| #include "qemu/osdep.h" |
| #include "qemu/cutils.h" |
| #include "qapi/error.h" |
| #include "sysemu/hw_accel.h" |
| #include "sysemu/runstate.h" |
| #include "qemu/log.h" |
| #include "qemu/main-loop.h" |
| #include "qemu/module.h" |
| #include "qemu/error-report.h" |
| #include "exec/exec-all.h" |
| #include "exec/tb-flush.h" |
| #include "helper_regs.h" |
| #include "hw/ppc/ppc.h" |
| #include "hw/ppc/spapr.h" |
| #include "hw/ppc/spapr_cpu_core.h" |
| #include "mmu-hash64.h" |
| #include "cpu-models.h" |
| #include "trace.h" |
| #include "kvm_ppc.h" |
| #include "hw/ppc/fdt.h" |
| #include "hw/ppc/spapr_ovec.h" |
| #include "hw/ppc/spapr_numa.h" |
| #include "mmu-book3s-v3.h" |
| #include "hw/mem/memory-device.h" |
| |
| bool is_ram_address(SpaprMachineState *spapr, hwaddr addr) |
| { |
| MachineState *machine = MACHINE(spapr); |
| DeviceMemoryState *dms = machine->device_memory; |
| |
| if (addr < machine->ram_size) { |
| return true; |
| } |
| if ((addr >= dms->base) |
| && ((addr - dms->base) < memory_region_size(&dms->mr))) { |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* Convert a return code from the KVM ioctl()s implementing resize HPT |
| * into a PAPR hypercall return code */ |
| static target_ulong resize_hpt_convert_rc(int ret) |
| { |
| if (ret >= 100000) { |
| return H_LONG_BUSY_ORDER_100_SEC; |
| } else if (ret >= 10000) { |
| return H_LONG_BUSY_ORDER_10_SEC; |
| } else if (ret >= 1000) { |
| return H_LONG_BUSY_ORDER_1_SEC; |
| } else if (ret >= 100) { |
| return H_LONG_BUSY_ORDER_100_MSEC; |
| } else if (ret >= 10) { |
| return H_LONG_BUSY_ORDER_10_MSEC; |
| } else if (ret > 0) { |
| return H_LONG_BUSY_ORDER_1_MSEC; |
| } |
| |
| switch (ret) { |
| case 0: |
| return H_SUCCESS; |
| case -EPERM: |
| return H_AUTHORITY; |
| case -EINVAL: |
| return H_PARAMETER; |
| case -ENXIO: |
| return H_CLOSED; |
| case -ENOSPC: |
| return H_PTEG_FULL; |
| case -EBUSY: |
| return H_BUSY; |
| case -ENOMEM: |
| return H_NO_MEM; |
| default: |
| return H_HARDWARE; |
| } |
| } |
| |
| static target_ulong h_resize_hpt_prepare(PowerPCCPU *cpu, |
| SpaprMachineState *spapr, |
| target_ulong opcode, |
| target_ulong *args) |
| { |
| target_ulong flags = args[0]; |
| int shift = args[1]; |
| uint64_t current_ram_size; |
| int rc; |
| |
| if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) { |
| return H_AUTHORITY; |
| } |
| |
| if (!spapr->htab_shift) { |
| /* Radix guest, no HPT */ |
| return H_NOT_AVAILABLE; |
| } |
| |
| trace_spapr_h_resize_hpt_prepare(flags, shift); |
| |
| if (flags != 0) { |
| return H_PARAMETER; |
| } |
| |
| if (shift && ((shift < 18) || (shift > 46))) { |
| return H_PARAMETER; |
| } |
| |
| current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); |
| |
| /* We only allow the guest to allocate an HPT one order above what |
| * we'd normally give them (to stop a small guest claiming a huge |
| * chunk of resources in the HPT */ |
| if (shift > (spapr_hpt_shift_for_ramsize(current_ram_size) + 1)) { |
| return H_RESOURCE; |
| } |
| |
| rc = kvmppc_resize_hpt_prepare(cpu, flags, shift); |
| if (rc != -ENOSYS) { |
| return resize_hpt_convert_rc(rc); |
| } |
| |
| if (kvm_enabled()) { |
| return H_HARDWARE; |
| } |
| |
| return softmmu_resize_hpt_prepare(cpu, spapr, shift); |
| } |
| |
| static void do_push_sregs_to_kvm_pr(CPUState *cs, run_on_cpu_data data) |
| { |
| int ret; |
| |
| cpu_synchronize_state(cs); |
| |
| ret = kvmppc_put_books_sregs(POWERPC_CPU(cs)); |
| if (ret < 0) { |
| error_report("failed to push sregs to KVM: %s", strerror(-ret)); |
| exit(1); |
| } |
| } |
| |
| void push_sregs_to_kvm_pr(SpaprMachineState *spapr) |
| { |
| CPUState *cs; |
| |
| /* |
| * This is a hack for the benefit of KVM PR - it abuses the SDR1 |
| * slot in kvm_sregs to communicate the userspace address of the |
| * HPT |
| */ |
| if (!kvm_enabled() || !spapr->htab) { |
| return; |
| } |
| |
| CPU_FOREACH(cs) { |
| run_on_cpu(cs, do_push_sregs_to_kvm_pr, RUN_ON_CPU_NULL); |
| } |
| } |
| |
| static target_ulong h_resize_hpt_commit(PowerPCCPU *cpu, |
| SpaprMachineState *spapr, |
| target_ulong opcode, |
| target_ulong *args) |
| { |
| target_ulong flags = args[0]; |
| target_ulong shift = args[1]; |
| int rc; |
| |
| if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) { |
| return H_AUTHORITY; |
| } |
| |
| if (!spapr->htab_shift) { |
| /* Radix guest, no HPT */ |
| return H_NOT_AVAILABLE; |
| } |
| |
| trace_spapr_h_resize_hpt_commit(flags, shift); |
| |
| rc = kvmppc_resize_hpt_commit(cpu, flags, shift); |
| if (rc != -ENOSYS) { |
| rc = resize_hpt_convert_rc(rc); |
| if (rc == H_SUCCESS) { |
| /* Need to set the new htab_shift in the machine state */ |
| spapr->htab_shift = shift; |
| } |
| return rc; |
| } |
| |
| if (kvm_enabled()) { |
| return H_HARDWARE; |
| } |
| |
| return softmmu_resize_hpt_commit(cpu, spapr, flags, shift); |
| } |
| |
| |
| |
| static target_ulong h_set_sprg0(PowerPCCPU *cpu, SpaprMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| cpu_synchronize_state(CPU(cpu)); |
| cpu->env.spr[SPR_SPRG0] = args[0]; |
| |
| return H_SUCCESS; |
| } |
| |
| static target_ulong h_set_dabr(PowerPCCPU *cpu, SpaprMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| if (!ppc_has_spr(cpu, SPR_DABR)) { |
| return H_HARDWARE; /* DABR register not available */ |
| } |
| cpu_synchronize_state(CPU(cpu)); |
| |
| if (ppc_has_spr(cpu, SPR_DABRX)) { |
| cpu->env.spr[SPR_DABRX] = 0x3; /* Use Problem and Privileged state */ |
| } else if (!(args[0] & 0x4)) { /* Breakpoint Translation set? */ |
| return H_RESERVED_DABR; |
| } |
| |
| cpu->env.spr[SPR_DABR] = args[0]; |
| return H_SUCCESS; |
| } |
| |
| static target_ulong h_set_xdabr(PowerPCCPU *cpu, SpaprMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| target_ulong dabrx = args[1]; |
| |
| if (!ppc_has_spr(cpu, SPR_DABR) || !ppc_has_spr(cpu, SPR_DABRX)) { |
| return H_HARDWARE; |
| } |
| |
| if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0 |
| || (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) { |
| return H_PARAMETER; |
| } |
| |
| cpu_synchronize_state(CPU(cpu)); |
| cpu->env.spr[SPR_DABRX] = dabrx; |
| cpu->env.spr[SPR_DABR] = args[0]; |
| |
| return H_SUCCESS; |
| } |
| |
| static target_ulong h_page_init(PowerPCCPU *cpu, SpaprMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| target_ulong flags = args[0]; |
| hwaddr dst = args[1]; |
| hwaddr src = args[2]; |
| hwaddr len = TARGET_PAGE_SIZE; |
| uint8_t *pdst, *psrc; |
| target_long ret = H_SUCCESS; |
| |
| if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE |
| | H_COPY_PAGE | H_ZERO_PAGE)) { |
| qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n", |
| flags); |
| return H_PARAMETER; |
| } |
| |
| /* Map-in destination */ |
| if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) { |
| return H_PARAMETER; |
| } |
| pdst = cpu_physical_memory_map(dst, &len, true); |
| if (!pdst || len != TARGET_PAGE_SIZE) { |
| return H_PARAMETER; |
| } |
| |
| if (flags & H_COPY_PAGE) { |
| /* Map-in source, copy to destination, and unmap source again */ |
| if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) { |
| ret = H_PARAMETER; |
| goto unmap_out; |
| } |
| psrc = cpu_physical_memory_map(src, &len, false); |
| if (!psrc || len != TARGET_PAGE_SIZE) { |
| ret = H_PARAMETER; |
| goto unmap_out; |
| } |
| memcpy(pdst, psrc, len); |
| cpu_physical_memory_unmap(psrc, len, 0, len); |
| } else if (flags & H_ZERO_PAGE) { |
| memset(pdst, 0, len); /* Just clear the destination page */ |
| } |
| |
| if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) { |
| kvmppc_dcbst_range(cpu, pdst, len); |
| } |
| if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) { |
| if (kvm_enabled()) { |
| kvmppc_icbi_range(cpu, pdst, len); |
| } else { |
| tb_flush(CPU(cpu)); |
| } |
| } |
| |
| unmap_out: |
| cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len); |
| return ret; |
| } |
| |
| #define FLAGS_REGISTER_VPA 0x0000200000000000ULL |
| #define FLAGS_REGISTER_DTL 0x0000400000000000ULL |
| #define FLAGS_REGISTER_SLBSHADOW 0x0000600000000000ULL |
| #define FLAGS_DEREGISTER_VPA 0x0000a00000000000ULL |
| #define FLAGS_DEREGISTER_DTL 0x0000c00000000000ULL |
| #define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL |
| |
| static target_ulong register_vpa(PowerPCCPU *cpu, target_ulong vpa) |
| { |
| CPUState *cs = CPU(cpu); |
| CPUPPCState *env = &cpu->env; |
| SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); |
| uint16_t size; |
| uint8_t tmp; |
| |
| if (vpa == 0) { |
| hcall_dprintf("Can't cope with registering a VPA at logical 0\n"); |
| return H_HARDWARE; |
| } |
| |
| if (vpa % env->dcache_line_size) { |
| return H_PARAMETER; |
| } |
| /* FIXME: bounds check the address */ |
| |
| size = lduw_be_phys(cs->as, vpa + 0x4); |
| |
| if (size < VPA_MIN_SIZE) { |
| return H_PARAMETER; |
| } |
| |
| /* VPA is not allowed to cross a page boundary */ |
| if ((vpa / 4096) != ((vpa + size - 1) / 4096)) { |
| return H_PARAMETER; |
| } |
| |
| spapr_cpu->vpa_addr = vpa; |
| |
| tmp = ldub_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET); |
| tmp |= VPA_SHARED_PROC_VAL; |
| stb_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp); |
| |
| return H_SUCCESS; |
| } |
| |
| static target_ulong deregister_vpa(PowerPCCPU *cpu, target_ulong vpa) |
| { |
| SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); |
| |
| if (spapr_cpu->slb_shadow_addr) { |
| return H_RESOURCE; |
| } |
| |
| if (spapr_cpu->dtl_addr) { |
| return H_RESOURCE; |
| } |
| |
| spapr_cpu->vpa_addr = 0; |
| return H_SUCCESS; |
| } |
| |
| static target_ulong register_slb_shadow(PowerPCCPU *cpu, target_ulong addr) |
| { |
| SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); |
| uint32_t size; |
| |
| if (addr == 0) { |
| hcall_dprintf("Can't cope with SLB shadow at logical 0\n"); |
| return H_HARDWARE; |
| } |
| |
| size = ldl_be_phys(CPU(cpu)->as, addr + 0x4); |
| if (size < 0x8) { |
| return H_PARAMETER; |
| } |
| |
| if ((addr / 4096) != ((addr + size - 1) / 4096)) { |
| return H_PARAMETER; |
| } |
| |
| if (!spapr_cpu->vpa_addr) { |
| return H_RESOURCE; |
| } |
| |
| spapr_cpu->slb_shadow_addr = addr; |
| spapr_cpu->slb_shadow_size = size; |
| |
| return H_SUCCESS; |
| } |
| |
| static target_ulong deregister_slb_shadow(PowerPCCPU *cpu, target_ulong addr) |
| { |
| SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); |
| |
| spapr_cpu->slb_shadow_addr = 0; |
| spapr_cpu->slb_shadow_size = 0; |
| return H_SUCCESS; |
| } |
| |
| static target_ulong register_dtl(PowerPCCPU *cpu, target_ulong addr) |
| { |
| SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); |
| uint32_t size; |
| |
| if (addr == 0) { |
| hcall_dprintf("Can't cope with DTL at logical 0\n"); |
| return H_HARDWARE; |
| } |
| |
| size = ldl_be_phys(CPU(cpu)->as, addr + 0x4); |
| |
| if (size < 48) { |
| return H_PARAMETER; |
| } |
| |
| if (!spapr_cpu->vpa_addr) { |
| return H_RESOURCE; |
| } |
| |
| spapr_cpu->dtl_addr = addr; |
| spapr_cpu->dtl_size = size; |
| |
| return H_SUCCESS; |
| } |
| |
| static target_ulong deregister_dtl(PowerPCCPU *cpu, target_ulong addr) |
| { |
| SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); |
| |
| spapr_cpu->dtl_addr = 0; |
| spapr_cpu->dtl_size = 0; |
| |
| return H_SUCCESS; |
| } |
| |
| static target_ulong h_register_vpa(PowerPCCPU *cpu, SpaprMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| target_ulong flags = args[0]; |
| target_ulong procno = args[1]; |
| target_ulong vpa = args[2]; |
| target_ulong ret = H_PARAMETER; |
| PowerPCCPU *tcpu; |
| |
| tcpu = spapr_find_cpu(procno); |
| if (!tcpu) { |
| return H_PARAMETER; |
| } |
| |
| switch (flags) { |
| case FLAGS_REGISTER_VPA: |
| ret = register_vpa(tcpu, vpa); |
| break; |
| |
| case FLAGS_DEREGISTER_VPA: |
| ret = deregister_vpa(tcpu, vpa); |
| break; |
| |
| case FLAGS_REGISTER_SLBSHADOW: |
| ret = register_slb_shadow(tcpu, vpa); |
| break; |
| |
| case FLAGS_DEREGISTER_SLBSHADOW: |
| ret = deregister_slb_shadow(tcpu, vpa); |
| break; |
| |
| case FLAGS_REGISTER_DTL: |
| ret = register_dtl(tcpu, vpa); |
| break; |
| |
| case FLAGS_DEREGISTER_DTL: |
| ret = deregister_dtl(tcpu, vpa); |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static target_ulong h_cede(PowerPCCPU *cpu, SpaprMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| CPUPPCState *env = &cpu->env; |
| CPUState *cs = CPU(cpu); |
| SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); |
| |
| env->msr |= (1ULL << MSR_EE); |
| hreg_compute_hflags(env); |
| ppc_maybe_interrupt(env); |
| |
| if (spapr_cpu->prod) { |
| spapr_cpu->prod = false; |
| return H_SUCCESS; |
| } |
| |
| if (!cpu_has_work(cs)) { |
| cs->halted = 1; |
| cs->exception_index = EXCP_HLT; |
| cs->exit_request = 1; |
| ppc_maybe_interrupt(env); |
| } |
| |
| return H_SUCCESS; |
| } |
| |
| /* |
| * Confer to self, aka join. Cede could use the same pattern as well, if |
| * EXCP_HLT can be changed to ECXP_HALTED. |
| */ |
| static target_ulong h_confer_self(PowerPCCPU *cpu) |
| { |
| CPUState *cs = CPU(cpu); |
| SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); |
| |
| if (spapr_cpu->prod) { |
| spapr_cpu->prod = false; |
| return H_SUCCESS; |
| } |
| cs->halted = 1; |
| cs->exception_index = EXCP_HALTED; |
| cs->exit_request = 1; |
| ppc_maybe_interrupt(&cpu->env); |
| |
| return H_SUCCESS; |
| } |
| |
| static target_ulong h_join(PowerPCCPU *cpu, SpaprMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| CPUPPCState *env = &cpu->env; |
| CPUState *cs; |
| bool last_unjoined = true; |
| |
| if (env->msr & (1ULL << MSR_EE)) { |
| return H_BAD_MODE; |
| } |
| |
| /* |
| * Must not join the last CPU running. Interestingly, no such restriction |
| * for H_CONFER-to-self, but that is probably not intended to be used |
| * when H_JOIN is available. |
| */ |
| CPU_FOREACH(cs) { |
| PowerPCCPU *c = POWERPC_CPU(cs); |
| CPUPPCState *e = &c->env; |
| if (c == cpu) { |
| continue; |
| } |
| |
| /* Don't have a way to indicate joined, so use halted && MSR[EE]=0 */ |
| if (!cs->halted || (e->msr & (1ULL << MSR_EE))) { |
| last_unjoined = false; |
| break; |
| } |
| } |
| if (last_unjoined) { |
| return H_CONTINUE; |
| } |
| |
| return h_confer_self(cpu); |
| } |
| |
| static target_ulong h_confer(PowerPCCPU *cpu, SpaprMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| target_long target = args[0]; |
| uint32_t dispatch = args[1]; |
| CPUState *cs = CPU(cpu); |
| SpaprCpuState *spapr_cpu; |
| |
| /* |
| * -1 means confer to all other CPUs without dispatch counter check, |
| * otherwise it's a targeted confer. |
| */ |
| if (target != -1) { |
| PowerPCCPU *target_cpu = spapr_find_cpu(target); |
| uint32_t target_dispatch; |
| |
| if (!target_cpu) { |
| return H_PARAMETER; |
| } |
| |
| /* |
| * target == self is a special case, we wait until prodded, without |
| * dispatch counter check. |
| */ |
| if (cpu == target_cpu) { |
| return h_confer_self(cpu); |
| } |
| |
| spapr_cpu = spapr_cpu_state(target_cpu); |
| if (!spapr_cpu->vpa_addr || ((dispatch & 1) == 0)) { |
| return H_SUCCESS; |
| } |
| |
| target_dispatch = ldl_be_phys(cs->as, |
| spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); |
| if (target_dispatch != dispatch) { |
| return H_SUCCESS; |
| } |
| |
| /* |
| * The targeted confer does not do anything special beyond yielding |
| * the current vCPU, but even this should be better than nothing. |
| * At least for single-threaded tcg, it gives the target a chance to |
| * run before we run again. Multi-threaded tcg does not really do |
| * anything with EXCP_YIELD yet. |
| */ |
| } |
| |
| cs->exception_index = EXCP_YIELD; |
| cs->exit_request = 1; |
| cpu_loop_exit(cs); |
| |
| return H_SUCCESS; |
| } |
| |
| static target_ulong h_prod(PowerPCCPU *cpu, SpaprMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| target_long target = args[0]; |
| PowerPCCPU *tcpu; |
| CPUState *cs; |
| SpaprCpuState *spapr_cpu; |
| |
| tcpu = spapr_find_cpu(target); |
| cs = CPU(tcpu); |
| if (!cs) { |
| return H_PARAMETER; |
| } |
| |
| spapr_cpu = spapr_cpu_state(tcpu); |
| spapr_cpu->prod = true; |
| cs->halted = 0; |
| ppc_maybe_interrupt(&cpu->env); |
| qemu_cpu_kick(cs); |
| |
| return H_SUCCESS; |
| } |
| |
| static target_ulong h_rtas(PowerPCCPU *cpu, SpaprMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| target_ulong rtas_r3 = args[0]; |
| uint32_t token = rtas_ld(rtas_r3, 0); |
| uint32_t nargs = rtas_ld(rtas_r3, 1); |
| uint32_t nret = rtas_ld(rtas_r3, 2); |
| |
| return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12, |
| nret, rtas_r3 + 12 + 4*nargs); |
| } |
| |
| static target_ulong h_logical_load(PowerPCCPU *cpu, SpaprMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| CPUState *cs = CPU(cpu); |
| target_ulong size = args[0]; |
| target_ulong addr = args[1]; |
| |
| switch (size) { |
| case 1: |
| args[0] = ldub_phys(cs->as, addr); |
| return H_SUCCESS; |
| case 2: |
| args[0] = lduw_phys(cs->as, addr); |
| return H_SUCCESS; |
| case 4: |
| args[0] = ldl_phys(cs->as, addr); |
| return H_SUCCESS; |
| case 8: |
| args[0] = ldq_phys(cs->as, addr); |
| return H_SUCCESS; |
| } |
| return H_PARAMETER; |
| } |
| |
| static target_ulong h_logical_store(PowerPCCPU *cpu, SpaprMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| CPUState *cs = CPU(cpu); |
| |
| target_ulong size = args[0]; |
| target_ulong addr = args[1]; |
| target_ulong val = args[2]; |
| |
| switch (size) { |
| case 1: |
| stb_phys(cs->as, addr, val); |
| return H_SUCCESS; |
| case 2: |
| stw_phys(cs->as, addr, val); |
| return H_SUCCESS; |
| case 4: |
| stl_phys(cs->as, addr, val); |
| return H_SUCCESS; |
| case 8: |
| stq_phys(cs->as, addr, val); |
| return H_SUCCESS; |
| } |
| return H_PARAMETER; |
| } |
| |
| static target_ulong h_logical_memop(PowerPCCPU *cpu, SpaprMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| CPUState *cs = CPU(cpu); |
| |
| target_ulong dst = args[0]; /* Destination address */ |
| target_ulong src = args[1]; /* Source address */ |
| target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */ |
| target_ulong count = args[3]; /* Element count */ |
| target_ulong op = args[4]; /* 0 = copy, 1 = invert */ |
| uint64_t tmp; |
| unsigned int mask = (1 << esize) - 1; |
| int step = 1 << esize; |
| |
| if (count > 0x80000000) { |
| return H_PARAMETER; |
| } |
| |
| if ((dst & mask) || (src & mask) || (op > 1)) { |
| return H_PARAMETER; |
| } |
| |
| if (dst >= src && dst < (src + (count << esize))) { |
| dst = dst + ((count - 1) << esize); |
| src = src + ((count - 1) << esize); |
| step = -step; |
| } |
| |
| while (count--) { |
| switch (esize) { |
| case 0: |
| tmp = ldub_phys(cs->as, src); |
| break; |
| case 1: |
| tmp = lduw_phys(cs->as, src); |
| break; |
| case 2: |
| tmp = ldl_phys(cs->as, src); |
| break; |
| case 3: |
| tmp = ldq_phys(cs->as, src); |
| break; |
| default: |
| return H_PARAMETER; |
| } |
| if (op == 1) { |
| tmp = ~tmp; |
| } |
| switch (esize) { |
| case 0: |
| stb_phys(cs->as, dst, tmp); |
| break; |
| case 1: |
| stw_phys(cs->as, dst, tmp); |
| break; |
| case 2: |
| stl_phys(cs->as, dst, tmp); |
| break; |
| case 3: |
| stq_phys(cs->as, dst, tmp); |
| break; |
| } |
| dst = dst + step; |
| src = src + step; |
| } |
| |
| return H_SUCCESS; |
| } |
| |
| static target_ulong h_logical_icbi(PowerPCCPU *cpu, SpaprMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| /* Nothing to do on emulation, KVM will trap this in the kernel */ |
| return H_SUCCESS; |
| } |
| |
| static target_ulong h_logical_dcbf(PowerPCCPU *cpu, SpaprMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| /* Nothing to do on emulation, KVM will trap this in the kernel */ |
| return H_SUCCESS; |
| } |
| |
| static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu, |
| SpaprMachineState *spapr, |
| target_ulong mflags, |
| target_ulong value1, |
| target_ulong value2) |
| { |
| if (value1) { |
| return H_P3; |
| } |
| if (value2) { |
| return H_P4; |
| } |
| |
| switch (mflags) { |
| case H_SET_MODE_ENDIAN_BIG: |
| spapr_set_all_lpcrs(0, LPCR_ILE); |
| spapr_pci_switch_vga(spapr, true); |
| return H_SUCCESS; |
| |
| case H_SET_MODE_ENDIAN_LITTLE: |
| spapr_set_all_lpcrs(LPCR_ILE, LPCR_ILE); |
| spapr_pci_switch_vga(spapr, false); |
| return H_SUCCESS; |
| } |
| |
| return H_UNSUPPORTED_FLAG; |
| } |
| |
| static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu, |
| target_ulong mflags, |
| target_ulong value1, |
| target_ulong value2) |
| { |
| PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); |
| |
| if (!(pcc->insns_flags2 & PPC2_ISA207S)) { |
| return H_P2; |
| } |
| if (value1) { |
| return H_P3; |
| } |
| if (value2) { |
| return H_P4; |
| } |
| |
| if (mflags == 1) { |
| /* AIL=1 is reserved in POWER8/POWER9/POWER10 */ |
| return H_UNSUPPORTED_FLAG; |
| } |
| |
| if (mflags == 2 && (pcc->insns_flags2 & PPC2_ISA310)) { |
| /* AIL=2 is reserved in POWER10 (ISA v3.1) */ |
| return H_UNSUPPORTED_FLAG; |
| } |
| |
| spapr_set_all_lpcrs(mflags << LPCR_AIL_SHIFT, LPCR_AIL); |
| |
| return H_SUCCESS; |
| } |
| |
| static target_ulong h_set_mode(PowerPCCPU *cpu, SpaprMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| target_ulong resource = args[1]; |
| target_ulong ret = H_P2; |
| |
| switch (resource) { |
| case H_SET_MODE_RESOURCE_LE: |
| ret = h_set_mode_resource_le(cpu, spapr, args[0], args[2], args[3]); |
| break; |
| case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE: |
| ret = h_set_mode_resource_addr_trans_mode(cpu, args[0], |
| args[2], args[3]); |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static target_ulong h_clean_slb(PowerPCCPU *cpu, SpaprMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n", |
| opcode, " (H_CLEAN_SLB)"); |
| return H_FUNCTION; |
| } |
| |
| static target_ulong h_invalidate_pid(PowerPCCPU *cpu, SpaprMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n", |
| opcode, " (H_INVALIDATE_PID)"); |
| return H_FUNCTION; |
| } |
| |
| static void spapr_check_setup_free_hpt(SpaprMachineState *spapr, |
| uint64_t patbe_old, uint64_t patbe_new) |
| { |
| /* |
| * We have 4 Options: |
| * HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing |
| * HASH->RADIX : Free HPT |
| * RADIX->HASH : Allocate HPT |
| * NOTHING->HASH : Allocate HPT |
| * Note: NOTHING implies the case where we said the guest could choose |
| * later and so assumed radix and now it's called H_REG_PROC_TBL |
| */ |
| |
| if ((patbe_old & PATE1_GR) == (patbe_new & PATE1_GR)) { |
| /* We assume RADIX, so this catches all the "Do Nothing" cases */ |
| } else if (!(patbe_old & PATE1_GR)) { |
| /* HASH->RADIX : Free HPT */ |
| spapr_free_hpt(spapr); |
| } else if (!(patbe_new & PATE1_GR)) { |
| /* RADIX->HASH || NOTHING->HASH : Allocate HPT */ |
| spapr_setup_hpt(spapr); |
| } |
| return; |
| } |
| |
| #define FLAGS_MASK 0x01FULL |
| #define FLAG_MODIFY 0x10 |
| #define FLAG_REGISTER 0x08 |
| #define FLAG_RADIX 0x04 |
| #define FLAG_HASH_PROC_TBL 0x02 |
| #define FLAG_GTSE 0x01 |
| |
| static target_ulong h_register_process_table(PowerPCCPU *cpu, |
| SpaprMachineState *spapr, |
| target_ulong opcode, |
| target_ulong *args) |
| { |
| target_ulong flags = args[0]; |
| target_ulong proc_tbl = args[1]; |
| target_ulong page_size = args[2]; |
| target_ulong table_size = args[3]; |
| target_ulong update_lpcr = 0; |
| target_ulong table_byte_size; |
| uint64_t cproc; |
| |
| if (flags & ~FLAGS_MASK) { /* Check no reserved bits are set */ |
| return H_PARAMETER; |
| } |
| if (flags & FLAG_MODIFY) { |
| if (flags & FLAG_REGISTER) { |
| /* Check process table alignment */ |
| table_byte_size = 1ULL << (table_size + 12); |
| if (proc_tbl & (table_byte_size - 1)) { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "%s: process table not properly aligned: proc_tbl 0x" |
| TARGET_FMT_lx" proc_tbl_size 0x"TARGET_FMT_lx"\n", |
| __func__, proc_tbl, table_byte_size); |
| } |
| if (flags & FLAG_RADIX) { /* Register new RADIX process table */ |
| if (proc_tbl & 0xfff || proc_tbl >> 60) { |
| return H_P2; |
| } else if (page_size) { |
| return H_P3; |
| } else if (table_size > 24) { |
| return H_P4; |
| } |
| cproc = PATE1_GR | proc_tbl | table_size; |
| } else { /* Register new HPT process table */ |
| if (flags & FLAG_HASH_PROC_TBL) { /* Hash with Segment Tables */ |
| /* TODO - Not Supported */ |
| /* Technically caused by flag bits => H_PARAMETER */ |
| return H_PARAMETER; |
| } else { /* Hash with SLB */ |
| if (proc_tbl >> 38) { |
| return H_P2; |
| } else if (page_size & ~0x7) { |
| return H_P3; |
| } else if (table_size > 24) { |
| return H_P4; |
| } |
| } |
| cproc = (proc_tbl << 25) | page_size << 5 | table_size; |
| } |
| |
| } else { /* Deregister current process table */ |
| /* |
| * Set to benign value: (current GR) | 0. This allows |
| * deregistration in KVM to succeed even if the radix bit |
| * in flags doesn't match the radix bit in the old PATE. |
| */ |
| cproc = spapr->patb_entry & PATE1_GR; |
| } |
| } else { /* Maintain current registration */ |
| if (!(flags & FLAG_RADIX) != !(spapr->patb_entry & PATE1_GR)) { |
| /* Technically caused by flag bits => H_PARAMETER */ |
| return H_PARAMETER; /* Existing Process Table Mismatch */ |
| } |
| cproc = spapr->patb_entry; |
| } |
| |
| /* Check if we need to setup OR free the hpt */ |
| spapr_check_setup_free_hpt(spapr, spapr->patb_entry, cproc); |
| |
| spapr->patb_entry = cproc; /* Save new process table */ |
| |
| /* Update the UPRT, HR and GTSE bits in the LPCR for all cpus */ |
| if (flags & FLAG_RADIX) /* Radix must use process tables, also set HR */ |
| update_lpcr |= (LPCR_UPRT | LPCR_HR); |
| else if (flags & FLAG_HASH_PROC_TBL) /* Hash with process tables */ |
| update_lpcr |= LPCR_UPRT; |
| if (flags & FLAG_GTSE) /* Guest translation shootdown enable */ |
| update_lpcr |= LPCR_GTSE; |
| |
| spapr_set_all_lpcrs(update_lpcr, LPCR_UPRT | LPCR_HR | LPCR_GTSE); |
| |
| if (kvm_enabled()) { |
| return kvmppc_configure_v3_mmu(cpu, flags & FLAG_RADIX, |
| flags & FLAG_GTSE, cproc); |
| } |
| return H_SUCCESS; |
| } |
| |
| #define H_SIGNAL_SYS_RESET_ALL -1 |
| #define H_SIGNAL_SYS_RESET_ALLBUTSELF -2 |
| |
| static target_ulong h_signal_sys_reset(PowerPCCPU *cpu, |
| SpaprMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| target_long target = args[0]; |
| CPUState *cs; |
| |
| if (target < 0) { |
| /* Broadcast */ |
| if (target < H_SIGNAL_SYS_RESET_ALLBUTSELF) { |
| return H_PARAMETER; |
| } |
| |
| CPU_FOREACH(cs) { |
| PowerPCCPU *c = POWERPC_CPU(cs); |
| |
| if (target == H_SIGNAL_SYS_RESET_ALLBUTSELF) { |
| if (c == cpu) { |
| continue; |
| } |
| } |
| run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); |
| } |
| return H_SUCCESS; |
| |
| } else { |
| /* Unicast */ |
| cs = CPU(spapr_find_cpu(target)); |
| if (cs) { |
| run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); |
| return H_SUCCESS; |
| } |
| return H_PARAMETER; |
| } |
| } |
| |
| /* Returns either a logical PVR or zero if none was found */ |
| static uint32_t cas_check_pvr(PowerPCCPU *cpu, uint32_t max_compat, |
| target_ulong *addr, bool *raw_mode_supported) |
| { |
| bool explicit_match = false; /* Matched the CPU's real PVR */ |
| uint32_t best_compat = 0; |
| int i; |
| |
| /* |
| * We scan the supplied table of PVRs looking for two things |
| * 1. Is our real CPU PVR in the list? |
| * 2. What's the "best" listed logical PVR |
| */ |
| for (i = 0; i < 512; ++i) { |
| uint32_t pvr, pvr_mask; |
| |
| pvr_mask = ldl_be_phys(&address_space_memory, *addr); |
| pvr = ldl_be_phys(&address_space_memory, *addr + 4); |
| *addr += 8; |
| |
| if (~pvr_mask & pvr) { |
| break; /* Terminator record */ |
| } |
| |
| if ((cpu->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask)) { |
| explicit_match = true; |
| } else { |
| if (ppc_check_compat(cpu, pvr, best_compat, max_compat)) { |
| best_compat = pvr; |
| } |
| } |
| } |
| |
| *raw_mode_supported = explicit_match; |
| |
| /* Parsing finished */ |
| trace_spapr_cas_pvr(cpu->compat_pvr, explicit_match, best_compat); |
| |
| return best_compat; |
| } |
| |
| static |
| target_ulong do_client_architecture_support(PowerPCCPU *cpu, |
| SpaprMachineState *spapr, |
| target_ulong vec, |
| target_ulong fdt_bufsize) |
| { |
| target_ulong ov_table; /* Working address in data buffer */ |
| uint32_t cas_pvr; |
| SpaprOptionVector *ov1_guest, *ov5_guest; |
| bool guest_radix; |
| bool raw_mode_supported = false; |
| bool guest_xive; |
| CPUState *cs; |
| void *fdt; |
| uint32_t max_compat = spapr->max_compat_pvr; |
| |
| /* CAS is supposed to be called early when only the boot vCPU is active. */ |
| CPU_FOREACH(cs) { |
| if (cs == CPU(cpu)) { |
| continue; |
| } |
| if (!cs->halted) { |
| warn_report("guest has multiple active vCPUs at CAS, which is not allowed"); |
| return H_MULTI_THREADS_ACTIVE; |
| } |
| } |
| |
| cas_pvr = cas_check_pvr(cpu, max_compat, &vec, &raw_mode_supported); |
| if (!cas_pvr && (!raw_mode_supported || max_compat)) { |
| /* |
| * We couldn't find a suitable compatibility mode, and either |
| * the guest doesn't support "raw" mode for this CPU, or "raw" |
| * mode is disabled because a maximum compat mode is set. |
| */ |
| error_report("Couldn't negotiate a suitable PVR during CAS"); |
| return H_HARDWARE; |
| } |
| |
| /* Update CPUs */ |
| if (cpu->compat_pvr != cas_pvr) { |
| Error *local_err = NULL; |
| |
| if (ppc_set_compat_all(cas_pvr, &local_err) < 0) { |
| /* We fail to set compat mode (likely because running with KVM PR), |
| * but maybe we can fallback to raw mode if the guest supports it. |
| */ |
| if (!raw_mode_supported) { |
| error_report_err(local_err); |
| return H_HARDWARE; |
| } |
| error_free(local_err); |
| } |
| } |
| |
| /* For the future use: here @ov_table points to the first option vector */ |
| ov_table = vec; |
| |
| ov1_guest = spapr_ovec_parse_vector(ov_table, 1); |
| if (!ov1_guest) { |
| warn_report("guest didn't provide option vector 1"); |
| return H_PARAMETER; |
| } |
| ov5_guest = spapr_ovec_parse_vector(ov_table, 5); |
| if (!ov5_guest) { |
| spapr_ovec_cleanup(ov1_guest); |
| warn_report("guest didn't provide option vector 5"); |
| return H_PARAMETER; |
| } |
| if (spapr_ovec_test(ov5_guest, OV5_MMU_BOTH)) { |
| error_report("guest requested hash and radix MMU, which is invalid."); |
| exit(EXIT_FAILURE); |
| } |
| if (spapr_ovec_test(ov5_guest, OV5_XIVE_BOTH)) { |
| error_report("guest requested an invalid interrupt mode"); |
| exit(EXIT_FAILURE); |
| } |
| |
| guest_radix = spapr_ovec_test(ov5_guest, OV5_MMU_RADIX_300); |
| |
| guest_xive = spapr_ovec_test(ov5_guest, OV5_XIVE_EXPLOIT); |
| |
| /* |
| * HPT resizing is a bit of a special case, because when enabled |
| * we assume an HPT guest will support it until it says it |
| * doesn't, instead of assuming it won't support it until it says |
| * it does. Strictly speaking that approach could break for |
| * guests which don't make a CAS call, but those are so old we |
| * don't care about them. Without that assumption we'd have to |
| * make at least a temporary allocation of an HPT sized for max |
| * memory, which could be impossibly difficult under KVM HV if |
| * maxram is large. |
| */ |
| if (!guest_radix && !spapr_ovec_test(ov5_guest, OV5_HPT_RESIZE)) { |
| int maxshift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); |
| |
| if (spapr->resize_hpt == SPAPR_RESIZE_HPT_REQUIRED) { |
| error_report( |
| "h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required"); |
| exit(1); |
| } |
| |
| if (spapr->htab_shift < maxshift) { |
| /* Guest doesn't know about HPT resizing, so we |
| * pre-emptively resize for the maximum permitted RAM. At |
| * the point this is called, nothing should have been |
| * entered into the existing HPT */ |
| spapr_reallocate_hpt(spapr, maxshift, &error_fatal); |
| push_sregs_to_kvm_pr(spapr); |
| } |
| } |
| |
| /* NOTE: there are actually a number of ov5 bits where input from the |
| * guest is always zero, and the platform/QEMU enables them independently |
| * of guest input. To model these properly we'd want some sort of mask, |
| * but since they only currently apply to memory migration as defined |
| * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need |
| * to worry about this for now. |
| */ |
| |
| /* full range of negotiated ov5 capabilities */ |
| spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest); |
| spapr_ovec_cleanup(ov5_guest); |
| |
| spapr_check_mmu_mode(guest_radix); |
| |
| spapr->cas_pre_isa3_guest = !spapr_ovec_test(ov1_guest, OV1_PPC_3_00); |
| spapr_ovec_cleanup(ov1_guest); |
| |
| /* |
| * Check for NUMA affinity conditions now that we know which NUMA |
| * affinity the guest will use. |
| */ |
| spapr_numa_associativity_check(spapr); |
| |
| /* |
| * Ensure the guest asks for an interrupt mode we support; |
| * otherwise terminate the boot. |
| */ |
| if (guest_xive) { |
| if (!spapr->irq->xive) { |
| error_report( |
| "Guest requested unavailable interrupt mode (XIVE), try the ic-mode=xive or ic-mode=dual machine property"); |
| exit(EXIT_FAILURE); |
| } |
| } else { |
| if (!spapr->irq->xics) { |
| error_report( |
| "Guest requested unavailable interrupt mode (XICS), either don't set the ic-mode machine property or try ic-mode=xics or ic-mode=dual"); |
| exit(EXIT_FAILURE); |
| } |
| } |
| |
| spapr_irq_update_active_intc(spapr); |
| |
| /* |
| * Process all pending hot-plug/unplug requests now. An updated full |
| * rendered FDT will be returned to the guest. |
| */ |
| spapr_drc_reset_all(spapr); |
| spapr_clear_pending_hotplug_events(spapr); |
| |
| /* |
| * If spapr_machine_reset() did not set up a HPT but one is necessary |
| * (because the guest isn't going to use radix) then set it up here. |
| */ |
| if ((spapr->patb_entry & PATE1_GR) && !guest_radix) { |
| /* legacy hash or new hash: */ |
| spapr_setup_hpt(spapr); |
| } |
| |
| fdt = spapr_build_fdt(spapr, spapr->vof != NULL, fdt_bufsize); |
| g_free(spapr->fdt_blob); |
| spapr->fdt_size = fdt_totalsize(fdt); |
| spapr->fdt_initial_size = spapr->fdt_size; |
| spapr->fdt_blob = fdt; |
| |
| /* |
| * Set the machine->fdt pointer again since we just freed |
| * it above (by freeing spapr->fdt_blob). We set this |
| * pointer to enable support for the 'dumpdtb' QMP/HMP |
| * command. |
| */ |
| MACHINE(spapr)->fdt = fdt; |
| |
| return H_SUCCESS; |
| } |
| |
| static target_ulong h_client_architecture_support(PowerPCCPU *cpu, |
| SpaprMachineState *spapr, |
| target_ulong opcode, |
| target_ulong *args) |
| { |
| target_ulong vec = ppc64_phys_to_real(args[0]); |
| target_ulong fdt_buf = args[1]; |
| target_ulong fdt_bufsize = args[2]; |
| target_ulong ret; |
| SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 }; |
| |
| if (fdt_bufsize < sizeof(hdr)) { |
| error_report("SLOF provided insufficient CAS buffer " |
| TARGET_FMT_lu " (min: %zu)", fdt_bufsize, sizeof(hdr)); |
| exit(EXIT_FAILURE); |
| } |
| |
| fdt_bufsize -= sizeof(hdr); |
| |
| ret = do_client_architecture_support(cpu, spapr, vec, fdt_bufsize); |
| if (ret == H_SUCCESS) { |
| _FDT((fdt_pack(spapr->fdt_blob))); |
| spapr->fdt_size = fdt_totalsize(spapr->fdt_blob); |
| spapr->fdt_initial_size = spapr->fdt_size; |
| |
| cpu_physical_memory_write(fdt_buf, &hdr, sizeof(hdr)); |
| cpu_physical_memory_write(fdt_buf + sizeof(hdr), spapr->fdt_blob, |
| spapr->fdt_size); |
| trace_spapr_cas_continue(spapr->fdt_size + sizeof(hdr)); |
| } |
| |
| return ret; |
| } |
| |
| target_ulong spapr_vof_client_architecture_support(MachineState *ms, |
| CPUState *cs, |
| target_ulong ovec_addr) |
| { |
| SpaprMachineState *spapr = SPAPR_MACHINE(ms); |
| |
| target_ulong ret = do_client_architecture_support(POWERPC_CPU(cs), spapr, |
| ovec_addr, FDT_MAX_SIZE); |
| |
| /* |
| * This adds stdout and generates phandles for boottime and CAS FDTs. |
| * It is alright to update the FDT here as do_client_architecture_support() |
| * does not pack it. |
| */ |
| spapr_vof_client_dt_finalize(spapr, spapr->fdt_blob); |
| |
| return ret; |
| } |
| |
| static target_ulong h_get_cpu_characteristics(PowerPCCPU *cpu, |
| SpaprMachineState *spapr, |
| target_ulong opcode, |
| target_ulong *args) |
| { |
| uint64_t characteristics = H_CPU_CHAR_HON_BRANCH_HINTS & |
| ~H_CPU_CHAR_THR_RECONF_TRIG; |
| uint64_t behaviour = H_CPU_BEHAV_FAVOUR_SECURITY; |
| uint8_t safe_cache = spapr_get_cap(spapr, SPAPR_CAP_CFPC); |
| uint8_t safe_bounds_check = spapr_get_cap(spapr, SPAPR_CAP_SBBC); |
| uint8_t safe_indirect_branch = spapr_get_cap(spapr, SPAPR_CAP_IBS); |
| uint8_t count_cache_flush_assist = spapr_get_cap(spapr, |
| SPAPR_CAP_CCF_ASSIST); |
| |
| switch (safe_cache) { |
| case SPAPR_CAP_WORKAROUND: |
| characteristics |= H_CPU_CHAR_L1D_FLUSH_ORI30; |
| characteristics |= H_CPU_CHAR_L1D_FLUSH_TRIG2; |
| characteristics |= H_CPU_CHAR_L1D_THREAD_PRIV; |
| behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR; |
| break; |
| case SPAPR_CAP_FIXED: |
| behaviour |= H_CPU_BEHAV_NO_L1D_FLUSH_ENTRY; |
| behaviour |= H_CPU_BEHAV_NO_L1D_FLUSH_UACCESS; |
| break; |
| default: /* broken */ |
| assert(safe_cache == SPAPR_CAP_BROKEN); |
| behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR; |
| break; |
| } |
| |
| switch (safe_bounds_check) { |
| case SPAPR_CAP_WORKAROUND: |
| characteristics |= H_CPU_CHAR_SPEC_BAR_ORI31; |
| behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR; |
| break; |
| case SPAPR_CAP_FIXED: |
| break; |
| default: /* broken */ |
| assert(safe_bounds_check == SPAPR_CAP_BROKEN); |
| behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR; |
| break; |
| } |
| |
| switch (safe_indirect_branch) { |
| case SPAPR_CAP_FIXED_NA: |
| break; |
| case SPAPR_CAP_FIXED_CCD: |
| characteristics |= H_CPU_CHAR_CACHE_COUNT_DIS; |
| break; |
| case SPAPR_CAP_FIXED_IBS: |
| characteristics |= H_CPU_CHAR_BCCTRL_SERIALISED; |
| break; |
| case SPAPR_CAP_WORKAROUND: |
| behaviour |= H_CPU_BEHAV_FLUSH_COUNT_CACHE; |
| if (count_cache_flush_assist) { |
| characteristics |= H_CPU_CHAR_BCCTR_FLUSH_ASSIST; |
| } |
| break; |
| default: /* broken */ |
| assert(safe_indirect_branch == SPAPR_CAP_BROKEN); |
| break; |
| } |
| |
| args[0] = characteristics; |
| args[1] = behaviour; |
| return H_SUCCESS; |
| } |
| |
| static target_ulong h_update_dt(PowerPCCPU *cpu, SpaprMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| target_ulong dt = ppc64_phys_to_real(args[0]); |
| struct fdt_header hdr = { 0 }; |
| unsigned cb; |
| SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); |
| void *fdt; |
| |
| cpu_physical_memory_read(dt, &hdr, sizeof(hdr)); |
| cb = fdt32_to_cpu(hdr.totalsize); |
| |
| if (!smc->update_dt_enabled) { |
| return H_SUCCESS; |
| } |
| |
| /* Check that the fdt did not grow out of proportion */ |
| if (cb > spapr->fdt_initial_size * 2) { |
| trace_spapr_update_dt_failed_size(spapr->fdt_initial_size, cb, |
| fdt32_to_cpu(hdr.magic)); |
| return H_PARAMETER; |
| } |
| |
| fdt = g_malloc0(cb); |
| cpu_physical_memory_read(dt, fdt, cb); |
| |
| /* Check the fdt consistency */ |
| if (fdt_check_full(fdt, cb)) { |
| trace_spapr_update_dt_failed_check(spapr->fdt_initial_size, cb, |
| fdt32_to_cpu(hdr.magic)); |
| return H_PARAMETER; |
| } |
| |
| g_free(spapr->fdt_blob); |
| spapr->fdt_size = cb; |
| spapr->fdt_blob = fdt; |
| trace_spapr_update_dt(cb); |
| |
| return H_SUCCESS; |
| } |
| |
| static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1]; |
| static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1]; |
| static spapr_hcall_fn svm_hypercall_table[(SVM_HCALL_MAX - SVM_HCALL_BASE) / 4 + 1]; |
| |
| void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn) |
| { |
| spapr_hcall_fn *slot; |
| |
| if (opcode <= MAX_HCALL_OPCODE) { |
| assert((opcode & 0x3) == 0); |
| |
| slot = &papr_hypercall_table[opcode / 4]; |
| } else if (opcode >= SVM_HCALL_BASE && opcode <= SVM_HCALL_MAX) { |
| /* we only have SVM-related hcall numbers assigned in multiples of 4 */ |
| assert((opcode & 0x3) == 0); |
| |
| slot = &svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4]; |
| } else { |
| assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX)); |
| |
| slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE]; |
| } |
| |
| assert(!(*slot)); |
| *slot = fn; |
| } |
| |
| target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode, |
| target_ulong *args) |
| { |
| SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); |
| |
| if ((opcode <= MAX_HCALL_OPCODE) |
| && ((opcode & 0x3) == 0)) { |
| spapr_hcall_fn fn = papr_hypercall_table[opcode / 4]; |
| |
| if (fn) { |
| return fn(cpu, spapr, opcode, args); |
| } |
| } else if ((opcode >= SVM_HCALL_BASE) && |
| (opcode <= SVM_HCALL_MAX)) { |
| spapr_hcall_fn fn = svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4]; |
| |
| if (fn) { |
| return fn(cpu, spapr, opcode, args); |
| } |
| } else if ((opcode >= KVMPPC_HCALL_BASE) && |
| (opcode <= KVMPPC_HCALL_MAX)) { |
| spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE]; |
| |
| if (fn) { |
| return fn(cpu, spapr, opcode, args); |
| } |
| } |
| |
| qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n", |
| opcode); |
| return H_FUNCTION; |
| } |
| |
| #ifdef CONFIG_TCG |
| #define PRTS_MASK 0x1f |
| |
| static target_ulong h_set_ptbl(PowerPCCPU *cpu, |
| SpaprMachineState *spapr, |
| target_ulong opcode, |
| target_ulong *args) |
| { |
| target_ulong ptcr = args[0]; |
| |
| if (!spapr_get_cap(spapr, SPAPR_CAP_NESTED_KVM_HV)) { |
| return H_FUNCTION; |
| } |
| |
| if ((ptcr & PRTS_MASK) + 12 - 4 > 12) { |
| return H_PARAMETER; |
| } |
| |
| spapr->nested_ptcr = ptcr; /* Save new partition table */ |
| |
| return H_SUCCESS; |
| } |
| |
| static target_ulong h_tlb_invalidate(PowerPCCPU *cpu, |
| SpaprMachineState *spapr, |
| target_ulong opcode, |
| target_ulong *args) |
| { |
| /* |
| * The spapr virtual hypervisor nested HV implementation retains no L2 |
| * translation state except for TLB. And the TLB is always invalidated |
| * across L1<->L2 transitions, so nothing is required here. |
| */ |
| |
| return H_SUCCESS; |
| } |
| |
| static target_ulong h_copy_tofrom_guest(PowerPCCPU *cpu, |
| SpaprMachineState *spapr, |
| target_ulong opcode, |
| target_ulong *args) |
| { |
| /* |
| * This HCALL is not required, L1 KVM will take a slow path and walk the |
| * page tables manually to do the data copy. |
| */ |
| return H_FUNCTION; |
| } |
| |
| /* |
| * When this handler returns, the environment is switched to the L2 guest |
| * and TCG begins running that. spapr_exit_nested() performs the switch from |
| * L2 back to L1 and returns from the H_ENTER_NESTED hcall. |
| */ |
| static target_ulong h_enter_nested(PowerPCCPU *cpu, |
| SpaprMachineState *spapr, |
| target_ulong opcode, |
| target_ulong *args) |
| { |
| PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); |
| CPUState *cs = CPU(cpu); |
| CPUPPCState *env = &cpu->env; |
| SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); |
| target_ulong hv_ptr = args[0]; |
| target_ulong regs_ptr = args[1]; |
| target_ulong hdec, now = cpu_ppc_load_tbl(env); |
| target_ulong lpcr, lpcr_mask; |
| struct kvmppc_hv_guest_state *hvstate; |
| struct kvmppc_hv_guest_state hv_state; |
| struct kvmppc_pt_regs *regs; |
| hwaddr len; |
| uint64_t cr; |
| int i; |
| |
| if (spapr->nested_ptcr == 0) { |
| return H_NOT_AVAILABLE; |
| } |
| |
| len = sizeof(*hvstate); |
| hvstate = address_space_map(CPU(cpu)->as, hv_ptr, &len, false, |
| MEMTXATTRS_UNSPECIFIED); |
| if (len != sizeof(*hvstate)) { |
| address_space_unmap(CPU(cpu)->as, hvstate, len, 0, false); |
| return H_PARAMETER; |
| } |
| |
| memcpy(&hv_state, hvstate, len); |
| |
| address_space_unmap(CPU(cpu)->as, hvstate, len, len, false); |
| |
| /* |
| * We accept versions 1 and 2. Version 2 fields are unused because TCG |
| * does not implement DAWR*. |
| */ |
| if (hv_state.version > HV_GUEST_STATE_VERSION) { |
| return H_PARAMETER; |
| } |
| |
| spapr_cpu->nested_host_state = g_try_new(CPUPPCState, 1); |
| if (!spapr_cpu->nested_host_state) { |
| return H_NO_MEM; |
| } |
| |
| memcpy(spapr_cpu->nested_host_state, env, sizeof(CPUPPCState)); |
| |
| len = sizeof(*regs); |
| regs = address_space_map(CPU(cpu)->as, regs_ptr, &len, false, |
| MEMTXATTRS_UNSPECIFIED); |
| if (!regs || len != sizeof(*regs)) { |
| address_space_unmap(CPU(cpu)->as, regs, len, 0, false); |
| g_free(spapr_cpu->nested_host_state); |
| return H_P2; |
| } |
| |
| len = sizeof(env->gpr); |
| assert(len == sizeof(regs->gpr)); |
| memcpy(env->gpr, regs->gpr, len); |
| |
| env->lr = regs->link; |
| env->ctr = regs->ctr; |
| cpu_write_xer(env, regs->xer); |
| |
| cr = regs->ccr; |
| for (i = 7; i >= 0; i--) { |
| env->crf[i] = cr & 15; |
| cr >>= 4; |
| } |
| |
| env->msr = regs->msr; |
| env->nip = regs->nip; |
| |
| address_space_unmap(CPU(cpu)->as, regs, len, len, false); |
| |
| env->cfar = hv_state.cfar; |
| |
| assert(env->spr[SPR_LPIDR] == 0); |
| env->spr[SPR_LPIDR] = hv_state.lpid; |
| |
| lpcr_mask = LPCR_DPFD | LPCR_ILE | LPCR_AIL | LPCR_LD | LPCR_MER; |
| lpcr = (env->spr[SPR_LPCR] & ~lpcr_mask) | (hv_state.lpcr & lpcr_mask); |
| lpcr |= LPCR_HR | LPCR_UPRT | LPCR_GTSE | LPCR_HVICE | LPCR_HDICE; |
| lpcr &= ~LPCR_LPES0; |
| env->spr[SPR_LPCR] = lpcr & pcc->lpcr_mask; |
| |
| env->spr[SPR_PCR] = hv_state.pcr; |
| /* hv_state.amor is not used */ |
| env->spr[SPR_DPDES] = hv_state.dpdes; |
| env->spr[SPR_HFSCR] = hv_state.hfscr; |
| hdec = hv_state.hdec_expiry - now; |
| spapr_cpu->nested_tb_offset = hv_state.tb_offset; |
| /* TCG does not implement DAWR*, CIABR, PURR, SPURR, IC, VTB, HEIR SPRs*/ |
| env->spr[SPR_SRR0] = hv_state.srr0; |
| env->spr[SPR_SRR1] = hv_state.srr1; |
| env->spr[SPR_SPRG0] = hv_state.sprg[0]; |
| env->spr[SPR_SPRG1] = hv_state.sprg[1]; |
| env->spr[SPR_SPRG2] = hv_state.sprg[2]; |
| env->spr[SPR_SPRG3] = hv_state.sprg[3]; |
| env->spr[SPR_BOOKS_PID] = hv_state.pidr; |
| env->spr[SPR_PPR] = hv_state.ppr; |
| |
| cpu_ppc_hdecr_init(env); |
| cpu_ppc_store_hdecr(env, hdec); |
| |
| /* |
| * The hv_state.vcpu_token is not needed. It is used by the KVM |
| * implementation to remember which L2 vCPU last ran on which physical |
| * CPU so as to invalidate process scope translations if it is moved |
| * between physical CPUs. For now TLBs are always flushed on L1<->L2 |
| * transitions so this is not a problem. |
| * |
| * Could validate that the same vcpu_token does not attempt to run on |
| * different L1 vCPUs at the same time, but that would be a L1 KVM bug |
| * and it's not obviously worth a new data structure to do it. |
| */ |
| |
| env->tb_env->tb_offset += spapr_cpu->nested_tb_offset; |
| spapr_cpu->in_nested = true; |
| |
| hreg_compute_hflags(env); |
| ppc_maybe_interrupt(env); |
| tlb_flush(cs); |
| env->reserve_addr = -1; /* Reset the reservation */ |
| |
| /* |
| * The spapr hcall helper sets env->gpr[3] to the return value, but at |
| * this point the L1 is not returning from the hcall but rather we |
| * start running the L2, so r3 must not be clobbered, so return env->gpr[3] |
| * to leave it unchanged. |
| */ |
| return env->gpr[3]; |
| } |
| |
| void spapr_exit_nested(PowerPCCPU *cpu, int excp) |
| { |
| CPUState *cs = CPU(cpu); |
| CPUPPCState *env = &cpu->env; |
| SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); |
| target_ulong r3_return = env->excp_vectors[excp]; /* hcall return value */ |
| target_ulong hv_ptr = spapr_cpu->nested_host_state->gpr[4]; |
| target_ulong regs_ptr = spapr_cpu->nested_host_state->gpr[5]; |
| struct kvmppc_hv_guest_state *hvstate; |
| struct kvmppc_pt_regs *regs; |
| hwaddr len; |
| uint64_t cr; |
| int i; |
| |
| assert(spapr_cpu->in_nested); |
| |
| cpu_ppc_hdecr_exit(env); |
| |
| len = sizeof(*hvstate); |
| hvstate = address_space_map(CPU(cpu)->as, hv_ptr, &len, true, |
| MEMTXATTRS_UNSPECIFIED); |
| if (len != sizeof(*hvstate)) { |
| address_space_unmap(CPU(cpu)->as, hvstate, len, 0, true); |
| r3_return = H_PARAMETER; |
| goto out_restore_l1; |
| } |
| |
| hvstate->cfar = env->cfar; |
| hvstate->lpcr = env->spr[SPR_LPCR]; |
| hvstate->pcr = env->spr[SPR_PCR]; |
| hvstate->dpdes = env->spr[SPR_DPDES]; |
| hvstate->hfscr = env->spr[SPR_HFSCR]; |
| |
| if (excp == POWERPC_EXCP_HDSI) { |
| hvstate->hdar = env->spr[SPR_HDAR]; |
| hvstate->hdsisr = env->spr[SPR_HDSISR]; |
| hvstate->asdr = env->spr[SPR_ASDR]; |
| } else if (excp == POWERPC_EXCP_HISI) { |
| hvstate->asdr = env->spr[SPR_ASDR]; |
| } |
| |
| /* HEIR should be implemented for HV mode and saved here. */ |
| hvstate->srr0 = env->spr[SPR_SRR0]; |
| hvstate->srr1 = env->spr[SPR_SRR1]; |
| hvstate->sprg[0] = env->spr[SPR_SPRG0]; |
| hvstate->sprg[1] = env->spr[SPR_SPRG1]; |
| hvstate->sprg[2] = env->spr[SPR_SPRG2]; |
| hvstate->sprg[3] = env->spr[SPR_SPRG3]; |
| hvstate->pidr = env->spr[SPR_BOOKS_PID]; |
| hvstate->ppr = env->spr[SPR_PPR]; |
| |
| /* Is it okay to specify write length larger than actual data written? */ |
| address_space_unmap(CPU(cpu)->as, hvstate, len, len, true); |
| |
| len = sizeof(*regs); |
| regs = address_space_map(CPU(cpu)->as, regs_ptr, &len, true, |
| MEMTXATTRS_UNSPECIFIED); |
| if (!regs || len != sizeof(*regs)) { |
| address_space_unmap(CPU(cpu)->as, regs, len, 0, true); |
| r3_return = H_P2; |
| goto out_restore_l1; |
| } |
| |
| len = sizeof(env->gpr); |
| assert(len == sizeof(regs->gpr)); |
| memcpy(regs->gpr, env->gpr, len); |
| |
| regs->link = env->lr; |
| regs->ctr = env->ctr; |
| regs->xer = cpu_read_xer(env); |
| |
| cr = 0; |
| for (i = 0; i < 8; i++) { |
| cr |= (env->crf[i] & 15) << (4 * (7 - i)); |
| } |
| regs->ccr = cr; |
| |
| if (excp == POWERPC_EXCP_MCHECK || |
| excp == POWERPC_EXCP_RESET || |
| excp == POWERPC_EXCP_SYSCALL) { |
| regs->nip = env->spr[SPR_SRR0]; |
| regs->msr = env->spr[SPR_SRR1] & env->msr_mask; |
| } else { |
| regs->nip = env->spr[SPR_HSRR0]; |
| regs->msr = env->spr[SPR_HSRR1] & env->msr_mask; |
| } |
| |
| /* Is it okay to specify write length larger than actual data written? */ |
| address_space_unmap(CPU(cpu)->as, regs, len, len, true); |
| |
| out_restore_l1: |
| memcpy(env->gpr, spapr_cpu->nested_host_state->gpr, sizeof(env->gpr)); |
| env->lr = spapr_cpu->nested_host_state->lr; |
| env->ctr = spapr_cpu->nested_host_state->ctr; |
| memcpy(env->crf, spapr_cpu->nested_host_state->crf, sizeof(env->crf)); |
| env->cfar = spapr_cpu->nested_host_state->cfar; |
| env->xer = spapr_cpu->nested_host_state->xer; |
| env->so = spapr_cpu->nested_host_state->so; |
| env->ov = spapr_cpu->nested_host_state->ov; |
| env->ov32 = spapr_cpu->nested_host_state->ov32; |
| env->ca32 = spapr_cpu->nested_host_state->ca32; |
| env->msr = spapr_cpu->nested_host_state->msr; |
| env->nip = spapr_cpu->nested_host_state->nip; |
| |
| assert(env->spr[SPR_LPIDR] != 0); |
| env->spr[SPR_LPCR] = spapr_cpu->nested_host_state->spr[SPR_LPCR]; |
| env->spr[SPR_LPIDR] = spapr_cpu->nested_host_state->spr[SPR_LPIDR]; |
| env->spr[SPR_PCR] = spapr_cpu->nested_host_state->spr[SPR_PCR]; |
| env->spr[SPR_DPDES] = 0; |
| env->spr[SPR_HFSCR] = spapr_cpu->nested_host_state->spr[SPR_HFSCR]; |
| env->spr[SPR_SRR0] = spapr_cpu->nested_host_state->spr[SPR_SRR0]; |
| env->spr[SPR_SRR1] = spapr_cpu->nested_host_state->spr[SPR_SRR1]; |
| env->spr[SPR_SPRG0] = spapr_cpu->nested_host_state->spr[SPR_SPRG0]; |
| env->spr[SPR_SPRG1] = spapr_cpu->nested_host_state->spr[SPR_SPRG1]; |
| env->spr[SPR_SPRG2] = spapr_cpu->nested_host_state->spr[SPR_SPRG2]; |
| env->spr[SPR_SPRG3] = spapr_cpu->nested_host_state->spr[SPR_SPRG3]; |
| env->spr[SPR_BOOKS_PID] = spapr_cpu->nested_host_state->spr[SPR_BOOKS_PID]; |
| env->spr[SPR_PPR] = spapr_cpu->nested_host_state->spr[SPR_PPR]; |
| |
| /* |
| * Return the interrupt vector address from H_ENTER_NESTED to the L1 |
| * (or error code). |
| */ |
| env->gpr[3] = r3_return; |
| |
| env->tb_env->tb_offset -= spapr_cpu->nested_tb_offset; |
| spapr_cpu->in_nested = false; |
| |
| hreg_compute_hflags(env); |
| ppc_maybe_interrupt(env); |
| tlb_flush(cs); |
| env->reserve_addr = -1; /* Reset the reservation */ |
| |
| g_free(spapr_cpu->nested_host_state); |
| spapr_cpu->nested_host_state = NULL; |
| } |
| |
| static void hypercall_register_nested(void) |
| { |
| spapr_register_hypercall(KVMPPC_H_SET_PARTITION_TABLE, h_set_ptbl); |
| spapr_register_hypercall(KVMPPC_H_ENTER_NESTED, h_enter_nested); |
| spapr_register_hypercall(KVMPPC_H_TLB_INVALIDATE, h_tlb_invalidate); |
| spapr_register_hypercall(KVMPPC_H_COPY_TOFROM_GUEST, h_copy_tofrom_guest); |
| } |
| |
| static void hypercall_register_softmmu(void) |
| { |
| /* DO NOTHING */ |
| } |
| #else |
| void spapr_exit_nested(PowerPCCPU *cpu, int excp) |
| { |
| g_assert_not_reached(); |
| } |
| |
| static target_ulong h_softmmu(PowerPCCPU *cpu, SpaprMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| g_assert_not_reached(); |
| } |
| |
| static void hypercall_register_nested(void) |
| { |
| /* DO NOTHING */ |
| } |
| |
| static void hypercall_register_softmmu(void) |
| { |
| /* hcall-pft */ |
| spapr_register_hypercall(H_ENTER, h_softmmu); |
| spapr_register_hypercall(H_REMOVE, h_softmmu); |
| spapr_register_hypercall(H_PROTECT, h_softmmu); |
| spapr_register_hypercall(H_READ, h_softmmu); |
| |
| /* hcall-bulk */ |
| spapr_register_hypercall(H_BULK_REMOVE, h_softmmu); |
| } |
| #endif |
| |
| static void hypercall_register_types(void) |
| { |
| hypercall_register_softmmu(); |
| |
| /* hcall-hpt-resize */ |
| spapr_register_hypercall(H_RESIZE_HPT_PREPARE, h_resize_hpt_prepare); |
| spapr_register_hypercall(H_RESIZE_HPT_COMMIT, h_resize_hpt_commit); |
| |
| /* hcall-splpar */ |
| spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa); |
| spapr_register_hypercall(H_CEDE, h_cede); |
| spapr_register_hypercall(H_CONFER, h_confer); |
| spapr_register_hypercall(H_PROD, h_prod); |
| |
| /* hcall-join */ |
| spapr_register_hypercall(H_JOIN, h_join); |
| |
| spapr_register_hypercall(H_SIGNAL_SYS_RESET, h_signal_sys_reset); |
| |
| /* processor register resource access h-calls */ |
| spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0); |
| spapr_register_hypercall(H_SET_DABR, h_set_dabr); |
| spapr_register_hypercall(H_SET_XDABR, h_set_xdabr); |
| spapr_register_hypercall(H_PAGE_INIT, h_page_init); |
| spapr_register_hypercall(H_SET_MODE, h_set_mode); |
| |
| /* In Memory Table MMU h-calls */ |
| spapr_register_hypercall(H_CLEAN_SLB, h_clean_slb); |
| spapr_register_hypercall(H_INVALIDATE_PID, h_invalidate_pid); |
| spapr_register_hypercall(H_REGISTER_PROC_TBL, h_register_process_table); |
| |
| /* hcall-get-cpu-characteristics */ |
| spapr_register_hypercall(H_GET_CPU_CHARACTERISTICS, |
| h_get_cpu_characteristics); |
| |
| /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate |
| * here between the "CI" and the "CACHE" variants, they will use whatever |
| * mapping attributes qemu is using. When using KVM, the kernel will |
| * enforce the attributes more strongly |
| */ |
| spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load); |
| spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store); |
| spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load); |
| spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store); |
| spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi); |
| spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf); |
| spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop); |
| |
| /* qemu/KVM-PPC specific hcalls */ |
| spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas); |
| |
| /* ibm,client-architecture-support support */ |
| spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support); |
| |
| spapr_register_hypercall(KVMPPC_H_UPDATE_DT, h_update_dt); |
| |
| hypercall_register_nested(); |
| } |
| |
| type_init(hypercall_register_types) |