| /* |
| * Helpers for HPPA instructions. |
| * |
| * Copyright (c) 2016 Richard Henderson <rth@twiddle.net> |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/log.h" |
| #include "cpu.h" |
| #include "exec/exec-all.h" |
| #include "exec/helper-proto.h" |
| #include "exec/cpu_ldst.h" |
| #include "qemu/timer.h" |
| #include "trace.h" |
| |
| G_NORETURN void HELPER(excp)(CPUHPPAState *env, int excp) |
| { |
| CPUState *cs = env_cpu(env); |
| |
| cs->exception_index = excp; |
| cpu_loop_exit(cs); |
| } |
| |
| G_NORETURN void hppa_dynamic_excp(CPUHPPAState *env, int excp, uintptr_t ra) |
| { |
| CPUState *cs = env_cpu(env); |
| |
| cs->exception_index = excp; |
| cpu_loop_exit_restore(cs, ra); |
| } |
| |
| static void atomic_store_mask32(CPUHPPAState *env, target_ulong addr, |
| uint32_t val, uint32_t mask, uintptr_t ra) |
| { |
| int mmu_idx = cpu_mmu_index(env_cpu(env), 0); |
| uint32_t old, new, cmp, *haddr; |
| void *vaddr; |
| |
| vaddr = probe_access(env, addr, 3, MMU_DATA_STORE, mmu_idx, ra); |
| if (vaddr == NULL) { |
| cpu_loop_exit_atomic(env_cpu(env), ra); |
| } |
| haddr = (uint32_t *)((uintptr_t)vaddr & -4); |
| mask = addr & 1 ? 0x00ffffffu : 0xffffff00u; |
| |
| old = *haddr; |
| while (1) { |
| new = be32_to_cpu((cpu_to_be32(old) & ~mask) | (val & mask)); |
| cmp = qatomic_cmpxchg(haddr, old, new); |
| if (cmp == old) { |
| return; |
| } |
| old = cmp; |
| } |
| } |
| |
| static void atomic_store_mask64(CPUHPPAState *env, target_ulong addr, |
| uint64_t val, uint64_t mask, |
| int size, uintptr_t ra) |
| { |
| #ifdef CONFIG_ATOMIC64 |
| int mmu_idx = cpu_mmu_index(env_cpu(env), 0); |
| uint64_t old, new, cmp, *haddr; |
| void *vaddr; |
| |
| vaddr = probe_access(env, addr, size, MMU_DATA_STORE, mmu_idx, ra); |
| if (vaddr == NULL) { |
| cpu_loop_exit_atomic(env_cpu(env), ra); |
| } |
| haddr = (uint64_t *)((uintptr_t)vaddr & -8); |
| |
| old = *haddr; |
| while (1) { |
| new = be32_to_cpu((cpu_to_be32(old) & ~mask) | (val & mask)); |
| cmp = qatomic_cmpxchg__nocheck(haddr, old, new); |
| if (cmp == old) { |
| return; |
| } |
| old = cmp; |
| } |
| #else |
| cpu_loop_exit_atomic(env_cpu(env), ra); |
| #endif |
| } |
| |
| static void do_stby_b(CPUHPPAState *env, target_ulong addr, target_ulong val, |
| bool parallel, uintptr_t ra) |
| { |
| switch (addr & 3) { |
| case 3: |
| cpu_stb_data_ra(env, addr, val, ra); |
| break; |
| case 2: |
| cpu_stw_data_ra(env, addr, val, ra); |
| break; |
| case 1: |
| /* The 3 byte store must appear atomic. */ |
| if (parallel) { |
| atomic_store_mask32(env, addr, val, 0x00ffffffu, ra); |
| } else { |
| cpu_stb_data_ra(env, addr, val >> 16, ra); |
| cpu_stw_data_ra(env, addr + 1, val, ra); |
| } |
| break; |
| default: |
| cpu_stl_data_ra(env, addr, val, ra); |
| break; |
| } |
| } |
| |
| static void do_stdby_b(CPUHPPAState *env, target_ulong addr, uint64_t val, |
| bool parallel, uintptr_t ra) |
| { |
| switch (addr & 7) { |
| case 7: |
| cpu_stb_data_ra(env, addr, val, ra); |
| break; |
| case 6: |
| cpu_stw_data_ra(env, addr, val, ra); |
| break; |
| case 5: |
| /* The 3 byte store must appear atomic. */ |
| if (parallel) { |
| atomic_store_mask32(env, addr, val, 0x00ffffffu, ra); |
| } else { |
| cpu_stb_data_ra(env, addr, val >> 16, ra); |
| cpu_stw_data_ra(env, addr + 1, val, ra); |
| } |
| break; |
| case 4: |
| cpu_stl_data_ra(env, addr, val, ra); |
| break; |
| case 3: |
| /* The 5 byte store must appear atomic. */ |
| if (parallel) { |
| atomic_store_mask64(env, addr, val, 0x000000ffffffffffull, 5, ra); |
| } else { |
| cpu_stb_data_ra(env, addr, val >> 32, ra); |
| cpu_stl_data_ra(env, addr + 1, val, ra); |
| } |
| break; |
| case 2: |
| /* The 6 byte store must appear atomic. */ |
| if (parallel) { |
| atomic_store_mask64(env, addr, val, 0x0000ffffffffffffull, 6, ra); |
| } else { |
| cpu_stw_data_ra(env, addr, val >> 32, ra); |
| cpu_stl_data_ra(env, addr + 2, val, ra); |
| } |
| break; |
| case 1: |
| /* The 7 byte store must appear atomic. */ |
| if (parallel) { |
| atomic_store_mask64(env, addr, val, 0x00ffffffffffffffull, 7, ra); |
| } else { |
| cpu_stb_data_ra(env, addr, val >> 48, ra); |
| cpu_stw_data_ra(env, addr + 1, val >> 32, ra); |
| cpu_stl_data_ra(env, addr + 3, val, ra); |
| } |
| break; |
| default: |
| cpu_stq_data_ra(env, addr, val, ra); |
| break; |
| } |
| } |
| |
| void HELPER(stby_b)(CPUHPPAState *env, target_ulong addr, target_ulong val) |
| { |
| do_stby_b(env, addr, val, false, GETPC()); |
| } |
| |
| void HELPER(stby_b_parallel)(CPUHPPAState *env, target_ulong addr, |
| target_ulong val) |
| { |
| do_stby_b(env, addr, val, true, GETPC()); |
| } |
| |
| void HELPER(stdby_b)(CPUHPPAState *env, target_ulong addr, target_ulong val) |
| { |
| do_stdby_b(env, addr, val, false, GETPC()); |
| } |
| |
| void HELPER(stdby_b_parallel)(CPUHPPAState *env, target_ulong addr, |
| target_ulong val) |
| { |
| do_stdby_b(env, addr, val, true, GETPC()); |
| } |
| |
| static void do_stby_e(CPUHPPAState *env, target_ulong addr, target_ulong val, |
| bool parallel, uintptr_t ra) |
| { |
| switch (addr & 3) { |
| case 3: |
| /* The 3 byte store must appear atomic. */ |
| if (parallel) { |
| atomic_store_mask32(env, addr - 3, val, 0xffffff00u, ra); |
| } else { |
| cpu_stw_data_ra(env, addr - 3, val >> 16, ra); |
| cpu_stb_data_ra(env, addr - 1, val >> 8, ra); |
| } |
| break; |
| case 2: |
| cpu_stw_data_ra(env, addr - 2, val >> 16, ra); |
| break; |
| case 1: |
| cpu_stb_data_ra(env, addr - 1, val >> 24, ra); |
| break; |
| default: |
| /* Nothing is stored, but protection is checked and the |
| cacheline is marked dirty. */ |
| probe_write(env, addr, 0, cpu_mmu_index(env_cpu(env), 0), ra); |
| break; |
| } |
| } |
| |
| static void do_stdby_e(CPUHPPAState *env, target_ulong addr, uint64_t val, |
| bool parallel, uintptr_t ra) |
| { |
| switch (addr & 7) { |
| case 7: |
| /* The 7 byte store must appear atomic. */ |
| if (parallel) { |
| atomic_store_mask64(env, addr - 7, val, |
| 0xffffffffffffff00ull, 7, ra); |
| } else { |
| cpu_stl_data_ra(env, addr - 7, val >> 32, ra); |
| cpu_stw_data_ra(env, addr - 3, val >> 16, ra); |
| cpu_stb_data_ra(env, addr - 1, val >> 8, ra); |
| } |
| break; |
| case 6: |
| /* The 6 byte store must appear atomic. */ |
| if (parallel) { |
| atomic_store_mask64(env, addr - 6, val, |
| 0xffffffffffff0000ull, 6, ra); |
| } else { |
| cpu_stl_data_ra(env, addr - 6, val >> 32, ra); |
| cpu_stw_data_ra(env, addr - 2, val >> 16, ra); |
| } |
| break; |
| case 5: |
| /* The 5 byte store must appear atomic. */ |
| if (parallel) { |
| atomic_store_mask64(env, addr - 5, val, |
| 0xffffffffff000000ull, 5, ra); |
| } else { |
| cpu_stl_data_ra(env, addr - 5, val >> 32, ra); |
| cpu_stb_data_ra(env, addr - 1, val >> 24, ra); |
| } |
| break; |
| case 4: |
| cpu_stl_data_ra(env, addr - 4, val >> 32, ra); |
| break; |
| case 3: |
| /* The 3 byte store must appear atomic. */ |
| if (parallel) { |
| atomic_store_mask32(env, addr - 3, val >> 32, 0xffffff00u, ra); |
| } else { |
| cpu_stw_data_ra(env, addr - 3, val >> 48, ra); |
| cpu_stb_data_ra(env, addr - 1, val >> 40, ra); |
| } |
| break; |
| case 2: |
| cpu_stw_data_ra(env, addr - 2, val >> 48, ra); |
| break; |
| case 1: |
| cpu_stb_data_ra(env, addr - 1, val >> 56, ra); |
| break; |
| default: |
| /* Nothing is stored, but protection is checked and the |
| cacheline is marked dirty. */ |
| probe_write(env, addr, 0, cpu_mmu_index(env_cpu(env), 0), ra); |
| break; |
| } |
| } |
| |
| void HELPER(stby_e)(CPUHPPAState *env, target_ulong addr, target_ulong val) |
| { |
| do_stby_e(env, addr, val, false, GETPC()); |
| } |
| |
| void HELPER(stby_e_parallel)(CPUHPPAState *env, target_ulong addr, |
| target_ulong val) |
| { |
| do_stby_e(env, addr, val, true, GETPC()); |
| } |
| |
| void HELPER(stdby_e)(CPUHPPAState *env, target_ulong addr, target_ulong val) |
| { |
| do_stdby_e(env, addr, val, false, GETPC()); |
| } |
| |
| void HELPER(stdby_e_parallel)(CPUHPPAState *env, target_ulong addr, |
| target_ulong val) |
| { |
| do_stdby_e(env, addr, val, true, GETPC()); |
| } |
| |
| void HELPER(ldc_check)(target_ulong addr) |
| { |
| if (unlikely(addr & 0xf)) { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "Undefined ldc to unaligned address mod 16: " |
| TARGET_FMT_lx "\n", addr); |
| } |
| } |
| |
| target_ulong HELPER(probe)(CPUHPPAState *env, target_ulong addr, |
| uint32_t level, uint32_t want) |
| { |
| #ifdef CONFIG_USER_ONLY |
| return page_check_range(addr, 1, want); |
| #else |
| int prot, excp, mmu_idx; |
| hwaddr phys; |
| |
| trace_hppa_tlb_probe(addr, level, want); |
| /* Fail if the requested privilege level is higher than current. */ |
| if (level < (env->iaoq_f & 3)) { |
| return 0; |
| } |
| |
| mmu_idx = PRIV_P_TO_MMU_IDX(level, env->psw & PSW_P); |
| excp = hppa_get_physical_address(env, addr, mmu_idx, 0, &phys, &prot); |
| if (excp >= 0) { |
| cpu_restore_state(env_cpu(env), GETPC()); |
| hppa_set_ior_and_isr(env, addr, MMU_IDX_MMU_DISABLED(mmu_idx)); |
| if (excp == EXCP_DTLB_MISS) { |
| excp = EXCP_NA_DTLB_MISS; |
| } |
| helper_excp(env, excp); |
| } |
| return (want & prot) != 0; |
| #endif |
| } |
| |
| target_ulong HELPER(read_interval_timer)(void) |
| { |
| #ifdef CONFIG_USER_ONLY |
| /* In user-mode, QEMU_CLOCK_VIRTUAL doesn't exist. |
| Just pass through the host cpu clock ticks. */ |
| return cpu_get_host_ticks(); |
| #else |
| /* In system mode we have access to a decent high-resolution clock. |
| In order to make OS-level time accounting work with the cr16, |
| present it with a well-timed clock fixed at 250MHz. */ |
| return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) >> 2; |
| #endif |
| } |
| |
| uint64_t HELPER(hadd_ss)(uint64_t r1, uint64_t r2) |
| { |
| uint64_t ret = 0; |
| |
| for (int i = 0; i < 64; i += 16) { |
| int f1 = sextract64(r1, i, 16); |
| int f2 = sextract64(r2, i, 16); |
| int fr = f1 + f2; |
| |
| fr = MIN(fr, INT16_MAX); |
| fr = MAX(fr, INT16_MIN); |
| ret = deposit64(ret, i, 16, fr); |
| } |
| return ret; |
| } |
| |
| uint64_t HELPER(hadd_us)(uint64_t r1, uint64_t r2) |
| { |
| uint64_t ret = 0; |
| |
| for (int i = 0; i < 64; i += 16) { |
| int f1 = extract64(r1, i, 16); |
| int f2 = sextract64(r2, i, 16); |
| int fr = f1 + f2; |
| |
| fr = MIN(fr, UINT16_MAX); |
| fr = MAX(fr, 0); |
| ret = deposit64(ret, i, 16, fr); |
| } |
| return ret; |
| } |
| |
| uint64_t HELPER(havg)(uint64_t r1, uint64_t r2) |
| { |
| uint64_t ret = 0; |
| |
| for (int i = 0; i < 64; i += 16) { |
| int f1 = extract64(r1, i, 16); |
| int f2 = extract64(r2, i, 16); |
| int fr = f1 + f2; |
| |
| ret = deposit64(ret, i, 16, (fr >> 1) | (fr & 1)); |
| } |
| return ret; |
| } |
| |
| uint64_t HELPER(hsub_ss)(uint64_t r1, uint64_t r2) |
| { |
| uint64_t ret = 0; |
| |
| for (int i = 0; i < 64; i += 16) { |
| int f1 = sextract64(r1, i, 16); |
| int f2 = sextract64(r2, i, 16); |
| int fr = f1 - f2; |
| |
| fr = MIN(fr, INT16_MAX); |
| fr = MAX(fr, INT16_MIN); |
| ret = deposit64(ret, i, 16, fr); |
| } |
| return ret; |
| } |
| |
| uint64_t HELPER(hsub_us)(uint64_t r1, uint64_t r2) |
| { |
| uint64_t ret = 0; |
| |
| for (int i = 0; i < 64; i += 16) { |
| int f1 = extract64(r1, i, 16); |
| int f2 = sextract64(r2, i, 16); |
| int fr = f1 - f2; |
| |
| fr = MIN(fr, UINT16_MAX); |
| fr = MAX(fr, 0); |
| ret = deposit64(ret, i, 16, fr); |
| } |
| return ret; |
| } |
| |
| uint64_t HELPER(hshladd)(uint64_t r1, uint64_t r2, uint32_t sh) |
| { |
| uint64_t ret = 0; |
| |
| for (int i = 0; i < 64; i += 16) { |
| int f1 = sextract64(r1, i, 16); |
| int f2 = sextract64(r2, i, 16); |
| int fr = (f1 << sh) + f2; |
| |
| fr = MIN(fr, INT16_MAX); |
| fr = MAX(fr, INT16_MIN); |
| ret = deposit64(ret, i, 16, fr); |
| } |
| return ret; |
| } |
| |
| uint64_t HELPER(hshradd)(uint64_t r1, uint64_t r2, uint32_t sh) |
| { |
| uint64_t ret = 0; |
| |
| for (int i = 0; i < 64; i += 16) { |
| int f1 = sextract64(r1, i, 16); |
| int f2 = sextract64(r2, i, 16); |
| int fr = (f1 >> sh) + f2; |
| |
| fr = MIN(fr, INT16_MAX); |
| fr = MAX(fr, INT16_MIN); |
| ret = deposit64(ret, i, 16, fr); |
| } |
| return ret; |
| } |