AO MCE */ |
| vaddr = addr; |
| if (qemu_ram_addr_from_host(vaddr, &ram_addr) || |
| !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr, &paddr)) { |
| fprintf(stderr, "Hardware memory error for memory used by " |
| "QEMU itself instead of guest system!: %p\n", addr); |
| return 0; |
| } |
| kvm_mce_inj_srao_memscrub2(first_cpu, paddr); |
| } else |
| #endif |
| { |
| if (code == BUS_MCEERR_AO) { |
| return 0; |
| } else if (code == BUS_MCEERR_AR) { |
| hardware_memory_error(); |
| } else { |
| return 1; |
| } |
| } |
| return 0; |
| } |