| /* |
| * MIPS emulation helpers for qemu. |
| * |
| * Copyright (c) 2004-2005 Jocelyn Mayer |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| #include <stdlib.h> |
| #include "cpu.h" |
| #include "dyngen-exec.h" |
| |
| #include "host-utils.h" |
| |
| #include "helper.h" |
| |
| #if !defined(CONFIG_USER_ONLY) |
| #include "softmmu_exec.h" |
| #endif /* !defined(CONFIG_USER_ONLY) */ |
| |
| #ifndef CONFIG_USER_ONLY |
| static inline void cpu_mips_tlb_flush (CPUMIPSState *env, int flush_global); |
| #endif |
| |
| static inline void compute_hflags(CPUMIPSState *env) |
| { |
| env->hflags &= ~(MIPS_HFLAG_COP1X | MIPS_HFLAG_64 | MIPS_HFLAG_CP0 | |
| MIPS_HFLAG_F64 | MIPS_HFLAG_FPU | MIPS_HFLAG_KSU | |
| MIPS_HFLAG_UX); |
| if (!(env->CP0_Status & (1 << CP0St_EXL)) && |
| !(env->CP0_Status & (1 << CP0St_ERL)) && |
| !(env->hflags & MIPS_HFLAG_DM)) { |
| env->hflags |= (env->CP0_Status >> CP0St_KSU) & MIPS_HFLAG_KSU; |
| } |
| #if defined(TARGET_MIPS64) |
| if (((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_UM) || |
| (env->CP0_Status & (1 << CP0St_PX)) || |
| (env->CP0_Status & (1 << CP0St_UX))) { |
| env->hflags |= MIPS_HFLAG_64; |
| } |
| if (env->CP0_Status & (1 << CP0St_UX)) { |
| env->hflags |= MIPS_HFLAG_UX; |
| } |
| #endif |
| if ((env->CP0_Status & (1 << CP0St_CU0)) || |
| !(env->hflags & MIPS_HFLAG_KSU)) { |
| env->hflags |= MIPS_HFLAG_CP0; |
| } |
| if (env->CP0_Status & (1 << CP0St_CU1)) { |
| env->hflags |= MIPS_HFLAG_FPU; |
| } |
| if (env->CP0_Status & (1 << CP0St_FR)) { |
| env->hflags |= MIPS_HFLAG_F64; |
| } |
| if (env->insn_flags & ISA_MIPS32R2) { |
| if (env->active_fpu.fcr0 & (1 << FCR0_F64)) { |
| env->hflags |= MIPS_HFLAG_COP1X; |
| } |
| } else if (env->insn_flags & ISA_MIPS32) { |
| if (env->hflags & MIPS_HFLAG_64) { |
| env->hflags |= MIPS_HFLAG_COP1X; |
| } |
| } else if (env->insn_flags & ISA_MIPS4) { |
| /* All supported MIPS IV CPUs use the XX (CU3) to enable |
| and disable the MIPS IV extensions to the MIPS III ISA. |
| Some other MIPS IV CPUs ignore the bit, so the check here |
| would be too restrictive for them. */ |
| if (env->CP0_Status & (1 << CP0St_CU3)) { |
| env->hflags |= MIPS_HFLAG_COP1X; |
| } |
| } |
| } |
| |
| /*****************************************************************************/ |
| /* Exceptions processing helpers */ |
| |
| void helper_raise_exception_err (uint32_t exception, int error_code) |
| { |
| #if 1 |
| if (exception < 0x100) |
| qemu_log("%s: %d %d\n", __func__, exception, error_code); |
| #endif |
| env->exception_index = exception; |
| env->error_code = error_code; |
| cpu_loop_exit(env); |
| } |
| |
| void helper_raise_exception (uint32_t exception) |
| { |
| helper_raise_exception_err(exception, 0); |
| } |
| |
| #if !defined(CONFIG_USER_ONLY) |
| static void do_restore_state(uintptr_t pc) |
| { |
| TranslationBlock *tb; |
| |
| tb = tb_find_pc (pc); |
| if (tb) { |
| cpu_restore_state(tb, env, pc); |
| } |
| } |
| #endif |
| |
| #if defined(CONFIG_USER_ONLY) |
| #define HELPER_LD(name, insn, type) \ |
| static inline type do_##name(target_ulong addr, int mem_idx) \ |
| { \ |
| return (type) insn##_raw(addr); \ |
| } |
| #else |
| #define HELPER_LD(name, insn, type) \ |
| static inline type do_##name(target_ulong addr, int mem_idx) \ |
| { \ |
| switch (mem_idx) \ |
| { \ |
| case 0: return (type) insn##_kernel(addr); break; \ |
| case 1: return (type) insn##_super(addr); break; \ |
| default: \ |
| case 2: return (type) insn##_user(addr); break; \ |
| } \ |
| } |
| #endif |
| HELPER_LD(lbu, ldub, uint8_t) |
| HELPER_LD(lw, ldl, int32_t) |
| #ifdef TARGET_MIPS64 |
| HELPER_LD(ld, ldq, int64_t) |
| #endif |
| #undef HELPER_LD |
| |
| #if defined(CONFIG_USER_ONLY) |
| #define HELPER_ST(name, insn, type) \ |
| static inline void do_##name(target_ulong addr, type val, int mem_idx) \ |
| { \ |
| insn##_raw(addr, val); \ |
| } |
| #else |
| #define HELPER_ST(name, insn, type) \ |
| static inline void do_##name(target_ulong addr, type val, int mem_idx) \ |
| { \ |
| switch (mem_idx) \ |
| { \ |
| case 0: insn##_kernel(addr, val); break; \ |
| case 1: insn##_super(addr, val); break; \ |
| default: \ |
| case 2: insn##_user(addr, val); break; \ |
| } \ |
| } |
| #endif |
| HELPER_ST(sb, stb, uint8_t) |
| HELPER_ST(sw, stl, uint32_t) |
| #ifdef TARGET_MIPS64 |
| HELPER_ST(sd, stq, uint64_t) |
| #endif |
| #undef HELPER_ST |
| |
| target_ulong helper_clo (target_ulong arg1) |
| { |
| return clo32(arg1); |
| } |
| |
| target_ulong helper_clz (target_ulong arg1) |
| { |
| return clz32(arg1); |
| } |
| |
| #if defined(TARGET_MIPS64) |
| target_ulong helper_dclo (target_ulong arg1) |
| { |
| return clo64(arg1); |
| } |
| |
| target_ulong helper_dclz (target_ulong arg1) |
| { |
| return clz64(arg1); |
| } |
| #endif /* TARGET_MIPS64 */ |
| |
| /* 64 bits arithmetic for 32 bits hosts */ |
| static inline uint64_t get_HILO (void) |
| { |
| return ((uint64_t)(env->active_tc.HI[0]) << 32) | (uint32_t)env->active_tc.LO[0]; |
| } |
| |
| static inline void set_HILO (uint64_t HILO) |
| { |
| env->active_tc.LO[0] = (int32_t)HILO; |
| env->active_tc.HI[0] = (int32_t)(HILO >> 32); |
| } |
| |
| static inline void set_HIT0_LO (target_ulong arg1, uint64_t HILO) |
| { |
| env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF); |
| arg1 = env->active_tc.HI[0] = (int32_t)(HILO >> 32); |
| } |
| |
| static inline void set_HI_LOT0 (target_ulong arg1, uint64_t HILO) |
| { |
| arg1 = env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF); |
| env->active_tc.HI[0] = (int32_t)(HILO >> 32); |
| } |
| |
| /* Multiplication variants of the vr54xx. */ |
| target_ulong helper_muls (target_ulong arg1, target_ulong arg2) |
| { |
| set_HI_LOT0(arg1, 0 - ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2)); |
| |
| return arg1; |
| } |
| |
| target_ulong helper_mulsu (target_ulong arg1, target_ulong arg2) |
| { |
| set_HI_LOT0(arg1, 0 - ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2)); |
| |
| return arg1; |
| } |
| |
| target_ulong helper_macc (target_ulong arg1, target_ulong arg2) |
| { |
| set_HI_LOT0(arg1, ((int64_t)get_HILO()) + ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2)); |
| |
| return arg1; |
| } |
| |
| target_ulong helper_macchi (target_ulong arg1, target_ulong arg2) |
| { |
| set_HIT0_LO(arg1, ((int64_t)get_HILO()) + ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2)); |
| |
| return arg1; |
| } |
| |
| target_ulong helper_maccu (target_ulong arg1, target_ulong arg2) |
| { |
| set_HI_LOT0(arg1, ((uint64_t)get_HILO()) + ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2)); |
| |
| return arg1; |
| } |
| |
| target_ulong helper_macchiu (target_ulong arg1, target_ulong arg2) |
| { |
| set_HIT0_LO(arg1, ((uint64_t)get_HILO()) + ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2)); |
| |
| return arg1; |
| } |
| |
| target_ulong helper_msac (target_ulong arg1, target_ulong arg2) |
| { |
| set_HI_LOT0(arg1, ((int64_t)get_HILO()) - ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2)); |
| |
| return arg1; |
| } |
| |
| target_ulong helper_msachi (target_ulong arg1, target_ulong arg2) |
| { |
| set_HIT0_LO(arg1, ((int64_t)get_HILO()) - ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2)); |
| |
| return arg1; |
| } |
| |
| target_ulong helper_msacu (target_ulong arg1, target_ulong arg2) |
| { |
| set_HI_LOT0(arg1, ((uint64_t)get_HILO()) - ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2)); |
| |
| return arg1; |
| } |
| |
| target_ulong helper_msachiu (target_ulong arg1, target_ulong arg2) |
| { |
| set_HIT0_LO(arg1, ((uint64_t)get_HILO()) - ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2)); |
| |
| return arg1; |
| } |
| |
| target_ulong helper_mulhi (target_ulong arg1, target_ulong arg2) |
| { |
| set_HIT0_LO(arg1, (int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2); |
| |
| return arg1; |
| } |
| |
| target_ulong helper_mulhiu (target_ulong arg1, target_ulong arg2) |
| { |
| set_HIT0_LO(arg1, (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2); |
| |
| return arg1; |
| } |
| |
| target_ulong helper_mulshi (target_ulong arg1, target_ulong arg2) |
| { |
| set_HIT0_LO(arg1, 0 - ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2)); |
| |
| return arg1; |
| } |
| |
| target_ulong helper_mulshiu (target_ulong arg1, target_ulong arg2) |
| { |
| set_HIT0_LO(arg1, 0 - ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2)); |
| |
| return arg1; |
| } |
| |
| #ifdef TARGET_MIPS64 |
| void helper_dmult (target_ulong arg1, target_ulong arg2) |
| { |
| muls64(&(env->active_tc.LO[0]), &(env->active_tc.HI[0]), arg1, arg2); |
| } |
| |
| void helper_dmultu (target_ulong arg1, target_ulong arg2) |
| { |
| mulu64(&(env->active_tc.LO[0]), &(env->active_tc.HI[0]), arg1, arg2); |
| } |
| #endif |
| |
| #ifndef CONFIG_USER_ONLY |
| |
| static inline target_phys_addr_t do_translate_address(target_ulong address, int rw) |
| { |
| target_phys_addr_t lladdr; |
| |
| lladdr = cpu_mips_translate_address(env, address, rw); |
| |
| if (lladdr == -1LL) { |
| cpu_loop_exit(env); |
| } else { |
| return lladdr; |
| } |
| } |
| |
| #define HELPER_LD_ATOMIC(name, insn) \ |
| target_ulong helper_##name(target_ulong arg, int mem_idx) \ |
| { \ |
| env->lladdr = do_translate_address(arg, 0); \ |
| env->llval = do_##insn(arg, mem_idx); \ |
| return env->llval; \ |
| } |
| HELPER_LD_ATOMIC(ll, lw) |
| #ifdef TARGET_MIPS64 |
| HELPER_LD_ATOMIC(lld, ld) |
| #endif |
| #undef HELPER_LD_ATOMIC |
| |
| #define HELPER_ST_ATOMIC(name, ld_insn, st_insn, almask) \ |
| target_ulong helper_##name(target_ulong arg1, target_ulong arg2, int mem_idx) \ |
| { \ |
| target_long tmp; \ |
| \ |
| if (arg2 & almask) { \ |
| env->CP0_BadVAddr = arg2; \ |
| helper_raise_exception(EXCP_AdES); \ |
| } \ |
| if (do_translate_address(arg2, 1) == env->lladdr) { \ |
| tmp = do_##ld_insn(arg2, mem_idx); \ |
| if (tmp == env->llval) { \ |
| do_##st_insn(arg2, arg1, mem_idx); \ |
| return 1; \ |
| } \ |
| } \ |
| return 0; \ |
| } |
| HELPER_ST_ATOMIC(sc, lw, sw, 0x3) |
| #ifdef TARGET_MIPS64 |
| HELPER_ST_ATOMIC(scd, ld, sd, 0x7) |
| #endif |
| #undef HELPER_ST_ATOMIC |
| #endif |
| |
| #ifdef TARGET_WORDS_BIGENDIAN |
| #define GET_LMASK(v) ((v) & 3) |
| #define GET_OFFSET(addr, offset) (addr + (offset)) |
| #else |
| #define GET_LMASK(v) (((v) & 3) ^ 3) |
| #define GET_OFFSET(addr, offset) (addr - (offset)) |
| #endif |
| |
| target_ulong helper_lwl(target_ulong arg1, target_ulong arg2, int mem_idx) |
| { |
| target_ulong tmp; |
| |
| tmp = do_lbu(arg2, mem_idx); |
| arg1 = (arg1 & 0x00FFFFFF) | (tmp << 24); |
| |
| if (GET_LMASK(arg2) <= 2) { |
| tmp = do_lbu(GET_OFFSET(arg2, 1), mem_idx); |
| arg1 = (arg1 & 0xFF00FFFF) | (tmp << 16); |
| } |
| |
| if (GET_LMASK(arg2) <= 1) { |
| tmp = do_lbu(GET_OFFSET(arg2, 2), mem_idx); |
| arg1 = (arg1 & 0xFFFF00FF) | (tmp << 8); |
| } |
| |
| if (GET_LMASK(arg2) == 0) { |
| tmp = do_lbu(GET_OFFSET(arg2, 3), mem_idx); |
| arg1 = (arg1 & 0xFFFFFF00) | tmp; |
| } |
| return (int32_t)arg1; |
| } |
| |
| target_ulong helper_lwr(target_ulong arg1, target_ulong arg2, int mem_idx) |
| { |
| target_ulong tmp; |
| |
| tmp = do_lbu(arg2, mem_idx); |
| arg1 = (arg1 & 0xFFFFFF00) | tmp; |
| |
| if (GET_LMASK(arg2) >= 1) { |
| tmp = do_lbu(GET_OFFSET(arg2, -1), mem_idx); |
| arg1 = (arg1 & 0xFFFF00FF) | (tmp << 8); |
| } |
| |
| if (GET_LMASK(arg2) >= 2) { |
| tmp = do_lbu(GET_OFFSET(arg2, -2), mem_idx); |
| arg1 = (arg1 & 0xFF00FFFF) | (tmp << 16); |
| } |
| |
| if (GET_LMASK(arg2) == 3) { |
| tmp = do_lbu(GET_OFFSET(arg2, -3), mem_idx); |
| arg1 = (arg1 & 0x00FFFFFF) | (tmp << 24); |
| } |
| return (int32_t)arg1; |
| } |
| |
| void helper_swl(target_ulong arg1, target_ulong arg2, int mem_idx) |
| { |
| do_sb(arg2, (uint8_t)(arg1 >> 24), mem_idx); |
| |
| if (GET_LMASK(arg2) <= 2) |
| do_sb(GET_OFFSET(arg2, 1), (uint8_t)(arg1 >> 16), mem_idx); |
| |
| if (GET_LMASK(arg2) <= 1) |
| do_sb(GET_OFFSET(arg2, 2), (uint8_t)(arg1 >> 8), mem_idx); |
| |
| if (GET_LMASK(arg2) == 0) |
| do_sb(GET_OFFSET(arg2, 3), (uint8_t)arg1, mem_idx); |
| } |
| |
| void helper_swr(target_ulong arg1, target_ulong arg2, int mem_idx) |
| { |
| do_sb(arg2, (uint8_t)arg1, mem_idx); |
| |
| if (GET_LMASK(arg2) >= 1) |
| do_sb(GET_OFFSET(arg2, -1), (uint8_t)(arg1 >> 8), mem_idx); |
| |
| if (GET_LMASK(arg2) >= 2) |
| do_sb(GET_OFFSET(arg2, -2), (uint8_t)(arg1 >> 16), mem_idx); |
| |
| if (GET_LMASK(arg2) == 3) |
| do_sb(GET_OFFSET(arg2, -3), (uint8_t)(arg1 >> 24), mem_idx); |
| } |
| |
| #if defined(TARGET_MIPS64) |
| /* "half" load and stores. We must do the memory access inline, |
| or fault handling won't work. */ |
| |
| #ifdef TARGET_WORDS_BIGENDIAN |
| #define GET_LMASK64(v) ((v) & 7) |
| #else |
| #define GET_LMASK64(v) (((v) & 7) ^ 7) |
| #endif |
| |
| target_ulong helper_ldl(target_ulong arg1, target_ulong arg2, int mem_idx) |
| { |
| uint64_t tmp; |
| |
| tmp = do_lbu(arg2, mem_idx); |
| arg1 = (arg1 & 0x00FFFFFFFFFFFFFFULL) | (tmp << 56); |
| |
| if (GET_LMASK64(arg2) <= 6) { |
| tmp = do_lbu(GET_OFFSET(arg2, 1), mem_idx); |
| arg1 = (arg1 & 0xFF00FFFFFFFFFFFFULL) | (tmp << 48); |
| } |
| |
| if (GET_LMASK64(arg2) <= 5) { |
| tmp = do_lbu(GET_OFFSET(arg2, 2), mem_idx); |
| arg1 = (arg1 & 0xFFFF00FFFFFFFFFFULL) | (tmp << 40); |
| } |
| |
| if (GET_LMASK64(arg2) <= 4) { |
| tmp = do_lbu(GET_OFFSET(arg2, 3), mem_idx); |
| arg1 = (arg1 & 0xFFFFFF00FFFFFFFFULL) | (tmp << 32); |
| } |
| |
| if (GET_LMASK64(arg2) <= 3) { |
| tmp = do_lbu(GET_OFFSET(arg2, 4), mem_idx); |
| arg1 = (arg1 & 0xFFFFFFFF00FFFFFFULL) | (tmp << 24); |
| } |
| |
| if (GET_LMASK64(arg2) <= 2) { |
| tmp = do_lbu(GET_OFFSET(arg2, 5), mem_idx); |
| arg1 = (arg1 & 0xFFFFFFFFFF00FFFFULL) | (tmp << 16); |
| } |
| |
| if (GET_LMASK64(arg2) <= 1) { |
| tmp = do_lbu(GET_OFFSET(arg2, 6), mem_idx); |
| arg1 = (arg1 & 0xFFFFFFFFFFFF00FFULL) | (tmp << 8); |
| } |
| |
| if (GET_LMASK64(arg2) == 0) { |
| tmp = do_lbu(GET_OFFSET(arg2, 7), mem_idx); |
| arg1 = (arg1 & 0xFFFFFFFFFFFFFF00ULL) | tmp; |
| } |
| |
| return arg1; |
| } |
| |
| target_ulong helper_ldr(target_ulong arg1, target_ulong arg2, int mem_idx) |
| { |
| uint64_t tmp; |
| |
| tmp = do_lbu(arg2, mem_idx); |
| arg1 = (arg1 & 0xFFFFFFFFFFFFFF00ULL) | tmp; |
| |
| if (GET_LMASK64(arg2) >= 1) { |
| tmp = do_lbu(GET_OFFSET(arg2, -1), mem_idx); |
| arg1 = (arg1 & 0xFFFFFFFFFFFF00FFULL) | (tmp << 8); |
| } |
| |
| if (GET_LMASK64(arg2) >= 2) { |
| tmp = do_lbu(GET_OFFSET(arg2, -2), mem_idx); |
| arg1 = (arg1 & 0xFFFFFFFFFF00FFFFULL) | (tmp << 16); |
| } |
| |
| if (GET_LMASK64(arg2) >= 3) { |
| tmp = do_lbu(GET_OFFSET(arg2, -3), mem_idx); |
| arg1 = (arg1 & 0xFFFFFFFF00FFFFFFULL) | (tmp << 24); |
| } |
| |
| if (GET_LMASK64(arg2) >= 4) { |
| tmp = do_lbu(GET_OFFSET(arg2, -4), mem_idx); |
| arg1 = (arg1 & 0xFFFFFF00FFFFFFFFULL) | (tmp << 32); |
| } |
| |
| if (GET_LMASK64(arg2) >= 5) { |
| tmp = do_lbu(GET_OFFSET(arg2, -5), mem_idx); |
| arg1 = (arg1 & 0xFFFF00FFFFFFFFFFULL) | (tmp << 40); |
| } |
| |
| if (GET_LMASK64(arg2) >= 6) { |
| tmp = do_lbu(GET_OFFSET(arg2, -6), mem_idx); |
| arg1 = (arg1 & 0xFF00FFFFFFFFFFFFULL) | (tmp << 48); |
| } |
| |
| if (GET_LMASK64(arg2) == 7) { |
| tmp = do_lbu(GET_OFFSET(arg2, -7), mem_idx); |
| arg1 = (arg1 & 0x00FFFFFFFFFFFFFFULL) | (tmp << 56); |
| } |
| |
| return arg1; |
| } |
| |
| void helper_sdl(target_ulong arg1, target_ulong arg2, int mem_idx) |
| { |
| do_sb(arg2, (uint8_t)(arg1 >> 56), mem_idx); |
| |
| if (GET_LMASK64(arg2) <= 6) |
| do_sb(GET_OFFSET(arg2, 1), (uint8_t)(arg1 >> 48), mem_idx); |
| |
| if (GET_LMASK64(arg2) <= 5) |
| do_sb(GET_OFFSET(arg2, 2), (uint8_t)(arg1 >> 40), mem_idx); |
| |
| if (GET_LMASK64(arg2) <= 4) |
| do_sb(GET_OFFSET(arg2, 3), (uint8_t)(arg1 >> 32), mem_idx); |
| |
| if (GET_LMASK64(arg2) <= 3) |
| do_sb(GET_OFFSET(arg2, 4), (uint8_t)(arg1 >> 24), mem_idx); |
| |
| if (GET_LMASK64(arg2) <= 2) |
| do_sb(GET_OFFSET(arg2, 5), (uint8_t)(arg1 >> 16), mem_idx); |
| |
| if (GET_LMASK64(arg2) <= 1) |
| do_sb(GET_OFFSET(arg2, 6), (uint8_t)(arg1 >> 8), mem_idx); |
| |
| if (GET_LMASK64(arg2) <= 0) |
| do_sb(GET_OFFSET(arg2, 7), (uint8_t)arg1, mem_idx); |
| } |
| |
| void helper_sdr(target_ulong arg1, target_ulong arg2, int mem_idx) |
| { |
| do_sb(arg2, (uint8_t)arg1, mem_idx); |
| |
| if (GET_LMASK64(arg2) >= 1) |
| do_sb(GET_OFFSET(arg2, -1), (uint8_t)(arg1 >> 8), mem_idx); |
| |
| if (GET_LMASK64(arg2) >= 2) |
| do_sb(GET_OFFSET(arg2, -2), (uint8_t)(arg1 >> 16), mem_idx); |
| |
| if (GET_LMASK64(arg2) >= 3) |
| do_sb(GET_OFFSET(arg2, -3), (uint8_t)(arg1 >> 24), mem_idx); |
| |
| if (GET_LMASK64(arg2) >= 4) |
| do_sb(GET_OFFSET(arg2, -4), (uint8_t)(arg1 >> 32), mem_idx); |
| |
| if (GET_LMASK64(arg2) >= 5) |
| do_sb(GET_OFFSET(arg2, -5), (uint8_t)(arg1 >> 40), mem_idx); |
| |
| if (GET_LMASK64(arg2) >= 6) |
| do_sb(GET_OFFSET(arg2, -6), (uint8_t)(arg1 >> 48), mem_idx); |
| |
| if (GET_LMASK64(arg2) == 7) |
| do_sb(GET_OFFSET(arg2, -7), (uint8_t)(arg1 >> 56), mem_idx); |
| } |
| #endif /* TARGET_MIPS64 */ |
| |
| static const int multiple_regs[] = { 16, 17, 18, 19, 20, 21, 22, 23, 30 }; |
| |
| void helper_lwm (target_ulong addr, target_ulong reglist, uint32_t mem_idx) |
| { |
| target_ulong base_reglist = reglist & 0xf; |
| target_ulong do_r31 = reglist & 0x10; |
| #ifdef CONFIG_USER_ONLY |
| #undef ldfun |
| #define ldfun ldl_raw |
| #else |
| uint32_t (*ldfun)(target_ulong); |
| |
| switch (mem_idx) |
| { |
| case 0: ldfun = ldl_kernel; break; |
| case 1: ldfun = ldl_super; break; |
| default: |
| case 2: ldfun = ldl_user; break; |
| } |
| #endif |
| |
| if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) { |
| target_ulong i; |
| |
| for (i = 0; i < base_reglist; i++) { |
| env->active_tc.gpr[multiple_regs[i]] = (target_long) ldfun(addr); |
| addr += 4; |
| } |
| } |
| |
| if (do_r31) { |
| env->active_tc.gpr[31] = (target_long) ldfun(addr); |
| } |
| } |
| |
| void helper_swm (target_ulong addr, target_ulong reglist, uint32_t mem_idx) |
| { |
| target_ulong base_reglist = reglist & 0xf; |
| target_ulong do_r31 = reglist & 0x10; |
| #ifdef CONFIG_USER_ONLY |
| #undef stfun |
| #define stfun stl_raw |
| #else |
| void (*stfun)(target_ulong, uint32_t); |
| |
| switch (mem_idx) |
| { |
| case 0: stfun = stl_kernel; break; |
| case 1: stfun = stl_super; break; |
| default: |
| case 2: stfun = stl_user; break; |
| } |
| #endif |
| |
| if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) { |
| target_ulong i; |
| |
| for (i = 0; i < base_reglist; i++) { |
| stfun(addr, env->active_tc.gpr[multiple_regs[i]]); |
| addr += 4; |
| } |
| } |
| |
| if (do_r31) { |
| stfun(addr, env->active_tc.gpr[31]); |
| } |
| } |
| |
| #if defined(TARGET_MIPS64) |
| void helper_ldm (target_ulong addr, target_ulong reglist, uint32_t mem_idx) |
| { |
| target_ulong base_reglist = reglist & 0xf; |
| target_ulong do_r31 = reglist & 0x10; |
| #ifdef CONFIG_USER_ONLY |
| #undef ldfun |
| #define ldfun ldq_raw |
| #else |
| uint64_t (*ldfun)(target_ulong); |
| |
| switch (mem_idx) |
| { |
| case 0: ldfun = ldq_kernel; break; |
| case 1: ldfun = ldq_super; break; |
| default: |
| case 2: ldfun = ldq_user; break; |
| } |
| #endif |
| |
| if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) { |
| target_ulong i; |
| |
| for (i = 0; i < base_reglist; i++) { |
| env->active_tc.gpr[multiple_regs[i]] = ldfun(addr); |
| addr += 8; |
| } |
| } |
| |
| if (do_r31) { |
| env->active_tc.gpr[31] = ldfun(addr); |
| } |
| } |
| |
| void helper_sdm (target_ulong addr, target_ulong reglist, uint32_t mem_idx) |
| { |
| target_ulong base_reglist = reglist & 0xf; |
| target_ulong do_r31 = reglist & 0x10; |
| #ifdef CONFIG_USER_ONLY |
| #undef stfun |
| #define stfun stq_raw |
| #else |
| void (*stfun)(target_ulong, uint64_t); |
| |
| switch (mem_idx) |
| { |
| case 0: stfun = stq_kernel; break; |
| case 1: stfun = stq_super; break; |
| default: |
| case 2: stfun = stq_user; break; |
| } |
| #endif |
| |
| if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) { |
| target_ulong i; |
| |
| for (i = 0; i < base_reglist; i++) { |
| stfun(addr, env->active_tc.gpr[multiple_regs[i]]); |
| addr += 8; |
| } |
| } |
| |
| if (do_r31) { |
| stfun(addr, env->active_tc.gpr[31]); |
| } |
| } |
| #endif |
| |
| #ifndef CONFIG_USER_ONLY |
| /* SMP helpers. */ |
| static int mips_vpe_is_wfi(CPUMIPSState *c) |
| { |
| /* If the VPE is halted but otherwise active, it means it's waiting for |
| an interrupt. */ |
| return c->halted && mips_vpe_active(c); |
| } |
| |
| static inline void mips_vpe_wake(CPUMIPSState *c) |
| { |
| /* Dont set ->halted = 0 directly, let it be done via cpu_has_work |
| because there might be other conditions that state that c should |
| be sleeping. */ |
| cpu_interrupt(c, CPU_INTERRUPT_WAKE); |
| } |
| |
| static inline void mips_vpe_sleep(CPUMIPSState *c) |
| { |
| /* The VPE was shut off, really go to bed. |
| Reset any old _WAKE requests. */ |
| c->halted = 1; |
| cpu_reset_interrupt(c, CPU_INTERRUPT_WAKE); |
| } |
| |
| static inline void mips_tc_wake(CPUMIPSState *c, int tc) |
| { |
| /* FIXME: TC reschedule. */ |
| if (mips_vpe_active(c) && !mips_vpe_is_wfi(c)) { |
| mips_vpe_wake(c); |
| } |
| } |
| |
| static inline void mips_tc_sleep(CPUMIPSState *c, int tc) |
| { |
| /* FIXME: TC reschedule. */ |
| if (!mips_vpe_active(c)) { |
| mips_vpe_sleep(c); |
| } |
| } |
| |
| /* tc should point to an int with the value of the global TC index. |
| This function will transform it into a local index within the |
| returned CPUMIPSState. |
| |
| FIXME: This code assumes that all VPEs have the same number of TCs, |
| which depends on runtime setup. Can probably be fixed by |
| walking the list of CPUMIPSStates. */ |
| static CPUMIPSState *mips_cpu_map_tc(int *tc) |
| { |
| CPUMIPSState *other; |
| int vpe_idx, nr_threads = env->nr_threads; |
| int tc_idx = *tc; |
| |
| if (!(env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP))) { |
| /* Not allowed to address other CPUs. */ |
| *tc = env->current_tc; |
| return env; |
| } |
| |
| vpe_idx = tc_idx / nr_threads; |
| *tc = tc_idx % nr_threads; |
| other = qemu_get_cpu(vpe_idx); |
| return other ? other : env; |
| } |
| |
| /* The per VPE CP0_Status register shares some fields with the per TC |
| CP0_TCStatus registers. These fields are wired to the same registers, |
| so changes to either of them should be reflected on both registers. |
| |
| Also, EntryHi shares the bottom 8 bit ASID with TCStauts. |
| |
| These helper call synchronizes the regs for a given cpu. */ |
| |
| /* Called for updates to CP0_Status. */ |
| static void sync_c0_status(CPUMIPSState *cpu, int tc) |
| { |
| int32_t tcstatus, *tcst; |
| uint32_t v = cpu->CP0_Status; |
| uint32_t cu, mx, asid, ksu; |
| uint32_t mask = ((1 << CP0TCSt_TCU3) |
| | (1 << CP0TCSt_TCU2) |
| | (1 << CP0TCSt_TCU1) |
| | (1 << CP0TCSt_TCU0) |
| | (1 << CP0TCSt_TMX) |
| | (3 << CP0TCSt_TKSU) |
| | (0xff << CP0TCSt_TASID)); |
| |
| cu = (v >> CP0St_CU0) & 0xf; |
| mx = (v >> CP0St_MX) & 0x1; |
| ksu = (v >> CP0St_KSU) & 0x3; |
| asid = env->CP0_EntryHi & 0xff; |
| |
| tcstatus = cu << CP0TCSt_TCU0; |
| tcstatus |= mx << CP0TCSt_TMX; |
| tcstatus |= ksu << CP0TCSt_TKSU; |
| tcstatus |= asid; |
| |
| if (tc == cpu->current_tc) { |
| tcst = &cpu->active_tc.CP0_TCStatus; |
| } else { |
| tcst = &cpu->tcs[tc].CP0_TCStatus; |
| } |
| |
| *tcst &= ~mask; |
| *tcst |= tcstatus; |
| compute_hflags(cpu); |
| } |
| |
| /* Called for updates to CP0_TCStatus. */ |
| static void sync_c0_tcstatus(CPUMIPSState *cpu, int tc, target_ulong v) |
| { |
| uint32_t status; |
| uint32_t tcu, tmx, tasid, tksu; |
| uint32_t mask = ((1 << CP0St_CU3) |
| | (1 << CP0St_CU2) |
| | (1 << CP0St_CU1) |
| | (1 << CP0St_CU0) |
| | (1 << CP0St_MX) |
| | (3 << CP0St_KSU)); |
| |
| tcu = (v >> CP0TCSt_TCU0) & 0xf; |
| tmx = (v >> CP0TCSt_TMX) & 0x1; |
| tasid = v & 0xff; |
| tksu = (v >> CP0TCSt_TKSU) & 0x3; |
| |
| status = tcu << CP0St_CU0; |
| status |= tmx << CP0St_MX; |
| status |= tksu << CP0St_KSU; |
| |
| cpu->CP0_Status &= ~mask; |
| cpu->CP0_Status |= status; |
| |
| /* Sync the TASID with EntryHi. */ |
| cpu->CP0_EntryHi &= ~0xff; |
| cpu->CP0_EntryHi = tasid; |
| |
| compute_hflags(cpu); |
| } |
| |
| /* Called for updates to CP0_EntryHi. */ |
| static void sync_c0_entryhi(CPUMIPSState *cpu, int tc) |
| { |
| int32_t *tcst; |
| uint32_t asid, v = cpu->CP0_EntryHi; |
| |
| asid = v & 0xff; |
| |
| if (tc == cpu->current_tc) { |
| tcst = &cpu->active_tc.CP0_TCStatus; |
| } else { |
| tcst = &cpu->tcs[tc].CP0_TCStatus; |
| } |
| |
| *tcst &= ~0xff; |
| *tcst |= asid; |
| } |
| |
| /* CP0 helpers */ |
| target_ulong helper_mfc0_mvpcontrol (void) |
| { |
| return env->mvp->CP0_MVPControl; |
| } |
| |
| target_ulong helper_mfc0_mvpconf0 (void) |
| { |
| return env->mvp->CP0_MVPConf0; |
| } |
| |
| target_ulong helper_mfc0_mvpconf1 (void) |
| { |
| return env->mvp->CP0_MVPConf1; |
| } |
| |
| target_ulong helper_mfc0_random (void) |
| { |
| return (int32_t)cpu_mips_get_random(env); |
| } |
| |
| target_ulong helper_mfc0_tcstatus (void) |
| { |
| return env->active_tc.CP0_TCStatus; |
| } |
| |
| target_ulong helper_mftc0_tcstatus(void) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(&other_tc); |
| |
| if (other_tc == other->current_tc) |
| return other->active_tc.CP0_TCStatus; |
| else |
| return other->tcs[other_tc].CP0_TCStatus; |
| } |
| |
| target_ulong helper_mfc0_tcbind (void) |
| { |
| return env->active_tc.CP0_TCBind; |
| } |
| |
| target_ulong helper_mftc0_tcbind(void) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(&other_tc); |
| |
| if (other_tc == other->current_tc) |
| return other->active_tc.CP0_TCBind; |
| else |
| return other->tcs[other_tc].CP0_TCBind; |
| } |
| |
| target_ulong helper_mfc0_tcrestart (void) |
| { |
| return env->active_tc.PC; |
| } |
| |
| target_ulong helper_mftc0_tcrestart(void) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(&other_tc); |
| |
| if (other_tc == other->current_tc) |
| return other->active_tc.PC; |
| else |
| return other->tcs[other_tc].PC; |
| } |
| |
| target_ulong helper_mfc0_tchalt (void) |
| { |
| return env->active_tc.CP0_TCHalt; |
| } |
| |
| target_ulong helper_mftc0_tchalt(void) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(&other_tc); |
| |
| if (other_tc == other->current_tc) |
| return other->active_tc.CP0_TCHalt; |
| else |
| return other->tcs[other_tc].CP0_TCHalt; |
| } |
| |
| target_ulong helper_mfc0_tccontext (void) |
| { |
| return env->active_tc.CP0_TCContext; |
| } |
| |
| target_ulong helper_mftc0_tccontext(void) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(&other_tc); |
| |
| if (other_tc == other->current_tc) |
| return other->active_tc.CP0_TCContext; |
| else |
| return other->tcs[other_tc].CP0_TCContext; |
| } |
| |
| target_ulong helper_mfc0_tcschedule (void) |
| { |
| return env->active_tc.CP0_TCSchedule; |
| } |
| |
| target_ulong helper_mftc0_tcschedule(void) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(&other_tc); |
| |
| if (other_tc == other->current_tc) |
| return other->active_tc.CP0_TCSchedule; |
| else |
| return other->tcs[other_tc].CP0_TCSchedule; |
| } |
| |
| target_ulong helper_mfc0_tcschefback (void) |
| { |
| return env->active_tc.CP0_TCScheFBack; |
| } |
| |
| target_ulong helper_mftc0_tcschefback(void) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(&other_tc); |
| |
| if (other_tc == other->current_tc) |
| return other->active_tc.CP0_TCScheFBack; |
| else |
| return other->tcs[other_tc].CP0_TCScheFBack; |
| } |
| |
| target_ulong helper_mfc0_count (void) |
| { |
| return (int32_t)cpu_mips_get_count(env); |
| } |
| |
| target_ulong helper_mftc0_entryhi(void) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(&other_tc); |
| |
| return other->CP0_EntryHi; |
| } |
| |
| target_ulong helper_mftc0_cause(void) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| int32_t tccause; |
| CPUMIPSState *other = mips_cpu_map_tc(&other_tc); |
| |
| if (other_tc == other->current_tc) { |
| tccause = other->CP0_Cause; |
| } else { |
| tccause = other->CP0_Cause; |
| } |
| |
| return tccause; |
| } |
| |
| target_ulong helper_mftc0_status(void) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(&other_tc); |
| |
| return other->CP0_Status; |
| } |
| |
| target_ulong helper_mfc0_lladdr (void) |
| { |
| return (int32_t)(env->lladdr >> env->CP0_LLAddr_shift); |
| } |
| |
| target_ulong helper_mfc0_watchlo (uint32_t sel) |
| { |
| return (int32_t)env->CP0_WatchLo[sel]; |
| } |
| |
| target_ulong helper_mfc0_watchhi (uint32_t sel) |
| { |
| return env->CP0_WatchHi[sel]; |
| } |
| |
| target_ulong helper_mfc0_debug (void) |
| { |
| target_ulong t0 = env->CP0_Debug; |
| if (env->hflags & MIPS_HFLAG_DM) |
| t0 |= 1 << CP0DB_DM; |
| |
| return t0; |
| } |
| |
| target_ulong helper_mftc0_debug(void) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| int32_t tcstatus; |
| CPUMIPSState *other = mips_cpu_map_tc(&other_tc); |
| |
| if (other_tc == other->current_tc) |
| tcstatus = other->active_tc.CP0_Debug_tcstatus; |
| else |
| tcstatus = other->tcs[other_tc].CP0_Debug_tcstatus; |
| |
| /* XXX: Might be wrong, check with EJTAG spec. */ |
| return (other->CP0_Debug & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) | |
| (tcstatus & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt))); |
| } |
| |
| #if defined(TARGET_MIPS64) |
| target_ulong helper_dmfc0_tcrestart (void) |
| { |
| return env->active_tc.PC; |
| } |
| |
| target_ulong helper_dmfc0_tchalt (void) |
| { |
| return env->active_tc.CP0_TCHalt; |
| } |
| |
| target_ulong helper_dmfc0_tccontext (void) |
| { |
| return env->active_tc.CP0_TCContext; |
| } |
| |
| target_ulong helper_dmfc0_tcschedule (void) |
| { |
| return env->active_tc.CP0_TCSchedule; |
| } |
| |
| target_ulong helper_dmfc0_tcschefback (void) |
| { |
| return env->active_tc.CP0_TCScheFBack; |
| } |
| |
| target_ulong helper_dmfc0_lladdr (void) |
| { |
| return env->lladdr >> env->CP0_LLAddr_shift; |
| } |
| |
| target_ulong helper_dmfc0_watchlo (uint32_t sel) |
| { |
| return env->CP0_WatchLo[sel]; |
| } |
| #endif /* TARGET_MIPS64 */ |
| |
| void helper_mtc0_index (target_ulong arg1) |
| { |
| int num = 1; |
| unsigned int tmp = env->tlb->nb_tlb; |
| |
| do { |
| tmp >>= 1; |
| num <<= 1; |
| } while (tmp); |
| env->CP0_Index = (env->CP0_Index & 0x80000000) | (arg1 & (num - 1)); |
| } |
| |
| void helper_mtc0_mvpcontrol (target_ulong arg1) |
| { |
| uint32_t mask = 0; |
| uint32_t newval; |
| |
| if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP)) |
| mask |= (1 << CP0MVPCo_CPA) | (1 << CP0MVPCo_VPC) | |
| (1 << CP0MVPCo_EVP); |
| if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC)) |
| mask |= (1 << CP0MVPCo_STLB); |
| newval = (env->mvp->CP0_MVPControl & ~mask) | (arg1 & mask); |
| |
| // TODO: Enable/disable shared TLB, enable/disable VPEs. |
| |
| env->mvp->CP0_MVPControl = newval; |
| } |
| |
| void helper_mtc0_vpecontrol (target_ulong arg1) |
| { |
| uint32_t mask; |
| uint32_t newval; |
| |
| mask = (1 << CP0VPECo_YSI) | (1 << CP0VPECo_GSI) | |
| (1 << CP0VPECo_TE) | (0xff << CP0VPECo_TargTC); |
| newval = (env->CP0_VPEControl & ~mask) | (arg1 & mask); |
| |
| /* Yield scheduler intercept not implemented. */ |
| /* Gating storage scheduler intercept not implemented. */ |
| |
| // TODO: Enable/disable TCs. |
| |
| env->CP0_VPEControl = newval; |
| } |
| |
| void helper_mttc0_vpecontrol(target_ulong arg1) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(&other_tc); |
| uint32_t mask; |
| uint32_t newval; |
| |
| mask = (1 << CP0VPECo_YSI) | (1 << CP0VPECo_GSI) | |
| (1 << CP0VPECo_TE) | (0xff << CP0VPECo_TargTC); |
| newval = (other->CP0_VPEControl & ~mask) | (arg1 & mask); |
| |
| /* TODO: Enable/disable TCs. */ |
| |
| other->CP0_VPEControl = newval; |
| } |
| |
| target_ulong helper_mftc0_vpecontrol(void) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(&other_tc); |
| /* FIXME: Mask away return zero on read bits. */ |
| return other->CP0_VPEControl; |
| } |
| |
| target_ulong helper_mftc0_vpeconf0(void) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(&other_tc); |
| |
| return other->CP0_VPEConf0; |
| } |
| |
| void helper_mtc0_vpeconf0 (target_ulong arg1) |
| { |
| uint32_t mask = 0; |
| uint32_t newval; |
| |
| if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP)) { |
| if (env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA)) |
| mask |= (0xff << CP0VPEC0_XTC); |
| mask |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA); |
| } |
| newval = (env->CP0_VPEConf0 & ~mask) | (arg1 & mask); |
| |
| // TODO: TC exclusive handling due to ERL/EXL. |
| |
| env->CP0_VPEConf0 = newval; |
| } |
| |
| void helper_mttc0_vpeconf0(target_ulong arg1) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(&other_tc); |
| uint32_t mask = 0; |
| uint32_t newval; |
| |
| mask |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA); |
| newval = (other->CP0_VPEConf0 & ~mask) | (arg1 & mask); |
| |
| /* TODO: TC exclusive handling due to ERL/EXL. */ |
| other->CP0_VPEConf0 = newval; |
| } |
| |
| void helper_mtc0_vpeconf1 (target_ulong arg1) |
| { |
| uint32_t mask = 0; |
| uint32_t newval; |
| |
| if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC)) |
| mask |= (0xff << CP0VPEC1_NCX) | (0xff << CP0VPEC1_NCP2) | |
| (0xff << CP0VPEC1_NCP1); |
| newval = (env->CP0_VPEConf1 & ~mask) | (arg1 & mask); |
| |
| /* UDI not implemented. */ |
| /* CP2 not implemented. */ |
| |
| // TODO: Handle FPU (CP1) binding. |
| |
| env->CP0_VPEConf1 = newval; |
| } |
| |
| void helper_mtc0_yqmask (target_ulong arg1) |
| { |
| /* Yield qualifier inputs not implemented. */ |
| env->CP0_YQMask = 0x00000000; |
| } |
| |
| void helper_mtc0_vpeopt (target_ulong arg1) |
| { |
| env->CP0_VPEOpt = arg1 & 0x0000ffff; |
| } |
| |
| void helper_mtc0_entrylo0 (target_ulong arg1) |
| { |
| /* Large physaddr (PABITS) not implemented */ |
| /* 1k pages not implemented */ |
| env->CP0_EntryLo0 = arg1 & 0x3FFFFFFF; |
| } |
| |
| void helper_mtc0_tcstatus (target_ulong arg1) |
| { |
| uint32_t mask = env->CP0_TCStatus_rw_bitmask; |
| uint32_t newval; |
| |
| newval = (env->active_tc.CP0_TCStatus & ~mask) | (arg1 & mask); |
| |
| env->active_tc.CP0_TCStatus = newval; |
| sync_c0_tcstatus(env, env->current_tc, newval); |
| } |
| |
| void helper_mttc0_tcstatus (target_ulong arg1) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(&other_tc); |
| |
| if (other_tc == other->current_tc) |
| other->active_tc.CP0_TCStatus = arg1; |
| else |
| other->tcs[other_tc].CP0_TCStatus = arg1; |
| sync_c0_tcstatus(other, other_tc, arg1); |
| } |
| |
| void helper_mtc0_tcbind (target_ulong arg1) |
| { |
| uint32_t mask = (1 << CP0TCBd_TBE); |
| uint32_t newval; |
| |
| if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC)) |
| mask |= (1 << CP0TCBd_CurVPE); |
| newval = (env->active_tc.CP0_TCBind & ~mask) | (arg1 & mask); |
| env->active_tc.CP0_TCBind = newval; |
| } |
| |
| void helper_mttc0_tcbind (target_ulong arg1) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| uint32_t mask = (1 << CP0TCBd_TBE); |
| uint32_t newval; |
| CPUMIPSState *other = mips_cpu_map_tc(&other_tc); |
| |
| if (other->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC)) |
| mask |= (1 << CP0TCBd_CurVPE); |
| if (other_tc == other->current_tc) { |
| newval = (other->active_tc.CP0_TCBind & ~mask) | (arg1 & mask); |
| other->active_tc.CP0_TCBind = newval; |
| } else { |
| newval = (other->tcs[other_tc].CP0_TCBind & ~mask) | (arg1 & mask); |
| other->tcs[other_tc].CP0_TCBind = newval; |
| } |
| } |
| |
| void helper_mtc0_tcrestart (target_ulong arg1) |
| { |
| env->active_tc.PC = arg1; |
| env->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS); |
| env->lladdr = 0ULL; |
| /* MIPS16 not implemented. */ |
| } |
| |
| void helper_mttc0_tcrestart (target_ulong arg1) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(&other_tc); |
| |
| if (other_tc == other->current_tc) { |
| other->active_tc.PC = arg1; |
| other->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS); |
| other->lladdr = 0ULL; |
| /* MIPS16 not implemented. */ |
| } else { |
| other->tcs[other_tc].PC = arg1; |
| other->tcs[other_tc].CP0_TCStatus &= ~(1 << CP0TCSt_TDS); |
| other->lladdr = 0ULL; |
| /* MIPS16 not implemented. */ |
| } |
| } |
| |
| void helper_mtc0_tchalt (target_ulong arg1) |
| { |
| env->active_tc.CP0_TCHalt = arg1 & 0x1; |
| |
| // TODO: Halt TC / Restart (if allocated+active) TC. |
| if (env->active_tc.CP0_TCHalt & 1) { |
| mips_tc_sleep(env, env->current_tc); |
| } else { |
| mips_tc_wake(env, env->current_tc); |
| } |
| } |
| |
| void helper_mttc0_tchalt (target_ulong arg1) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(&other_tc); |
| |
| // TODO: Halt TC / Restart (if allocated+active) TC. |
| |
| if (other_tc == other->current_tc) |
| other->active_tc.CP0_TCHalt = arg1; |
| else |
| other->tcs[other_tc].CP0_TCHalt = arg1; |
| |
| if (arg1 & 1) { |
| mips_tc_sleep(other, other_tc); |
| } else { |
| mips_tc_wake(other, other_tc); |
| } |
| } |
| |
| void helper_mtc0_tccontext (target_ulong arg1) |
| { |
| env->active_tc.CP0_TCContext = arg1; |
| } |
| |
| void helper_mttc0_tccontext (target_ulong arg1) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(&other_tc); |
| |
| if (other_tc == other->current_tc) |
| other->active_tc.CP0_TCContext = arg1; |
| else |
| other->tcs[other_tc].CP0_TCContext = arg1; |
| } |
| |
| void helper_mtc0_tcschedule (target_ulong arg1) |
| { |
| env->active_tc.CP0_TCSchedule = arg1; |
| } |
| |
| void helper_mttc0_tcschedule (target_ulong arg1) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(&other_tc); |
| |
| if (other_tc == other->current_tc) |
| other->active_tc.CP0_TCSchedule = arg1; |
| else |
| other->tcs[other_tc].CP0_TCSchedule = arg1; |
| } |
| |
| void helper_mtc0_tcschefback (target_ulong arg1) |
| { |
| env->active_tc.CP0_TCScheFBack = arg1; |
| } |
| |
| void helper_mttc0_tcschefback (target_ulong arg1) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(&other_tc); |
| |
| if (other_tc == other->current_tc) |
| other->active_tc.CP0_TCScheFBack = arg1; |
| else |
| other->tcs[other_tc].CP0_TCScheFBack = arg1; |
| } |
| |
| void helper_mtc0_entrylo1 (target_ulong arg1) |
| { |
| /* Large physaddr (PABITS) not implemented */ |
| /* 1k pages not implemented */ |
| env->CP0_EntryLo1 = arg1 & 0x3FFFFFFF; |
| } |
| |
| void helper_mtc0_context (target_ulong arg1) |
| { |
| env->CP0_Context = (env->CP0_Context & 0x007FFFFF) | (arg1 & ~0x007FFFFF); |
| } |
| |
| void helper_mtc0_pagemask (target_ulong arg1) |
| { |
| /* 1k pages not implemented */ |
| env->CP0_PageMask = arg1 & (0x1FFFFFFF & (TARGET_PAGE_MASK << 1)); |
| } |
| |
| void helper_mtc0_pagegrain (target_ulong arg1) |
| { |
| /* SmartMIPS not implemented */ |
| /* Large physaddr (PABITS) not implemented */ |
| /* 1k pages not implemented */ |
| env->CP0_PageGrain = 0; |
| } |
| |
| void helper_mtc0_wired (target_ulong arg1) |
| { |
| env->CP0_Wired = arg1 % env->tlb->nb_tlb; |
| } |
| |
| void helper_mtc0_srsconf0 (target_ulong arg1) |
| { |
| env->CP0_SRSConf0 |= arg1 & env->CP0_SRSConf0_rw_bitmask; |
| } |
| |
| void helper_mtc0_srsconf1 (target_ulong arg1) |
| { |
| env->CP0_SRSConf1 |= arg1 & env->CP0_SRSConf1_rw_bitmask; |
| } |
| |
| void helper_mtc0_srsconf2 (target_ulong arg1) |
| { |
| env->CP0_SRSConf2 |= arg1 & env->CP0_SRSConf2_rw_bitmask; |
| } |
| |
| void helper_mtc0_srsconf3 (target_ulong arg1) |
| { |
| env->CP0_SRSConf3 |= arg1 & env->CP0_SRSConf3_rw_bitmask; |
| } |
| |
| void helper_mtc0_srsconf4 (target_ulong arg1) |
| { |
| env->CP0_SRSConf4 |= arg1 & env->CP0_SRSConf4_rw_bitmask; |
| } |
| |
| void helper_mtc0_hwrena (target_ulong arg1) |
| { |
| env->CP0_HWREna = arg1 & 0x0000000F; |
| } |
| |
| void helper_mtc0_count (target_ulong arg1) |
| { |
| cpu_mips_store_count(env, arg1); |
| } |
| |
| void helper_mtc0_entryhi (target_ulong arg1) |
| { |
| target_ulong old, val; |
| |
| /* 1k pages not implemented */ |
| val = arg1 & ((TARGET_PAGE_MASK << 1) | 0xFF); |
| #if defined(TARGET_MIPS64) |
| val &= env->SEGMask; |
| #endif |
| old = env->CP0_EntryHi; |
| env->CP0_EntryHi = val; |
| if (env->CP0_Config3 & (1 << CP0C3_MT)) { |
| sync_c0_entryhi(env, env->current_tc); |
| } |
| /* If the ASID changes, flush qemu's TLB. */ |
| if ((old & 0xFF) != (val & 0xFF)) |
| cpu_mips_tlb_flush(env, 1); |
| } |
| |
| void helper_mttc0_entryhi(target_ulong arg1) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(&other_tc); |
| |
| other->CP0_EntryHi = arg1; |
| sync_c0_entryhi(other, other_tc); |
| } |
| |
| void helper_mtc0_compare (target_ulong arg1) |
| { |
| cpu_mips_store_compare(env, arg1); |
| } |
| |
| void helper_mtc0_status (target_ulong arg1) |
| { |
| uint32_t val, old; |
| uint32_t mask = env->CP0_Status_rw_bitmask; |
| |
| val = arg1 & mask; |
| old = env->CP0_Status; |
| env->CP0_Status = (env->CP0_Status & ~mask) | val; |
| if (env->CP0_Config3 & (1 << CP0C3_MT)) { |
| sync_c0_status(env, env->current_tc); |
| } else { |
| compute_hflags(env); |
| } |
| |
| if (qemu_loglevel_mask(CPU_LOG_EXEC)) { |
| qemu_log("Status %08x (%08x) => %08x (%08x) Cause %08x", |
| old, old & env->CP0_Cause & CP0Ca_IP_mask, |
| val, val & env->CP0_Cause & CP0Ca_IP_mask, |
| env->CP0_Cause); |
| switch (env->hflags & MIPS_HFLAG_KSU) { |
| case MIPS_HFLAG_UM: qemu_log(", UM\n"); break; |
| case MIPS_HFLAG_SM: qemu_log(", SM\n"); break; |
| case MIPS_HFLAG_KM: qemu_log("\n"); break; |
| default: cpu_abort(env, "Invalid MMU mode!\n"); break; |
| } |
| } |
| } |
| |
| void helper_mttc0_status(target_ulong arg1) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(&other_tc); |
| |
| other->CP0_Status = arg1 & ~0xf1000018; |
| sync_c0_status(other, other_tc); |
| } |
| |
| void helper_mtc0_intctl (target_ulong arg1) |
| { |
| /* vectored interrupts not implemented, no performance counters. */ |
| env->CP0_IntCtl = (env->CP0_IntCtl & ~0x000003e0) | (arg1 & 0x000003e0); |
| } |
| |
| void helper_mtc0_srsctl (target_ulong arg1) |
| { |
| uint32_t mask = (0xf << CP0SRSCtl_ESS) | (0xf << CP0SRSCtl_PSS); |
| env->CP0_SRSCtl = (env->CP0_SRSCtl & ~mask) | (arg1 & mask); |
| } |
| |
| static void mtc0_cause(CPUMIPSState *cpu, target_ulong arg1) |
| { |
| uint32_t mask = 0x00C00300; |
| uint32_t old = cpu->CP0_Cause; |
| int i; |
| |
| if (cpu->insn_flags & ISA_MIPS32R2) { |
| mask |= 1 << CP0Ca_DC; |
| } |
| |
| cpu->CP0_Cause = (cpu->CP0_Cause & ~mask) | (arg1 & mask); |
| |
| if ((old ^ cpu->CP0_Cause) & (1 << CP0Ca_DC)) { |
| if (cpu->CP0_Cause & (1 << CP0Ca_DC)) { |
| cpu_mips_stop_count(cpu); |
| } else { |
| cpu_mips_start_count(cpu); |
| } |
| } |
| |
| /* Set/reset software interrupts */ |
| for (i = 0 ; i < 2 ; i++) { |
| if ((old ^ cpu->CP0_Cause) & (1 << (CP0Ca_IP + i))) { |
| cpu_mips_soft_irq(cpu, i, cpu->CP0_Cause & (1 << (CP0Ca_IP + i))); |
| } |
| } |
| } |
| |
| void helper_mtc0_cause(target_ulong arg1) |
| { |
| mtc0_cause(env, arg1); |
| } |
| |
| void helper_mttc0_cause(target_ulong arg1) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(&other_tc); |
| |
| mtc0_cause(other, arg1); |
| } |
| |
| target_ulong helper_mftc0_epc(void) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(&other_tc); |
| |
| return other->CP0_EPC; |
| } |
| |
| target_ulong helper_mftc0_ebase(void) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(&other_tc); |
| |
| return other->CP0_EBase; |
| } |
| |
| void helper_mtc0_ebase (target_ulong arg1) |
| { |
| /* vectored interrupts not implemented */ |
| env->CP0_EBase = (env->CP0_EBase & ~0x3FFFF000) | (arg1 & 0x3FFFF000); |
| } |
| |
| void helper_mttc0_ebase(target_ulong arg1) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(&other_tc); |
| other->CP0_EBase = (other->CP0_EBase & ~0x3FFFF000) | (arg1 & 0x3FFFF000); |
| } |
| |
| target_ulong helper_mftc0_configx(target_ulong idx) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(&other_tc); |
| |
| switch (idx) { |
| case 0: return other->CP0_Config0; |
| case 1: return other->CP0_Config1; |
| case 2: return other->CP0_Config2; |
| case 3: return other->CP0_Config3; |
| /* 4 and 5 are reserved. */ |
| case 6: return other->CP0_Config6; |
| case 7: return other->CP0_Config7; |
| default: |
| break; |
| } |
| return 0; |
| } |
| |
| void helper_mtc0_config0 (target_ulong arg1) |
| { |
| env->CP0_Config0 = (env->CP0_Config0 & 0x81FFFFF8) | (arg1 & 0x00000007); |
| } |
| |
| void helper_mtc0_config2 (target_ulong arg1) |
| { |
| /* tertiary/secondary caches not implemented */ |
| env->CP0_Config2 = (env->CP0_Config2 & 0x8FFF0FFF); |
| } |
| |
| void helper_mtc0_lladdr (target_ulong arg1) |
| { |
| target_long mask = env->CP0_LLAddr_rw_bitmask; |
| arg1 = arg1 << env->CP0_LLAddr_shift; |
| env->lladdr = (env->lladdr & ~mask) | (arg1 & mask); |
| } |
| |
| void helper_mtc0_watchlo (target_ulong arg1, uint32_t sel) |
| { |
| /* Watch exceptions for instructions, data loads, data stores |
| not implemented. */ |
| env->CP0_WatchLo[sel] = (arg1 & ~0x7); |
| } |
| |
| void helper_mtc0_watchhi (target_ulong arg1, uint32_t sel) |
| { |
| env->CP0_WatchHi[sel] = (arg1 & 0x40FF0FF8); |
| env->CP0_WatchHi[sel] &= ~(env->CP0_WatchHi[sel] & arg1 & 0x7); |
| } |
| |
| void helper_mtc0_xcontext (target_ulong arg1) |
| { |
| target_ulong mask = (1ULL << (env->SEGBITS - 7)) - 1; |
| env->CP0_XContext = (env->CP0_XContext & mask) | (arg1 & ~mask); |
| } |
| |
| void helper_mtc0_framemask (target_ulong arg1) |
| { |
| env->CP0_Framemask = arg1; /* XXX */ |
| } |
| |
| void helper_mtc0_debug (target_ulong arg1) |
| { |
| env->CP0_Debug = (env->CP0_Debug & 0x8C03FC1F) | (arg1 & 0x13300120); |
| if (arg1 & (1 << CP0DB_DM)) |
| env->hflags |= MIPS_HFLAG_DM; |
| else |
| env->hflags &= ~MIPS_HFLAG_DM; |
| } |
| |
| void helper_mttc0_debug(target_ulong arg1) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| uint32_t val = arg1 & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt)); |
| CPUMIPSState *other = mips_cpu_map_tc(&other_tc); |
| |
| /* XXX: Might be wrong, check with EJTAG spec. */ |
| if (other_tc == other->current_tc) |
| other->active_tc.CP0_Debug_tcstatus = val; |
| else |
| other->tcs[other_tc].CP0_Debug_tcstatus = val; |
| other->CP0_Debug = (other->CP0_Debug & |
| ((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) | |
| (arg1 & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt))); |
| } |
| |
| void helper_mtc0_performance0 (target_ulong arg1) |
| { |
| env->CP0_Performance0 = arg1 & 0x000007ff; |
| } |
| |
| void helper_mtc0_taglo (target_ulong arg1) |
| { |
| env->CP0_TagLo = arg1 & 0xFFFFFCF6; |
| } |
| |
| void helper_mtc0_datalo (target_ulong arg1) |
| { |
| env->CP0_DataLo = arg1; /* XXX */ |
| } |
| |
| void helper_mtc0_taghi (target_ulong arg1) |
| { |
| env->CP0_TagHi = arg1; /* XXX */ |
| } |
| |
| void helper_mtc0_datahi (target_ulong arg1) |
| { |
| env->CP0_DataHi = arg1; /* XXX */ |
| } |
| |
| /* MIPS MT functions */ |
| target_ulong helper_mftgpr(uint32_t sel) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(&other_tc); |
| |
| if (other_tc == other->current_tc) |
| return other->active_tc.gpr[sel]; |
| else |
| return other->tcs[other_tc].gpr[sel]; |
| } |
| |
| target_ulong helper_mftlo(uint32_t sel) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(&other_tc); |
| |
| if (other_tc == other->current_tc) |
| return other->active_tc.LO[sel]; |
| else |
| return other->tcs[other_tc].LO[sel]; |
| } |
| |
| target_ulong helper_mfthi(uint32_t sel) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(&other_tc); |
| |
| if (other_tc == other->current_tc) |
| return other->active_tc.HI[sel]; |
| else |
| return other->tcs[other_tc].HI[sel]; |
| } |
| |
| target_ulong helper_mftacx(uint32_t sel) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(&other_tc); |
| |
| if (other_tc == other->current_tc) |
| return other->active_tc.ACX[sel]; |
| else |
| return other->tcs[other_tc].ACX[sel]; |
| } |
| |
| target_ulong helper_mftdsp(void) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(&other_tc); |
| |
| if (other_tc == other->current_tc) |
| return other->active_tc.DSPControl; |
| else |
| return other->tcs[other_tc].DSPControl; |
| } |
| |
| void helper_mttgpr(target_ulong arg1, uint32_t sel) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(&other_tc); |
| |
| if (other_tc == other->current_tc) |
| other->active_tc.gpr[sel] = arg1; |
| else |
| other->tcs[other_tc].gpr[sel] = arg1; |
| } |
| |
| void helper_mttlo(target_ulong arg1, uint32_t sel) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(&other_tc); |
| |
| if (other_tc == other->current_tc) |
| other->active_tc.LO[sel] = arg1; |
| else |
| other->tcs[other_tc].LO[sel] = arg1; |
| } |
| |
| void helper_mtthi(target_ulong arg1, uint32_t sel) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(&other_tc); |
| |
| if (other_tc == other->current_tc) |
| other->active_tc.HI[sel] = arg1; |
| else |
| other->tcs[other_tc].HI[sel] = arg1; |
| } |
| |
| void helper_mttacx(target_ulong arg1, uint32_t sel) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(&other_tc); |
| |
| if (other_tc == other->current_tc) |
| other->active_tc.ACX[sel] = arg1; |
| else |
| other->tcs[other_tc].ACX[sel] = arg1; |
| } |
| |
| void helper_mttdsp(target_ulong arg1) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| CPUMIPSState *other = mips_cpu_map_tc(&other_tc); |
| |
| if (other_tc == other->current_tc) |
| other->active_tc.DSPControl = arg1; |
| else |
| other->tcs[other_tc].DSPControl = arg1; |
| } |
| |
| /* MIPS MT functions */ |
| target_ulong helper_dmt(void) |
| { |
| // TODO |
| return 0; |
| } |
| |
| target_ulong helper_emt(void) |
| { |
| // TODO |
| return 0; |
| } |
| |
| target_ulong helper_dvpe(void) |
| { |
| CPUMIPSState *other_cpu = first_cpu; |
| target_ulong prev = env->mvp->CP0_MVPControl; |
| |
| do { |
| /* Turn off all VPEs except the one executing the dvpe. */ |
| if (other_cpu != env) { |
| other_cpu->mvp->CP0_MVPControl &= ~(1 << CP0MVPCo_EVP); |
| mips_vpe_sleep(other_cpu); |
| } |
| other_cpu = other_cpu->next_cpu; |
| } while (other_cpu); |
| return prev; |
| } |
| |
| target_ulong helper_evpe(void) |
| { |
| CPUMIPSState *other_cpu = first_cpu; |
| target_ulong prev = env->mvp->CP0_MVPControl; |
| |
| do { |
| if (other_cpu != env |
| /* If the VPE is WFI, don't disturb its sleep. */ |
| && !mips_vpe_is_wfi(other_cpu)) { |
| /* Enable the VPE. */ |
| other_cpu->mvp->CP0_MVPControl |= (1 << CP0MVPCo_EVP); |
| mips_vpe_wake(other_cpu); /* And wake it up. */ |
| } |
| other_cpu = other_cpu->next_cpu; |
| } while (other_cpu); |
| return prev; |
| } |
| #endif /* !CONFIG_USER_ONLY */ |
| |
| void helper_fork(target_ulong arg1, target_ulong arg2) |
| { |
| // arg1 = rt, arg2 = rs |
| arg1 = 0; |
| // TODO: store to TC register |
| } |
| |
| target_ulong helper_yield(target_ulong arg) |
| { |
| target_long arg1 = arg; |
| |
| if (arg1 < 0) { |
| /* No scheduling policy implemented. */ |
| if (arg1 != -2) { |
| if (env->CP0_VPEControl & (1 << CP0VPECo_YSI) && |
| env->active_tc.CP0_TCStatus & (1 << CP0TCSt_DT)) { |
| env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT); |
| env->CP0_VPEControl |= 4 << CP0VPECo_EXCPT; |
| helper_raise_exception(EXCP_THREAD); |
| } |
| } |
| } else if (arg1 == 0) { |
| if (0 /* TODO: TC underflow */) { |
| env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT); |
| helper_raise_exception(EXCP_THREAD); |
| } else { |
| // TODO: Deallocate TC |
| } |
| } else if (arg1 > 0) { |
| /* Yield qualifier inputs not implemented. */ |
| env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT); |
| env->CP0_VPEControl |= 2 << CP0VPECo_EXCPT; |
| helper_raise_exception(EXCP_THREAD); |
| } |
| return env->CP0_YQMask; |
| } |
| |
| #ifndef CONFIG_USER_ONLY |
| /* TLB management */ |
| static void cpu_mips_tlb_flush (CPUMIPSState *env, int flush_global) |
| { |
| /* Flush qemu's TLB and discard all shadowed entries. */ |
| tlb_flush (env, flush_global); |
| env->tlb->tlb_in_use = env->tlb->nb_tlb; |
| } |
| |
| static void r4k_mips_tlb_flush_extra (CPUMIPSState *env, int first) |
| { |
| /* Discard entries from env->tlb[first] onwards. */ |
| while (env->tlb->tlb_in_use > first) { |
| r4k_invalidate_tlb(env, --env->tlb->tlb_in_use, 0); |
| } |
| } |
| |
| static void r4k_fill_tlb (int idx) |
| { |
| r4k_tlb_t *tlb; |
| |
| /* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */ |
| tlb = &env->tlb->mmu.r4k.tlb[idx]; |
| tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1); |
| #if defined(TARGET_MIPS64) |
| tlb->VPN &= env->SEGMask; |
| #endif |
| tlb->ASID = env->CP0_EntryHi & 0xFF; |
| tlb->PageMask = env->CP0_PageMask; |
| tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1; |
| tlb->V0 = (env->CP0_EntryLo0 & 2) != 0; |
| tlb->D0 = (env->CP0_EntryLo0 & 4) != 0; |
| tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7; |
| tlb->PFN[0] = (env->CP0_EntryLo0 >> 6) << 12; |
| tlb->V1 = (env->CP0_EntryLo1 & 2) != 0; |
| tlb->D1 = (env->CP0_EntryLo1 & 4) != 0; |
| tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7; |
| tlb->PFN[1] = (env->CP0_EntryLo1 >> 6) << 12; |
| } |
| |
| void r4k_helper_tlbwi (void) |
| { |
| int idx; |
| |
| idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb; |
| |
| /* Discard cached TLB entries. We could avoid doing this if the |
| tlbwi is just upgrading access permissions on the current entry; |
| that might be a further win. */ |
| r4k_mips_tlb_flush_extra (env, env->tlb->nb_tlb); |
| |
| r4k_invalidate_tlb(env, idx, 0); |
| r4k_fill_tlb(idx); |
| } |
| |
| void r4k_helper_tlbwr (void) |
| { |
| int r = cpu_mips_get_random(env); |
| |
| r4k_invalidate_tlb(env, r, 1); |
| r4k_fill_tlb(r); |
| } |
| |
| void r4k_helper_tlbp (void) |
| { |
| r4k_tlb_t *tlb; |
| target_ulong mask; |
| target_ulong tag; |
| target_ulong VPN; |
| uint8_t ASID; |
| int i; |
| |
| ASID = env->CP0_EntryHi & 0xFF; |
| for (i = 0; i < env->tlb->nb_tlb; i++) { |
| tlb = &env->tlb->mmu.r4k.tlb[i]; |
| /* 1k pages are not supported. */ |
| mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1); |
| tag = env->CP0_EntryHi & ~mask; |
| VPN = tlb->VPN & ~mask; |
| /* Check ASID, virtual page number & size */ |
| if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) { |
| /* TLB match */ |
| env->CP0_Index = i; |
| break; |
| } |
| } |
| if (i == env->tlb->nb_tlb) { |
| /* No match. Discard any shadow entries, if any of them match. */ |
| for (i = env->tlb->nb_tlb; i < env->tlb->tlb_in_use; i++) { |
| tlb = &env->tlb->mmu.r4k.tlb[i]; |
| /* 1k pages are not supported. */ |
| mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1); |
| tag = env->CP0_EntryHi & ~mask; |
| VPN = tlb->VPN & ~mask; |
| /* Check ASID, virtual page number & size */ |
| if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) { |
| r4k_mips_tlb_flush_extra (env, i); |
| break; |
| } |
| } |
| |
| env->CP0_Index |= 0x80000000; |
| } |
| } |
| |
| void r4k_helper_tlbr (void) |
| { |
| r4k_tlb_t *tlb; |
| uint8_t ASID; |
| int idx; |
| |
| ASID = env->CP0_EntryHi & 0xFF; |
| idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb; |
| tlb = &env->tlb->mmu.r4k.tlb[idx]; |
| |
| /* If this will change the current ASID, flush qemu's TLB. */ |
| if (ASID != tlb->ASID) |
| cpu_mips_tlb_flush (env, 1); |
| |
| r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb); |
| |
| env->CP0_EntryHi = tlb->VPN | tlb->ASID; |
| env->CP0_PageMask = tlb->PageMask; |
| env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) | |
| (tlb->C0 << 3) | (tlb->PFN[0] >> 6); |
| env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) | |
| (tlb->C1 << 3) | (tlb->PFN[1] >> 6); |
| } |
| |
| void helper_tlbwi(void) |
| { |
| env->tlb->helper_tlbwi(); |
| } |
| |
| void helper_tlbwr(void) |
| { |
| env->tlb->helper_tlbwr(); |
| } |
| |
| void helper_tlbp(void) |
| { |
| env->tlb->helper_tlbp(); |
| } |
| |
| void helper_tlbr(void) |
| { |
| env->tlb->helper_tlbr(); |
| } |
| |
| /* Specials */ |
| target_ulong helper_di (void) |
| { |
| target_ulong t0 = env->CP0_Status; |
| |
| env->CP0_Status = t0 & ~(1 << CP0St_IE); |
| return t0; |
| } |
| |
| target_ulong helper_ei (void) |
| { |
| target_ulong t0 = env->CP0_Status; |
| |
| env->CP0_Status = t0 | (1 << CP0St_IE); |
| return t0; |
| } |
| |
| static void debug_pre_eret (void) |
| { |
| if (qemu_loglevel_mask(CPU_LOG_EXEC)) { |
| qemu_log("ERET: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx, |
| env->active_tc.PC, env->CP0_EPC); |
| if (env->CP0_Status & (1 << CP0St_ERL)) |
| qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC); |
| if (env->hflags & MIPS_HFLAG_DM) |
| qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC); |
| qemu_log("\n"); |
| } |
| } |
| |
| static void debug_post_eret (void) |
| { |
| if (qemu_loglevel_mask(CPU_LOG_EXEC)) { |
| qemu_log(" => PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx, |
| env->active_tc.PC, env->CP0_EPC); |
| if (env->CP0_Status & (1 << CP0St_ERL)) |
| qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC); |
| if (env->hflags & MIPS_HFLAG_DM) |
| qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC); |
| switch (env->hflags & MIPS_HFLAG_KSU) { |
| case MIPS_HFLAG_UM: qemu_log(", UM\n"); break; |
| case MIPS_HFLAG_SM: qemu_log(", SM\n"); break; |
| case MIPS_HFLAG_KM: qemu_log("\n"); break; |
| default: cpu_abort(env, "Invalid MMU mode!\n"); break; |
| } |
| } |
| } |
| |
| static void set_pc (target_ulong error_pc) |
| { |
| env->active_tc.PC = error_pc & ~(target_ulong)1; |
| if (error_pc & 1) { |
| env->hflags |= MIPS_HFLAG_M16; |
| } else { |
| env->hflags &= ~(MIPS_HFLAG_M16); |
| } |
| } |
| |
| void helper_eret (void) |
| { |
| debug_pre_eret(); |
| if (env->CP0_Status & (1 << CP0St_ERL)) { |
| set_pc(env->CP0_ErrorEPC); |
| env->CP0_Status &= ~(1 << CP0St_ERL); |
| } else { |
| set_pc(env->CP0_EPC); |
| env->CP0_Status &= ~(1 << CP0St_EXL); |
| } |
| compute_hflags(env); |
| debug_post_eret(); |
| env->lladdr = 1; |
| } |
| |
| void helper_deret (void) |
| { |
| debug_pre_eret(); |
| set_pc(env->CP0_DEPC); |
| |
| env->hflags &= MIPS_HFLAG_DM; |
| compute_hflags(env); |
| debug_post_eret(); |
| env->lladdr = 1; |
| } |
| #endif /* !CONFIG_USER_ONLY */ |
| |
| target_ulong helper_rdhwr_cpunum(void) |
| { |
| if ((env->hflags & MIPS_HFLAG_CP0) || |
| (env->CP0_HWREna & (1 << 0))) |
| return env->CP0_EBase & 0x3ff; |
| else |
| helper_raise_exception(EXCP_RI); |
| |
| return 0; |
| } |
| |
| target_ulong helper_rdhwr_synci_step(void) |
| { |
| if ((env->hflags & MIPS_HFLAG_CP0) || |
| (env->CP0_HWREna & (1 << 1))) |
| return env->SYNCI_Step; |
| else |
| helper_raise_exception(EXCP_RI); |
| |
| return 0; |
| } |
| |
| target_ulong helper_rdhwr_cc(void) |
| { |
| if ((env->hflags & MIPS_HFLAG_CP0) || |
| (env->CP0_HWREna & (1 << 2))) |
| return env->CP0_Count; |
| else |
| helper_raise_exception(EXCP_RI); |
| |
| return 0; |
| } |
| |
| target_ulong helper_rdhwr_ccres(void) |
| { |
| if ((env->hflags & MIPS_HFLAG_CP0) || |
| (env->CP0_HWREna & (1 << 3))) |
| return env->CCRes; |
| else |
| helper_raise_exception(EXCP_RI); |
| |
| return 0; |
| } |
| |
| void helper_pmon (int function) |
| { |
| function /= 2; |
| switch (function) { |
| case 2: /* TODO: char inbyte(int waitflag); */ |
| if (env->active_tc.gpr[4] == 0) |
| env->active_tc.gpr[2] = -1; |
| /* Fall through */ |
| case 11: /* TODO: char inbyte (void); */ |
| env->active_tc.gpr[2] = -1; |
| break; |
| case 3: |
| case 12: |
| printf("%c", (char)(env->active_tc.gpr[4] & 0xFF)); |
| break; |
| case 17: |
| break; |
| case 158: |
| { |
| unsigned char *fmt = (void *)(uintptr_t)env->active_tc.gpr[4]; |
| printf("%s", fmt); |
| } |
| break; |
| } |
| } |
| |
| void helper_wait (void) |
| { |
| env->halted = 1; |
| cpu_reset_interrupt(env, CPU_INTERRUPT_WAKE); |
| helper_raise_exception(EXCP_HLT); |
| } |
| |
| #if !defined(CONFIG_USER_ONLY) |
| |
| static void QEMU_NORETURN do_unaligned_access(target_ulong addr, int is_write, |
| int is_user, uintptr_t retaddr); |
| |
| #define MMUSUFFIX _mmu |
| #define ALIGNED_ONLY |
| |
| #define SHIFT 0 |
| #include "softmmu_template.h" |
| |
| #define SHIFT 1 |
| #include "softmmu_template.h" |
| |
| #define SHIFT 2 |
| #include "softmmu_template.h" |
| |
| #define SHIFT 3 |
| #include "softmmu_template.h" |
| |
| static void do_unaligned_access(target_ulong addr, int is_write, |
| int is_user, uintptr_t retaddr) |
| { |
| env->CP0_BadVAddr = addr; |
| do_restore_state (retaddr); |
| helper_raise_exception ((is_write == 1) ? EXCP_AdES : EXCP_AdEL); |
| } |
| |
| void tlb_fill(CPUMIPSState *env1, target_ulong addr, int is_write, int mmu_idx, |
| uintptr_t retaddr) |
| { |
| TranslationBlock *tb; |
| CPUMIPSState *saved_env; |
| int ret; |
| |
| saved_env = env; |
| env = env1; |
| ret = cpu_mips_handle_mmu_fault(env, addr, is_write, mmu_idx); |
| if (ret) { |
| if (retaddr) { |
| /* now we have a real cpu fault */ |
| tb = tb_find_pc(retaddr); |
| if (tb) { |
| /* the PC is inside the translated code. It means that we have |
| a virtual CPU fault */ |
| cpu_restore_state(tb, env, retaddr); |
| } |
| } |
| helper_raise_exception_err(env->exception_index, env->error_code); |
| } |
| env = saved_env; |
| } |
| |
| void cpu_unassigned_access(CPUMIPSState *env1, target_phys_addr_t addr, |
| int is_write, int is_exec, int unused, int size) |
| { |
| env = env1; |
| |
| if (is_exec) |
| helper_raise_exception(EXCP_IBE); |
| else |
| helper_raise_exception(EXCP_DBE); |
| } |
| #endif /* !CONFIG_USER_ONLY */ |
| |
| /* Complex FPU operations which may need stack space. */ |
| |
| #define FLOAT_ONE32 make_float32(0x3f8 << 20) |
| #define FLOAT_ONE64 make_float64(0x3ffULL << 52) |
| #define FLOAT_TWO32 make_float32(1 << 30) |
| #define FLOAT_TWO64 make_float64(1ULL << 62) |
| #define FLOAT_QNAN32 0x7fbfffff |
| #define FLOAT_QNAN64 0x7ff7ffffffffffffULL |
| #define FLOAT_SNAN32 0x7fffffff |
| #define FLOAT_SNAN64 0x7fffffffffffffffULL |
| |
| /* convert MIPS rounding mode in FCR31 to IEEE library */ |
| static unsigned int ieee_rm[] = { |
| float_round_nearest_even, |
| float_round_to_zero, |
| float_round_up, |
| float_round_down |
| }; |
| |
| #define RESTORE_ROUNDING_MODE \ |
| set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status) |
| |
| #define RESTORE_FLUSH_MODE \ |
| set_flush_to_zero((env->active_fpu.fcr31 & (1 << 24)) != 0, &env->active_fpu.fp_status); |
| |
| target_ulong helper_cfc1 (uint32_t reg) |
| { |
| target_ulong arg1; |
| |
| switch (reg) { |
| case 0: |
| arg1 = (int32_t)env->active_fpu.fcr0; |
| break; |
| case 25: |
| arg1 = ((env->active_fpu.fcr31 >> 24) & 0xfe) | ((env->active_fpu.fcr31 >> 23) & 0x1); |
| break; |
| case 26: |
| arg1 = env->active_fpu.fcr31 & 0x0003f07c; |
| break; |
| case 28: |
| arg1 = (env->active_fpu.fcr31 & 0x00000f83) | ((env->active_fpu.fcr31 >> 22) & 0x4); |
| break; |
| default: |
| arg1 = (int32_t)env->active_fpu.fcr31; |
| break; |
| } |
| |
| return arg1; |
| } |
| |
| void helper_ctc1 (target_ulong arg1, uint32_t reg) |
| { |
| switch(reg) { |
| case 25: |
| if (arg1 & 0xffffff00) |
| return; |
| env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0x017fffff) | ((arg1 & 0xfe) << 24) | |
| ((arg1 & 0x1) << 23); |
| break; |
| case 26: |
| if (arg1 & 0x007c0000) |
| return; |
| env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfffc0f83) | (arg1 & 0x0003f07c); |
| break; |
| case 28: |
| if (arg1 & 0x007c0000) |
| return; |
| env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfefff07c) | (arg1 & 0x00000f83) | |
| ((arg1 & 0x4) << 22); |
| break; |
| case 31: |
| if (arg1 & 0x007c0000) |
| return; |
| env->active_fpu.fcr31 = arg1; |
| break; |
| default: |
| return; |
| } |
| /* set rounding mode */ |
| RESTORE_ROUNDING_MODE; |
| /* set flush-to-zero mode */ |
| RESTORE_FLUSH_MODE; |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| if ((GET_FP_ENABLE(env->active_fpu.fcr31) | 0x20) & GET_FP_CAUSE(env->active_fpu.fcr31)) |
| helper_raise_exception(EXCP_FPE); |
| } |
| |
| static inline int ieee_ex_to_mips(int xcpt) |
| { |
| int ret = 0; |
| if (xcpt) { |
| if (xcpt & float_flag_invalid) { |
| ret |= FP_INVALID; |
| } |
| if (xcpt & float_flag_overflow) { |
| ret |= FP_OVERFLOW; |
| } |
| if (xcpt & float_flag_underflow) { |
| ret |= FP_UNDERFLOW; |
| } |
| if (xcpt & float_flag_divbyzero) { |
| ret |= FP_DIV0; |
| } |
| if (xcpt & float_flag_inexact) { |
| ret |= FP_INEXACT; |
| } |
| } |
| return ret; |
| } |
| |
| static inline void update_fcr31(void) |
| { |
| int tmp = ieee_ex_to_mips(get_float_exception_flags(&env->active_fpu.fp_status)); |
| |
| SET_FP_CAUSE(env->active_fpu.fcr31, tmp); |
| if (GET_FP_ENABLE(env->active_fpu.fcr31) & tmp) |
| helper_raise_exception(EXCP_FPE); |
| else |
| UPDATE_FP_FLAGS(env->active_fpu.fcr31, tmp); |
| } |
| |
| /* Float support. |
| Single precition routines have a "s" suffix, double precision a |
| "d" suffix, 32bit integer "w", 64bit integer "l", paired single "ps", |
| paired single lower "pl", paired single upper "pu". */ |
| |
| /* unary operations, modifying fp status */ |
| uint64_t helper_float_sqrt_d(uint64_t fdt0) |
| { |
| return float64_sqrt(fdt0, &env->active_fpu.fp_status); |
| } |
| |
| uint32_t helper_float_sqrt_s(uint32_t fst0) |
| { |
| return float32_sqrt(fst0, &env->active_fpu.fp_status); |
| } |
| |
| uint64_t helper_float_cvtd_s(uint32_t fst0) |
| { |
| uint64_t fdt2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| fdt2 = float32_to_float64(fst0, &env->active_fpu.fp_status); |
| update_fcr31(); |
| return fdt2; |
| } |
| |
| uint64_t helper_float_cvtd_w(uint32_t wt0) |
| { |
| uint64_t fdt2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| fdt2 = int32_to_float64(wt0, &env->active_fpu.fp_status); |
| update_fcr31(); |
| return fdt2; |
| } |
| |
| uint64_t helper_float_cvtd_l(uint64_t dt0) |
| { |
| uint64_t fdt2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| fdt2 = int64_to_float64(dt0, &env->active_fpu.fp_status); |
| update_fcr31(); |
| return fdt2; |
| } |
| |
| uint64_t helper_float_cvtl_d(uint64_t fdt0) |
| { |
| uint64_t dt2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status); |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) |
| dt2 = FLOAT_SNAN64; |
| return dt2; |
| } |
| |
| uint64_t helper_float_cvtl_s(uint32_t fst0) |
| { |
| uint64_t dt2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status); |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) |
| dt2 = FLOAT_SNAN64; |
| return dt2; |
| } |
| |
| uint64_t helper_float_cvtps_pw(uint64_t dt0) |
| { |
| uint32_t fst2; |
| uint32_t fsth2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| fst2 = int32_to_float32(dt0 & 0XFFFFFFFF, &env->active_fpu.fp_status); |
| fsth2 = int32_to_float32(dt0 >> 32, &env->active_fpu.fp_status); |
| update_fcr31(); |
| return ((uint64_t)fsth2 << 32) | fst2; |
| } |
| |
| uint64_t helper_float_cvtpw_ps(uint64_t fdt0) |
| { |
| uint32_t wt2; |
| uint32_t wth2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| wt2 = float32_to_int32(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status); |
| wth2 = float32_to_int32(fdt0 >> 32, &env->active_fpu.fp_status); |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) { |
| wt2 = FLOAT_SNAN32; |
| wth2 = FLOAT_SNAN32; |
| } |
| return ((uint64_t)wth2 << 32) | wt2; |
| } |
| |
| uint32_t helper_float_cvts_d(uint64_t fdt0) |
| { |
| uint32_t fst2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| fst2 = float64_to_float32(fdt0, &env->active_fpu.fp_status); |
| update_fcr31(); |
| return fst2; |
| } |
| |
| uint32_t helper_float_cvts_w(uint32_t wt0) |
| { |
| uint32_t fst2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| fst2 = int32_to_float32(wt0, &env->active_fpu.fp_status); |
| update_fcr31(); |
| return fst2; |
| } |
| |
| uint32_t helper_float_cvts_l(uint64_t dt0) |
| { |
| uint32_t fst2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| fst2 = int64_to_float32(dt0, &env->active_fpu.fp_status); |
| update_fcr31(); |
| return fst2; |
| } |
| |
| uint32_t helper_float_cvts_pl(uint32_t wt0) |
| { |
| uint32_t wt2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| wt2 = wt0; |
| update_fcr31(); |
| return wt2; |
| } |
| |
| uint32_t helper_float_cvts_pu(uint32_t wth0) |
| { |
| uint32_t wt2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| wt2 = wth0; |
| update_fcr31(); |
| return wt2; |
| } |
| |
| uint32_t helper_float_cvtw_s(uint32_t fst0) |
| { |
| uint32_t wt2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status); |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) |
| wt2 = FLOAT_SNAN32; |
| return wt2; |
| } |
| |
| uint32_t helper_float_cvtw_d(uint64_t fdt0) |
| { |
| uint32_t wt2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status); |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) |
| wt2 = FLOAT_SNAN32; |
| return wt2; |
| } |
| |
| uint64_t helper_float_roundl_d(uint64_t fdt0) |
| { |
| uint64_t dt2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status); |
| dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status); |
| RESTORE_ROUNDING_MODE; |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) |
| dt2 = FLOAT_SNAN64; |
| return dt2; |
| } |
| |
| uint64_t helper_float_roundl_s(uint32_t fst0) |
| { |
| uint64_t dt2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status); |
| dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status); |
| RESTORE_ROUNDING_MODE; |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) |
| dt2 = FLOAT_SNAN64; |
| return dt2; |
| } |
| |
| uint32_t helper_float_roundw_d(uint64_t fdt0) |
| { |
| uint32_t wt2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status); |
| wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status); |
| RESTORE_ROUNDING_MODE; |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) |
| wt2 = FLOAT_SNAN32; |
| return wt2; |
| } |
| |
| uint32_t helper_float_roundw_s(uint32_t fst0) |
| { |
| uint32_t wt2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status); |
| wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status); |
| RESTORE_ROUNDING_MODE; |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) |
| wt2 = FLOAT_SNAN32; |
| return wt2; |
| } |
| |
| uint64_t helper_float_truncl_d(uint64_t fdt0) |
| { |
| uint64_t dt2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| dt2 = float64_to_int64_round_to_zero(fdt0, &env->active_fpu.fp_status); |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) |
| dt2 = FLOAT_SNAN64; |
| return dt2; |
| } |
| |
| uint64_t helper_float_truncl_s(uint32_t fst0) |
| { |
| uint64_t dt2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| dt2 = float32_to_int64_round_to_zero(fst0, &env->active_fpu.fp_status); |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) |
| dt2 = FLOAT_SNAN64; |
| return dt2; |
| } |
| |
| uint32_t helper_float_truncw_d(uint64_t fdt0) |
| { |
| uint32_t wt2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| wt2 = float64_to_int32_round_to_zero(fdt0, &env->active_fpu.fp_status); |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) |
| wt2 = FLOAT_SNAN32; |
| return wt2; |
| } |
| |
| uint32_t helper_float_truncw_s(uint32_t fst0) |
| { |
| uint32_t wt2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| wt2 = float32_to_int32_round_to_zero(fst0, &env->active_fpu.fp_status); |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) |
| wt2 = FLOAT_SNAN32; |
| return wt2; |
| } |
| |
| uint64_t helper_float_ceill_d(uint64_t fdt0) |
| { |
| uint64_t dt2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status); |
| dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status); |
| RESTORE_ROUNDING_MODE; |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) |
| dt2 = FLOAT_SNAN64; |
| return dt2; |
| } |
| |
| uint64_t helper_float_ceill_s(uint32_t fst0) |
| { |
| uint64_t dt2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status); |
| dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status); |
| RESTORE_ROUNDING_MODE; |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) |
| dt2 = FLOAT_SNAN64; |
| return dt2; |
| } |
| |
| uint32_t helper_float_ceilw_d(uint64_t fdt0) |
| { |
| uint32_t wt2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status); |
| wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status); |
| RESTORE_ROUNDING_MODE; |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) |
| wt2 = FLOAT_SNAN32; |
| return wt2; |
| } |
| |
| uint32_t helper_float_ceilw_s(uint32_t fst0) |
| { |
| uint32_t wt2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status); |
| wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status); |
| RESTORE_ROUNDING_MODE; |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) |
| wt2 = FLOAT_SNAN32; |
| return wt2; |
| } |
| |
| uint64_t helper_float_floorl_d(uint64_t fdt0) |
| { |
| uint64_t dt2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status); |
| dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status); |
| RESTORE_ROUNDING_MODE; |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) |
| dt2 = FLOAT_SNAN64; |
| return dt2; |
| } |
| |
| uint64_t helper_float_floorl_s(uint32_t fst0) |
| { |
| uint64_t dt2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status); |
| dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status); |
| RESTORE_ROUNDING_MODE; |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) |
| dt2 = FLOAT_SNAN64; |
| return dt2; |
| } |
| |
| uint32_t helper_float_floorw_d(uint64_t fdt0) |
| { |
| uint32_t wt2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status); |
| wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status); |
| RESTORE_ROUNDING_MODE; |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) |
| wt2 = FLOAT_SNAN32; |
| return wt2; |
| } |
| |
| uint32_t helper_float_floorw_s(uint32_t fst0) |
| { |
| uint32_t wt2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status); |
| wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status); |
| RESTORE_ROUNDING_MODE; |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) |
| wt2 = FLOAT_SNAN32; |
| return wt2; |
| } |
| |
| /* unary operations, not modifying fp status */ |
| #define FLOAT_UNOP(name) \ |
| uint64_t helper_float_ ## name ## _d(uint64_t fdt0) \ |
| { \ |
| return float64_ ## name(fdt0); \ |
| } \ |
| uint32_t helper_float_ ## name ## _s(uint32_t fst0) \ |
| { \ |
| return float32_ ## name(fst0); \ |
| } \ |
| uint64_t helper_float_ ## name ## _ps(uint64_t fdt0) \ |
| { \ |
| uint32_t wt0; \ |
| uint32_t wth0; \ |
| \ |
| wt0 = float32_ ## name(fdt0 & 0XFFFFFFFF); \ |
| wth0 = float32_ ## name(fdt0 >> 32); \ |
| return ((uint64_t)wth0 << 32) | wt0; \ |
| } |
| FLOAT_UNOP(abs) |
| FLOAT_UNOP(chs) |
| #undef FLOAT_UNOP |
| |
| /* MIPS specific unary operations */ |
| uint64_t helper_float_recip_d(uint64_t fdt0) |
| { |
| uint64_t fdt2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| fdt2 = float64_div(FLOAT_ONE64, fdt0, &env->active_fpu.fp_status); |
| update_fcr31(); |
| return fdt2; |
| } |
| |
| uint32_t helper_float_recip_s(uint32_t fst0) |
| { |
| uint32_t fst2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| fst2 = float32_div(FLOAT_ONE32, fst0, &env->active_fpu.fp_status); |
| update_fcr31(); |
| return fst2; |
| } |
| |
| uint64_t helper_float_rsqrt_d(uint64_t fdt0) |
| { |
| uint64_t fdt2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status); |
| fdt2 = float64_div(FLOAT_ONE64, fdt2, &env->active_fpu.fp_status); |
| update_fcr31(); |
| return fdt2; |
| } |
| |
| uint32_t helper_float_rsqrt_s(uint32_t fst0) |
| { |
| uint32_t fst2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status); |
| fst2 = float32_div(FLOAT_ONE32, fst2, &env->active_fpu.fp_status); |
| update_fcr31(); |
| return fst2; |
| } |
| |
| uint64_t helper_float_recip1_d(uint64_t fdt0) |
| { |
| uint64_t fdt2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| fdt2 = float64_div(FLOAT_ONE64, fdt0, &env->active_fpu.fp_status); |
| update_fcr31(); |
| return fdt2; |
| } |
| |
| uint32_t helper_float_recip1_s(uint32_t fst0) |
| { |
| uint32_t fst2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| fst2 = float32_div(FLOAT_ONE32, fst0, &env->active_fpu.fp_status); |
| update_fcr31(); |
| return fst2; |
| } |
| |
| uint64_t helper_float_recip1_ps(uint64_t fdt0) |
| { |
| uint32_t fst2; |
| uint32_t fsth2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| fst2 = float32_div(FLOAT_ONE32, fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status); |
| fsth2 = float32_div(FLOAT_ONE32, fdt0 >> 32, &env->active_fpu.fp_status); |
| update_fcr31(); |
| return ((uint64_t)fsth2 << 32) | fst2; |
| } |
| |
| uint64_t helper_float_rsqrt1_d(uint64_t fdt0) |
| { |
| uint64_t fdt2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status); |
| fdt2 = float64_div(FLOAT_ONE64, fdt2, &env->active_fpu.fp_status); |
| update_fcr31(); |
| return fdt2; |
| } |
| |
| uint32_t helper_float_rsqrt1_s(uint32_t fst0) |
| { |
| uint32_t fst2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status); |
| fst2 = float32_div(FLOAT_ONE32, fst2, &env->active_fpu.fp_status); |
| update_fcr31(); |
| return fst2; |
| } |
| |
| uint64_t helper_float_rsqrt1_ps(uint64_t fdt0) |
| { |
| uint32_t fst2; |
| uint32_t fsth2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| fst2 = float32_sqrt(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status); |
| fsth2 = float32_sqrt(fdt0 >> 32, &env->active_fpu.fp_status); |
| fst2 = float32_div(FLOAT_ONE32, fst2, &env->active_fpu.fp_status); |
| fsth2 = float32_div(FLOAT_ONE32, fsth2, &env->active_fpu.fp_status); |
| update_fcr31(); |
| return ((uint64_t)fsth2 << 32) | fst2; |
| } |
| |
| #define FLOAT_OP(name, p) void helper_float_##name##_##p(void) |
| |
| /* binary operations */ |
| #define FLOAT_BINOP(name) \ |
| uint64_t helper_float_ ## name ## _d(uint64_t fdt0, uint64_t fdt1) \ |
| { \ |
| uint64_t dt2; \ |
| \ |
| set_float_exception_flags(0, &env->active_fpu.fp_status); \ |
| dt2 = float64_ ## name (fdt0, fdt1, &env->active_fpu.fp_status); \ |
| update_fcr31(); \ |
| if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) \ |
| dt2 = FLOAT_QNAN64; \ |
| return dt2; \ |
| } \ |
| \ |
| uint32_t helper_float_ ## name ## _s(uint32_t fst0, uint32_t fst1) \ |
| { \ |
| uint32_t wt2; \ |
| \ |
| set_float_exception_flags(0, &env->active_fpu.fp_status); \ |
| wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \ |
| update_fcr31(); \ |
| if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) \ |
| wt2 = FLOAT_QNAN32; \ |
| return wt2; \ |
| } \ |
| \ |
| uint64_t helper_float_ ## name ## _ps(uint64_t fdt0, uint64_t fdt1) \ |
| { \ |
| uint32_t fst0 = fdt0 & 0XFFFFFFFF; \ |
| uint32_t fsth0 = fdt0 >> 32; \ |
| uint32_t fst1 = fdt1 & 0XFFFFFFFF; \ |
| uint32_t fsth1 = fdt1 >> 32; \ |
| uint32_t wt2; \ |
| uint32_t wth2; \ |
| \ |
| set_float_exception_flags(0, &env->active_fpu.fp_status); \ |
| wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \ |
| wth2 = float32_ ## name (fsth0, fsth1, &env->active_fpu.fp_status); \ |
| update_fcr31(); \ |
| if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) { \ |
| wt2 = FLOAT_QNAN32; \ |
| wth2 = FLOAT_QNAN32; \ |
| } \ |
| return ((uint64_t)wth2 << 32) | wt2; \ |
| } |
| |
| FLOAT_BINOP(add) |
| FLOAT_BINOP(sub) |
| FLOAT_BINOP(mul) |
| FLOAT_BINOP(div) |
| #undef FLOAT_BINOP |
| |
| /* ternary operations */ |
| #define FLOAT_TERNOP(name1, name2) \ |
| uint64_t helper_float_ ## name1 ## name2 ## _d(uint64_t fdt0, uint64_t fdt1, \ |
| uint64_t fdt2) \ |
| { \ |
| fdt0 = float64_ ## name1 (fdt0, fdt1, &env->active_fpu.fp_status); \ |
| return float64_ ## name2 (fdt0, fdt2, &env->active_fpu.fp_status); \ |
| } \ |
| \ |
| uint32_t helper_float_ ## name1 ## name2 ## _s(uint32_t fst0, uint32_t fst1, \ |
| uint32_t fst2) \ |
| { \ |
| fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \ |
| return float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \ |
| } \ |
| \ |
| uint64_t helper_float_ ## name1 ## name2 ## _ps(uint64_t fdt0, uint64_t fdt1, \ |
| uint64_t fdt2) \ |
| { \ |
| uint32_t fst0 = fdt0 & 0XFFFFFFFF; \ |
| uint32_t fsth0 = fdt0 >> 32; \ |
| uint32_t fst1 = fdt1 & 0XFFFFFFFF; \ |
| uint32_t fsth1 = fdt1 >> 32; \ |
| uint32_t fst2 = fdt2 & 0XFFFFFFFF; \ |
| uint32_t fsth2 = fdt2 >> 32; \ |
| \ |
| fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \ |
| fsth0 = float32_ ## name1 (fsth0, fsth1, &env->active_fpu.fp_status); \ |
| fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \ |
| fsth2 = float32_ ## name2 (fsth0, fsth2, &env->active_fpu.fp_status); \ |
| return ((uint64_t)fsth2 << 32) | fst2; \ |
| } |
| |
| FLOAT_TERNOP(mul, add) |
| FLOAT_TERNOP(mul, sub) |
| #undef FLOAT_TERNOP |
| |
| /* negated ternary operations */ |
| #define FLOAT_NTERNOP(name1, name2) \ |
| uint64_t helper_float_n ## name1 ## name2 ## _d(uint64_t fdt0, uint64_t fdt1, \ |
| uint64_t fdt2) \ |
| { \ |
| fdt0 = float64_ ## name1 (fdt0, fdt1, &env->active_fpu.fp_status); \ |
| fdt2 = float64_ ## name2 (fdt0, fdt2, &env->active_fpu.fp_status); \ |
| return float64_chs(fdt2); \ |
| } \ |
| \ |
| uint32_t helper_float_n ## name1 ## name2 ## _s(uint32_t fst0, uint32_t fst1, \ |
| uint32_t fst2) \ |
| { \ |
| fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \ |
| fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \ |
| return float32_chs(fst2); \ |
| } \ |
| \ |
| uint64_t helper_float_n ## name1 ## name2 ## _ps(uint64_t fdt0, uint64_t fdt1,\ |
| uint64_t fdt2) \ |
| { \ |
| uint32_t fst0 = fdt0 & 0XFFFFFFFF; \ |
| uint32_t fsth0 = fdt0 >> 32; \ |
| uint32_t fst1 = fdt1 & 0XFFFFFFFF; \ |
| uint32_t fsth1 = fdt1 >> 32; \ |
| uint32_t fst2 = fdt2 & 0XFFFFFFFF; \ |
| uint32_t fsth2 = fdt2 >> 32; \ |
| \ |
| fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \ |
| fsth0 = float32_ ## name1 (fsth0, fsth1, &env->active_fpu.fp_status); \ |
| fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \ |
| fsth2 = float32_ ## name2 (fsth0, fsth2, &env->active_fpu.fp_status); \ |
| fst2 = float32_chs(fst2); \ |
| fsth2 = float32_chs(fsth2); \ |
| return ((uint64_t)fsth2 << 32) | fst2; \ |
| } |
| |
| FLOAT_NTERNOP(mul, add) |
| FLOAT_NTERNOP(mul, sub) |
| #undef FLOAT_NTERNOP |
| |
| /* MIPS specific binary operations */ |
| uint64_t helper_float_recip2_d(uint64_t fdt0, uint64_t fdt2) |
| { |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status); |
| fdt2 = float64_chs(float64_sub(fdt2, FLOAT_ONE64, &env->active_fpu.fp_status)); |
| update_fcr31(); |
| return fdt2; |
| } |
| |
| uint32_t helper_float_recip2_s(uint32_t fst0, uint32_t fst2) |
| { |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status); |
| fst2 = float32_chs(float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status)); |
| update_fcr31(); |
| return fst2; |
| } |
| |
| uint64_t helper_float_recip2_ps(uint64_t fdt0, uint64_t fdt2) |
| { |
| uint32_t fst0 = fdt0 & 0XFFFFFFFF; |
| uint32_t fsth0 = fdt0 >> 32; |
| uint32_t fst2 = fdt2 & 0XFFFFFFFF; |
| uint32_t fsth2 = fdt2 >> 32; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status); |
| fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status); |
| fst2 = float32_chs(float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status)); |
| fsth2 = float32_chs(float32_sub(fsth2, FLOAT_ONE32, &env->active_fpu.fp_status)); |
| update_fcr31(); |
| return ((uint64_t)fsth2 << 32) | fst2; |
| } |
| |
| uint64_t helper_float_rsqrt2_d(uint64_t fdt0, uint64_t fdt2) |
| { |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status); |
| fdt2 = float64_sub(fdt2, FLOAT_ONE64, &env->active_fpu.fp_status); |
| fdt2 = float64_chs(float64_div(fdt2, FLOAT_TWO64, &env->active_fpu.fp_status)); |
| update_fcr31(); |
| return fdt2; |
| } |
| |
| uint32_t helper_float_rsqrt2_s(uint32_t fst0, uint32_t fst2) |
| { |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status); |
| fst2 = float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status); |
| fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status)); |
| update_fcr31(); |
| return fst2; |
| } |
| |
| uint64_t helper_float_rsqrt2_ps(uint64_t fdt0, uint64_t fdt2) |
| { |
| uint32_t fst0 = fdt0 & 0XFFFFFFFF; |
| uint32_t fsth0 = fdt0 >> 32; |
| uint32_t fst2 = fdt2 & 0XFFFFFFFF; |
| uint32_t fsth2 = fdt2 >> 32; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status); |
| fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status); |
| fst2 = float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status); |
| fsth2 = float32_sub(fsth2, FLOAT_ONE32, &env->active_fpu.fp_status); |
| fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status)); |
| fsth2 = float32_chs(float32_div(fsth2, FLOAT_TWO32, &env->active_fpu.fp_status)); |
| update_fcr31(); |
| return ((uint64_t)fsth2 << 32) | fst2; |
| } |
| |
| uint64_t helper_float_addr_ps(uint64_t fdt0, uint64_t fdt1) |
| { |
| uint32_t fst0 = fdt0 & 0XFFFFFFFF; |
| uint32_t fsth0 = fdt0 >> 32; |
| uint32_t fst1 = fdt1 & 0XFFFFFFFF; |
| uint32_t fsth1 = fdt1 >> 32; |
| uint32_t fst2; |
| uint32_t fsth2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| fst2 = float32_add (fst0, fsth0, &env->active_fpu.fp_status); |
| fsth2 = float32_add (fst1, fsth1, &env->active_fpu.fp_status); |
| update_fcr31(); |
| return ((uint64_t)fsth2 << 32) | fst2; |
| } |
| |
| uint64_t helper_float_mulr_ps(uint64_t fdt0, uint64_t fdt1) |
| { |
| uint32_t fst0 = fdt0 & 0XFFFFFFFF; |
| uint32_t fsth0 = fdt0 >> 32; |
| uint32_t fst1 = fdt1 & 0XFFFFFFFF; |
| uint32_t fsth1 = fdt1 >> 32; |
| uint32_t fst2; |
| uint32_t fsth2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| fst2 = float32_mul (fst0, fsth0, &env->active_fpu.fp_status); |
| fsth2 = float32_mul (fst1, fsth1, &env->active_fpu.fp_status); |
| update_fcr31(); |
| return ((uint64_t)fsth2 << 32) | fst2; |
| } |
| |
| /* compare operations */ |
| #define FOP_COND_D(op, cond) \ |
| void helper_cmp_d_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \ |
| { \ |
| int c; \ |
| set_float_exception_flags(0, &env->active_fpu.fp_status); \ |
| c = cond; \ |
| update_fcr31(); \ |
| if (c) \ |
| SET_FP_COND(cc, env->active_fpu); \ |
| else \ |
| CLEAR_FP_COND(cc, env->active_fpu); \ |
| } \ |
| void helper_cmpabs_d_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \ |
| { \ |
| int c; \ |
| set_float_exception_flags(0, &env->active_fpu.fp_status); \ |
| fdt0 = float64_abs(fdt0); \ |
| fdt1 = float64_abs(fdt1); \ |
| c = cond; \ |
| update_fcr31(); \ |
| if (c) \ |
| SET_FP_COND(cc, env->active_fpu); \ |
| else \ |
| CLEAR_FP_COND(cc, env->active_fpu); \ |
| } |
| |
| /* NOTE: the comma operator will make "cond" to eval to false, |
| * but float64_unordered_quiet() is still called. */ |
| FOP_COND_D(f, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status), 0)) |
| FOP_COND_D(un, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status)) |
| FOP_COND_D(eq, float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status)) |
| FOP_COND_D(ueq, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status)) |
| FOP_COND_D(olt, float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status)) |
| FOP_COND_D(ult, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status)) |
| FOP_COND_D(ole, float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status)) |
| FOP_COND_D(ule, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status)) |
| /* NOTE: the comma operator will make "cond" to eval to false, |
| * but float64_unordered() is still called. */ |
| FOP_COND_D(sf, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status), 0)) |
| FOP_COND_D(ngle,float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status)) |
| FOP_COND_D(seq, float64_eq(fdt0, fdt1, &env->active_fpu.fp_status)) |
| FOP_COND_D(ngl, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq(fdt0, fdt1, &env->active_fpu.fp_status)) |
| FOP_COND_D(lt, float64_lt(fdt0, fdt1, &env->active_fpu.fp_status)) |
| FOP_COND_D(nge, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status)) |
| FOP_COND_D(le, float64_le(fdt0, fdt1, &env->active_fpu.fp_status)) |
| FOP_COND_D(ngt, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_le(fdt0, fdt1, &env->active_fpu.fp_status)) |
| |
| #define FOP_COND_S(op, cond) \ |
| void helper_cmp_s_ ## op (uint32_t fst0, uint32_t fst1, int cc) \ |
| { \ |
| int c; \ |
| set_float_exception_flags(0, &env->active_fpu.fp_status); \ |
| c = cond; \ |
| update_fcr31(); \ |
| if (c) \ |
| SET_FP_COND(cc, env->active_fpu); \ |
| else \ |
| CLEAR_FP_COND(cc, env->active_fpu); \ |
| } \ |
| void helper_cmpabs_s_ ## op (uint32_t fst0, uint32_t fst1, int cc) \ |
| { \ |
| int c; \ |
| set_float_exception_flags(0, &env->active_fpu.fp_status); \ |
| fst0 = float32_abs(fst0); \ |
| fst1 = float32_abs(fst1); \ |
| c = cond; \ |
| update_fcr31(); \ |
| if (c) \ |
| SET_FP_COND(cc, env->active_fpu); \ |
| else \ |
| CLEAR_FP_COND(cc, env->active_fpu); \ |
| } |
| |
| /* NOTE: the comma operator will make "cond" to eval to false, |
| * but float32_unordered_quiet() is still called. */ |
| FOP_COND_S(f, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status), 0)) |
| FOP_COND_S(un, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status)) |
| FOP_COND_S(eq, float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status)) |
| FOP_COND_S(ueq, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status)) |
| FOP_COND_S(olt, float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status)) |
| FOP_COND_S(ult, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status)) |
| FOP_COND_S(ole, float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status)) |
| FOP_COND_S(ule, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status)) |
| /* NOTE: the comma operator will make "cond" to eval to false, |
| * but float32_unordered() is still called. */ |
| FOP_COND_S(sf, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status), 0)) |
| FOP_COND_S(ngle,float32_unordered(fst1, fst0, &env->active_fpu.fp_status)) |
| FOP_COND_S(seq, float32_eq(fst0, fst1, &env->active_fpu.fp_status)) |
| FOP_COND_S(ngl, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status)) |
| FOP_COND_S(lt, float32_lt(fst0, fst1, &env->active_fpu.fp_status)) |
| FOP_COND_S(nge, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status)) |
| FOP_COND_S(le, float32_le(fst0, fst1, &env->active_fpu.fp_status)) |
| FOP_COND_S(ngt, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status)) |
| |
| #define FOP_COND_PS(op, condl, condh) \ |
| void helper_cmp_ps_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \ |
| { \ |
| uint32_t fst0, fsth0, fst1, fsth1; \ |
| int ch, cl; \ |
| set_float_exception_flags(0, &env->active_fpu.fp_status); \ |
| fst0 = fdt0 & 0XFFFFFFFF; \ |
| fsth0 = fdt0 >> 32; \ |
| fst1 = fdt1 & 0XFFFFFFFF; \ |
| fsth1 = fdt1 >> 32; \ |
| cl = condl; \ |
| ch = condh; \ |
| update_fcr31(); \ |
| if (cl) \ |
| SET_FP_COND(cc, env->active_fpu); \ |
| else \ |
| CLEAR_FP_COND(cc, env->active_fpu); \ |
| if (ch) \ |
| SET_FP_COND(cc + 1, env->active_fpu); \ |
| else \ |
| CLEAR_FP_COND(cc + 1, env->active_fpu); \ |
| } \ |
| void helper_cmpabs_ps_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \ |
| { \ |
| uint32_t fst0, fsth0, fst1, fsth1; \ |
| int ch, cl; \ |
| fst0 = float32_abs(fdt0 & 0XFFFFFFFF); \ |
| fsth0 = float32_abs(fdt0 >> 32); \ |
| fst1 = float32_abs(fdt1 & 0XFFFFFFFF); \ |
| fsth1 = float32_abs(fdt1 >> 32); \ |
| cl = condl; \ |
| ch = condh; \ |
| update_fcr31(); \ |
| if (cl) \ |
| SET_FP_COND(cc, env->active_fpu); \ |
| else \ |
| CLEAR_FP_COND(cc, env->active_fpu); \ |
| if (ch) \ |
| SET_FP_COND(cc + 1, env->active_fpu); \ |
| else \ |
| CLEAR_FP_COND(cc + 1, env->active_fpu); \ |
| } |
| |
| /* NOTE: the comma operator will make "cond" to eval to false, |
| * but float32_unordered_quiet() is still called. */ |
| FOP_COND_PS(f, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status), 0), |
| (float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status), 0)) |
| FOP_COND_PS(un, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status), |
| float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status)) |
| FOP_COND_PS(eq, float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status), |
| float32_eq_quiet(fsth0, fsth1, &env->active_fpu.fp_status)) |
| FOP_COND_PS(ueq, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status), |
| float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq_quiet(fsth0, fsth1, &env->active_fpu.fp_status)) |
| FOP_COND_PS(olt, float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status), |
| float32_lt_quiet(fsth0, fsth1, &env->active_fpu.fp_status)) |
| FOP_COND_PS(ult, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status), |
| float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt_quiet(fsth0, fsth1, &env->active_fpu.fp_status)) |
| FOP_COND_PS(ole, float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status), |
| float32_le_quiet(fsth0, fsth1, &env->active_fpu.fp_status)) |
| FOP_COND_PS(ule, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status), |
| float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_le_quiet(fsth0, fsth1, &env->active_fpu.fp_status)) |
| /* NOTE: the comma operator will make "cond" to eval to false, |
| * but float32_unordered() is still called. */ |
| FOP_COND_PS(sf, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status), 0), |
| (float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status), 0)) |
| FOP_COND_PS(ngle,float32_unordered(fst1, fst0, &env->active_fpu.fp_status), |
| float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status)) |
| FOP_COND_PS(seq, float32_eq(fst0, fst1, &env->active_fpu.fp_status), |
| float32_eq(fsth0, fsth1, &env->active_fpu.fp_status)) |
| FOP_COND_PS(ngl, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status), |
| float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq(fsth0, fsth1, &env->active_fpu.fp_status)) |
| FOP_COND_PS(lt, float32_lt(fst0, fst1, &env->active_fpu.fp_status), |
| float32_lt(fsth0, fsth1, &env->active_fpu.fp_status)) |
| FOP_COND_PS(nge, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status), |
| float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt(fsth0, fsth1, &env->active_fpu.fp_status)) |
| FOP_COND_PS(le, float32_le(fst0, fst1, &env->active_fpu.fp_status), |
| float32_le(fsth0, fsth1, &env->active_fpu.fp_status)) |
| FOP_COND_PS(ngt, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status), |
| float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_le(fsth0, fsth1, &env->active_fpu.fp_status)) |