| /* |
| * PowerPC memory access emulation helpers for QEMU. |
| * |
| * Copyright (c) 2003-2007 Jocelyn Mayer |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| #include "qemu/osdep.h" |
| #include "cpu.h" |
| #include "qemu/host-utils.h" |
| #include "exec/helper-proto.h" |
| |
| #include "helper_regs.h" |
| #include "exec/cpu_ldst.h" |
| |
| //#define DEBUG_OP |
| |
| static inline bool needs_byteswap(const CPUPPCState *env) |
| { |
| #if defined(TARGET_WORDS_BIGENDIAN) |
| return msr_le; |
| #else |
| return !msr_le; |
| #endif |
| } |
| |
| /*****************************************************************************/ |
| /* Memory load and stores */ |
| |
| static inline target_ulong addr_add(CPUPPCState *env, target_ulong addr, |
| target_long arg) |
| { |
| #if defined(TARGET_PPC64) |
| if (!msr_is_64bit(env, env->msr)) { |
| return (uint32_t)(addr + arg); |
| } else |
| #endif |
| { |
| return addr + arg; |
| } |
| } |
| |
| void helper_lmw(CPUPPCState *env, target_ulong addr, uint32_t reg) |
| { |
| for (; reg < 32; reg++) { |
| if (needs_byteswap(env)) { |
| env->gpr[reg] = bswap32(cpu_ldl_data(env, addr)); |
| } else { |
| env->gpr[reg] = cpu_ldl_data(env, addr); |
| } |
| addr = addr_add(env, addr, 4); |
| } |
| } |
| |
| void helper_stmw(CPUPPCState *env, target_ulong addr, uint32_t reg) |
| { |
| for (; reg < 32; reg++) { |
| if (needs_byteswap(env)) { |
| cpu_stl_data(env, addr, bswap32((uint32_t)env->gpr[reg])); |
| } else { |
| cpu_stl_data(env, addr, (uint32_t)env->gpr[reg]); |
| } |
| addr = addr_add(env, addr, 4); |
| } |
| } |
| |
| void helper_lsw(CPUPPCState *env, target_ulong addr, uint32_t nb, uint32_t reg) |
| { |
| int sh; |
| |
| for (; nb > 3; nb -= 4) { |
| env->gpr[reg] = cpu_ldl_data(env, addr); |
| reg = (reg + 1) % 32; |
| addr = addr_add(env, addr, 4); |
| } |
| if (unlikely(nb > 0)) { |
| env->gpr[reg] = 0; |
| for (sh = 24; nb > 0; nb--, sh -= 8) { |
| env->gpr[reg] |= cpu_ldub_data(env, addr) << sh; |
| addr = addr_add(env, addr, 1); |
| } |
| } |
| } |
| /* PPC32 specification says we must generate an exception if |
| * rA is in the range of registers to be loaded. |
| * In an other hand, IBM says this is valid, but rA won't be loaded. |
| * For now, I'll follow the spec... |
| */ |
| void helper_lswx(CPUPPCState *env, target_ulong addr, uint32_t reg, |
| uint32_t ra, uint32_t rb) |
| { |
| if (likely(xer_bc != 0)) { |
| int num_used_regs = (xer_bc + 3) / 4; |
| if (unlikely((ra != 0 && lsw_reg_in_range(reg, num_used_regs, ra)) || |
| lsw_reg_in_range(reg, num_used_regs, rb))) { |
| env->nip += 4; /* Compensate the "nip - 4" from gen_lswx() */ |
| helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM, |
| POWERPC_EXCP_INVAL | |
| POWERPC_EXCP_INVAL_LSWX); |
| } else { |
| helper_lsw(env, addr, xer_bc, reg); |
| } |
| } |
| } |
| |
| void helper_stsw(CPUPPCState *env, target_ulong addr, uint32_t nb, |
| uint32_t reg) |
| { |
| int sh; |
| |
| for (; nb > 3; nb -= 4) { |
| cpu_stl_data(env, addr, env->gpr[reg]); |
| reg = (reg + 1) % 32; |
| addr = addr_add(env, addr, 4); |
| } |
| if (unlikely(nb > 0)) { |
| for (sh = 24; nb > 0; nb--, sh -= 8) { |
| cpu_stb_data(env, addr, (env->gpr[reg] >> sh) & 0xFF); |
| addr = addr_add(env, addr, 1); |
| } |
| } |
| } |
| |
| static void do_dcbz(CPUPPCState *env, target_ulong addr, int dcache_line_size) |
| { |
| int i; |
| |
| addr &= ~(dcache_line_size - 1); |
| for (i = 0; i < dcache_line_size; i += 4) { |
| cpu_stl_data(env, addr + i, 0); |
| } |
| if (env->reserve_addr == addr) { |
| env->reserve_addr = (target_ulong)-1ULL; |
| } |
| } |
| |
| void helper_dcbz(CPUPPCState *env, target_ulong addr, uint32_t is_dcbzl) |
| { |
| int dcbz_size = env->dcache_line_size; |
| |
| #if defined(TARGET_PPC64) |
| if (!is_dcbzl && |
| (env->excp_model == POWERPC_EXCP_970) && |
| ((env->spr[SPR_970_HID5] >> 7) & 0x3) == 1) { |
| dcbz_size = 32; |
| } |
| #endif |
| |
| /* XXX add e500mc support */ |
| |
| do_dcbz(env, addr, dcbz_size); |
| } |
| |
| void helper_icbi(CPUPPCState *env, target_ulong addr) |
| { |
| addr &= ~(env->dcache_line_size - 1); |
| /* Invalidate one cache line : |
| * PowerPC specification says this is to be treated like a load |
| * (not a fetch) by the MMU. To be sure it will be so, |
| * do the load "by hand". |
| */ |
| cpu_ldl_data(env, addr); |
| } |
| |
| /* XXX: to be tested */ |
| target_ulong helper_lscbx(CPUPPCState *env, target_ulong addr, uint32_t reg, |
| uint32_t ra, uint32_t rb) |
| { |
| int i, c, d; |
| |
| d = 24; |
| for (i = 0; i < xer_bc; i++) { |
| c = cpu_ldub_data(env, addr); |
| addr = addr_add(env, addr, 1); |
| /* ra (if not 0) and rb are never modified */ |
| if (likely(reg != rb && (ra == 0 || reg != ra))) { |
| env->gpr[reg] = (env->gpr[reg] & ~(0xFF << d)) | (c << d); |
| } |
| if (unlikely(c == xer_cmp)) { |
| break; |
| } |
| if (likely(d != 0)) { |
| d -= 8; |
| } else { |
| d = 24; |
| reg++; |
| reg = reg & 0x1F; |
| } |
| } |
| return i; |
| } |
| |
| /*****************************************************************************/ |
| /* Altivec extension helpers */ |
| #if defined(HOST_WORDS_BIGENDIAN) |
| #define HI_IDX 0 |
| #define LO_IDX 1 |
| #else |
| #define HI_IDX 1 |
| #define LO_IDX 0 |
| #endif |
| |
| /* We use msr_le to determine index ordering in a vector. However, |
| byteswapping is not simply controlled by msr_le. We also need to take |
| into account endianness of the target. This is done for the little-endian |
| PPC64 user-mode target. */ |
| |
| #define LVE(name, access, swap, element) \ |
| void helper_##name(CPUPPCState *env, ppc_avr_t *r, \ |
| target_ulong addr) \ |
| { \ |
| size_t n_elems = ARRAY_SIZE(r->element); \ |
| int adjust = HI_IDX*(n_elems - 1); \ |
| int sh = sizeof(r->element[0]) >> 1; \ |
| int index = (addr & 0xf) >> sh; \ |
| if (msr_le) { \ |
| index = n_elems - index - 1; \ |
| } \ |
| \ |
| if (needs_byteswap(env)) { \ |
| r->element[LO_IDX ? index : (adjust - index)] = \ |
| swap(access(env, addr)); \ |
| } else { \ |
| r->element[LO_IDX ? index : (adjust - index)] = \ |
| access(env, addr); \ |
| } \ |
| } |
| #define I(x) (x) |
| LVE(lvebx, cpu_ldub_data, I, u8) |
| LVE(lvehx, cpu_lduw_data, bswap16, u16) |
| LVE(lvewx, cpu_ldl_data, bswap32, u32) |
| #undef I |
| #undef LVE |
| |
| #define STVE(name, access, swap, element) \ |
| void helper_##name(CPUPPCState *env, ppc_avr_t *r, \ |
| target_ulong addr) \ |
| { \ |
| size_t n_elems = ARRAY_SIZE(r->element); \ |
| int adjust = HI_IDX * (n_elems - 1); \ |
| int sh = sizeof(r->element[0]) >> 1; \ |
| int index = (addr & 0xf) >> sh; \ |
| if (msr_le) { \ |
| index = n_elems - index - 1; \ |
| } \ |
| \ |
| if (needs_byteswap(env)) { \ |
| access(env, addr, swap(r->element[LO_IDX ? index : \ |
| (adjust - index)])); \ |
| } else { \ |
| access(env, addr, r->element[LO_IDX ? index : \ |
| (adjust - index)]); \ |
| } \ |
| } |
| #define I(x) (x) |
| STVE(stvebx, cpu_stb_data, I, u8) |
| STVE(stvehx, cpu_stw_data, bswap16, u16) |
| STVE(stvewx, cpu_stl_data, bswap32, u32) |
| #undef I |
| #undef LVE |
| |
| #undef HI_IDX |
| #undef LO_IDX |
| |
| void helper_tbegin(CPUPPCState *env) |
| { |
| /* As a degenerate implementation, always fail tbegin. The reason |
| * given is "Nesting overflow". The "persistent" bit is set, |
| * providing a hint to the error handler to not retry. The TFIAR |
| * captures the address of the failure, which is this tbegin |
| * instruction. Instruction execution will continue with the |
| * next instruction in memory, which is precisely what we want. |
| */ |
| |
| env->spr[SPR_TEXASR] = |
| (1ULL << TEXASR_FAILURE_PERSISTENT) | |
| (1ULL << TEXASR_NESTING_OVERFLOW) | |
| (msr_hv << TEXASR_PRIVILEGE_HV) | |
| (msr_pr << TEXASR_PRIVILEGE_PR) | |
| (1ULL << TEXASR_FAILURE_SUMMARY) | |
| (1ULL << TEXASR_TFIAR_EXACT); |
| env->spr[SPR_TFIAR] = env->nip | (msr_hv << 1) | msr_pr; |
| env->spr[SPR_TFHAR] = env->nip + 4; |
| env->crf[0] = 0xB; /* 0b1010 = transaction failure */ |
| } |