| /* |
| * PowerPC integer and vector emulation helpers for QEMU. |
| * |
| * Copyright (c) 2003-2007 Jocelyn Mayer |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| #include "qemu/osdep.h" |
| #include "cpu.h" |
| #include "exec/exec-all.h" |
| #include "qemu/host-utils.h" |
| #include "exec/helper-proto.h" |
| #include "crypto/aes.h" |
| |
| #include "helper_regs.h" |
| /*****************************************************************************/ |
| /* Fixed point operations helpers */ |
| |
| target_ulong helper_divweu(CPUPPCState *env, target_ulong ra, target_ulong rb, |
| uint32_t oe) |
| { |
| uint64_t rt = 0; |
| int overflow = 0; |
| |
| uint64_t dividend = (uint64_t)ra << 32; |
| uint64_t divisor = (uint32_t)rb; |
| |
| if (unlikely(divisor == 0)) { |
| overflow = 1; |
| } else { |
| rt = dividend / divisor; |
| overflow = rt > UINT32_MAX; |
| } |
| |
| if (unlikely(overflow)) { |
| rt = 0; /* Undefined */ |
| } |
| |
| if (oe) { |
| if (unlikely(overflow)) { |
| env->so = env->ov = 1; |
| } else { |
| env->ov = 0; |
| } |
| } |
| |
| return (target_ulong)rt; |
| } |
| |
| target_ulong helper_divwe(CPUPPCState *env, target_ulong ra, target_ulong rb, |
| uint32_t oe) |
| { |
| int64_t rt = 0; |
| int overflow = 0; |
| |
| int64_t dividend = (int64_t)ra << 32; |
| int64_t divisor = (int64_t)((int32_t)rb); |
| |
| if (unlikely((divisor == 0) || |
| ((divisor == -1ull) && (dividend == INT64_MIN)))) { |
| overflow = 1; |
| } else { |
| rt = dividend / divisor; |
| overflow = rt != (int32_t)rt; |
| } |
| |
| if (unlikely(overflow)) { |
| rt = 0; /* Undefined */ |
| } |
| |
| if (oe) { |
| if (unlikely(overflow)) { |
| env->so = env->ov = 1; |
| } else { |
| env->ov = 0; |
| } |
| } |
| |
| return (target_ulong)rt; |
| } |
| |
| #if defined(TARGET_PPC64) |
| |
| uint64_t helper_divdeu(CPUPPCState *env, uint64_t ra, uint64_t rb, uint32_t oe) |
| { |
| uint64_t rt = 0; |
| int overflow = 0; |
| |
| overflow = divu128(&rt, &ra, rb); |
| |
| if (unlikely(overflow)) { |
| rt = 0; /* Undefined */ |
| } |
| |
| if (oe) { |
| if (unlikely(overflow)) { |
| env->so = env->ov = 1; |
| } else { |
| env->ov = 0; |
| } |
| } |
| |
| return rt; |
| } |
| |
| uint64_t helper_divde(CPUPPCState *env, uint64_t rau, uint64_t rbu, uint32_t oe) |
| { |
| int64_t rt = 0; |
| int64_t ra = (int64_t)rau; |
| int64_t rb = (int64_t)rbu; |
| int overflow = divs128(&rt, &ra, rb); |
| |
| if (unlikely(overflow)) { |
| rt = 0; /* Undefined */ |
| } |
| |
| if (oe) { |
| |
| if (unlikely(overflow)) { |
| env->so = env->ov = 1; |
| } else { |
| env->ov = 0; |
| } |
| } |
| |
| return rt; |
| } |
| |
| #endif |
| |
| |
| target_ulong helper_cntlzw(target_ulong t) |
| { |
| return clz32(t); |
| } |
| |
| target_ulong helper_cnttzw(target_ulong t) |
| { |
| return ctz32(t); |
| } |
| |
| #if defined(TARGET_PPC64) |
| /* if x = 0xab, returns 0xababababababababa */ |
| #define pattern(x) (((x) & 0xff) * (~(target_ulong)0 / 0xff)) |
| |
| /* substract 1 from each byte, and with inverse, check if MSB is set at each |
| * byte. |
| * i.e. ((0x00 - 0x01) & ~(0x00)) & 0x80 |
| * (0xFF & 0xFF) & 0x80 = 0x80 (zero found) |
| */ |
| #define haszero(v) (((v) - pattern(0x01)) & ~(v) & pattern(0x80)) |
| |
| /* When you XOR the pattern and there is a match, that byte will be zero */ |
| #define hasvalue(x, n) (haszero((x) ^ pattern(n))) |
| |
| uint32_t helper_cmpeqb(target_ulong ra, target_ulong rb) |
| { |
| return hasvalue(rb, ra) ? 1 << CRF_GT : 0; |
| } |
| |
| #undef pattern |
| #undef haszero |
| #undef hasvalue |
| |
| target_ulong helper_cntlzd(target_ulong t) |
| { |
| return clz64(t); |
| } |
| |
| target_ulong helper_cnttzd(target_ulong t) |
| { |
| return ctz64(t); |
| } |
| |
| /* Return invalid random number. |
| * |
| * FIXME: Add rng backend or other mechanism to get cryptographically suitable |
| * random number |
| */ |
| target_ulong helper_darn32(void) |
| { |
| return -1; |
| } |
| |
| target_ulong helper_darn64(void) |
| { |
| return -1; |
| } |
| |
| #endif |
| |
| #if defined(TARGET_PPC64) |
| |
| uint64_t helper_bpermd(uint64_t rs, uint64_t rb) |
| { |
| int i; |
| uint64_t ra = 0; |
| |
| for (i = 0; i < 8; i++) { |
| int index = (rs >> (i*8)) & 0xFF; |
| if (index < 64) { |
| if (rb & (1ull << (63-index))) { |
| ra |= 1 << i; |
| } |
| } |
| } |
| return ra; |
| } |
| |
| #endif |
| |
| target_ulong helper_cmpb(target_ulong rs, target_ulong rb) |
| { |
| target_ulong mask = 0xff; |
| target_ulong ra = 0; |
| int i; |
| |
| for (i = 0; i < sizeof(target_ulong); i++) { |
| if ((rs & mask) == (rb & mask)) { |
| ra |= mask; |
| } |
| mask <<= 8; |
| } |
| return ra; |
| } |
| |
| /* shift right arithmetic helper */ |
| target_ulong helper_sraw(CPUPPCState *env, target_ulong value, |
| target_ulong shift) |
| { |
| int32_t ret; |
| |
| if (likely(!(shift & 0x20))) { |
| if (likely((uint32_t)shift != 0)) { |
| shift &= 0x1f; |
| ret = (int32_t)value >> shift; |
| if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) { |
| env->ca = 0; |
| } else { |
| env->ca = 1; |
| } |
| } else { |
| ret = (int32_t)value; |
| env->ca = 0; |
| } |
| } else { |
| ret = (int32_t)value >> 31; |
| env->ca = (ret != 0); |
| } |
| return (target_long)ret; |
| } |
| |
| #if defined(TARGET_PPC64) |
| target_ulong helper_srad(CPUPPCState *env, target_ulong value, |
| target_ulong shift) |
| { |
| int64_t ret; |
| |
| if (likely(!(shift & 0x40))) { |
| if (likely((uint64_t)shift != 0)) { |
| shift &= 0x3f; |
| ret = (int64_t)value >> shift; |
| if (likely(ret >= 0 || (value & ((1ULL << shift) - 1)) == 0)) { |
| env->ca = 0; |
| } else { |
| env->ca = 1; |
| } |
| } else { |
| ret = (int64_t)value; |
| env->ca = 0; |
| } |
| } else { |
| ret = (int64_t)value >> 63; |
| env->ca = (ret != 0); |
| } |
| return ret; |
| } |
| #endif |
| |
| #if defined(TARGET_PPC64) |
| target_ulong helper_popcntb(target_ulong val) |
| { |
| val = (val & 0x5555555555555555ULL) + ((val >> 1) & |
| 0x5555555555555555ULL); |
| val = (val & 0x3333333333333333ULL) + ((val >> 2) & |
| 0x3333333333333333ULL); |
| val = (val & 0x0f0f0f0f0f0f0f0fULL) + ((val >> 4) & |
| 0x0f0f0f0f0f0f0f0fULL); |
| return val; |
| } |
| |
| target_ulong helper_popcntw(target_ulong val) |
| { |
| val = (val & 0x5555555555555555ULL) + ((val >> 1) & |
| 0x5555555555555555ULL); |
| val = (val & 0x3333333333333333ULL) + ((val >> 2) & |
| 0x3333333333333333ULL); |
| val = (val & 0x0f0f0f0f0f0f0f0fULL) + ((val >> 4) & |
| 0x0f0f0f0f0f0f0f0fULL); |
| val = (val & 0x00ff00ff00ff00ffULL) + ((val >> 8) & |
| 0x00ff00ff00ff00ffULL); |
| val = (val & 0x0000ffff0000ffffULL) + ((val >> 16) & |
| 0x0000ffff0000ffffULL); |
| return val; |
| } |
| |
| target_ulong helper_popcntd(target_ulong val) |
| { |
| return ctpop64(val); |
| } |
| #else |
| target_ulong helper_popcntb(target_ulong val) |
| { |
| val = (val & 0x55555555) + ((val >> 1) & 0x55555555); |
| val = (val & 0x33333333) + ((val >> 2) & 0x33333333); |
| val = (val & 0x0f0f0f0f) + ((val >> 4) & 0x0f0f0f0f); |
| return val; |
| } |
| |
| target_ulong helper_popcntw(target_ulong val) |
| { |
| val = (val & 0x55555555) + ((val >> 1) & 0x55555555); |
| val = (val & 0x33333333) + ((val >> 2) & 0x33333333); |
| val = (val & 0x0f0f0f0f) + ((val >> 4) & 0x0f0f0f0f); |
| val = (val & 0x00ff00ff) + ((val >> 8) & 0x00ff00ff); |
| val = (val & 0x0000ffff) + ((val >> 16) & 0x0000ffff); |
| return val; |
| } |
| #endif |
| |
| /*****************************************************************************/ |
| /* PowerPC 601 specific instructions (POWER bridge) */ |
| target_ulong helper_div(CPUPPCState *env, target_ulong arg1, target_ulong arg2) |
| { |
| uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ]; |
| |
| if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) || |
| (int32_t)arg2 == 0) { |
| env->spr[SPR_MQ] = 0; |
| return INT32_MIN; |
| } else { |
| env->spr[SPR_MQ] = tmp % arg2; |
| return tmp / (int32_t)arg2; |
| } |
| } |
| |
| target_ulong helper_divo(CPUPPCState *env, target_ulong arg1, |
| target_ulong arg2) |
| { |
| uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ]; |
| |
| if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) || |
| (int32_t)arg2 == 0) { |
| env->so = env->ov = 1; |
| env->spr[SPR_MQ] = 0; |
| return INT32_MIN; |
| } else { |
| env->spr[SPR_MQ] = tmp % arg2; |
| tmp /= (int32_t)arg2; |
| if ((int32_t)tmp != tmp) { |
| env->so = env->ov = 1; |
| } else { |
| env->ov = 0; |
| } |
| return tmp; |
| } |
| } |
| |
| target_ulong helper_divs(CPUPPCState *env, target_ulong arg1, |
| target_ulong arg2) |
| { |
| if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) || |
| (int32_t)arg2 == 0) { |
| env->spr[SPR_MQ] = 0; |
| return INT32_MIN; |
| } else { |
| env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2; |
| return (int32_t)arg1 / (int32_t)arg2; |
| } |
| } |
| |
| target_ulong helper_divso(CPUPPCState *env, target_ulong arg1, |
| target_ulong arg2) |
| { |
| if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) || |
| (int32_t)arg2 == 0) { |
| env->so = env->ov = 1; |
| env->spr[SPR_MQ] = 0; |
| return INT32_MIN; |
| } else { |
| env->ov = 0; |
| env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2; |
| return (int32_t)arg1 / (int32_t)arg2; |
| } |
| } |
| |
| /*****************************************************************************/ |
| /* 602 specific instructions */ |
| /* mfrom is the most crazy instruction ever seen, imho ! */ |
| /* Real implementation uses a ROM table. Do the same */ |
| /* Extremely decomposed: |
| * -arg / 256 |
| * return 256 * log10(10 + 1.0) + 0.5 |
| */ |
| #if !defined(CONFIG_USER_ONLY) |
| target_ulong helper_602_mfrom(target_ulong arg) |
| { |
| if (likely(arg < 602)) { |
| #include "mfrom_table.c" |
| return mfrom_ROM_table[arg]; |
| } else { |
| return 0; |
| } |
| } |
| #endif |
| |
| /*****************************************************************************/ |
| /* Altivec extension helpers */ |
| #if defined(HOST_WORDS_BIGENDIAN) |
| #define HI_IDX 0 |
| #define LO_IDX 1 |
| #define AVRB(i) u8[i] |
| #define AVRW(i) u32[i] |
| #else |
| #define HI_IDX 1 |
| #define LO_IDX 0 |
| #define AVRB(i) u8[15-(i)] |
| #define AVRW(i) u32[3-(i)] |
| #endif |
| |
| #if defined(HOST_WORDS_BIGENDIAN) |
| #define VECTOR_FOR_INORDER_I(index, element) \ |
| for (index = 0; index < ARRAY_SIZE(r->element); index++) |
| #else |
| #define VECTOR_FOR_INORDER_I(index, element) \ |
| for (index = ARRAY_SIZE(r->element)-1; index >= 0; index--) |
| #endif |
| |
| /* Saturating arithmetic helpers. */ |
| #define SATCVT(from, to, from_type, to_type, min, max) \ |
| static inline to_type cvt##from##to(from_type x, int *sat) \ |
| { \ |
| to_type r; \ |
| \ |
| if (x < (from_type)min) { \ |
| r = min; \ |
| *sat = 1; \ |
| } else if (x > (from_type)max) { \ |
| r = max; \ |
| *sat = 1; \ |
| } else { \ |
| r = x; \ |
| } \ |
| return r; \ |
| } |
| #define SATCVTU(from, to, from_type, to_type, min, max) \ |
| static inline to_type cvt##from##to(from_type x, int *sat) \ |
| { \ |
| to_type r; \ |
| \ |
| if (x > (from_type)max) { \ |
| r = max; \ |
| *sat = 1; \ |
| } else { \ |
| r = x; \ |
| } \ |
| return r; \ |
| } |
| SATCVT(sh, sb, int16_t, int8_t, INT8_MIN, INT8_MAX) |
| SATCVT(sw, sh, int32_t, int16_t, INT16_MIN, INT16_MAX) |
| SATCVT(sd, sw, int64_t, int32_t, INT32_MIN, INT32_MAX) |
| |
| SATCVTU(uh, ub, uint16_t, uint8_t, 0, UINT8_MAX) |
| SATCVTU(uw, uh, uint32_t, uint16_t, 0, UINT16_MAX) |
| SATCVTU(ud, uw, uint64_t, uint32_t, 0, UINT32_MAX) |
| SATCVT(sh, ub, int16_t, uint8_t, 0, UINT8_MAX) |
| SATCVT(sw, uh, int32_t, uint16_t, 0, UINT16_MAX) |
| SATCVT(sd, uw, int64_t, uint32_t, 0, UINT32_MAX) |
| #undef SATCVT |
| #undef SATCVTU |
| |
| void helper_lvsl(ppc_avr_t *r, target_ulong sh) |
| { |
| int i, j = (sh & 0xf); |
| |
| VECTOR_FOR_INORDER_I(i, u8) { |
| r->u8[i] = j++; |
| } |
| } |
| |
| void helper_lvsr(ppc_avr_t *r, target_ulong sh) |
| { |
| int i, j = 0x10 - (sh & 0xf); |
| |
| VECTOR_FOR_INORDER_I(i, u8) { |
| r->u8[i] = j++; |
| } |
| } |
| |
| void helper_mtvscr(CPUPPCState *env, ppc_avr_t *r) |
| { |
| #if defined(HOST_WORDS_BIGENDIAN) |
| env->vscr = r->u32[3]; |
| #else |
| env->vscr = r->u32[0]; |
| #endif |
| set_flush_to_zero(vscr_nj, &env->vec_status); |
| } |
| |
| void helper_vaddcuw(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(r->u32); i++) { |
| r->u32[i] = ~a->u32[i] < b->u32[i]; |
| } |
| } |
| |
| #define VARITH_DO(name, op, element) \ |
| void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ |
| { \ |
| int i; \ |
| \ |
| for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ |
| r->element[i] = a->element[i] op b->element[i]; \ |
| } \ |
| } |
| #define VARITH(suffix, element) \ |
| VARITH_DO(add##suffix, +, element) \ |
| VARITH_DO(sub##suffix, -, element) |
| VARITH(ubm, u8) |
| VARITH(uhm, u16) |
| VARITH(uwm, u32) |
| VARITH(udm, u64) |
| VARITH_DO(muluwm, *, u32) |
| #undef VARITH_DO |
| #undef VARITH |
| |
| #define VARITHFP(suffix, func) \ |
| void helper_v##suffix(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, \ |
| ppc_avr_t *b) \ |
| { \ |
| int i; \ |
| \ |
| for (i = 0; i < ARRAY_SIZE(r->f); i++) { \ |
| r->f[i] = func(a->f[i], b->f[i], &env->vec_status); \ |
| } \ |
| } |
| VARITHFP(addfp, float32_add) |
| VARITHFP(subfp, float32_sub) |
| VARITHFP(minfp, float32_min) |
| VARITHFP(maxfp, float32_max) |
| #undef VARITHFP |
| |
| #define VARITHFPFMA(suffix, type) \ |
| void helper_v##suffix(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, \ |
| ppc_avr_t *b, ppc_avr_t *c) \ |
| { \ |
| int i; \ |
| for (i = 0; i < ARRAY_SIZE(r->f); i++) { \ |
| r->f[i] = float32_muladd(a->f[i], c->f[i], b->f[i], \ |
| type, &env->vec_status); \ |
| } \ |
| } |
| VARITHFPFMA(maddfp, 0); |
| VARITHFPFMA(nmsubfp, float_muladd_negate_result | float_muladd_negate_c); |
| #undef VARITHFPFMA |
| |
| #define VARITHSAT_CASE(type, op, cvt, element) \ |
| { \ |
| type result = (type)a->element[i] op (type)b->element[i]; \ |
| r->element[i] = cvt(result, &sat); \ |
| } |
| |
| #define VARITHSAT_DO(name, op, optype, cvt, element) \ |
| void helper_v##name(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, \ |
| ppc_avr_t *b) \ |
| { \ |
| int sat = 0; \ |
| int i; \ |
| \ |
| for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ |
| switch (sizeof(r->element[0])) { \ |
| case 1: \ |
| VARITHSAT_CASE(optype, op, cvt, element); \ |
| break; \ |
| case 2: \ |
| VARITHSAT_CASE(optype, op, cvt, element); \ |
| break; \ |
| case 4: \ |
| VARITHSAT_CASE(optype, op, cvt, element); \ |
| break; \ |
| } \ |
| } \ |
| if (sat) { \ |
| env->vscr |= (1 << VSCR_SAT); \ |
| } \ |
| } |
| #define VARITHSAT_SIGNED(suffix, element, optype, cvt) \ |
| VARITHSAT_DO(adds##suffix##s, +, optype, cvt, element) \ |
| VARITHSAT_DO(subs##suffix##s, -, optype, cvt, element) |
| #define VARITHSAT_UNSIGNED(suffix, element, optype, cvt) \ |
| VARITHSAT_DO(addu##suffix##s, +, optype, cvt, element) \ |
| VARITHSAT_DO(subu##suffix##s, -, optype, cvt, element) |
| VARITHSAT_SIGNED(b, s8, int16_t, cvtshsb) |
| VARITHSAT_SIGNED(h, s16, int32_t, cvtswsh) |
| VARITHSAT_SIGNED(w, s32, int64_t, cvtsdsw) |
| VARITHSAT_UNSIGNED(b, u8, uint16_t, cvtshub) |
| VARITHSAT_UNSIGNED(h, u16, uint32_t, cvtswuh) |
| VARITHSAT_UNSIGNED(w, u32, uint64_t, cvtsduw) |
| #undef VARITHSAT_CASE |
| #undef VARITHSAT_DO |
| #undef VARITHSAT_SIGNED |
| #undef VARITHSAT_UNSIGNED |
| |
| #define VAVG_DO(name, element, etype) \ |
| void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ |
| { \ |
| int i; \ |
| \ |
| for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ |
| etype x = (etype)a->element[i] + (etype)b->element[i] + 1; \ |
| r->element[i] = x >> 1; \ |
| } \ |
| } |
| |
| #define VAVG(type, signed_element, signed_type, unsigned_element, \ |
| unsigned_type) \ |
| VAVG_DO(avgs##type, signed_element, signed_type) \ |
| VAVG_DO(avgu##type, unsigned_element, unsigned_type) |
| VAVG(b, s8, int16_t, u8, uint16_t) |
| VAVG(h, s16, int32_t, u16, uint32_t) |
| VAVG(w, s32, int64_t, u32, uint64_t) |
| #undef VAVG_DO |
| #undef VAVG |
| |
| #define VABSDU_DO(name, element) \ |
| void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ |
| { \ |
| int i; \ |
| \ |
| for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ |
| r->element[i] = (a->element[i] > b->element[i]) ? \ |
| (a->element[i] - b->element[i]) : \ |
| (b->element[i] - a->element[i]); \ |
| } \ |
| } |
| |
| /* VABSDU - Vector absolute difference unsigned |
| * name - instruction mnemonic suffix (b: byte, h: halfword, w: word) |
| * element - element type to access from vector |
| */ |
| #define VABSDU(type, element) \ |
| VABSDU_DO(absdu##type, element) |
| VABSDU(b, u8) |
| VABSDU(h, u16) |
| VABSDU(w, u32) |
| #undef VABSDU_DO |
| #undef VABSDU |
| |
| #define VCF(suffix, cvt, element) \ |
| void helper_vcf##suffix(CPUPPCState *env, ppc_avr_t *r, \ |
| ppc_avr_t *b, uint32_t uim) \ |
| { \ |
| int i; \ |
| \ |
| for (i = 0; i < ARRAY_SIZE(r->f); i++) { \ |
| float32 t = cvt(b->element[i], &env->vec_status); \ |
| r->f[i] = float32_scalbn(t, -uim, &env->vec_status); \ |
| } \ |
| } |
| VCF(ux, uint32_to_float32, u32) |
| VCF(sx, int32_to_float32, s32) |
| #undef VCF |
| |
| #define VCMP_DO(suffix, compare, element, record) \ |
| void helper_vcmp##suffix(CPUPPCState *env, ppc_avr_t *r, \ |
| ppc_avr_t *a, ppc_avr_t *b) \ |
| { \ |
| uint64_t ones = (uint64_t)-1; \ |
| uint64_t all = ones; \ |
| uint64_t none = 0; \ |
| int i; \ |
| \ |
| for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ |
| uint64_t result = (a->element[i] compare b->element[i] ? \ |
| ones : 0x0); \ |
| switch (sizeof(a->element[0])) { \ |
| case 8: \ |
| r->u64[i] = result; \ |
| break; \ |
| case 4: \ |
| r->u32[i] = result; \ |
| break; \ |
| case 2: \ |
| r->u16[i] = result; \ |
| break; \ |
| case 1: \ |
| r->u8[i] = result; \ |
| break; \ |
| } \ |
| all &= result; \ |
| none |= result; \ |
| } \ |
| if (record) { \ |
| env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \ |
| } \ |
| } |
| #define VCMP(suffix, compare, element) \ |
| VCMP_DO(suffix, compare, element, 0) \ |
| VCMP_DO(suffix##_dot, compare, element, 1) |
| VCMP(equb, ==, u8) |
| VCMP(equh, ==, u16) |
| VCMP(equw, ==, u32) |
| VCMP(equd, ==, u64) |
| VCMP(gtub, >, u8) |
| VCMP(gtuh, >, u16) |
| VCMP(gtuw, >, u32) |
| VCMP(gtud, >, u64) |
| VCMP(gtsb, >, s8) |
| VCMP(gtsh, >, s16) |
| VCMP(gtsw, >, s32) |
| VCMP(gtsd, >, s64) |
| #undef VCMP_DO |
| #undef VCMP |
| |
| #define VCMPNE_DO(suffix, element, etype, cmpzero, record) \ |
| void helper_vcmpne##suffix(CPUPPCState *env, ppc_avr_t *r, \ |
| ppc_avr_t *a, ppc_avr_t *b) \ |
| { \ |
| etype ones = (etype)-1; \ |
| etype all = ones; \ |
| etype result, none = 0; \ |
| int i; \ |
| \ |
| for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ |
| if (cmpzero) { \ |
| result = ((a->element[i] == 0) \ |
| || (b->element[i] == 0) \ |
| || (a->element[i] != b->element[i]) ? \ |
| ones : 0x0); \ |
| } else { \ |
| result = (a->element[i] != b->element[i]) ? ones : 0x0; \ |
| } \ |
| r->element[i] = result; \ |
| all &= result; \ |
| none |= result; \ |
| } \ |
| if (record) { \ |
| env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \ |
| } \ |
| } |
| |
| /* VCMPNEZ - Vector compare not equal to zero |
| * suffix - instruction mnemonic suffix (b: byte, h: halfword, w: word) |
| * element - element type to access from vector |
| */ |
| #define VCMPNE(suffix, element, etype, cmpzero) \ |
| VCMPNE_DO(suffix, element, etype, cmpzero, 0) \ |
| VCMPNE_DO(suffix##_dot, element, etype, cmpzero, 1) |
| VCMPNE(zb, u8, uint8_t, 1) |
| VCMPNE(zh, u16, uint16_t, 1) |
| VCMPNE(zw, u32, uint32_t, 1) |
| VCMPNE(b, u8, uint8_t, 0) |
| VCMPNE(h, u16, uint16_t, 0) |
| VCMPNE(w, u32, uint32_t, 0) |
| #undef VCMPNE_DO |
| #undef VCMPNE |
| |
| #define VCMPFP_DO(suffix, compare, order, record) \ |
| void helper_vcmp##suffix(CPUPPCState *env, ppc_avr_t *r, \ |
| ppc_avr_t *a, ppc_avr_t *b) \ |
| { \ |
| uint32_t ones = (uint32_t)-1; \ |
| uint32_t all = ones; \ |
| uint32_t none = 0; \ |
| int i; \ |
| \ |
| for (i = 0; i < ARRAY_SIZE(r->f); i++) { \ |
| uint32_t result; \ |
| int rel = float32_compare_quiet(a->f[i], b->f[i], \ |
| &env->vec_status); \ |
| if (rel == float_relation_unordered) { \ |
| result = 0; \ |
| } else if (rel compare order) { \ |
| result = ones; \ |
| } else { \ |
| result = 0; \ |
| } \ |
| r->u32[i] = result; \ |
| all &= result; \ |
| none |= result; \ |
| } \ |
| if (record) { \ |
| env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \ |
| } \ |
| } |
| #define VCMPFP(suffix, compare, order) \ |
| VCMPFP_DO(suffix, compare, order, 0) \ |
| VCMPFP_DO(suffix##_dot, compare, order, 1) |
| VCMPFP(eqfp, ==, float_relation_equal) |
| VCMPFP(gefp, !=, float_relation_less) |
| VCMPFP(gtfp, ==, float_relation_greater) |
| #undef VCMPFP_DO |
| #undef VCMPFP |
| |
| static inline void vcmpbfp_internal(CPUPPCState *env, ppc_avr_t *r, |
| ppc_avr_t *a, ppc_avr_t *b, int record) |
| { |
| int i; |
| int all_in = 0; |
| |
| for (i = 0; i < ARRAY_SIZE(r->f); i++) { |
| int le_rel = float32_compare_quiet(a->f[i], b->f[i], &env->vec_status); |
| if (le_rel == float_relation_unordered) { |
| r->u32[i] = 0xc0000000; |
| all_in = 1; |
| } else { |
| float32 bneg = float32_chs(b->f[i]); |
| int ge_rel = float32_compare_quiet(a->f[i], bneg, &env->vec_status); |
| int le = le_rel != float_relation_greater; |
| int ge = ge_rel != float_relation_less; |
| |
| r->u32[i] = ((!le) << 31) | ((!ge) << 30); |
| all_in |= (!le | !ge); |
| } |
| } |
| if (record) { |
| env->crf[6] = (all_in == 0) << 1; |
| } |
| } |
| |
| void helper_vcmpbfp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) |
| { |
| vcmpbfp_internal(env, r, a, b, 0); |
| } |
| |
| void helper_vcmpbfp_dot(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, |
| ppc_avr_t *b) |
| { |
| vcmpbfp_internal(env, r, a, b, 1); |
| } |
| |
| #define VCT(suffix, satcvt, element) \ |
| void helper_vct##suffix(CPUPPCState *env, ppc_avr_t *r, \ |
| ppc_avr_t *b, uint32_t uim) \ |
| { \ |
| int i; \ |
| int sat = 0; \ |
| float_status s = env->vec_status; \ |
| \ |
| set_float_rounding_mode(float_round_to_zero, &s); \ |
| for (i = 0; i < ARRAY_SIZE(r->f); i++) { \ |
| if (float32_is_any_nan(b->f[i])) { \ |
| r->element[i] = 0; \ |
| } else { \ |
| float64 t = float32_to_float64(b->f[i], &s); \ |
| int64_t j; \ |
| \ |
| t = float64_scalbn(t, uim, &s); \ |
| j = float64_to_int64(t, &s); \ |
| r->element[i] = satcvt(j, &sat); \ |
| } \ |
| } \ |
| if (sat) { \ |
| env->vscr |= (1 << VSCR_SAT); \ |
| } \ |
| } |
| VCT(uxs, cvtsduw, u32) |
| VCT(sxs, cvtsdsw, s32) |
| #undef VCT |
| |
| target_ulong helper_vclzlsbb(ppc_avr_t *r) |
| { |
| target_ulong count = 0; |
| int i; |
| VECTOR_FOR_INORDER_I(i, u8) { |
| if (r->u8[i] & 0x01) { |
| break; |
| } |
| count++; |
| } |
| return count; |
| } |
| |
| target_ulong helper_vctzlsbb(ppc_avr_t *r) |
| { |
| target_ulong count = 0; |
| int i; |
| #if defined(HOST_WORDS_BIGENDIAN) |
| for (i = ARRAY_SIZE(r->u8) - 1; i >= 0; i--) { |
| #else |
| for (i = 0; i < ARRAY_SIZE(r->u8); i++) { |
| #endif |
| if (r->u8[i] & 0x01) { |
| break; |
| } |
| count++; |
| } |
| return count; |
| } |
| |
| void helper_vmhaddshs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, |
| ppc_avr_t *b, ppc_avr_t *c) |
| { |
| int sat = 0; |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(r->s16); i++) { |
| int32_t prod = a->s16[i] * b->s16[i]; |
| int32_t t = (int32_t)c->s16[i] + (prod >> 15); |
| |
| r->s16[i] = cvtswsh(t, &sat); |
| } |
| |
| if (sat) { |
| env->vscr |= (1 << VSCR_SAT); |
| } |
| } |
| |
| void helper_vmhraddshs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, |
| ppc_avr_t *b, ppc_avr_t *c) |
| { |
| int sat = 0; |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(r->s16); i++) { |
| int32_t prod = a->s16[i] * b->s16[i] + 0x00004000; |
| int32_t t = (int32_t)c->s16[i] + (prod >> 15); |
| r->s16[i] = cvtswsh(t, &sat); |
| } |
| |
| if (sat) { |
| env->vscr |= (1 << VSCR_SAT); |
| } |
| } |
| |
| #define VMINMAX_DO(name, compare, element) \ |
| void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ |
| { \ |
| int i; \ |
| \ |
| for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ |
| if (a->element[i] compare b->element[i]) { \ |
| r->element[i] = b->element[i]; \ |
| } else { \ |
| r->element[i] = a->element[i]; \ |
| } \ |
| } \ |
| } |
| #define VMINMAX(suffix, element) \ |
| VMINMAX_DO(min##suffix, >, element) \ |
| VMINMAX_DO(max##suffix, <, element) |
| VMINMAX(sb, s8) |
| VMINMAX(sh, s16) |
| VMINMAX(sw, s32) |
| VMINMAX(sd, s64) |
| VMINMAX(ub, u8) |
| VMINMAX(uh, u16) |
| VMINMAX(uw, u32) |
| VMINMAX(ud, u64) |
| #undef VMINMAX_DO |
| #undef VMINMAX |
| |
| void helper_vmladduhm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(r->s16); i++) { |
| int32_t prod = a->s16[i] * b->s16[i]; |
| r->s16[i] = (int16_t) (prod + c->s16[i]); |
| } |
| } |
| |
| #define VMRG_DO(name, element, highp) \ |
| void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ |
| { \ |
| ppc_avr_t result; \ |
| int i; \ |
| size_t n_elems = ARRAY_SIZE(r->element); \ |
| \ |
| for (i = 0; i < n_elems / 2; i++) { \ |
| if (highp) { \ |
| result.element[i*2+HI_IDX] = a->element[i]; \ |
| result.element[i*2+LO_IDX] = b->element[i]; \ |
| } else { \ |
| result.element[n_elems - i * 2 - (1 + HI_IDX)] = \ |
| b->element[n_elems - i - 1]; \ |
| result.element[n_elems - i * 2 - (1 + LO_IDX)] = \ |
| a->element[n_elems - i - 1]; \ |
| } \ |
| } \ |
| *r = result; \ |
| } |
| #if defined(HOST_WORDS_BIGENDIAN) |
| #define MRGHI 0 |
| #define MRGLO 1 |
| #else |
| #define MRGHI 1 |
| #define MRGLO 0 |
| #endif |
| #define VMRG(suffix, element) \ |
| VMRG_DO(mrgl##suffix, element, MRGHI) \ |
| VMRG_DO(mrgh##suffix, element, MRGLO) |
| VMRG(b, u8) |
| VMRG(h, u16) |
| VMRG(w, u32) |
| #undef VMRG_DO |
| #undef VMRG |
| #undef MRGHI |
| #undef MRGLO |
| |
| void helper_vmsummbm(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, |
| ppc_avr_t *b, ppc_avr_t *c) |
| { |
| int32_t prod[16]; |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(r->s8); i++) { |
| prod[i] = (int32_t)a->s8[i] * b->u8[i]; |
| } |
| |
| VECTOR_FOR_INORDER_I(i, s32) { |
| r->s32[i] = c->s32[i] + prod[4 * i] + prod[4 * i + 1] + |
| prod[4 * i + 2] + prod[4 * i + 3]; |
| } |
| } |
| |
| void helper_vmsumshm(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, |
| ppc_avr_t *b, ppc_avr_t *c) |
| { |
| int32_t prod[8]; |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(r->s16); i++) { |
| prod[i] = a->s16[i] * b->s16[i]; |
| } |
| |
| VECTOR_FOR_INORDER_I(i, s32) { |
| r->s32[i] = c->s32[i] + prod[2 * i] + prod[2 * i + 1]; |
| } |
| } |
| |
| void helper_vmsumshs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, |
| ppc_avr_t *b, ppc_avr_t *c) |
| { |
| int32_t prod[8]; |
| int i; |
| int sat = 0; |
| |
| for (i = 0; i < ARRAY_SIZE(r->s16); i++) { |
| prod[i] = (int32_t)a->s16[i] * b->s16[i]; |
| } |
| |
| VECTOR_FOR_INORDER_I(i, s32) { |
| int64_t t = (int64_t)c->s32[i] + prod[2 * i] + prod[2 * i + 1]; |
| |
| r->u32[i] = cvtsdsw(t, &sat); |
| } |
| |
| if (sat) { |
| env->vscr |= (1 << VSCR_SAT); |
| } |
| } |
| |
| void helper_vmsumubm(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, |
| ppc_avr_t *b, ppc_avr_t *c) |
| { |
| uint16_t prod[16]; |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(r->u8); i++) { |
| prod[i] = a->u8[i] * b->u8[i]; |
| } |
| |
| VECTOR_FOR_INORDER_I(i, u32) { |
| r->u32[i] = c->u32[i] + prod[4 * i] + prod[4 * i + 1] + |
| prod[4 * i + 2] + prod[4 * i + 3]; |
| } |
| } |
| |
| void helper_vmsumuhm(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, |
| ppc_avr_t *b, ppc_avr_t *c) |
| { |
| uint32_t prod[8]; |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(r->u16); i++) { |
| prod[i] = a->u16[i] * b->u16[i]; |
| } |
| |
| VECTOR_FOR_INORDER_I(i, u32) { |
| r->u32[i] = c->u32[i] + prod[2 * i] + prod[2 * i + 1]; |
| } |
| } |
| |
| void helper_vmsumuhs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, |
| ppc_avr_t *b, ppc_avr_t *c) |
| { |
| uint32_t prod[8]; |
| int i; |
| int sat = 0; |
| |
| for (i = 0; i < ARRAY_SIZE(r->u16); i++) { |
| prod[i] = a->u16[i] * b->u16[i]; |
| } |
| |
| VECTOR_FOR_INORDER_I(i, s32) { |
| uint64_t t = (uint64_t)c->u32[i] + prod[2 * i] + prod[2 * i + 1]; |
| |
| r->u32[i] = cvtuduw(t, &sat); |
| } |
| |
| if (sat) { |
| env->vscr |= (1 << VSCR_SAT); |
| } |
| } |
| |
| #define VMUL_DO(name, mul_element, prod_element, cast, evenp) \ |
| void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ |
| { \ |
| int i; \ |
| \ |
| VECTOR_FOR_INORDER_I(i, prod_element) { \ |
| if (evenp) { \ |
| r->prod_element[i] = \ |
| (cast)a->mul_element[i * 2 + HI_IDX] * \ |
| (cast)b->mul_element[i * 2 + HI_IDX]; \ |
| } else { \ |
| r->prod_element[i] = \ |
| (cast)a->mul_element[i * 2 + LO_IDX] * \ |
| (cast)b->mul_element[i * 2 + LO_IDX]; \ |
| } \ |
| } \ |
| } |
| #define VMUL(suffix, mul_element, prod_element, cast) \ |
| VMUL_DO(mule##suffix, mul_element, prod_element, cast, 1) \ |
| VMUL_DO(mulo##suffix, mul_element, prod_element, cast, 0) |
| VMUL(sb, s8, s16, int16_t) |
| VMUL(sh, s16, s32, int32_t) |
| VMUL(sw, s32, s64, int64_t) |
| VMUL(ub, u8, u16, uint16_t) |
| VMUL(uh, u16, u32, uint32_t) |
| VMUL(uw, u32, u64, uint64_t) |
| #undef VMUL_DO |
| #undef VMUL |
| |
| void helper_vperm(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, |
| ppc_avr_t *c) |
| { |
| ppc_avr_t result; |
| int i; |
| |
| VECTOR_FOR_INORDER_I(i, u8) { |
| int s = c->u8[i] & 0x1f; |
| #if defined(HOST_WORDS_BIGENDIAN) |
| int index = s & 0xf; |
| #else |
| int index = 15 - (s & 0xf); |
| #endif |
| |
| if (s & 0x10) { |
| result.u8[i] = b->u8[index]; |
| } else { |
| result.u8[i] = a->u8[index]; |
| } |
| } |
| *r = result; |
| } |
| |
| void helper_vpermr(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, |
| ppc_avr_t *c) |
| { |
| ppc_avr_t result; |
| int i; |
| |
| VECTOR_FOR_INORDER_I(i, u8) { |
| int s = c->u8[i] & 0x1f; |
| #if defined(HOST_WORDS_BIGENDIAN) |
| int index = 15 - (s & 0xf); |
| #else |
| int index = s & 0xf; |
| #endif |
| |
| if (s & 0x10) { |
| result.u8[i] = a->u8[index]; |
| } else { |
| result.u8[i] = b->u8[index]; |
| } |
| } |
| *r = result; |
| } |
| |
| #if defined(HOST_WORDS_BIGENDIAN) |
| #define VBPERMQ_INDEX(avr, i) ((avr)->u8[(i)]) |
| #define VBPERMD_INDEX(i) (i) |
| #define VBPERMQ_DW(index) (((index) & 0x40) != 0) |
| #define EXTRACT_BIT(avr, i, index) (extract64((avr)->u64[i], index, 1)) |
| #else |
| #define VBPERMQ_INDEX(avr, i) ((avr)->u8[15-(i)]) |
| #define VBPERMD_INDEX(i) (1 - i) |
| #define VBPERMQ_DW(index) (((index) & 0x40) == 0) |
| #define EXTRACT_BIT(avr, i, index) \ |
| (extract64((avr)->u64[1 - i], 63 - index, 1)) |
| #endif |
| |
| void helper_vbpermd(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) |
| { |
| int i, j; |
| ppc_avr_t result = { .u64 = { 0, 0 } }; |
| VECTOR_FOR_INORDER_I(i, u64) { |
| for (j = 0; j < 8; j++) { |
| int index = VBPERMQ_INDEX(b, (i * 8) + j); |
| if (index < 64 && EXTRACT_BIT(a, i, index)) { |
| result.u64[VBPERMD_INDEX(i)] |= (0x80 >> j); |
| } |
| } |
| } |
| *r = result; |
| } |
| |
| void helper_vbpermq(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) |
| { |
| int i; |
| uint64_t perm = 0; |
| |
| VECTOR_FOR_INORDER_I(i, u8) { |
| int index = VBPERMQ_INDEX(b, i); |
| |
| if (index < 128) { |
| uint64_t mask = (1ull << (63-(index & 0x3F))); |
| if (a->u64[VBPERMQ_DW(index)] & mask) { |
| perm |= (0x8000 >> i); |
| } |
| } |
| } |
| |
| r->u64[HI_IDX] = perm; |
| r->u64[LO_IDX] = 0; |
| } |
| |
| #undef VBPERMQ_INDEX |
| #undef VBPERMQ_DW |
| |
| static const uint64_t VGBBD_MASKS[256] = { |
| 0x0000000000000000ull, /* 00 */ |
| 0x0000000000000080ull, /* 01 */ |
| 0x0000000000008000ull, /* 02 */ |
| 0x0000000000008080ull, /* 03 */ |
| 0x0000000000800000ull, /* 04 */ |
| 0x0000000000800080ull, /* 05 */ |
| 0x0000000000808000ull, /* 06 */ |
| 0x0000000000808080ull, /* 07 */ |
| 0x0000000080000000ull, /* 08 */ |
| 0x0000000080000080ull, /* 09 */ |
| 0x0000000080008000ull, /* 0A */ |
| 0x0000000080008080ull, /* 0B */ |
| 0x0000000080800000ull, /* 0C */ |
| 0x0000000080800080ull, /* 0D */ |
| 0x0000000080808000ull, /* 0E */ |
| 0x0000000080808080ull, /* 0F */ |
| 0x0000008000000000ull, /* 10 */ |
| 0x0000008000000080ull, /* 11 */ |
| 0x0000008000008000ull, /* 12 */ |
| 0x0000008000008080ull, /* 13 */ |
| 0x0000008000800000ull, /* 14 */ |
| 0x0000008000800080ull, /* 15 */ |
| 0x0000008000808000ull, /* 16 */ |
| 0x0000008000808080ull, /* 17 */ |
| 0x0000008080000000ull, /* 18 */ |
| 0x0000008080000080ull, /* 19 */ |
| 0x0000008080008000ull, /* 1A */ |
| 0x0000008080008080ull, /* 1B */ |
| 0x0000008080800000ull, /* 1C */ |
| 0x0000008080800080ull, /* 1D */ |
| 0x0000008080808000ull, /* 1E */ |
| 0x0000008080808080ull, /* 1F */ |
| 0x0000800000000000ull, /* 20 */ |
| 0x0000800000000080ull, /* 21 */ |
| 0x0000800000008000ull, /* 22 */ |
| 0x0000800000008080ull, /* 23 */ |
| 0x0000800000800000ull, /* 24 */ |
| 0x0000800000800080ull, /* 25 */ |
| 0x0000800000808000ull, /* 26 */ |
| 0x0000800000808080ull, /* 27 */ |
| 0x0000800080000000ull, /* 28 */ |
| 0x0000800080000080ull, /* 29 */ |
| 0x0000800080008000ull, /* 2A */ |
| 0x0000800080008080ull, /* 2B */ |
| 0x0000800080800000ull, /* 2C */ |
| 0x0000800080800080ull, /* 2D */ |
| 0x0000800080808000ull, /* 2E */ |
| 0x0000800080808080ull, /* 2F */ |
| 0x0000808000000000ull, /* 30 */ |
| 0x0000808000000080ull, /* 31 */ |
| 0x0000808000008000ull, /* 32 */ |
| 0x0000808000008080ull, /* 33 */ |
| 0x0000808000800000ull, /* 34 */ |
| 0x0000808000800080ull, /* 35 */ |
| 0x0000808000808000ull, /* 36 */ |
| 0x0000808000808080ull, /* 37 */ |
| 0x0000808080000000ull, /* 38 */ |
| 0x0000808080000080ull, /* 39 */ |
| 0x0000808080008000ull, /* 3A */ |
| 0x0000808080008080ull, /* 3B */ |
| 0x0000808080800000ull, /* 3C */ |
| 0x0000808080800080ull, /* 3D */ |
| 0x0000808080808000ull, /* 3E */ |
| 0x0000808080808080ull, /* 3F */ |
| 0x0080000000000000ull, /* 40 */ |
| 0x0080000000000080ull, /* 41 */ |
| 0x0080000000008000ull, /* 42 */ |
| 0x0080000000008080ull, /* 43 */ |
| 0x0080000000800000ull, /* 44 */ |
| 0x0080000000800080ull, /* 45 */ |
| 0x0080000000808000ull, /* 46 */ |
| 0x0080000000808080ull, /* 47 */ |
| 0x0080000080000000ull, /* 48 */ |
| 0x0080000080000080ull, /* 49 */ |
| 0x0080000080008000ull, /* 4A */ |
| 0x0080000080008080ull, /* 4B */ |
| 0x0080000080800000ull, /* 4C */ |
| 0x0080000080800080ull, /* 4D */ |
| 0x0080000080808000ull, /* 4E */ |
| 0x0080000080808080ull, /* 4F */ |
| 0x0080008000000000ull, /* 50 */ |
| 0x0080008000000080ull, /* 51 */ |
| 0x0080008000008000ull, /* 52 */ |
| 0x0080008000008080ull, /* 53 */ |
| 0x0080008000800000ull, /* 54 */ |
| 0x0080008000800080ull, /* 55 */ |
| 0x0080008000808000ull, /* 56 */ |
| 0x0080008000808080ull, /* 57 */ |
| 0x0080008080000000ull, /* 58 */ |
| 0x0080008080000080ull, /* 59 */ |
| 0x0080008080008000ull, /* 5A */ |
| 0x0080008080008080ull, /* 5B */ |
| 0x0080008080800000ull, /* 5C */ |
| 0x0080008080800080ull, /* 5D */ |
| 0x0080008080808000ull, /* 5E */ |
| 0x0080008080808080ull, /* 5F */ |
| 0x0080800000000000ull, /* 60 */ |
| 0x0080800000000080ull, /* 61 */ |
| 0x0080800000008000ull, /* 62 */ |
| 0x0080800000008080ull, /* 63 */ |
| 0x0080800000800000ull, /* 64 */ |
| 0x0080800000800080ull, /* 65 */ |
| 0x0080800000808000ull, /* 66 */ |
| 0x0080800000808080ull, /* 67 */ |
| 0x0080800080000000ull, /* 68 */ |
| 0x0080800080000080ull, /* 69 */ |
| 0x0080800080008000ull, /* 6A */ |
| 0x0080800080008080ull, /* 6B */ |
| 0x0080800080800000ull, /* 6C */ |
| 0x0080800080800080ull, /* 6D */ |
| 0x0080800080808000ull, /* 6E */ |
| 0x0080800080808080ull, /* 6F */ |
| 0x0080808000000000ull, /* 70 */ |
| 0x0080808000000080ull, /* 71 */ |
| 0x0080808000008000ull, /* 72 */ |
| 0x0080808000008080ull, /* 73 */ |
| 0x0080808000800000ull, /* 74 */ |
| 0x0080808000800080ull, /* 75 */ |
| 0x0080808000808000ull, /* 76 */ |
| 0x0080808000808080ull, /* 77 */ |
| 0x0080808080000000ull, /* 78 */ |
| 0x0080808080000080ull, /* 79 */ |
| 0x0080808080008000ull, /* 7A */ |
| 0x0080808080008080ull, /* 7B */ |
| 0x0080808080800000ull, /* 7C */ |
| 0x0080808080800080ull, /* 7D */ |
| 0x0080808080808000ull, /* 7E */ |
| 0x0080808080808080ull, /* 7F */ |
| 0x8000000000000000ull, /* 80 */ |
| 0x8000000000000080ull, /* 81 */ |
| 0x8000000000008000ull, /* 82 */ |
| 0x8000000000008080ull, /* 83 */ |
| 0x8000000000800000ull, /* 84 */ |
| 0x8000000000800080ull, /* 85 */ |
| 0x8000000000808000ull, /* 86 */ |
| 0x8000000000808080ull, /* 87 */ |
| 0x8000000080000000ull, /* 88 */ |
| 0x8000000080000080ull, /* 89 */ |
| 0x8000000080008000ull, /* 8A */ |
| 0x8000000080008080ull, /* 8B */ |
| 0x8000000080800000ull, /* 8C */ |
| 0x8000000080800080ull, /* 8D */ |
| 0x8000000080808000ull, /* 8E */ |
| 0x8000000080808080ull, /* 8F */ |
| 0x8000008000000000ull, /* 90 */ |
| 0x8000008000000080ull, /* 91 */ |
| 0x8000008000008000ull, /* 92 */ |
| 0x8000008000008080ull, /* 93 */ |
| 0x8000008000800000ull, /* 94 */ |
| 0x8000008000800080ull, /* 95 */ |
| 0x8000008000808000ull, /* 96 */ |
| 0x8000008000808080ull, /* 97 */ |
| 0x8000008080000000ull, /* 98 */ |
| 0x8000008080000080ull, /* 99 */ |
| 0x8000008080008000ull, /* 9A */ |
| 0x8000008080008080ull, /* 9B */ |
| 0x8000008080800000ull, /* 9C */ |
| 0x8000008080800080ull, /* 9D */ |
| 0x8000008080808000ull, /* 9E */ |
| 0x8000008080808080ull, /* 9F */ |
| 0x8000800000000000ull, /* A0 */ |
| 0x8000800000000080ull, /* A1 */ |
| 0x8000800000008000ull, /* A2 */ |
| 0x8000800000008080ull, /* A3 */ |
| 0x8000800000800000ull, /* A4 */ |
| 0x8000800000800080ull, /* A5 */ |
| 0x8000800000808000ull, /* A6 */ |
| 0x8000800000808080ull, /* A7 */ |
| 0x8000800080000000ull, /* A8 */ |
| 0x8000800080000080ull, /* A9 */ |
| 0x8000800080008000ull, /* AA */ |
| 0x8000800080008080ull, /* AB */ |
| 0x8000800080800000ull, /* AC */ |
| 0x8000800080800080ull, /* AD */ |
| 0x8000800080808000ull, /* AE */ |
| 0x8000800080808080ull, /* AF */ |
| 0x8000808000000000ull, /* B0 */ |
| 0x8000808000000080ull, /* B1 */ |
| 0x8000808000008000ull, /* B2 */ |
| 0x8000808000008080ull, /* B3 */ |
| 0x8000808000800000ull, /* B4 */ |
| 0x8000808000800080ull, /* B5 */ |
| 0x8000808000808000ull, /* B6 */ |
| 0x8000808000808080ull, /* B7 */ |
| 0x8000808080000000ull, /* B8 */ |
| 0x8000808080000080ull, /* B9 */ |
| 0x8000808080008000ull, /* BA */ |
| 0x8000808080008080ull, /* BB */ |
| 0x8000808080800000ull, /* BC */ |
| 0x8000808080800080ull, /* BD */ |
| 0x8000808080808000ull, /* BE */ |
| 0x8000808080808080ull, /* BF */ |
| 0x8080000000000000ull, /* C0 */ |
| 0x8080000000000080ull, /* C1 */ |
| 0x8080000000008000ull, /* C2 */ |
| 0x8080000000008080ull, /* C3 */ |
| 0x8080000000800000ull, /* C4 */ |
| 0x8080000000800080ull, /* C5 */ |
| 0x8080000000808000ull, /* C6 */ |
| 0x8080000000808080ull, /* C7 */ |
| 0x8080000080000000ull, /* C8 */ |
| 0x8080000080000080ull, /* C9 */ |
| 0x8080000080008000ull, /* CA */ |
| 0x8080000080008080ull, /* CB */ |
| 0x8080000080800000ull, /* CC */ |
| 0x8080000080800080ull, /* CD */ |
| 0x8080000080808000ull, /* CE */ |
| 0x8080000080808080ull, /* CF */ |
| 0x8080008000000000ull, /* D0 */ |
| 0x8080008000000080ull, /* D1 */ |
| 0x8080008000008000ull, /* D2 */ |
| 0x8080008000008080ull, /* D3 */ |
| 0x8080008000800000ull, /* D4 */ |
| 0x8080008000800080ull, /* D5 */ |
| 0x8080008000808000ull, /* D6 */ |
| 0x8080008000808080ull, /* D7 */ |
| 0x8080008080000000ull, /* D8 */ |
| 0x8080008080000080ull, /* D9 */ |
| 0x8080008080008000ull, /* DA */ |
| 0x8080008080008080ull, /* DB */ |
| 0x8080008080800000ull, /* DC */ |
| 0x8080008080800080ull, /* DD */ |
| 0x8080008080808000ull, /* DE */ |
| 0x8080008080808080ull, /* DF */ |
| 0x8080800000000000ull, /* E0 */ |
| 0x8080800000000080ull, /* E1 */ |
| 0x8080800000008000ull, /* E2 */ |
| 0x8080800000008080ull, /* E3 */ |
| 0x8080800000800000ull, /* E4 */ |
| 0x8080800000800080ull, /* E5 */ |
| 0x8080800000808000ull, /* E6 */ |
| 0x8080800000808080ull, /* E7 */ |
| 0x8080800080000000ull, /* E8 */ |
| 0x8080800080000080ull, /* E9 */ |
| 0x8080800080008000ull, /* EA */ |
| 0x8080800080008080ull, /* EB */ |
| 0x8080800080800000ull, /* EC */ |
| 0x8080800080800080ull, /* ED */ |
| 0x8080800080808000ull, /* EE */ |
| 0x8080800080808080ull, /* EF */ |
| 0x8080808000000000ull, /* F0 */ |
| 0x8080808000000080ull, /* F1 */ |
| 0x8080808000008000ull, /* F2 */ |
| 0x8080808000008080ull, /* F3 */ |
| 0x8080808000800000ull, /* F4 */ |
| 0x8080808000800080ull, /* F5 */ |
| 0x8080808000808000ull, /* F6 */ |
| 0x8080808000808080ull, /* F7 */ |
| 0x8080808080000000ull, /* F8 */ |
| 0x8080808080000080ull, /* F9 */ |
| 0x8080808080008000ull, /* FA */ |
| 0x8080808080008080ull, /* FB */ |
| 0x8080808080800000ull, /* FC */ |
| 0x8080808080800080ull, /* FD */ |
| 0x8080808080808000ull, /* FE */ |
| 0x8080808080808080ull, /* FF */ |
| }; |
| |
| void helper_vgbbd(ppc_avr_t *r, ppc_avr_t *b) |
| { |
| int i; |
| uint64_t t[2] = { 0, 0 }; |
| |
| VECTOR_FOR_INORDER_I(i, u8) { |
| #if defined(HOST_WORDS_BIGENDIAN) |
| t[i>>3] |= VGBBD_MASKS[b->u8[i]] >> (i & 7); |
| #else |
| t[i>>3] |= VGBBD_MASKS[b->u8[i]] >> (7-(i & 7)); |
| #endif |
| } |
| |
| r->u64[0] = t[0]; |
| r->u64[1] = t[1]; |
| } |
| |
| #define PMSUM(name, srcfld, trgfld, trgtyp) \ |
| void helper_##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ |
| { \ |
| int i, j; \ |
| trgtyp prod[sizeof(ppc_avr_t)/sizeof(a->srcfld[0])]; \ |
| \ |
| VECTOR_FOR_INORDER_I(i, srcfld) { \ |
| prod[i] = 0; \ |
| for (j = 0; j < sizeof(a->srcfld[0]) * 8; j++) { \ |
| if (a->srcfld[i] & (1ull<<j)) { \ |
| prod[i] ^= ((trgtyp)b->srcfld[i] << j); \ |
| } \ |
| } \ |
| } \ |
| \ |
| VECTOR_FOR_INORDER_I(i, trgfld) { \ |
| r->trgfld[i] = prod[2*i] ^ prod[2*i+1]; \ |
| } \ |
| } |
| |
| PMSUM(vpmsumb, u8, u16, uint16_t) |
| PMSUM(vpmsumh, u16, u32, uint32_t) |
| PMSUM(vpmsumw, u32, u64, uint64_t) |
| |
| void helper_vpmsumd(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) |
| { |
| |
| #ifdef CONFIG_INT128 |
| int i, j; |
| __uint128_t prod[2]; |
| |
| VECTOR_FOR_INORDER_I(i, u64) { |
| prod[i] = 0; |
| for (j = 0; j < 64; j++) { |
| if (a->u64[i] & (1ull<<j)) { |
| prod[i] ^= (((__uint128_t)b->u64[i]) << j); |
| } |
| } |
| } |
| |
| r->u128 = prod[0] ^ prod[1]; |
| |
| #else |
| int i, j; |
| ppc_avr_t prod[2]; |
| |
| VECTOR_FOR_INORDER_I(i, u64) { |
| prod[i].u64[LO_IDX] = prod[i].u64[HI_IDX] = 0; |
| for (j = 0; j < 64; j++) { |
| if (a->u64[i] & (1ull<<j)) { |
| ppc_avr_t bshift; |
| if (j == 0) { |
| bshift.u64[HI_IDX] = 0; |
| bshift.u64[LO_IDX] = b->u64[i]; |
| } else { |
| bshift.u64[HI_IDX] = b->u64[i] >> (64-j); |
| bshift.u64[LO_IDX] = b->u64[i] << j; |
| } |
| prod[i].u64[LO_IDX] ^= bshift.u64[LO_IDX]; |
| prod[i].u64[HI_IDX] ^= bshift.u64[HI_IDX]; |
| } |
| } |
| } |
| |
| r->u64[LO_IDX] = prod[0].u64[LO_IDX] ^ prod[1].u64[LO_IDX]; |
| r->u64[HI_IDX] = prod[0].u64[HI_IDX] ^ prod[1].u64[HI_IDX]; |
| #endif |
| } |
| |
| |
| #if defined(HOST_WORDS_BIGENDIAN) |
| #define PKBIG 1 |
| #else |
| #define PKBIG 0 |
| #endif |
| void helper_vpkpx(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) |
| { |
| int i, j; |
| ppc_avr_t result; |
| #if defined(HOST_WORDS_BIGENDIAN) |
| const ppc_avr_t *x[2] = { a, b }; |
| #else |
| const ppc_avr_t *x[2] = { b, a }; |
| #endif |
| |
| VECTOR_FOR_INORDER_I(i, u64) { |
| VECTOR_FOR_INORDER_I(j, u32) { |
| uint32_t e = x[i]->u32[j]; |
| |
| result.u16[4*i+j] = (((e >> 9) & 0xfc00) | |
| ((e >> 6) & 0x3e0) | |
| ((e >> 3) & 0x1f)); |
| } |
| } |
| *r = result; |
| } |
| |
| #define VPK(suffix, from, to, cvt, dosat) \ |
| void helper_vpk##suffix(CPUPPCState *env, ppc_avr_t *r, \ |
| ppc_avr_t *a, ppc_avr_t *b) \ |
| { \ |
| int i; \ |
| int sat = 0; \ |
| ppc_avr_t result; \ |
| ppc_avr_t *a0 = PKBIG ? a : b; \ |
| ppc_avr_t *a1 = PKBIG ? b : a; \ |
| \ |
| VECTOR_FOR_INORDER_I(i, from) { \ |
| result.to[i] = cvt(a0->from[i], &sat); \ |
| result.to[i+ARRAY_SIZE(r->from)] = cvt(a1->from[i], &sat); \ |
| } \ |
| *r = result; \ |
| if (dosat && sat) { \ |
| env->vscr |= (1 << VSCR_SAT); \ |
| } \ |
| } |
| #define I(x, y) (x) |
| VPK(shss, s16, s8, cvtshsb, 1) |
| VPK(shus, s16, u8, cvtshub, 1) |
| VPK(swss, s32, s16, cvtswsh, 1) |
| VPK(swus, s32, u16, cvtswuh, 1) |
| VPK(sdss, s64, s32, cvtsdsw, 1) |
| VPK(sdus, s64, u32, cvtsduw, 1) |
| VPK(uhus, u16, u8, cvtuhub, 1) |
| VPK(uwus, u32, u16, cvtuwuh, 1) |
| VPK(udus, u64, u32, cvtuduw, 1) |
| VPK(uhum, u16, u8, I, 0) |
| VPK(uwum, u32, u16, I, 0) |
| VPK(udum, u64, u32, I, 0) |
| #undef I |
| #undef VPK |
| #undef PKBIG |
| |
| void helper_vrefp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *b) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(r->f); i++) { |
| r->f[i] = float32_div(float32_one, b->f[i], &env->vec_status); |
| } |
| } |
| |
| #define VRFI(suffix, rounding) \ |
| void helper_vrfi##suffix(CPUPPCState *env, ppc_avr_t *r, \ |
| ppc_avr_t *b) \ |
| { \ |
| int i; \ |
| float_status s = env->vec_status; \ |
| \ |
| set_float_rounding_mode(rounding, &s); \ |
| for (i = 0; i < ARRAY_SIZE(r->f); i++) { \ |
| r->f[i] = float32_round_to_int (b->f[i], &s); \ |
| } \ |
| } |
| VRFI(n, float_round_nearest_even) |
| VRFI(m, float_round_down) |
| VRFI(p, float_round_up) |
| VRFI(z, float_round_to_zero) |
| #undef VRFI |
| |
| #define VROTATE(suffix, element, mask) \ |
| void helper_vrl##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ |
| { \ |
| int i; \ |
| \ |
| for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ |
| unsigned int shift = b->element[i] & mask; \ |
| r->element[i] = (a->element[i] << shift) | \ |
| (a->element[i] >> (sizeof(a->element[0]) * 8 - shift)); \ |
| } \ |
| } |
| VROTATE(b, u8, 0x7) |
| VROTATE(h, u16, 0xF) |
| VROTATE(w, u32, 0x1F) |
| VROTATE(d, u64, 0x3F) |
| #undef VROTATE |
| |
| void helper_vrsqrtefp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *b) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(r->f); i++) { |
| float32 t = float32_sqrt(b->f[i], &env->vec_status); |
| |
| r->f[i] = float32_div(float32_one, t, &env->vec_status); |
| } |
| } |
| |
| void helper_vsel(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, |
| ppc_avr_t *c) |
| { |
| r->u64[0] = (a->u64[0] & ~c->u64[0]) | (b->u64[0] & c->u64[0]); |
| r->u64[1] = (a->u64[1] & ~c->u64[1]) | (b->u64[1] & c->u64[1]); |
| } |
| |
| void helper_vexptefp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *b) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(r->f); i++) { |
| r->f[i] = float32_exp2(b->f[i], &env->vec_status); |
| } |
| } |
| |
| void helper_vlogefp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *b) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(r->f); i++) { |
| r->f[i] = float32_log2(b->f[i], &env->vec_status); |
| } |
| } |
| |
| /* The specification says that the results are undefined if all of the |
| * shift counts are not identical. We check to make sure that they are |
| * to conform to what real hardware appears to do. */ |
| #define VSHIFT(suffix, leftp) \ |
| void helper_vs##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ |
| { \ |
| int shift = b->u8[LO_IDX*15] & 0x7; \ |
| int doit = 1; \ |
| int i; \ |
| \ |
| for (i = 0; i < ARRAY_SIZE(r->u8); i++) { \ |
| doit = doit && ((b->u8[i] & 0x7) == shift); \ |
| } \ |
| if (doit) { \ |
| if (shift == 0) { \ |
| *r = *a; \ |
| } else if (leftp) { \ |
| uint64_t carry = a->u64[LO_IDX] >> (64 - shift); \ |
| \ |
| r->u64[HI_IDX] = (a->u64[HI_IDX] << shift) | carry; \ |
| r->u64[LO_IDX] = a->u64[LO_IDX] << shift; \ |
| } else { \ |
| uint64_t carry = a->u64[HI_IDX] << (64 - shift); \ |
| \ |
| r->u64[LO_IDX] = (a->u64[LO_IDX] >> shift) | carry; \ |
| r->u64[HI_IDX] = a->u64[HI_IDX] >> shift; \ |
| } \ |
| } \ |
| } |
| VSHIFT(l, 1) |
| VSHIFT(r, 0) |
| #undef VSHIFT |
| |
| #define VSL(suffix, element, mask) \ |
| void helper_vsl##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ |
| { \ |
| int i; \ |
| \ |
| for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ |
| unsigned int shift = b->element[i] & mask; \ |
| \ |
| r->element[i] = a->element[i] << shift; \ |
| } \ |
| } |
| VSL(b, u8, 0x7) |
| VSL(h, u16, 0x0F) |
| VSL(w, u32, 0x1F) |
| VSL(d, u64, 0x3F) |
| #undef VSL |
| |
| void helper_vslv(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) |
| { |
| int i; |
| unsigned int shift, bytes, size; |
| |
| size = ARRAY_SIZE(r->u8); |
| for (i = 0; i < size; i++) { |
| shift = b->u8[i] & 0x7; /* extract shift value */ |
| bytes = (a->u8[i] << 8) + /* extract adjacent bytes */ |
| (((i + 1) < size) ? a->u8[i + 1] : 0); |
| r->u8[i] = (bytes << shift) >> 8; /* shift and store result */ |
| } |
| } |
| |
| void helper_vsrv(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) |
| { |
| int i; |
| unsigned int shift, bytes; |
| |
| /* Use reverse order, as destination and source register can be same. Its |
| * being modified in place saving temporary, reverse order will guarantee |
| * that computed result is not fed back. |
| */ |
| for (i = ARRAY_SIZE(r->u8) - 1; i >= 0; i--) { |
| shift = b->u8[i] & 0x7; /* extract shift value */ |
| bytes = ((i ? a->u8[i - 1] : 0) << 8) + a->u8[i]; |
| /* extract adjacent bytes */ |
| r->u8[i] = (bytes >> shift) & 0xFF; /* shift and store result */ |
| } |
| } |
| |
| void helper_vsldoi(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t shift) |
| { |
| int sh = shift & 0xf; |
| int i; |
| ppc_avr_t result; |
| |
| #if defined(HOST_WORDS_BIGENDIAN) |
| for (i = 0; i < ARRAY_SIZE(r->u8); i++) { |
| int index = sh + i; |
| if (index > 0xf) { |
| result.u8[i] = b->u8[index - 0x10]; |
| } else { |
| result.u8[i] = a->u8[index]; |
| } |
| } |
| #else |
| for (i = 0; i < ARRAY_SIZE(r->u8); i++) { |
| int index = (16 - sh) + i; |
| if (index > 0xf) { |
| result.u8[i] = a->u8[index - 0x10]; |
| } else { |
| result.u8[i] = b->u8[index]; |
| } |
| } |
| #endif |
| *r = result; |
| } |
| |
| void helper_vslo(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) |
| { |
| int sh = (b->u8[LO_IDX*0xf] >> 3) & 0xf; |
| |
| #if defined(HOST_WORDS_BIGENDIAN) |
| memmove(&r->u8[0], &a->u8[sh], 16 - sh); |
| memset(&r->u8[16-sh], 0, sh); |
| #else |
| memmove(&r->u8[sh], &a->u8[0], 16 - sh); |
| memset(&r->u8[0], 0, sh); |
| #endif |
| } |
| |
| /* Experimental testing shows that hardware masks the immediate. */ |
| #define _SPLAT_MASKED(element) (splat & (ARRAY_SIZE(r->element) - 1)) |
| #if defined(HOST_WORDS_BIGENDIAN) |
| #define SPLAT_ELEMENT(element) _SPLAT_MASKED(element) |
| #else |
| #define SPLAT_ELEMENT(element) \ |
| (ARRAY_SIZE(r->element) - 1 - _SPLAT_MASKED(element)) |
| #endif |
| #define VSPLT(suffix, element) \ |
| void helper_vsplt##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t splat) \ |
| { \ |
| uint32_t s = b->element[SPLAT_ELEMENT(element)]; \ |
| int i; \ |
| \ |
| for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ |
| r->element[i] = s; \ |
| } \ |
| } |
| VSPLT(b, u8) |
| VSPLT(h, u16) |
| VSPLT(w, u32) |
| #undef VSPLT |
| #undef SPLAT_ELEMENT |
| #undef _SPLAT_MASKED |
| #if defined(HOST_WORDS_BIGENDIAN) |
| #define VINSERT(suffix, element) \ |
| void helper_vinsert##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t index) \ |
| { \ |
| memmove(&r->u8[index], &b->u8[8 - sizeof(r->element)], \ |
| sizeof(r->element[0])); \ |
| } |
| #else |
| #define VINSERT(suffix, element) \ |
| void helper_vinsert##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t index) \ |
| { \ |
| uint32_t d = (16 - index) - sizeof(r->element[0]); \ |
| memmove(&r->u8[d], &b->u8[8], sizeof(r->element[0])); \ |
| } |
| #endif |
| VINSERT(b, u8) |
| VINSERT(h, u16) |
| VINSERT(w, u32) |
| VINSERT(d, u64) |
| #undef VINSERT |
| #if defined(HOST_WORDS_BIGENDIAN) |
| #define VEXTRACT(suffix, element) \ |
| void helper_vextract##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t index) \ |
| { \ |
| uint32_t es = sizeof(r->element[0]); \ |
| memmove(&r->u8[8 - es], &b->u8[index], es); \ |
| memset(&r->u8[8], 0, 8); \ |
| memset(&r->u8[0], 0, 8 - es); \ |
| } |
| #else |
| #define VEXTRACT(suffix, element) \ |
| void helper_vextract##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t index) \ |
| { \ |
| uint32_t es = sizeof(r->element[0]); \ |
| uint32_t s = (16 - index) - es; \ |
| memmove(&r->u8[8], &b->u8[s], es); \ |
| memset(&r->u8[0], 0, 8); \ |
| memset(&r->u8[8 + es], 0, 8 - es); \ |
| } |
| #endif |
| VEXTRACT(ub, u8) |
| VEXTRACT(uh, u16) |
| VEXTRACT(uw, u32) |
| VEXTRACT(d, u64) |
| #undef VEXTRACT |
| |
| #define VEXT_SIGNED(name, element, mask, cast, recast) \ |
| void helper_##name(ppc_avr_t *r, ppc_avr_t *b) \ |
| { \ |
| int i; \ |
| VECTOR_FOR_INORDER_I(i, element) { \ |
| r->element[i] = (recast)((cast)(b->element[i] & mask)); \ |
| } \ |
| } |
| VEXT_SIGNED(vextsb2w, s32, UINT8_MAX, int8_t, int32_t) |
| VEXT_SIGNED(vextsb2d, s64, UINT8_MAX, int8_t, int64_t) |
| VEXT_SIGNED(vextsh2w, s32, UINT16_MAX, int16_t, int32_t) |
| VEXT_SIGNED(vextsh2d, s64, UINT16_MAX, int16_t, int64_t) |
| VEXT_SIGNED(vextsw2d, s64, UINT32_MAX, int32_t, int64_t) |
| #undef VEXT_SIGNED |
| |
| #define VNEG(name, element) \ |
| void helper_##name(ppc_avr_t *r, ppc_avr_t *b) \ |
| { \ |
| int i; \ |
| VECTOR_FOR_INORDER_I(i, element) { \ |
| r->element[i] = -b->element[i]; \ |
| } \ |
| } |
| VNEG(vnegw, s32) |
| VNEG(vnegd, s64) |
| #undef VNEG |
| |
| #define VSPLTI(suffix, element, splat_type) \ |
| void helper_vspltis##suffix(ppc_avr_t *r, uint32_t splat) \ |
| { \ |
| splat_type x = (int8_t)(splat << 3) >> 3; \ |
| int i; \ |
| \ |
| for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ |
| r->element[i] = x; \ |
| } \ |
| } |
| VSPLTI(b, s8, int8_t) |
| VSPLTI(h, s16, int16_t) |
| VSPLTI(w, s32, int32_t) |
| #undef VSPLTI |
| |
| #define VSR(suffix, element, mask) \ |
| void helper_vsr##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ |
| { \ |
| int i; \ |
| \ |
| for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ |
| unsigned int shift = b->element[i] & mask; \ |
| r->element[i] = a->element[i] >> shift; \ |
| } \ |
| } |
| VSR(ab, s8, 0x7) |
| VSR(ah, s16, 0xF) |
| VSR(aw, s32, 0x1F) |
| VSR(ad, s64, 0x3F) |
| VSR(b, u8, 0x7) |
| VSR(h, u16, 0xF) |
| VSR(w, u32, 0x1F) |
| VSR(d, u64, 0x3F) |
| #undef VSR |
| |
| void helper_vsro(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) |
| { |
| int sh = (b->u8[LO_IDX * 0xf] >> 3) & 0xf; |
| |
| #if defined(HOST_WORDS_BIGENDIAN) |
| memmove(&r->u8[sh], &a->u8[0], 16 - sh); |
| memset(&r->u8[0], 0, sh); |
| #else |
| memmove(&r->u8[0], &a->u8[sh], 16 - sh); |
| memset(&r->u8[16 - sh], 0, sh); |
| #endif |
| } |
| |
| void helper_vsubcuw(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(r->u32); i++) { |
| r->u32[i] = a->u32[i] >= b->u32[i]; |
| } |
| } |
| |
| void helper_vsumsws(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) |
| { |
| int64_t t; |
| int i, upper; |
| ppc_avr_t result; |
| int sat = 0; |
| |
| #if defined(HOST_WORDS_BIGENDIAN) |
| upper = ARRAY_SIZE(r->s32)-1; |
| #else |
| upper = 0; |
| #endif |
| t = (int64_t)b->s32[upper]; |
| for (i = 0; i < ARRAY_SIZE(r->s32); i++) { |
| t += a->s32[i]; |
| result.s32[i] = 0; |
| } |
| result.s32[upper] = cvtsdsw(t, &sat); |
| *r = result; |
| |
| if (sat) { |
| env->vscr |= (1 << VSCR_SAT); |
| } |
| } |
| |
| void helper_vsum2sws(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) |
| { |
| int i, j, upper; |
| ppc_avr_t result; |
| int sat = 0; |
| |
| #if defined(HOST_WORDS_BIGENDIAN) |
| upper = 1; |
| #else |
| upper = 0; |
| #endif |
| for (i = 0; i < ARRAY_SIZE(r->u64); i++) { |
| int64_t t = (int64_t)b->s32[upper + i * 2]; |
| |
| result.u64[i] = 0; |
| for (j = 0; j < ARRAY_SIZE(r->u64); j++) { |
| t += a->s32[2 * i + j]; |
| } |
| result.s32[upper + i * 2] = cvtsdsw(t, &sat); |
| } |
| |
| *r = result; |
| if (sat) { |
| env->vscr |= (1 << VSCR_SAT); |
| } |
| } |
| |
| void helper_vsum4sbs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) |
| { |
| int i, j; |
| int sat = 0; |
| |
| for (i = 0; i < ARRAY_SIZE(r->s32); i++) { |
| int64_t t = (int64_t)b->s32[i]; |
| |
| for (j = 0; j < ARRAY_SIZE(r->s32); j++) { |
| t += a->s8[4 * i + j]; |
| } |
| r->s32[i] = cvtsdsw(t, &sat); |
| } |
| |
| if (sat) { |
| env->vscr |= (1 << VSCR_SAT); |
| } |
| } |
| |
| void helper_vsum4shs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) |
| { |
| int sat = 0; |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(r->s32); i++) { |
| int64_t t = (int64_t)b->s32[i]; |
| |
| t += a->s16[2 * i] + a->s16[2 * i + 1]; |
| r->s32[i] = cvtsdsw(t, &sat); |
| } |
| |
| if (sat) { |
| env->vscr |= (1 << VSCR_SAT); |
| } |
| } |
| |
| void helper_vsum4ubs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) |
| { |
| int i, j; |
| int sat = 0; |
| |
| for (i = 0; i < ARRAY_SIZE(r->u32); i++) { |
| uint64_t t = (uint64_t)b->u32[i]; |
| |
| for (j = 0; j < ARRAY_SIZE(r->u32); j++) { |
| t += a->u8[4 * i + j]; |
| } |
| r->u32[i] = cvtuduw(t, &sat); |
| } |
| |
| if (sat) { |
| env->vscr |= (1 << VSCR_SAT); |
| } |
| } |
| |
| #if defined(HOST_WORDS_BIGENDIAN) |
| #define UPKHI 1 |
| #define UPKLO 0 |
| #else |
| #define UPKHI 0 |
| #define UPKLO 1 |
| #endif |
| #define VUPKPX(suffix, hi) \ |
| void helper_vupk##suffix(ppc_avr_t *r, ppc_avr_t *b) \ |
| { \ |
| int i; \ |
| ppc_avr_t result; \ |
| \ |
| for (i = 0; i < ARRAY_SIZE(r->u32); i++) { \ |
| uint16_t e = b->u16[hi ? i : i+4]; \ |
| uint8_t a = (e >> 15) ? 0xff : 0; \ |
| uint8_t r = (e >> 10) & 0x1f; \ |
| uint8_t g = (e >> 5) & 0x1f; \ |
| uint8_t b = e & 0x1f; \ |
| \ |
| result.u32[i] = (a << 24) | (r << 16) | (g << 8) | b; \ |
| } \ |
| *r = result; \ |
| } |
| VUPKPX(lpx, UPKLO) |
| VUPKPX(hpx, UPKHI) |
| #undef VUPKPX |
| |
| #define VUPK(suffix, unpacked, packee, hi) \ |
| void helper_vupk##suffix(ppc_avr_t *r, ppc_avr_t *b) \ |
| { \ |
| int i; \ |
| ppc_avr_t result; \ |
| \ |
| if (hi) { \ |
| for (i = 0; i < ARRAY_SIZE(r->unpacked); i++) { \ |
| result.unpacked[i] = b->packee[i]; \ |
| } \ |
| } else { \ |
| for (i = ARRAY_SIZE(r->unpacked); i < ARRAY_SIZE(r->packee); \ |
| i++) { \ |
| result.unpacked[i - ARRAY_SIZE(r->unpacked)] = b->packee[i]; \ |
| } \ |
| } \ |
| *r = result; \ |
| } |
| VUPK(hsb, s16, s8, UPKHI) |
| VUPK(hsh, s32, s16, UPKHI) |
| VUPK(hsw, s64, s32, UPKHI) |
| VUPK(lsb, s16, s8, UPKLO) |
| VUPK(lsh, s32, s16, UPKLO) |
| VUPK(lsw, s64, s32, UPKLO) |
| #undef VUPK |
| #undef UPKHI |
| #undef UPKLO |
| |
| #define VGENERIC_DO(name, element) \ |
| void helper_v##name(ppc_avr_t *r, ppc_avr_t *b) \ |
| { \ |
| int i; \ |
| \ |
| VECTOR_FOR_INORDER_I(i, element) { \ |
| r->element[i] = name(b->element[i]); \ |
| } \ |
| } |
| |
| #define clzb(v) ((v) ? clz32((uint32_t)(v) << 24) : 8) |
| #define clzh(v) ((v) ? clz32((uint32_t)(v) << 16) : 16) |
| #define clzw(v) clz32((v)) |
| #define clzd(v) clz64((v)) |
| |
| VGENERIC_DO(clzb, u8) |
| VGENERIC_DO(clzh, u16) |
| VGENERIC_DO(clzw, u32) |
| VGENERIC_DO(clzd, u64) |
| |
| #undef clzb |
| #undef clzh |
| #undef clzw |
| #undef clzd |
| |
| #define ctzb(v) ((v) ? ctz32(v) : 8) |
| #define ctzh(v) ((v) ? ctz32(v) : 16) |
| #define ctzw(v) ctz32((v)) |
| #define ctzd(v) ctz64((v)) |
| |
| VGENERIC_DO(ctzb, u8) |
| VGENERIC_DO(ctzh, u16) |
| VGENERIC_DO(ctzw, u32) |
| VGENERIC_DO(ctzd, u64) |
| |
| #undef ctzb |
| #undef ctzh |
| #undef ctzw |
| #undef ctzd |
| |
| #define popcntb(v) ctpop8(v) |
| #define popcnth(v) ctpop16(v) |
| #define popcntw(v) ctpop32(v) |
| #define popcntd(v) ctpop64(v) |
| |
| VGENERIC_DO(popcntb, u8) |
| VGENERIC_DO(popcnth, u16) |
| VGENERIC_DO(popcntw, u32) |
| VGENERIC_DO(popcntd, u64) |
| |
| #undef popcntb |
| #undef popcnth |
| #undef popcntw |
| #undef popcntd |
| |
| #undef VGENERIC_DO |
| |
| #if defined(HOST_WORDS_BIGENDIAN) |
| #define QW_ONE { .u64 = { 0, 1 } } |
| #else |
| #define QW_ONE { .u64 = { 1, 0 } } |
| #endif |
| |
| #ifndef CONFIG_INT128 |
| |
| static inline void avr_qw_not(ppc_avr_t *t, ppc_avr_t a) |
| { |
| t->u64[0] = ~a.u64[0]; |
| t->u64[1] = ~a.u64[1]; |
| } |
| |
| static int avr_qw_cmpu(ppc_avr_t a, ppc_avr_t b) |
| { |
| if (a.u64[HI_IDX] < b.u64[HI_IDX]) { |
| return -1; |
| } else if (a.u64[HI_IDX] > b.u64[HI_IDX]) { |
| return 1; |
| } else if (a.u64[LO_IDX] < b.u64[LO_IDX]) { |
| return -1; |
| } else if (a.u64[LO_IDX] > b.u64[LO_IDX]) { |
| return 1; |
| } else { |
| return 0; |
| } |
| } |
| |
| static void avr_qw_add(ppc_avr_t *t, ppc_avr_t a, ppc_avr_t b) |
| { |
| t->u64[LO_IDX] = a.u64[LO_IDX] + b.u64[LO_IDX]; |
| t->u64[HI_IDX] = a.u64[HI_IDX] + b.u64[HI_IDX] + |
| (~a.u64[LO_IDX] < b.u64[LO_IDX]); |
| } |
| |
| static int avr_qw_addc(ppc_avr_t *t, ppc_avr_t a, ppc_avr_t b) |
| { |
| ppc_avr_t not_a; |
| t->u64[LO_IDX] = a.u64[LO_IDX] + b.u64[LO_IDX]; |
| t->u64[HI_IDX] = a.u64[HI_IDX] + b.u64[HI_IDX] + |
| (~a.u64[LO_IDX] < b.u64[LO_IDX]); |
| avr_qw_not(¬_a, a); |
| return avr_qw_cmpu(not_a, b) < 0; |
| } |
| |
| #endif |
| |
| void helper_vadduqm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) |
| { |
| #ifdef CONFIG_INT128 |
| r->u128 = a->u128 + b->u128; |
| #else |
| avr_qw_add(r, *a, *b); |
| #endif |
| } |
| |
| void helper_vaddeuqm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) |
| { |
| #ifdef CONFIG_INT128 |
| r->u128 = a->u128 + b->u128 + (c->u128 & 1); |
| #else |
| |
| if (c->u64[LO_IDX] & 1) { |
| ppc_avr_t tmp; |
| |
| tmp.u64[HI_IDX] = 0; |
| tmp.u64[LO_IDX] = c->u64[LO_IDX] & 1; |
| avr_qw_add(&tmp, *a, tmp); |
| avr_qw_add(r, tmp, *b); |
| } else { |
| avr_qw_add(r, *a, *b); |
| } |
| #endif |
| } |
| |
| void helper_vaddcuq(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) |
| { |
| #ifdef CONFIG_INT128 |
| r->u128 = (~a->u128 < b->u128); |
| #else |
| ppc_avr_t not_a; |
| |
| avr_qw_not(¬_a, *a); |
| |
| r->u64[HI_IDX] = 0; |
| r->u64[LO_IDX] = (avr_qw_cmpu(not_a, *b) < 0); |
| #endif |
| } |
| |
| void helper_vaddecuq(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) |
| { |
| #ifdef CONFIG_INT128 |
| int carry_out = (~a->u128 < b->u128); |
| if (!carry_out && (c->u128 & 1)) { |
| carry_out = ((a->u128 + b->u128 + 1) == 0) && |
| ((a->u128 != 0) || (b->u128 != 0)); |
| } |
| r->u128 = carry_out; |
| #else |
| |
| int carry_in = c->u64[LO_IDX] & 1; |
| int carry_out = 0; |
| ppc_avr_t tmp; |
| |
| carry_out = avr_qw_addc(&tmp, *a, *b); |
| |
| if (!carry_out && carry_in) { |
| ppc_avr_t one = QW_ONE; |
| carry_out = avr_qw_addc(&tmp, tmp, one); |
| } |
| r->u64[HI_IDX] = 0; |
| r->u64[LO_IDX] = carry_out; |
| #endif |
| } |
| |
| void helper_vsubuqm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) |
| { |
| #ifdef CONFIG_INT128 |
| r->u128 = a->u128 - b->u128; |
| #else |
| ppc_avr_t tmp; |
| ppc_avr_t one = QW_ONE; |
| |
| avr_qw_not(&tmp, *b); |
| avr_qw_add(&tmp, *a, tmp); |
| avr_qw_add(r, tmp, one); |
| #endif |
| } |
| |
| void helper_vsubeuqm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) |
| { |
| #ifdef CONFIG_INT128 |
| r->u128 = a->u128 + ~b->u128 + (c->u128 & 1); |
| #else |
| ppc_avr_t tmp, sum; |
| |
| avr_qw_not(&tmp, *b); |
| avr_qw_add(&sum, *a, tmp); |
| |
| tmp.u64[HI_IDX] = 0; |
| tmp.u64[LO_IDX] = c->u64[LO_IDX] & 1; |
| avr_qw_add(r, sum, tmp); |
| #endif |
| } |
| |
| void helper_vsubcuq(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) |
| { |
| #ifdef CONFIG_INT128 |
| r->u128 = (~a->u128 < ~b->u128) || |
| (a->u128 + ~b->u128 == (__uint128_t)-1); |
| #else |
| int carry = (avr_qw_cmpu(*a, *b) > 0); |
| if (!carry) { |
| ppc_avr_t tmp; |
| avr_qw_not(&tmp, *b); |
| avr_qw_add(&tmp, *a, tmp); |
| carry = ((tmp.s64[HI_IDX] == -1ull) && (tmp.s64[LO_IDX] == -1ull)); |
| } |
| r->u64[HI_IDX] = 0; |
| r->u64[LO_IDX] = carry; |
| #endif |
| } |
| |
| void helper_vsubecuq(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) |
| { |
| #ifdef CONFIG_INT128 |
| r->u128 = |
| (~a->u128 < ~b->u128) || |
| ((c->u128 & 1) && (a->u128 + ~b->u128 == (__uint128_t)-1)); |
| #else |
| int carry_in = c->u64[LO_IDX] & 1; |
| int carry_out = (avr_qw_cmpu(*a, *b) > 0); |
| if (!carry_out && carry_in) { |
| ppc_avr_t tmp; |
| avr_qw_not(&tmp, *b); |
| avr_qw_add(&tmp, *a, tmp); |
| carry_out = ((tmp.u64[HI_IDX] == -1ull) && (tmp.u64[LO_IDX] == -1ull)); |
| } |
| |
| r->u64[HI_IDX] = 0; |
| r->u64[LO_IDX] = carry_out; |
| #endif |
| } |
| |
| #define BCD_PLUS_PREF_1 0xC |
| #define BCD_PLUS_PREF_2 0xF |
| #define BCD_PLUS_ALT_1 0xA |
| #define BCD_NEG_PREF 0xD |
| #define BCD_NEG_ALT 0xB |
| #define BCD_PLUS_ALT_2 0xE |
| |
| #if defined(HOST_WORDS_BIGENDIAN) |
| #define BCD_DIG_BYTE(n) (15 - (n/2)) |
| #else |
| #define BCD_DIG_BYTE(n) (n/2) |
| #endif |
| |
| static int bcd_get_sgn(ppc_avr_t *bcd) |
| { |
| switch (bcd->u8[BCD_DIG_BYTE(0)] & 0xF) { |
| case BCD_PLUS_PREF_1: |
| case BCD_PLUS_PREF_2: |
| case BCD_PLUS_ALT_1: |
| case BCD_PLUS_ALT_2: |
| { |
| return 1; |
| } |
| |
| case BCD_NEG_PREF: |
| case BCD_NEG_ALT: |
| { |
| return -1; |
| } |
| |
| default: |
| { |
| return 0; |
| } |
| } |
| } |
| |
| static int bcd_preferred_sgn(int sgn, int ps) |
| { |
| if (sgn >= 0) { |
| return (ps == 0) ? BCD_PLUS_PREF_1 : BCD_PLUS_PREF_2; |
| } else { |
| return BCD_NEG_PREF; |
| } |
| } |
| |
| static uint8_t bcd_get_digit(ppc_avr_t *bcd, int n, int *invalid) |
| { |
| uint8_t result; |
| if (n & 1) { |
| result = bcd->u8[BCD_DIG_BYTE(n)] >> 4; |
| } else { |
| result = bcd->u8[BCD_DIG_BYTE(n)] & 0xF; |
| } |
| |
| if (unlikely(result > 9)) { |
| *invalid = true; |
| } |
| return result; |
| } |
| |
| static void bcd_put_digit(ppc_avr_t *bcd, uint8_t digit, int n) |
| { |
| if (n & 1) { |
| bcd->u8[BCD_DIG_BYTE(n)] &= 0x0F; |
| bcd->u8[BCD_DIG_BYTE(n)] |= (digit<<4); |
| } else { |
| bcd->u8[BCD_DIG_BYTE(n)] &= 0xF0; |
| bcd->u8[BCD_DIG_BYTE(n)] |= digit; |
| } |
| } |
| |
| static int bcd_cmp_mag(ppc_avr_t *a, ppc_avr_t *b) |
| { |
| int i; |
| int invalid = 0; |
| for (i = 31; i > 0; i--) { |
| uint8_t dig_a = bcd_get_digit(a, i, &invalid); |
| uint8_t dig_b = bcd_get_digit(b, i, &invalid); |
| if (unlikely(invalid)) { |
| return 0; /* doesn't matter */ |
| } else if (dig_a > dig_b) { |
| return 1; |
| } else if (dig_a < dig_b) { |
| return -1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int bcd_add_mag(ppc_avr_t *t, ppc_avr_t *a, ppc_avr_t *b, int *invalid, |
| int *overflow) |
| { |
| int carry = 0; |
| int i; |
| int is_zero = 1; |
| for (i = 1; i <= 31; i++) { |
| uint8_t digit = bcd_get_digit(a, i, invalid) + |
| bcd_get_digit(b, i, invalid) + carry; |
| is_zero &= (digit == 0); |
| if (digit > 9) { |
| carry = 1; |
| digit -= 10; |
| } else { |
| carry = 0; |
| } |
| |
| bcd_put_digit(t, digit, i); |
| |
| if (unlikely(*invalid)) { |
| return -1; |
| } |
| } |
| |
| *overflow = carry; |
| return is_zero; |
| } |
| |
| static int bcd_sub_mag(ppc_avr_t *t, ppc_avr_t *a, ppc_avr_t *b, int *invalid, |
| int *overflow) |
| { |
| int carry = 0; |
| int i; |
| int is_zero = 1; |
| for (i = 1; i <= 31; i++) { |
| uint8_t digit = bcd_get_digit(a, i, invalid) - |
| bcd_get_digit(b, i, invalid) + carry; |
| is_zero &= (digit == 0); |
| if (digit & 0x80) { |
| carry = -1; |
| digit += 10; |
| } else { |
| carry = 0; |
| } |
| |
| bcd_put_digit(t, digit, i); |
| |
| if (unlikely(*invalid)) { |
| return -1; |
| } |
| } |
| |
| *overflow = carry; |
| return is_zero; |
| } |
| |
| uint32_t helper_bcdadd(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps) |
| { |
| |
| int sgna = bcd_get_sgn(a); |
| int sgnb = bcd_get_sgn(b); |
| int invalid = (sgna == 0) || (sgnb == 0); |
| int overflow = 0; |
| int zero = 0; |
| uint32_t cr = 0; |
| ppc_avr_t result = { .u64 = { 0, 0 } }; |
| |
| if (!invalid) { |
| if (sgna == sgnb) { |
| result.u8[BCD_DIG_BYTE(0)] = bcd_preferred_sgn(sgna, ps); |
| zero = bcd_add_mag(&result, a, b, &invalid, &overflow); |
| cr = (sgna > 0) ? 1 << CRF_GT : 1 << CRF_LT; |
| } else if (bcd_cmp_mag(a, b) > 0) { |
| result.u8[BCD_DIG_BYTE(0)] = bcd_preferred_sgn(sgna, ps); |
| zero = bcd_sub_mag(&result, a, b, &invalid, &overflow); |
| cr = (sgna > 0) ? 1 << CRF_GT : 1 << CRF_LT; |
| } else { |
| result.u8[BCD_DIG_BYTE(0)] = bcd_preferred_sgn(sgnb, ps); |
| zero = bcd_sub_mag(&result, b, a, &invalid, &overflow); |
| cr = (sgnb > 0) ? 1 << CRF_GT : 1 << CRF_LT; |
| } |
| } |
| |
| if (unlikely(invalid)) { |
| result.u64[HI_IDX] = result.u64[LO_IDX] = -1; |
| cr = 1 << CRF_SO; |
| } else if (overflow) { |
| cr |= 1 << CRF_SO; |
| } else if (zero) { |
| cr = 1 << CRF_EQ; |
| } |
| |
| *r = result; |
| |
| return cr; |
| } |
| |
| uint32_t helper_bcdsub(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps) |
| { |
| ppc_avr_t bcopy = *b; |
| int sgnb = bcd_get_sgn(b); |
| if (sgnb < 0) { |
| bcd_put_digit(&bcopy, BCD_PLUS_PREF_1, 0); |
| } else if (sgnb > 0) { |
| bcd_put_digit(&bcopy, BCD_NEG_PREF, 0); |
| } |
| /* else invalid ... defer to bcdadd code for proper handling */ |
| |
| return helper_bcdadd(r, a, &bcopy, ps); |
| } |
| |
| void helper_vsbox(ppc_avr_t *r, ppc_avr_t *a) |
| { |
| int i; |
| VECTOR_FOR_INORDER_I(i, u8) { |
| r->u8[i] = AES_sbox[a->u8[i]]; |
| } |
| } |
| |
| void helper_vcipher(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) |
| { |
| ppc_avr_t result; |
| int i; |
| |
| VECTOR_FOR_INORDER_I(i, u32) { |
| result.AVRW(i) = b->AVRW(i) ^ |
| (AES_Te0[a->AVRB(AES_shifts[4*i + 0])] ^ |
| AES_Te1[a->AVRB(AES_shifts[4*i + 1])] ^ |
| AES_Te2[a->AVRB(AES_shifts[4*i + 2])] ^ |
| AES_Te3[a->AVRB(AES_shifts[4*i + 3])]); |
| } |
| *r = result; |
| } |
| |
| void helper_vcipherlast(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) |
| { |
| ppc_avr_t result; |
| int i; |
| |
| VECTOR_FOR_INORDER_I(i, u8) { |
| result.AVRB(i) = b->AVRB(i) ^ (AES_sbox[a->AVRB(AES_shifts[i])]); |
| } |
| *r = result; |
| } |
| |
| void helper_vncipher(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) |
| { |
| /* This differs from what is written in ISA V2.07. The RTL is */ |
| /* incorrect and will be fixed in V2.07B. */ |
| int i; |
| ppc_avr_t tmp; |
| |
| VECTOR_FOR_INORDER_I(i, u8) { |
| tmp.AVRB(i) = b->AVRB(i) ^ AES_isbox[a->AVRB(AES_ishifts[i])]; |
| } |
| |
| VECTOR_FOR_INORDER_I(i, u32) { |
| r->AVRW(i) = |
| AES_imc[tmp.AVRB(4*i + 0)][0] ^ |
| AES_imc[tmp.AVRB(4*i + 1)][1] ^ |
| AES_imc[tmp.AVRB(4*i + 2)][2] ^ |
| AES_imc[tmp.AVRB(4*i + 3)][3]; |
| } |
| } |
| |
| void helper_vncipherlast(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) |
| { |
| ppc_avr_t result; |
| int i; |
| |
| VECTOR_FOR_INORDER_I(i, u8) { |
| result.AVRB(i) = b->AVRB(i) ^ (AES_isbox[a->AVRB(AES_ishifts[i])]); |
| } |
| *r = result; |
| } |
| |
| #define ROTRu32(v, n) (((v) >> (n)) | ((v) << (32-n))) |
| #if defined(HOST_WORDS_BIGENDIAN) |
| #define EL_IDX(i) (i) |
| #else |
| #define EL_IDX(i) (3 - (i)) |
| #endif |
| |
| void helper_vshasigmaw(ppc_avr_t *r, ppc_avr_t *a, uint32_t st_six) |
| { |
| int st = (st_six & 0x10) != 0; |
| int six = st_six & 0xF; |
| int i; |
| |
| VECTOR_FOR_INORDER_I(i, u32) { |
| if (st == 0) { |
| if ((six & (0x8 >> i)) == 0) { |
| r->u32[EL_IDX(i)] = ROTRu32(a->u32[EL_IDX(i)], 7) ^ |
| ROTRu32(a->u32[EL_IDX(i)], 18) ^ |
| (a->u32[EL_IDX(i)] >> 3); |
| } else { /* six.bit[i] == 1 */ |
| r->u32[EL_IDX(i)] = ROTRu32(a->u32[EL_IDX(i)], 17) ^ |
| ROTRu32(a->u32[EL_IDX(i)], 19) ^ |
| (a->u32[EL_IDX(i)] >> 10); |
| } |
| } else { /* st == 1 */ |
| if ((six & (0x8 >> i)) == 0) { |
| r->u32[EL_IDX(i)] = ROTRu32(a->u32[EL_IDX(i)], 2) ^ |
| ROTRu32(a->u32[EL_IDX(i)], 13) ^ |
| ROTRu32(a->u32[EL_IDX(i)], 22); |
| } else { /* six.bit[i] == 1 */ |
| r->u32[EL_IDX(i)] = ROTRu32(a->u32[EL_IDX(i)], 6) ^ |
| ROTRu32(a->u32[EL_IDX(i)], 11) ^ |
| ROTRu32(a->u32[EL_IDX(i)], 25); |
| } |
| } |
| } |
| } |
| |
| #undef ROTRu32 |
| #undef EL_IDX |
| |
| #define ROTRu64(v, n) (((v) >> (n)) | ((v) << (64-n))) |
| #if defined(HOST_WORDS_BIGENDIAN) |
| #define EL_IDX(i) (i) |
| #else |
| #define EL_IDX(i) (1 - (i)) |
| #endif |
| |
| void helper_vshasigmad(ppc_avr_t *r, ppc_avr_t *a, uint32_t st_six) |
| { |
| int st = (st_six & 0x10) != 0; |
| int six = st_six & 0xF; |
| int i; |
| |
| VECTOR_FOR_INORDER_I(i, u64) { |
| if (st == 0) { |
| if ((six & (0x8 >> (2*i))) == 0) { |
| r->u64[EL_IDX(i)] = ROTRu64(a->u64[EL_IDX(i)], 1) ^ |
| ROTRu64(a->u64[EL_IDX(i)], 8) ^ |
| (a->u64[EL_IDX(i)] >> 7); |
| } else { /* six.bit[2*i] == 1 */ |
| r->u64[EL_IDX(i)] = ROTRu64(a->u64[EL_IDX(i)], 19) ^ |
| ROTRu64(a->u64[EL_IDX(i)], 61) ^ |
| (a->u64[EL_IDX(i)] >> 6); |
| } |
| } else { /* st == 1 */ |
| if ((six & (0x8 >> (2*i))) == 0) { |
| r->u64[EL_IDX(i)] = ROTRu64(a->u64[EL_IDX(i)], 28) ^ |
| ROTRu64(a->u64[EL_IDX(i)], 34) ^ |
| ROTRu64(a->u64[EL_IDX(i)], 39); |
| } else { /* six.bit[2*i] == 1 */ |
| r->u64[EL_IDX(i)] = ROTRu64(a->u64[EL_IDX(i)], 14) ^ |
| ROTRu64(a->u64[EL_IDX(i)], 18) ^ |
| ROTRu64(a->u64[EL_IDX(i)], 41); |
| } |
| } |
| } |
| } |
| |
| #undef ROTRu64 |
| #undef EL_IDX |
| |
| void helper_vpermxor(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) |
| { |
| ppc_avr_t result; |
| int i; |
| |
| VECTOR_FOR_INORDER_I(i, u8) { |
| int indexA = c->u8[i] >> 4; |
| int indexB = c->u8[i] & 0xF; |
| #if defined(HOST_WORDS_BIGENDIAN) |
| result.u8[i] = a->u8[indexA] ^ b->u8[indexB]; |
| #else |
| result.u8[i] = a->u8[15-indexA] ^ b->u8[15-indexB]; |
| #endif |
| } |
| *r = result; |
| } |
| |
| #undef VECTOR_FOR_INORDER_I |
| #undef HI_IDX |
| #undef LO_IDX |
| |
| /*****************************************************************************/ |
| /* SPE extension helpers */ |
| /* Use a table to make this quicker */ |
| static const uint8_t hbrev[16] = { |
| 0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE, |
| 0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF, |
| }; |
| |
| static inline uint8_t byte_reverse(uint8_t val) |
| { |
| return hbrev[val >> 4] | (hbrev[val & 0xF] << 4); |
| } |
| |
| static inline uint32_t word_reverse(uint32_t val) |
| { |
| return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) | |
| (byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24); |
| } |
| |
| #define MASKBITS 16 /* Random value - to be fixed (implementation dependent) */ |
| target_ulong helper_brinc(target_ulong arg1, target_ulong arg2) |
| { |
| uint32_t a, b, d, mask; |
| |
| mask = UINT32_MAX >> (32 - MASKBITS); |
| a = arg1 & mask; |
| b = arg2 & mask; |
| d = word_reverse(1 + word_reverse(a | ~b)); |
| return (arg1 & ~mask) | (d & b); |
| } |
| |
| uint32_t helper_cntlsw32(uint32_t val) |
| { |
| if (val & 0x80000000) { |
| return clz32(~val); |
| } else { |
| return clz32(val); |
| } |
| } |
| |
| uint32_t helper_cntlzw32(uint32_t val) |
| { |
| return clz32(val); |
| } |
| |
| /* 440 specific */ |
| target_ulong helper_dlmzb(CPUPPCState *env, target_ulong high, |
| target_ulong low, uint32_t update_Rc) |
| { |
| target_ulong mask; |
| int i; |
| |
| i = 1; |
| for (mask = 0xFF000000; mask != 0; mask = mask >> 8) { |
| if ((high & mask) == 0) { |
| if (update_Rc) { |
| env->crf[0] = 0x4; |
| } |
| goto done; |
| } |
| i++; |
| } |
| for (mask = 0xFF000000; mask != 0; mask = mask >> 8) { |
| if ((low & mask) == 0) { |
| if (update_Rc) { |
| env->crf[0] = 0x8; |
| } |
| goto done; |
| } |
| i++; |
| } |
| i = 8; |
| if (update_Rc) { |
| env->crf[0] = 0x2; |
| } |
| done: |
| env->xer = (env->xer & ~0x7F) | i; |
| if (update_Rc) { |
| env->crf[0] |= xer_so; |
| } |
| return i; |
| } |