blob: 8ccaab78590f8e146e7348526239b18f16301b76 [file] [log] [blame]
/*
* mmap support for qemu
*
* Copyright (c) 2003 Fabrice Bellard
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include <sys/shm.h>
#include "trace.h"
#include "exec/log.h"
#include "qemu.h"
#include "user-internals.h"
#include "user-mmap.h"
#include "target_mman.h"
#include "qemu/interval-tree.h"
static pthread_mutex_t mmap_mutex = PTHREAD_MUTEX_INITIALIZER;
static __thread int mmap_lock_count;
void mmap_lock(void)
{
if (mmap_lock_count++ == 0) {
pthread_mutex_lock(&mmap_mutex);
}
}
void mmap_unlock(void)
{
assert(mmap_lock_count > 0);
if (--mmap_lock_count == 0) {
pthread_mutex_unlock(&mmap_mutex);
}
}
bool have_mmap_lock(void)
{
return mmap_lock_count > 0 ? true : false;
}
/* Grab lock to make sure things are in a consistent state after fork(). */
void mmap_fork_start(void)
{
if (mmap_lock_count)
abort();
pthread_mutex_lock(&mmap_mutex);
}
void mmap_fork_end(int child)
{
if (child) {
pthread_mutex_init(&mmap_mutex, NULL);
} else {
pthread_mutex_unlock(&mmap_mutex);
}
}
/* Protected by mmap_lock. */
static IntervalTreeRoot shm_regions;
static void shm_region_add(abi_ptr start, abi_ptr last)
{
IntervalTreeNode *i = g_new0(IntervalTreeNode, 1);
i->start = start;
i->last = last;
interval_tree_insert(i, &shm_regions);
}
static abi_ptr shm_region_find(abi_ptr start)
{
IntervalTreeNode *i;
for (i = interval_tree_iter_first(&shm_regions, start, start); i;
i = interval_tree_iter_next(i, start, start)) {
if (i->start == start) {
return i->last;
}
}
return 0;
}
static void shm_region_rm_complete(abi_ptr start, abi_ptr last)
{
IntervalTreeNode *i, *n;
for (i = interval_tree_iter_first(&shm_regions, start, last); i; i = n) {
n = interval_tree_iter_next(i, start, last);
if (i->start >= start && i->last <= last) {
interval_tree_remove(i, &shm_regions);
g_free(i);
}
}
}
/*
* Validate target prot bitmask.
* Return the prot bitmask for the host in *HOST_PROT.
* Return 0 if the target prot bitmask is invalid, otherwise
* the internal qemu page_flags (which will include PAGE_VALID).
*/
static int validate_prot_to_pageflags(int prot)
{
int valid = PROT_READ | PROT_WRITE | PROT_EXEC | TARGET_PROT_SEM;
int page_flags = (prot & PAGE_BITS) | PAGE_VALID;
#ifdef TARGET_AARCH64
{
ARMCPU *cpu = ARM_CPU(thread_cpu);
/*
* The PROT_BTI bit is only accepted if the cpu supports the feature.
* Since this is the unusual case, don't bother checking unless
* the bit has been requested. If set and valid, record the bit
* within QEMU's page_flags.
*/
if ((prot & TARGET_PROT_BTI) && cpu_isar_feature(aa64_bti, cpu)) {
valid |= TARGET_PROT_BTI;
page_flags |= PAGE_BTI;
}
/* Similarly for the PROT_MTE bit. */
if ((prot & TARGET_PROT_MTE) && cpu_isar_feature(aa64_mte, cpu)) {
valid |= TARGET_PROT_MTE;
page_flags |= PAGE_MTE;
}
}
#elif defined(TARGET_HPPA)
valid |= PROT_GROWSDOWN | PROT_GROWSUP;
#endif
return prot & ~valid ? 0 : page_flags;
}
/*
* For the host, we need not pass anything except read/write/exec.
* While PROT_SEM is allowed by all hosts, it is also ignored, so
* don't bother transforming guest bit to host bit. Any other
* target-specific prot bits will not be understood by the host
* and will need to be encoded into page_flags for qemu emulation.
*
* Pages that are executable by the guest will never be executed
* by the host, but the host will need to be able to read them.
*/
static int target_to_host_prot(int prot)
{
return (prot & (PROT_READ | PROT_WRITE)) |
(prot & PROT_EXEC ? PROT_READ : 0);
}
/* NOTE: all the constants are the HOST ones, but addresses are target. */
int target_mprotect(abi_ulong start, abi_ulong len, int target_prot)
{
abi_ulong starts[3];
abi_ulong lens[3];
int prots[3];
abi_ulong host_start, host_last, last;
int prot1, ret, page_flags, nranges;
trace_target_mprotect(start, len, target_prot);
if ((start & ~TARGET_PAGE_MASK) != 0) {
return -TARGET_EINVAL;
}
page_flags = validate_prot_to_pageflags(target_prot);
if (!page_flags) {
return -TARGET_EINVAL;
}
if (len == 0) {
return 0;
}
len = TARGET_PAGE_ALIGN(len);
if (!guest_range_valid_untagged(start, len)) {
return -TARGET_ENOMEM;
}
last = start + len - 1;
host_start = start & qemu_host_page_mask;
host_last = HOST_PAGE_ALIGN(last) - 1;
nranges = 0;
mmap_lock();
if (host_last - host_start < qemu_host_page_size) {
/* Single host page contains all guest pages: sum the prot. */
prot1 = target_prot;
for (abi_ulong a = host_start; a < start; a += TARGET_PAGE_SIZE) {
prot1 |= page_get_flags(a);
}
for (abi_ulong a = last; a < host_last; a += TARGET_PAGE_SIZE) {
prot1 |= page_get_flags(a + 1);
}
starts[nranges] = host_start;
lens[nranges] = qemu_host_page_size;
prots[nranges] = prot1;
nranges++;
} else {
if (host_start < start) {
/* Host page contains more than one guest page: sum the prot. */
prot1 = target_prot;
for (abi_ulong a = host_start; a < start; a += TARGET_PAGE_SIZE) {
prot1 |= page_get_flags(a);
}
/* If the resulting sum differs, create a new range. */
if (prot1 != target_prot) {
starts[nranges] = host_start;
lens[nranges] = qemu_host_page_size;
prots[nranges] = prot1;
nranges++;
host_start += qemu_host_page_size;
}
}
if (last < host_last) {
/* Host page contains more than one guest page: sum the prot. */
prot1 = target_prot;
for (abi_ulong a = last; a < host_last; a += TARGET_PAGE_SIZE) {
prot1 |= page_get_flags(a + 1);
}
/* If the resulting sum differs, create a new range. */
if (prot1 != target_prot) {
host_last -= qemu_host_page_size;
starts[nranges] = host_last + 1;
lens[nranges] = qemu_host_page_size;
prots[nranges] = prot1;
nranges++;
}
}
/* Create a range for the middle, if any remains. */
if (host_start < host_last) {
starts[nranges] = host_start;
lens[nranges] = host_last - host_start + 1;
prots[nranges] = target_prot;
nranges++;
}
}
for (int i = 0; i < nranges; ++i) {
ret = mprotect(g2h_untagged(starts[i]), lens[i],
target_to_host_prot(prots[i]));
if (ret != 0) {
goto error;
}
}
page_set_flags(start, last, page_flags);
ret = 0;
error:
mmap_unlock();
return ret;
}
/* map an incomplete host page */
static bool mmap_frag(abi_ulong real_start, abi_ulong start, abi_ulong last,
int prot, int flags, int fd, off_t offset)
{
abi_ulong real_last;
void *host_start;
int prot_old, prot_new;
int host_prot_old, host_prot_new;
if (!(flags & MAP_ANONYMOUS)
&& (flags & MAP_TYPE) == MAP_SHARED
&& (prot & PROT_WRITE)) {
/*
* msync() won't work with the partial page, so we return an
* error if write is possible while it is a shared mapping.
*/
errno = EINVAL;
return false;
}
real_last = real_start + qemu_host_page_size - 1;
host_start = g2h_untagged(real_start);
/* Get the protection of the target pages outside the mapping. */
prot_old = 0;
for (abi_ulong a = real_start; a < start; a += TARGET_PAGE_SIZE) {
prot_old |= page_get_flags(a);
}
for (abi_ulong a = real_last; a > last; a -= TARGET_PAGE_SIZE) {
prot_old |= page_get_flags(a);
}
if (prot_old == 0) {
/*
* Since !(prot_old & PAGE_VALID), there were no guest pages
* outside of the fragment we need to map. Allocate a new host
* page to cover, discarding whatever else may have been present.
*/
void *p = mmap(host_start, qemu_host_page_size,
target_to_host_prot(prot),
flags | MAP_ANONYMOUS, -1, 0);
if (p != host_start) {
if (p != MAP_FAILED) {
munmap(p, qemu_host_page_size);
errno = EEXIST;
}
return false;
}
prot_old = prot;
}
prot_new = prot | prot_old;
host_prot_old = target_to_host_prot(prot_old);
host_prot_new = target_to_host_prot(prot_new);
/* Adjust protection to be able to write. */
if (!(host_prot_old & PROT_WRITE)) {
host_prot_old |= PROT_WRITE;
mprotect(host_start, qemu_host_page_size, host_prot_old);
}
/* Read or zero the new guest pages. */
if (flags & MAP_ANONYMOUS) {
memset(g2h_untagged(start), 0, last - start + 1);
} else {
if (pread(fd, g2h_untagged(start), last - start + 1, offset) == -1) {
return false;
}
}
/* Put final protection */
if (host_prot_new != host_prot_old) {
mprotect(host_start, qemu_host_page_size, host_prot_new);
}
return true;
}
abi_ulong task_unmapped_base;
abi_ulong elf_et_dyn_base;
abi_ulong mmap_next_start;
/*
* Subroutine of mmap_find_vma, used when we have pre-allocated
* a chunk of guest address space.
*/
static abi_ulong mmap_find_vma_reserved(abi_ulong start, abi_ulong size,
abi_ulong align)
{
target_ulong ret;
ret = page_find_range_empty(start, reserved_va, size, align);
if (ret == -1 && start > mmap_min_addr) {
/* Restart at the beginning of the address space. */
ret = page_find_range_empty(mmap_min_addr, start - 1, size, align);
}
return ret;
}
/*
* Find and reserve a free memory area of size 'size'. The search
* starts at 'start'.
* It must be called with mmap_lock() held.
* Return -1 if error.
*/
abi_ulong mmap_find_vma(abi_ulong start, abi_ulong size, abi_ulong align)
{
void *ptr, *prev;
abi_ulong addr;
int wrapped, repeat;
align = MAX(align, qemu_host_page_size);
/* If 'start' == 0, then a default start address is used. */
if (start == 0) {
start = mmap_next_start;
} else {
start &= qemu_host_page_mask;
}
start = ROUND_UP(start, align);
size = HOST_PAGE_ALIGN(size);
if (reserved_va) {
return mmap_find_vma_reserved(start, size, align);
}
addr = start;
wrapped = repeat = 0;
prev = 0;
for (;; prev = ptr) {
/*
* Reserve needed memory area to avoid a race.
* It should be discarded using:
* - mmap() with MAP_FIXED flag
* - mremap() with MREMAP_FIXED flag
* - shmat() with SHM_REMAP flag
*/
ptr = mmap(g2h_untagged(addr), size, PROT_NONE,
MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE, -1, 0);
/* ENOMEM, if host address space has no memory */
if (ptr == MAP_FAILED) {
return (abi_ulong)-1;
}
/*
* Count the number of sequential returns of the same address.
* This is used to modify the search algorithm below.
*/
repeat = (ptr == prev ? repeat + 1 : 0);
if (h2g_valid(ptr + size - 1)) {
addr = h2g(ptr);
if ((addr & (align - 1)) == 0) {
/* Success. */
if (start == mmap_next_start && addr >= task_unmapped_base) {
mmap_next_start = addr + size;
}
return addr;
}
/* The address is not properly aligned for the target. */
switch (repeat) {
case 0:
/*
* Assume the result that the kernel gave us is the
* first with enough free space, so start again at the
* next higher target page.
*/
addr = ROUND_UP(addr, align);
break;
case 1:
/*
* Sometimes the kernel decides to perform the allocation
* at the top end of memory instead.
*/
addr &= -align;
break;
case 2:
/* Start over at low memory. */
addr = 0;
break;
default:
/* Fail. This unaligned block must the last. */
addr = -1;
break;
}
} else {
/*
* Since the result the kernel gave didn't fit, start
* again at low memory. If any repetition, fail.
*/
addr = (repeat ? -1 : 0);
}
/* Unmap and try again. */
munmap(ptr, size);
/* ENOMEM if we checked the whole of the target address space. */
if (addr == (abi_ulong)-1) {
return (abi_ulong)-1;
} else if (addr == 0) {
if (wrapped) {
return (abi_ulong)-1;
}
wrapped = 1;
/*
* Don't actually use 0 when wrapping, instead indicate
* that we'd truly like an allocation in low memory.
*/
addr = (mmap_min_addr > TARGET_PAGE_SIZE
? TARGET_PAGE_ALIGN(mmap_min_addr)
: TARGET_PAGE_SIZE);
} else if (wrapped && addr >= start) {
return (abi_ulong)-1;
}
}
}
/* NOTE: all the constants are the HOST ones */
abi_long target_mmap(abi_ulong start, abi_ulong len, int target_prot,
int flags, int fd, off_t offset)
{
abi_ulong ret, last, real_start, real_last, retaddr, host_len;
abi_ulong passthrough_start = -1, passthrough_last = 0;
int page_flags;
off_t host_offset;
mmap_lock();
trace_target_mmap(start, len, target_prot, flags, fd, offset);
if (!len) {
errno = EINVAL;
goto fail;
}
page_flags = validate_prot_to_pageflags(target_prot);
if (!page_flags) {
errno = EINVAL;
goto fail;
}
/* Also check for overflows... */
len = TARGET_PAGE_ALIGN(len);
if (!len) {
errno = ENOMEM;
goto fail;
}
if (offset & ~TARGET_PAGE_MASK) {
errno = EINVAL;
goto fail;
}
/*
* If we're mapping shared memory, ensure we generate code for parallel
* execution and flush old translations. This will work up to the level
* supported by the host -- anything that requires EXCP_ATOMIC will not
* be atomic with respect to an external process.
*/
if (flags & MAP_SHARED) {
CPUState *cpu = thread_cpu;
if (!(cpu->tcg_cflags & CF_PARALLEL)) {
cpu->tcg_cflags |= CF_PARALLEL;
tb_flush(cpu);
}
}
real_start = start & qemu_host_page_mask;
host_offset = offset & qemu_host_page_mask;
/*
* If the user is asking for the kernel to find a location, do that
* before we truncate the length for mapping files below.
*/
if (!(flags & (MAP_FIXED | MAP_FIXED_NOREPLACE))) {
host_len = len + offset - host_offset;
host_len = HOST_PAGE_ALIGN(host_len);
start = mmap_find_vma(real_start, host_len, TARGET_PAGE_SIZE);
if (start == (abi_ulong)-1) {
errno = ENOMEM;
goto fail;
}
}
/*
* When mapping files into a memory area larger than the file, accesses
* to pages beyond the file size will cause a SIGBUS.
*
* For example, if mmaping a file of 100 bytes on a host with 4K pages
* emulating a target with 8K pages, the target expects to be able to
* access the first 8K. But the host will trap us on any access beyond
* 4K.
*
* When emulating a target with a larger page-size than the hosts, we
* may need to truncate file maps at EOF and add extra anonymous pages
* up to the targets page boundary.
*/
if ((qemu_real_host_page_size() < qemu_host_page_size) &&
!(flags & MAP_ANONYMOUS)) {
struct stat sb;
if (fstat(fd, &sb) == -1) {
goto fail;
}
/* Are we trying to create a map beyond EOF?. */
if (offset + len > sb.st_size) {
/*
* If so, truncate the file map at eof aligned with
* the hosts real pagesize. Additional anonymous maps
* will be created beyond EOF.
*/
len = REAL_HOST_PAGE_ALIGN(sb.st_size - offset);
}
}
if (!(flags & (MAP_FIXED | MAP_FIXED_NOREPLACE))) {
uintptr_t host_start;
int host_prot;
void *p;
host_len = len + offset - host_offset;
host_len = HOST_PAGE_ALIGN(host_len);
host_prot = target_to_host_prot(target_prot);
/*
* Note: we prefer to control the mapping address. It is
* especially important if qemu_host_page_size >
* qemu_real_host_page_size.
*/
p = mmap(g2h_untagged(start), host_len, host_prot,
flags | MAP_FIXED | MAP_ANONYMOUS, -1, 0);
if (p == MAP_FAILED) {
goto fail;
}
/* update start so that it points to the file position at 'offset' */
host_start = (uintptr_t)p;
if (!(flags & MAP_ANONYMOUS)) {
p = mmap(g2h_untagged(start), len, host_prot,
flags | MAP_FIXED, fd, host_offset);
if (p == MAP_FAILED) {
munmap(g2h_untagged(start), host_len);
goto fail;
}
host_start += offset - host_offset;
}
start = h2g(host_start);
last = start + len - 1;
passthrough_start = start;
passthrough_last = last;
} else {
if (start & ~TARGET_PAGE_MASK) {
errno = EINVAL;
goto fail;
}
last = start + len - 1;
real_last = HOST_PAGE_ALIGN(last) - 1;
/*
* Test if requested memory area fits target address space
* It can fail only on 64-bit host with 32-bit target.
* On any other target/host host mmap() handles this error correctly.
*/
if (last < start || !guest_range_valid_untagged(start, len)) {
errno = ENOMEM;
goto fail;
}
if (flags & MAP_FIXED_NOREPLACE) {
/* Validate that the chosen range is empty. */
if (!page_check_range_empty(start, last)) {
errno = EEXIST;
goto fail;
}
/*
* With reserved_va, the entire address space is mmaped in the
* host to ensure it isn't accidentally used for something else.
* We have just checked that the guest address is not mapped
* within the guest, but need to replace the host reservation.
*
* Without reserved_va, despite the guest address check above,
* keep MAP_FIXED_NOREPLACE so that the guest does not overwrite
* any host address mappings.
*/
if (reserved_va) {
flags = (flags & ~MAP_FIXED_NOREPLACE) | MAP_FIXED;
}
}
/*
* worst case: we cannot map the file because the offset is not
* aligned, so we read it
*/
if (!(flags & MAP_ANONYMOUS) &&
(offset & ~qemu_host_page_mask) != (start & ~qemu_host_page_mask)) {
/*
* msync() won't work here, so we return an error if write is
* possible while it is a shared mapping
*/
if ((flags & MAP_TYPE) == MAP_SHARED
&& (target_prot & PROT_WRITE)) {
errno = EINVAL;
goto fail;
}
retaddr = target_mmap(start, len, target_prot | PROT_WRITE,
(flags & (MAP_FIXED | MAP_FIXED_NOREPLACE))
| MAP_PRIVATE | MAP_ANONYMOUS,
-1, 0);
if (retaddr == -1) {
goto fail;
}
if (pread(fd, g2h_untagged(start), len, offset) == -1) {
goto fail;
}
if (!(target_prot & PROT_WRITE)) {
ret = target_mprotect(start, len, target_prot);
assert(ret == 0);
}
goto the_end;
}
/* handle the start of the mapping */
if (start > real_start) {
if (real_last == real_start + qemu_host_page_size - 1) {
/* one single host page */
if (!mmap_frag(real_start, start, last,
target_prot, flags, fd, offset)) {
goto fail;
}
goto the_end1;
}
if (!mmap_frag(real_start, start,
real_start + qemu_host_page_size - 1,
target_prot, flags, fd, offset)) {
goto fail;
}
real_start += qemu_host_page_size;
}
/* handle the end of the mapping */
if (last < real_last) {
abi_ulong real_page = real_last - qemu_host_page_size + 1;
if (!mmap_frag(real_page, real_page, last,
target_prot, flags, fd,
offset + real_page - start)) {
goto fail;
}
real_last -= qemu_host_page_size;
}
/* map the middle (easier) */
if (real_start < real_last) {
void *p, *want_p;
off_t offset1;
size_t len1;
if (flags & MAP_ANONYMOUS) {
offset1 = 0;
} else {
offset1 = offset + real_start - start;
}
len1 = real_last - real_start + 1;
want_p = g2h_untagged(real_start);
p = mmap(want_p, len1, target_to_host_prot(target_prot),
flags, fd, offset1);
if (p != want_p) {
if (p != MAP_FAILED) {
munmap(p, len1);
errno = EEXIST;
}
goto fail;
}
passthrough_start = real_start;
passthrough_last = real_last;
}
}
the_end1:
if (flags & MAP_ANONYMOUS) {
page_flags |= PAGE_ANON;
}
page_flags |= PAGE_RESET;
if (passthrough_start > passthrough_last) {
page_set_flags(start, last, page_flags);
} else {
if (start < passthrough_start) {
page_set_flags(start, passthrough_start - 1, page_flags);
}
page_set_flags(passthrough_start, passthrough_last,
page_flags | PAGE_PASSTHROUGH);
if (passthrough_last < last) {
page_set_flags(passthrough_last + 1, last, page_flags);
}
}
shm_region_rm_complete(start, last);
the_end:
trace_target_mmap_complete(start);
if (qemu_loglevel_mask(CPU_LOG_PAGE)) {
FILE *f = qemu_log_trylock();
if (f) {
fprintf(f, "page layout changed following mmap\n");
page_dump(f);
qemu_log_unlock(f);
}
}
mmap_unlock();
return start;
fail:
mmap_unlock();
return -1;
}
static void mmap_reserve_or_unmap(abi_ulong start, abi_ulong len)
{
abi_ulong real_start;
abi_ulong real_last;
abi_ulong real_len;
abi_ulong last;
abi_ulong a;
void *host_start;
int prot;
last = start + len - 1;
real_start = start & qemu_host_page_mask;
real_last = HOST_PAGE_ALIGN(last) - 1;
/*
* If guest pages remain on the first or last host pages,
* adjust the deallocation to retain those guest pages.
* The single page special case is required for the last page,
* lest real_start overflow to zero.
*/
if (real_last - real_start < qemu_host_page_size) {
prot = 0;
for (a = real_start; a < start; a += TARGET_PAGE_SIZE) {
prot |= page_get_flags(a);
}
for (a = last; a < real_last; a += TARGET_PAGE_SIZE) {
prot |= page_get_flags(a + 1);
}
if (prot != 0) {
return;
}
} else {
for (prot = 0, a = real_start; a < start; a += TARGET_PAGE_SIZE) {
prot |= page_get_flags(a);
}
if (prot != 0) {
real_start += qemu_host_page_size;
}
for (prot = 0, a = last; a < real_last; a += TARGET_PAGE_SIZE) {
prot |= page_get_flags(a + 1);
}
if (prot != 0) {
real_last -= qemu_host_page_size;
}
if (real_last < real_start) {
return;
}
}
real_len = real_last - real_start + 1;
host_start = g2h_untagged(real_start);
if (reserved_va) {
void *ptr = mmap(host_start, real_len, PROT_NONE,
MAP_FIXED | MAP_ANONYMOUS
| MAP_PRIVATE | MAP_NORESERVE, -1, 0);
assert(ptr == host_start);
} else {
int ret = munmap(host_start, real_len);
assert(ret == 0);
}
}
int target_munmap(abi_ulong start, abi_ulong len)
{
trace_target_munmap(start, len);
if (start & ~TARGET_PAGE_MASK) {
return -TARGET_EINVAL;
}
len = TARGET_PAGE_ALIGN(len);
if (len == 0 || !guest_range_valid_untagged(start, len)) {
return -TARGET_EINVAL;
}
mmap_lock();
mmap_reserve_or_unmap(start, len);
page_set_flags(start, start + len - 1, 0);
shm_region_rm_complete(start, start + len - 1);
mmap_unlock();
return 0;
}
abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
abi_ulong new_size, unsigned long flags,
abi_ulong new_addr)
{
int prot;
void *host_addr;
if (!guest_range_valid_untagged(old_addr, old_size) ||
((flags & MREMAP_FIXED) &&
!guest_range_valid_untagged(new_addr, new_size)) ||
((flags & MREMAP_MAYMOVE) == 0 &&
!guest_range_valid_untagged(old_addr, new_size))) {
errno = ENOMEM;
return -1;
}
mmap_lock();
if (flags & MREMAP_FIXED) {
host_addr = mremap(g2h_untagged(old_addr), old_size, new_size,
flags, g2h_untagged(new_addr));
if (reserved_va && host_addr != MAP_FAILED) {
/*
* If new and old addresses overlap then the above mremap will
* already have failed with EINVAL.
*/
mmap_reserve_or_unmap(old_addr, old_size);
}
} else if (flags & MREMAP_MAYMOVE) {
abi_ulong mmap_start;
mmap_start = mmap_find_vma(0, new_size, TARGET_PAGE_SIZE);
if (mmap_start == -1) {
errno = ENOMEM;
host_addr = MAP_FAILED;
} else {
host_addr = mremap(g2h_untagged(old_addr), old_size, new_size,
flags | MREMAP_FIXED,
g2h_untagged(mmap_start));
if (reserved_va) {
mmap_reserve_or_unmap(old_addr, old_size);
}
}
} else {
int page_flags = 0;
if (reserved_va && old_size < new_size) {
abi_ulong addr;
for (addr = old_addr + old_size;
addr < old_addr + new_size;
addr++) {
page_flags |= page_get_flags(addr);
}
}
if (page_flags == 0) {
host_addr = mremap(g2h_untagged(old_addr),
old_size, new_size, flags);
if (host_addr != MAP_FAILED) {
/* Check if address fits target address space */
if (!guest_range_valid_untagged(h2g(host_addr), new_size)) {
/* Revert mremap() changes */
host_addr = mremap(g2h_untagged(old_addr),
new_size, old_size, flags);
errno = ENOMEM;
host_addr = MAP_FAILED;
} else if (reserved_va && old_size > new_size) {
mmap_reserve_or_unmap(old_addr + old_size,
old_size - new_size);
}
}
} else {
errno = ENOMEM;
host_addr = MAP_FAILED;
}
}
if (host_addr == MAP_FAILED) {
new_addr = -1;
} else {
new_addr = h2g(host_addr);
prot = page_get_flags(old_addr);
page_set_flags(old_addr, old_addr + old_size - 1, 0);
shm_region_rm_complete(old_addr, old_addr + old_size - 1);
page_set_flags(new_addr, new_addr + new_size - 1,
prot | PAGE_VALID | PAGE_RESET);
shm_region_rm_complete(new_addr, new_addr + new_size - 1);
}
mmap_unlock();
return new_addr;
}
abi_long target_madvise(abi_ulong start, abi_ulong len_in, int advice)
{
abi_ulong len;
int ret = 0;
if (start & ~TARGET_PAGE_MASK) {
return -TARGET_EINVAL;
}
if (len_in == 0) {
return 0;
}
len = TARGET_PAGE_ALIGN(len_in);
if (len == 0 || !guest_range_valid_untagged(start, len)) {
return -TARGET_EINVAL;
}
/* Translate for some architectures which have different MADV_xxx values */
switch (advice) {
case TARGET_MADV_DONTNEED: /* alpha */
advice = MADV_DONTNEED;
break;
case TARGET_MADV_WIPEONFORK: /* parisc */
advice = MADV_WIPEONFORK;
break;
case TARGET_MADV_KEEPONFORK: /* parisc */
advice = MADV_KEEPONFORK;
break;
/* we do not care about the other MADV_xxx values yet */
}
/*
* Most advice values are hints, so ignoring and returning success is ok.
*
* However, some advice values such as MADV_DONTNEED, MADV_WIPEONFORK and
* MADV_KEEPONFORK are not hints and need to be emulated.
*
* A straight passthrough for those may not be safe because qemu sometimes
* turns private file-backed mappings into anonymous mappings.
* If all guest pages have PAGE_PASSTHROUGH set, mappings have the
* same semantics for the host as for the guest.
*
* We pass through MADV_WIPEONFORK and MADV_KEEPONFORK if possible and
* return failure if not.
*
* MADV_DONTNEED is passed through as well, if possible.
* If passthrough isn't possible, we nevertheless (wrongly!) return
* success, which is broken but some userspace programs fail to work
* otherwise. Completely implementing such emulation is quite complicated
* though.
*/
mmap_lock();
switch (advice) {
case MADV_WIPEONFORK:
case MADV_KEEPONFORK:
ret = -EINVAL;
/* fall through */
case MADV_DONTNEED:
if (page_check_range(start, len, PAGE_PASSTHROUGH)) {
ret = get_errno(madvise(g2h_untagged(start), len, advice));
if ((advice == MADV_DONTNEED) && (ret == 0)) {
page_reset_target_data(start, start + len - 1);
}
}
}
mmap_unlock();
return ret;
}
#ifndef TARGET_FORCE_SHMLBA
/*
* For most architectures, SHMLBA is the same as the page size;
* some architectures have larger values, in which case they should
* define TARGET_FORCE_SHMLBA and provide a target_shmlba() function.
* This corresponds to the kernel arch code defining __ARCH_FORCE_SHMLBA
* and defining its own value for SHMLBA.
*
* The kernel also permits SHMLBA to be set by the architecture to a
* value larger than the page size without setting __ARCH_FORCE_SHMLBA;
* this means that addresses are rounded to the large size if
* SHM_RND is set but addresses not aligned to that size are not rejected
* as long as they are at least page-aligned. Since the only architecture
* which uses this is ia64 this code doesn't provide for that oddity.
*/
static inline abi_ulong target_shmlba(CPUArchState *cpu_env)
{
return TARGET_PAGE_SIZE;
}
#endif
abi_ulong target_shmat(CPUArchState *cpu_env, int shmid,
abi_ulong shmaddr, int shmflg)
{
CPUState *cpu = env_cpu(cpu_env);
abi_ulong raddr;
struct shmid_ds shm_info;
int ret;
abi_ulong shmlba;
/* shmat pointers are always untagged */
/* find out the length of the shared memory segment */
ret = get_errno(shmctl(shmid, IPC_STAT, &shm_info));
if (is_error(ret)) {
/* can't get length, bail out */
return ret;
}
shmlba = target_shmlba(cpu_env);
if (shmaddr & (shmlba - 1)) {
if (shmflg & SHM_RND) {
shmaddr &= ~(shmlba - 1);
} else {
return -TARGET_EINVAL;
}
}
if (!guest_range_valid_untagged(shmaddr, shm_info.shm_segsz)) {
return -TARGET_EINVAL;
}
WITH_MMAP_LOCK_GUARD() {
void *host_raddr;
abi_ulong last;
if (shmaddr) {
host_raddr = shmat(shmid, (void *)g2h_untagged(shmaddr), shmflg);
} else {
abi_ulong mmap_start;
/* In order to use the host shmat, we need to honor host SHMLBA. */
mmap_start = mmap_find_vma(0, shm_info.shm_segsz,
MAX(SHMLBA, shmlba));
if (mmap_start == -1) {
return -TARGET_ENOMEM;
}
host_raddr = shmat(shmid, g2h_untagged(mmap_start),
shmflg | SHM_REMAP);
}
if (host_raddr == (void *)-1) {
return get_errno(-1);
}
raddr = h2g(host_raddr);
last = raddr + shm_info.shm_segsz - 1;
page_set_flags(raddr, last,
PAGE_VALID | PAGE_RESET | PAGE_READ |
(shmflg & SHM_RDONLY ? 0 : PAGE_WRITE));
shm_region_rm_complete(raddr, last);
shm_region_add(raddr, last);
}
/*
* We're mapping shared memory, so ensure we generate code for parallel
* execution and flush old translations. This will work up to the level
* supported by the host -- anything that requires EXCP_ATOMIC will not
* be atomic with respect to an external process.
*/
if (!(cpu->tcg_cflags & CF_PARALLEL)) {
cpu->tcg_cflags |= CF_PARALLEL;
tb_flush(cpu);
}
return raddr;
}
abi_long target_shmdt(abi_ulong shmaddr)
{
abi_long rv;
/* shmdt pointers are always untagged */
WITH_MMAP_LOCK_GUARD() {
abi_ulong last = shm_region_find(shmaddr);
if (last == 0) {
return -TARGET_EINVAL;
}
rv = get_errno(shmdt(g2h_untagged(shmaddr)));
if (rv == 0) {
abi_ulong size = last - shmaddr + 1;
page_set_flags(shmaddr, last, 0);
shm_region_rm_complete(shmaddr, last);
mmap_reserve_or_unmap(shmaddr, size);
}
}
return rv;
}