blob: 56a1181ea50169bbc60e758e212cff258ab0705a [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0-or-later */
/* Access guest memory in blocks. */
#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/cpu_ldst.h"
#include "exec/exec-all.h"
#include "access.h"
void access_prepare_mmu(X86Access *ret, CPUX86State *env,
vaddr vaddr, unsigned size,
MMUAccessType type, int mmu_idx, uintptr_t ra)
{
int size1, size2;
void *haddr1, *haddr2;
assert(size > 0 && size <= TARGET_PAGE_SIZE);
size1 = MIN(size, -(vaddr | TARGET_PAGE_MASK)),
size2 = size - size1;
memset(ret, 0, sizeof(*ret));
ret->vaddr = vaddr;
ret->size = size;
ret->size1 = size1;
ret->mmu_idx = mmu_idx;
ret->env = env;
ret->ra = ra;
haddr1 = probe_access(env, vaddr, size1, type, mmu_idx, ra);
ret->haddr1 = haddr1;
if (unlikely(size2)) {
haddr2 = probe_access(env, vaddr + size1, size2, type, mmu_idx, ra);
if (haddr2 == haddr1 + size1) {
ret->size1 = size;
} else {
#ifdef CONFIG_USER_ONLY
g_assert_not_reached();
#else
ret->haddr2 = haddr2;
#endif
}
}
}
void access_prepare(X86Access *ret, CPUX86State *env, vaddr vaddr,
unsigned size, MMUAccessType type, uintptr_t ra)
{
int mmu_idx = cpu_mmu_index(env_cpu(env), false);
access_prepare_mmu(ret, env, vaddr, size, type, mmu_idx, ra);
}
static void *access_ptr(X86Access *ac, vaddr addr, unsigned len)
{
vaddr offset = addr - ac->vaddr;
assert(addr >= ac->vaddr);
#ifdef CONFIG_USER_ONLY
assert(offset <= ac->size1 - len);
return ac->haddr1 + offset;
#else
if (likely(offset <= ac->size1 - len)) {
return ac->haddr1 + offset;
}
assert(offset <= ac->size - len);
/*
* If the address is not naturally aligned, it might span both pages.
* Only return ac->haddr2 if the area is entirely within the second page,
* otherwise fall back to slow accesses.
*/
if (likely(offset >= ac->size1)) {
return ac->haddr2 + (offset - ac->size1);
}
return NULL;
#endif
}
#ifdef CONFIG_USER_ONLY
# define test_ptr(p) true
#else
# define test_ptr(p) likely(p)
#endif
uint8_t access_ldb(X86Access *ac, vaddr addr)
{
void *p = access_ptr(ac, addr, sizeof(uint8_t));
if (test_ptr(p)) {
return ldub_p(p);
}
return cpu_ldub_mmuidx_ra(ac->env, addr, ac->mmu_idx, ac->ra);
}
uint16_t access_ldw(X86Access *ac, vaddr addr)
{
void *p = access_ptr(ac, addr, sizeof(uint16_t));
if (test_ptr(p)) {
return lduw_le_p(p);
}
return cpu_lduw_le_mmuidx_ra(ac->env, addr, ac->mmu_idx, ac->ra);
}
uint32_t access_ldl(X86Access *ac, vaddr addr)
{
void *p = access_ptr(ac, addr, sizeof(uint32_t));
if (test_ptr(p)) {
return ldl_le_p(p);
}
return cpu_ldl_le_mmuidx_ra(ac->env, addr, ac->mmu_idx, ac->ra);
}
uint64_t access_ldq(X86Access *ac, vaddr addr)
{
void *p = access_ptr(ac, addr, sizeof(uint64_t));
if (test_ptr(p)) {
return ldq_le_p(p);
}
return cpu_ldq_le_mmuidx_ra(ac->env, addr, ac->mmu_idx, ac->ra);
}
void access_stb(X86Access *ac, vaddr addr, uint8_t val)
{
void *p = access_ptr(ac, addr, sizeof(uint8_t));
if (test_ptr(p)) {
stb_p(p, val);
} else {
cpu_stb_mmuidx_ra(ac->env, addr, val, ac->mmu_idx, ac->ra);
}
}
void access_stw(X86Access *ac, vaddr addr, uint16_t val)
{
void *p = access_ptr(ac, addr, sizeof(uint16_t));
if (test_ptr(p)) {
stw_le_p(p, val);
} else {
cpu_stw_le_mmuidx_ra(ac->env, addr, val, ac->mmu_idx, ac->ra);
}
}
void access_stl(X86Access *ac, vaddr addr, uint32_t val)
{
void *p = access_ptr(ac, addr, sizeof(uint32_t));
if (test_ptr(p)) {
stl_le_p(p, val);
} else {
cpu_stl_le_mmuidx_ra(ac->env, addr, val, ac->mmu_idx, ac->ra);
}
}
void access_stq(X86Access *ac, vaddr addr, uint64_t val)
{
void *p = access_ptr(ac, addr, sizeof(uint64_t));
if (test_ptr(p)) {
stq_le_p(p, val);
} else {
cpu_stq_le_mmuidx_ra(ac->env, addr, val, ac->mmu_idx, ac->ra);
}
}