| /* |
| * Tiny Code Generator for QEMU |
| * |
| * Copyright (c) 2009 Ulrich Hecht <uli@suse.de> |
| * Copyright (c) 2009 Alexander Graf <agraf@suse.de> |
| * Copyright (c) 2010 Richard Henderson <rth@twiddle.net> |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| /* ??? The translation blocks produced by TCG are generally small enough to |
| be entirely reachable with a 16-bit displacement. Leaving the option for |
| a 32-bit displacement here Just In Case. */ |
| #define USE_LONG_BRANCHES 0 |
| |
| #define TCG_CT_CONST_32 0x0100 |
| #define TCG_CT_CONST_NEG 0x0200 |
| #define TCG_CT_CONST_ADDI 0x0400 |
| #define TCG_CT_CONST_MULI 0x0800 |
| #define TCG_CT_CONST_ANDI 0x1000 |
| #define TCG_CT_CONST_ORI 0x2000 |
| #define TCG_CT_CONST_XORI 0x4000 |
| #define TCG_CT_CONST_CMPI 0x8000 |
| |
| /* Several places within the instruction set 0 means "no register" |
| rather than TCG_REG_R0. */ |
| #define TCG_REG_NONE 0 |
| |
| /* A scratch register that may be be used throughout the backend. */ |
| #define TCG_TMP0 TCG_REG_R14 |
| |
| #ifdef CONFIG_USE_GUEST_BASE |
| #define TCG_GUEST_BASE_REG TCG_REG_R13 |
| #else |
| #define TCG_GUEST_BASE_REG TCG_REG_R0 |
| #endif |
| |
| #ifndef GUEST_BASE |
| #define GUEST_BASE 0 |
| #endif |
| |
| |
| /* All of the following instructions are prefixed with their instruction |
| format, and are defined as 8- or 16-bit quantities, even when the two |
| halves of the 16-bit quantity may appear 32 bits apart in the insn. |
| This makes it easy to copy the values from the tables in Appendix B. */ |
| typedef enum S390Opcode { |
| RIL_AFI = 0xc209, |
| RIL_AGFI = 0xc208, |
| RIL_ALGFI = 0xc20a, |
| RIL_BRASL = 0xc005, |
| RIL_BRCL = 0xc004, |
| RIL_CFI = 0xc20d, |
| RIL_CGFI = 0xc20c, |
| RIL_CLFI = 0xc20f, |
| RIL_CLGFI = 0xc20e, |
| RIL_IIHF = 0xc008, |
| RIL_IILF = 0xc009, |
| RIL_LARL = 0xc000, |
| RIL_LGFI = 0xc001, |
| RIL_LGRL = 0xc408, |
| RIL_LLIHF = 0xc00e, |
| RIL_LLILF = 0xc00f, |
| RIL_LRL = 0xc40d, |
| RIL_MSFI = 0xc201, |
| RIL_MSGFI = 0xc200, |
| RIL_NIHF = 0xc00a, |
| RIL_NILF = 0xc00b, |
| RIL_OIHF = 0xc00c, |
| RIL_OILF = 0xc00d, |
| RIL_XIHF = 0xc006, |
| RIL_XILF = 0xc007, |
| |
| RI_AGHI = 0xa70b, |
| RI_AHI = 0xa70a, |
| RI_BRC = 0xa704, |
| RI_IIHH = 0xa500, |
| RI_IIHL = 0xa501, |
| RI_IILH = 0xa502, |
| RI_IILL = 0xa503, |
| RI_LGHI = 0xa709, |
| RI_LLIHH = 0xa50c, |
| RI_LLIHL = 0xa50d, |
| RI_LLILH = 0xa50e, |
| RI_LLILL = 0xa50f, |
| RI_MGHI = 0xa70d, |
| RI_MHI = 0xa70c, |
| RI_NIHH = 0xa504, |
| RI_NIHL = 0xa505, |
| RI_NILH = 0xa506, |
| RI_NILL = 0xa507, |
| RI_OIHH = 0xa508, |
| RI_OIHL = 0xa509, |
| RI_OILH = 0xa50a, |
| RI_OILL = 0xa50b, |
| |
| RIE_CGIJ = 0xec7c, |
| RIE_CGRJ = 0xec64, |
| RIE_CIJ = 0xec7e, |
| RIE_CLGRJ = 0xec65, |
| RIE_CLIJ = 0xec7f, |
| RIE_CLGIJ = 0xec7d, |
| RIE_CLRJ = 0xec77, |
| RIE_CRJ = 0xec76, |
| |
| RRE_AGR = 0xb908, |
| RRE_CGR = 0xb920, |
| RRE_CLGR = 0xb921, |
| RRE_DLGR = 0xb987, |
| RRE_DLR = 0xb997, |
| RRE_DSGFR = 0xb91d, |
| RRE_DSGR = 0xb90d, |
| RRE_LGBR = 0xb906, |
| RRE_LCGR = 0xb903, |
| RRE_LGFR = 0xb914, |
| RRE_LGHR = 0xb907, |
| RRE_LGR = 0xb904, |
| RRE_LLGCR = 0xb984, |
| RRE_LLGFR = 0xb916, |
| RRE_LLGHR = 0xb985, |
| RRE_LRVR = 0xb91f, |
| RRE_LRVGR = 0xb90f, |
| RRE_LTGR = 0xb902, |
| RRE_MSGR = 0xb90c, |
| RRE_MSR = 0xb252, |
| RRE_NGR = 0xb980, |
| RRE_OGR = 0xb981, |
| RRE_SGR = 0xb909, |
| RRE_XGR = 0xb982, |
| |
| RR_AR = 0x1a, |
| RR_BASR = 0x0d, |
| RR_BCR = 0x07, |
| RR_CLR = 0x15, |
| RR_CR = 0x19, |
| RR_DR = 0x1d, |
| RR_LCR = 0x13, |
| RR_LR = 0x18, |
| RR_LTR = 0x12, |
| RR_NR = 0x14, |
| RR_OR = 0x16, |
| RR_SR = 0x1b, |
| RR_XR = 0x17, |
| |
| RSY_RLL = 0xeb1d, |
| RSY_RLLG = 0xeb1c, |
| RSY_SLLG = 0xeb0d, |
| RSY_SRAG = 0xeb0a, |
| RSY_SRLG = 0xeb0c, |
| |
| RS_SLL = 0x89, |
| RS_SRA = 0x8a, |
| RS_SRL = 0x88, |
| |
| RXY_AG = 0xe308, |
| RXY_AY = 0xe35a, |
| RXY_CG = 0xe320, |
| RXY_CY = 0xe359, |
| RXY_LB = 0xe376, |
| RXY_LG = 0xe304, |
| RXY_LGB = 0xe377, |
| RXY_LGF = 0xe314, |
| RXY_LGH = 0xe315, |
| RXY_LHY = 0xe378, |
| RXY_LLGC = 0xe390, |
| RXY_LLGF = 0xe316, |
| RXY_LLGH = 0xe391, |
| RXY_LMG = 0xeb04, |
| RXY_LRV = 0xe31e, |
| RXY_LRVG = 0xe30f, |
| RXY_LRVH = 0xe31f, |
| RXY_LY = 0xe358, |
| RXY_STCY = 0xe372, |
| RXY_STG = 0xe324, |
| RXY_STHY = 0xe370, |
| RXY_STMG = 0xeb24, |
| RXY_STRV = 0xe33e, |
| RXY_STRVG = 0xe32f, |
| RXY_STRVH = 0xe33f, |
| RXY_STY = 0xe350, |
| |
| RX_A = 0x5a, |
| RX_C = 0x59, |
| RX_L = 0x58, |
| RX_LH = 0x48, |
| RX_ST = 0x50, |
| RX_STC = 0x42, |
| RX_STH = 0x40, |
| } S390Opcode; |
| |
| #define LD_SIGNED 0x04 |
| #define LD_UINT8 0x00 |
| #define LD_INT8 (LD_UINT8 | LD_SIGNED) |
| #define LD_UINT16 0x01 |
| #define LD_INT16 (LD_UINT16 | LD_SIGNED) |
| #define LD_UINT32 0x02 |
| #define LD_INT32 (LD_UINT32 | LD_SIGNED) |
| #define LD_UINT64 0x03 |
| #define LD_INT64 (LD_UINT64 | LD_SIGNED) |
| |
| #ifndef NDEBUG |
| static const char * const tcg_target_reg_names[TCG_TARGET_NB_REGS] = { |
| "%r0", "%r1", "%r2", "%r3", "%r4", "%r5", "%r6", "%r7", |
| "%r8", "%r9", "%r10" "%r11" "%r12" "%r13" "%r14" "%r15" |
| }; |
| #endif |
| |
| /* Since R6 is a potential argument register, choose it last of the |
| call-saved registers. Likewise prefer the call-clobbered registers |
| in reverse order to maximize the chance of avoiding the arguments. */ |
| static const int tcg_target_reg_alloc_order[] = { |
| TCG_REG_R13, |
| TCG_REG_R12, |
| TCG_REG_R11, |
| TCG_REG_R10, |
| TCG_REG_R9, |
| TCG_REG_R8, |
| TCG_REG_R7, |
| TCG_REG_R6, |
| TCG_REG_R14, |
| TCG_REG_R0, |
| TCG_REG_R1, |
| TCG_REG_R5, |
| TCG_REG_R4, |
| TCG_REG_R3, |
| TCG_REG_R2, |
| }; |
| |
| static const int tcg_target_call_iarg_regs[] = { |
| TCG_REG_R2, |
| TCG_REG_R3, |
| TCG_REG_R4, |
| TCG_REG_R5, |
| TCG_REG_R6, |
| }; |
| |
| static const int tcg_target_call_oarg_regs[] = { |
| TCG_REG_R2, |
| #if TCG_TARGET_REG_BITS == 32 |
| TCG_REG_R3 |
| #endif |
| }; |
| |
| #define S390_CC_EQ 8 |
| #define S390_CC_LT 4 |
| #define S390_CC_GT 2 |
| #define S390_CC_OV 1 |
| #define S390_CC_NE (S390_CC_LT | S390_CC_GT) |
| #define S390_CC_LE (S390_CC_LT | S390_CC_EQ) |
| #define S390_CC_GE (S390_CC_GT | S390_CC_EQ) |
| #define S390_CC_NEVER 0 |
| #define S390_CC_ALWAYS 15 |
| |
| /* Condition codes that result from a COMPARE and COMPARE LOGICAL. */ |
| static const uint8_t tcg_cond_to_s390_cond[10] = { |
| [TCG_COND_EQ] = S390_CC_EQ, |
| [TCG_COND_NE] = S390_CC_NE, |
| [TCG_COND_LT] = S390_CC_LT, |
| [TCG_COND_LE] = S390_CC_LE, |
| [TCG_COND_GT] = S390_CC_GT, |
| [TCG_COND_GE] = S390_CC_GE, |
| [TCG_COND_LTU] = S390_CC_LT, |
| [TCG_COND_LEU] = S390_CC_LE, |
| [TCG_COND_GTU] = S390_CC_GT, |
| [TCG_COND_GEU] = S390_CC_GE, |
| }; |
| |
| /* Condition codes that result from a LOAD AND TEST. Here, we have no |
| unsigned instruction variation, however since the test is vs zero we |
| can re-map the outcomes appropriately. */ |
| static const uint8_t tcg_cond_to_ltr_cond[10] = { |
| [TCG_COND_EQ] = S390_CC_EQ, |
| [TCG_COND_NE] = S390_CC_NE, |
| [TCG_COND_LT] = S390_CC_LT, |
| [TCG_COND_LE] = S390_CC_LE, |
| [TCG_COND_GT] = S390_CC_GT, |
| [TCG_COND_GE] = S390_CC_GE, |
| [TCG_COND_LTU] = S390_CC_NEVER, |
| [TCG_COND_LEU] = S390_CC_EQ, |
| [TCG_COND_GTU] = S390_CC_NE, |
| [TCG_COND_GEU] = S390_CC_ALWAYS, |
| }; |
| |
| #ifdef CONFIG_SOFTMMU |
| |
| #include "../../softmmu_defs.h" |
| |
| #ifdef CONFIG_TCG_PASS_AREG0 |
| /* helper signature: helper_ld_mmu(CPUState *env, target_ulong addr, |
| int mmu_idx) */ |
| static const void * const qemu_ld_helpers[4] = { |
| helper_ldb_mmu, |
| helper_ldw_mmu, |
| helper_ldl_mmu, |
| helper_ldq_mmu, |
| }; |
| |
| /* helper signature: helper_st_mmu(CPUState *env, target_ulong addr, |
| uintxx_t val, int mmu_idx) */ |
| static const void * const qemu_st_helpers[4] = { |
| helper_stb_mmu, |
| helper_stw_mmu, |
| helper_stl_mmu, |
| helper_stq_mmu, |
| }; |
| #else |
| /* legacy helper signature: __ld_mmu(target_ulong addr, int |
| mmu_idx) */ |
| static void *qemu_ld_helpers[4] = { |
| __ldb_mmu, |
| __ldw_mmu, |
| __ldl_mmu, |
| __ldq_mmu, |
| }; |
| |
| /* legacy helper signature: __st_mmu(target_ulong addr, uintxx_t val, |
| int mmu_idx) */ |
| static void *qemu_st_helpers[4] = { |
| __stb_mmu, |
| __stw_mmu, |
| __stl_mmu, |
| __stq_mmu, |
| }; |
| #endif |
| #endif |
| |
| static uint8_t *tb_ret_addr; |
| |
| /* A list of relevant facilities used by this translator. Some of these |
| are required for proper operation, and these are checked at startup. */ |
| |
| #define FACILITY_ZARCH_ACTIVE (1ULL << (63 - 2)) |
| #define FACILITY_LONG_DISP (1ULL << (63 - 18)) |
| #define FACILITY_EXT_IMM (1ULL << (63 - 21)) |
| #define FACILITY_GEN_INST_EXT (1ULL << (63 - 34)) |
| |
| static uint64_t facilities; |
| |
| static void patch_reloc(uint8_t *code_ptr, int type, |
| tcg_target_long value, tcg_target_long addend) |
| { |
| tcg_target_long code_ptr_tl = (tcg_target_long)code_ptr; |
| tcg_target_long pcrel2; |
| |
| /* ??? Not the usual definition of "addend". */ |
| pcrel2 = (value - (code_ptr_tl + addend)) >> 1; |
| |
| switch (type) { |
| case R_390_PC16DBL: |
| assert(pcrel2 == (int16_t)pcrel2); |
| *(int16_t *)code_ptr = pcrel2; |
| break; |
| case R_390_PC32DBL: |
| assert(pcrel2 == (int32_t)pcrel2); |
| *(int32_t *)code_ptr = pcrel2; |
| break; |
| default: |
| tcg_abort(); |
| break; |
| } |
| } |
| |
| static int tcg_target_get_call_iarg_regs_count(int flags) |
| { |
| return sizeof(tcg_target_call_iarg_regs) / sizeof(int); |
| } |
| |
| /* parse target specific constraints */ |
| static int target_parse_constraint(TCGArgConstraint *ct, const char **pct_str) |
| { |
| const char *ct_str = *pct_str; |
| |
| switch (ct_str[0]) { |
| case 'r': /* all registers */ |
| ct->ct |= TCG_CT_REG; |
| tcg_regset_set32(ct->u.regs, 0, 0xffff); |
| break; |
| case 'R': /* not R0 */ |
| ct->ct |= TCG_CT_REG; |
| tcg_regset_set32(ct->u.regs, 0, 0xffff); |
| tcg_regset_reset_reg(ct->u.regs, TCG_REG_R0); |
| break; |
| case 'L': /* qemu_ld/st constraint */ |
| ct->ct |= TCG_CT_REG; |
| tcg_regset_set32(ct->u.regs, 0, 0xffff); |
| tcg_regset_reset_reg (ct->u.regs, TCG_REG_R2); |
| tcg_regset_reset_reg (ct->u.regs, TCG_REG_R3); |
| break; |
| case 'a': /* force R2 for division */ |
| ct->ct |= TCG_CT_REG; |
| tcg_regset_clear(ct->u.regs); |
| tcg_regset_set_reg(ct->u.regs, TCG_REG_R2); |
| break; |
| case 'b': /* force R3 for division */ |
| ct->ct |= TCG_CT_REG; |
| tcg_regset_clear(ct->u.regs); |
| tcg_regset_set_reg(ct->u.regs, TCG_REG_R3); |
| break; |
| case 'N': /* force immediate negate */ |
| ct->ct |= TCG_CT_CONST_NEG; |
| break; |
| case 'W': /* force 32-bit ("word") immediate */ |
| ct->ct |= TCG_CT_CONST_32; |
| break; |
| case 'I': |
| ct->ct |= TCG_CT_CONST_ADDI; |
| break; |
| case 'K': |
| ct->ct |= TCG_CT_CONST_MULI; |
| break; |
| case 'A': |
| ct->ct |= TCG_CT_CONST_ANDI; |
| break; |
| case 'O': |
| ct->ct |= TCG_CT_CONST_ORI; |
| break; |
| case 'X': |
| ct->ct |= TCG_CT_CONST_XORI; |
| break; |
| case 'C': |
| ct->ct |= TCG_CT_CONST_CMPI; |
| break; |
| default: |
| return -1; |
| } |
| ct_str++; |
| *pct_str = ct_str; |
| |
| return 0; |
| } |
| |
| /* Immediates to be used with logical AND. This is an optimization only, |
| since a full 64-bit immediate AND can always be performed with 4 sequential |
| NI[LH][LH] instructions. What we're looking for is immediates that we |
| can load efficiently, and the immediate load plus the reg-reg AND is |
| smaller than the sequential NI's. */ |
| |
| static int tcg_match_andi(int ct, tcg_target_ulong val) |
| { |
| int i; |
| |
| if (facilities & FACILITY_EXT_IMM) { |
| if (ct & TCG_CT_CONST_32) { |
| /* All 32-bit ANDs can be performed with 1 48-bit insn. */ |
| return 1; |
| } |
| |
| /* Zero-extensions. */ |
| if (val == 0xff || val == 0xffff || val == 0xffffffff) { |
| return 1; |
| } |
| } else { |
| if (ct & TCG_CT_CONST_32) { |
| val = (uint32_t)val; |
| } else if (val == 0xffffffff) { |
| return 1; |
| } |
| } |
| |
| /* Try all 32-bit insns that can perform it in one go. */ |
| for (i = 0; i < 4; i++) { |
| tcg_target_ulong mask = ~(0xffffull << i*16); |
| if ((val & mask) == mask) { |
| return 1; |
| } |
| } |
| |
| /* Look for 16-bit values performing the mask. These are better |
| to load with LLI[LH][LH]. */ |
| for (i = 0; i < 4; i++) { |
| tcg_target_ulong mask = 0xffffull << i*16; |
| if ((val & mask) == val) { |
| return 0; |
| } |
| } |
| |
| /* Look for 32-bit values performing the 64-bit mask. These |
| are better to load with LLI[LH]F, or if extended immediates |
| not available, with a pair of LLI insns. */ |
| if ((ct & TCG_CT_CONST_32) == 0) { |
| if (val <= 0xffffffff || (val & 0xffffffff) == 0) { |
| return 0; |
| } |
| } |
| |
| return 1; |
| } |
| |
| /* Immediates to be used with logical OR. This is an optimization only, |
| since a full 64-bit immediate OR can always be performed with 4 sequential |
| OI[LH][LH] instructions. What we're looking for is immediates that we |
| can load efficiently, and the immediate load plus the reg-reg OR is |
| smaller than the sequential OI's. */ |
| |
| static int tcg_match_ori(int ct, tcg_target_long val) |
| { |
| if (facilities & FACILITY_EXT_IMM) { |
| if (ct & TCG_CT_CONST_32) { |
| /* All 32-bit ORs can be performed with 1 48-bit insn. */ |
| return 1; |
| } |
| } |
| |
| /* Look for negative values. These are best to load with LGHI. */ |
| if (val < 0) { |
| if (val == (int16_t)val) { |
| return 0; |
| } |
| if (facilities & FACILITY_EXT_IMM) { |
| if (val == (int32_t)val) { |
| return 0; |
| } |
| } |
| } |
| |
| return 1; |
| } |
| |
| /* Immediates to be used with logical XOR. This is almost, but not quite, |
| only an optimization. XOR with immediate is only supported with the |
| extended-immediate facility. That said, there are a few patterns for |
| which it is better to load the value into a register first. */ |
| |
| static int tcg_match_xori(int ct, tcg_target_long val) |
| { |
| if ((facilities & FACILITY_EXT_IMM) == 0) { |
| return 0; |
| } |
| |
| if (ct & TCG_CT_CONST_32) { |
| /* All 32-bit XORs can be performed with 1 48-bit insn. */ |
| return 1; |
| } |
| |
| /* Look for negative values. These are best to load with LGHI. */ |
| if (val < 0 && val == (int32_t)val) { |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| /* Imediates to be used with comparisons. */ |
| |
| static int tcg_match_cmpi(int ct, tcg_target_long val) |
| { |
| if (facilities & FACILITY_EXT_IMM) { |
| /* The COMPARE IMMEDIATE instruction is available. */ |
| if (ct & TCG_CT_CONST_32) { |
| /* We have a 32-bit immediate and can compare against anything. */ |
| return 1; |
| } else { |
| /* ??? We have no insight here into whether the comparison is |
| signed or unsigned. The COMPARE IMMEDIATE insn uses a 32-bit |
| signed immediate, and the COMPARE LOGICAL IMMEDIATE insn uses |
| a 32-bit unsigned immediate. If we were to use the (semi) |
| obvious "val == (int32_t)val" we would be enabling unsigned |
| comparisons vs very large numbers. The only solution is to |
| take the intersection of the ranges. */ |
| /* ??? Another possible solution is to simply lie and allow all |
| constants here and force the out-of-range values into a temp |
| register in tgen_cmp when we have knowledge of the actual |
| comparison code in use. */ |
| return val >= 0 && val <= 0x7fffffff; |
| } |
| } else { |
| /* Only the LOAD AND TEST instruction is available. */ |
| return val == 0; |
| } |
| } |
| |
| /* Test if a constant matches the constraint. */ |
| static int tcg_target_const_match(tcg_target_long val, |
| const TCGArgConstraint *arg_ct) |
| { |
| int ct = arg_ct->ct; |
| |
| if (ct & TCG_CT_CONST) { |
| return 1; |
| } |
| |
| /* Handle the modifiers. */ |
| if (ct & TCG_CT_CONST_NEG) { |
| val = -val; |
| } |
| if (ct & TCG_CT_CONST_32) { |
| val = (int32_t)val; |
| } |
| |
| /* The following are mutually exclusive. */ |
| if (ct & TCG_CT_CONST_ADDI) { |
| /* Immediates that may be used with add. If we have the |
| extended-immediates facility then we have ADD IMMEDIATE |
| with signed and unsigned 32-bit, otherwise we have only |
| ADD HALFWORD IMMEDIATE with a signed 16-bit. */ |
| if (facilities & FACILITY_EXT_IMM) { |
| return val == (int32_t)val || val == (uint32_t)val; |
| } else { |
| return val == (int16_t)val; |
| } |
| } else if (ct & TCG_CT_CONST_MULI) { |
| /* Immediates that may be used with multiply. If we have the |
| general-instruction-extensions, then we have MULTIPLY SINGLE |
| IMMEDIATE with a signed 32-bit, otherwise we have only |
| MULTIPLY HALFWORD IMMEDIATE, with a signed 16-bit. */ |
| if (facilities & FACILITY_GEN_INST_EXT) { |
| return val == (int32_t)val; |
| } else { |
| return val == (int16_t)val; |
| } |
| } else if (ct & TCG_CT_CONST_ANDI) { |
| return tcg_match_andi(ct, val); |
| } else if (ct & TCG_CT_CONST_ORI) { |
| return tcg_match_ori(ct, val); |
| } else if (ct & TCG_CT_CONST_XORI) { |
| return tcg_match_xori(ct, val); |
| } else if (ct & TCG_CT_CONST_CMPI) { |
| return tcg_match_cmpi(ct, val); |
| } |
| |
| return 0; |
| } |
| |
| /* Emit instructions according to the given instruction format. */ |
| |
| static void tcg_out_insn_RR(TCGContext *s, S390Opcode op, TCGReg r1, TCGReg r2) |
| { |
| tcg_out16(s, (op << 8) | (r1 << 4) | r2); |
| } |
| |
| static void tcg_out_insn_RRE(TCGContext *s, S390Opcode op, |
| TCGReg r1, TCGReg r2) |
| { |
| tcg_out32(s, (op << 16) | (r1 << 4) | r2); |
| } |
| |
| static void tcg_out_insn_RI(TCGContext *s, S390Opcode op, TCGReg r1, int i2) |
| { |
| tcg_out32(s, (op << 16) | (r1 << 20) | (i2 & 0xffff)); |
| } |
| |
| static void tcg_out_insn_RIL(TCGContext *s, S390Opcode op, TCGReg r1, int i2) |
| { |
| tcg_out16(s, op | (r1 << 4)); |
| tcg_out32(s, i2); |
| } |
| |
| static void tcg_out_insn_RS(TCGContext *s, S390Opcode op, TCGReg r1, |
| TCGReg b2, TCGReg r3, int disp) |
| { |
| tcg_out32(s, (op << 24) | (r1 << 20) | (r3 << 16) | (b2 << 12) |
| | (disp & 0xfff)); |
| } |
| |
| static void tcg_out_insn_RSY(TCGContext *s, S390Opcode op, TCGReg r1, |
| TCGReg b2, TCGReg r3, int disp) |
| { |
| tcg_out16(s, (op & 0xff00) | (r1 << 4) | r3); |
| tcg_out32(s, (op & 0xff) | (b2 << 28) |
| | ((disp & 0xfff) << 16) | ((disp & 0xff000) >> 4)); |
| } |
| |
| #define tcg_out_insn_RX tcg_out_insn_RS |
| #define tcg_out_insn_RXY tcg_out_insn_RSY |
| |
| /* Emit an opcode with "type-checking" of the format. */ |
| #define tcg_out_insn(S, FMT, OP, ...) \ |
| glue(tcg_out_insn_,FMT)(S, glue(glue(FMT,_),OP), ## __VA_ARGS__) |
| |
| |
| /* emit 64-bit shifts */ |
| static void tcg_out_sh64(TCGContext* s, S390Opcode op, TCGReg dest, |
| TCGReg src, TCGReg sh_reg, int sh_imm) |
| { |
| tcg_out_insn_RSY(s, op, dest, sh_reg, src, sh_imm); |
| } |
| |
| /* emit 32-bit shifts */ |
| static void tcg_out_sh32(TCGContext* s, S390Opcode op, TCGReg dest, |
| TCGReg sh_reg, int sh_imm) |
| { |
| tcg_out_insn_RS(s, op, dest, sh_reg, 0, sh_imm); |
| } |
| |
| static void tcg_out_mov(TCGContext *s, TCGType type, TCGReg dst, TCGReg src) |
| { |
| if (src != dst) { |
| if (type == TCG_TYPE_I32) { |
| tcg_out_insn(s, RR, LR, dst, src); |
| } else { |
| tcg_out_insn(s, RRE, LGR, dst, src); |
| } |
| } |
| } |
| |
| /* load a register with an immediate value */ |
| static void tcg_out_movi(TCGContext *s, TCGType type, |
| TCGReg ret, tcg_target_long sval) |
| { |
| static const S390Opcode lli_insns[4] = { |
| RI_LLILL, RI_LLILH, RI_LLIHL, RI_LLIHH |
| }; |
| |
| tcg_target_ulong uval = sval; |
| int i; |
| |
| if (type == TCG_TYPE_I32) { |
| uval = (uint32_t)sval; |
| sval = (int32_t)sval; |
| } |
| |
| /* Try all 32-bit insns that can load it in one go. */ |
| if (sval >= -0x8000 && sval < 0x8000) { |
| tcg_out_insn(s, RI, LGHI, ret, sval); |
| return; |
| } |
| |
| for (i = 0; i < 4; i++) { |
| tcg_target_long mask = 0xffffull << i*16; |
| if ((uval & mask) == uval) { |
| tcg_out_insn_RI(s, lli_insns[i], ret, uval >> i*16); |
| return; |
| } |
| } |
| |
| /* Try all 48-bit insns that can load it in one go. */ |
| if (facilities & FACILITY_EXT_IMM) { |
| if (sval == (int32_t)sval) { |
| tcg_out_insn(s, RIL, LGFI, ret, sval); |
| return; |
| } |
| if (uval <= 0xffffffff) { |
| tcg_out_insn(s, RIL, LLILF, ret, uval); |
| return; |
| } |
| if ((uval & 0xffffffff) == 0) { |
| tcg_out_insn(s, RIL, LLIHF, ret, uval >> 31 >> 1); |
| return; |
| } |
| } |
| |
| /* Try for PC-relative address load. */ |
| if ((sval & 1) == 0) { |
| intptr_t off = (sval - (intptr_t)s->code_ptr) >> 1; |
| if (off == (int32_t)off) { |
| tcg_out_insn(s, RIL, LARL, ret, off); |
| return; |
| } |
| } |
| |
| /* If extended immediates are not present, then we may have to issue |
| several instructions to load the low 32 bits. */ |
| if (!(facilities & FACILITY_EXT_IMM)) { |
| /* A 32-bit unsigned value can be loaded in 2 insns. And given |
| that the lli_insns loop above did not succeed, we know that |
| both insns are required. */ |
| if (uval <= 0xffffffff) { |
| tcg_out_insn(s, RI, LLILL, ret, uval); |
| tcg_out_insn(s, RI, IILH, ret, uval >> 16); |
| return; |
| } |
| |
| /* If all high bits are set, the value can be loaded in 2 or 3 insns. |
| We first want to make sure that all the high bits get set. With |
| luck the low 16-bits can be considered negative to perform that for |
| free, otherwise we load an explicit -1. */ |
| if (sval >> 31 >> 1 == -1) { |
| if (uval & 0x8000) { |
| tcg_out_insn(s, RI, LGHI, ret, uval); |
| } else { |
| tcg_out_insn(s, RI, LGHI, ret, -1); |
| tcg_out_insn(s, RI, IILL, ret, uval); |
| } |
| tcg_out_insn(s, RI, IILH, ret, uval >> 16); |
| return; |
| } |
| } |
| |
| /* If we get here, both the high and low parts have non-zero bits. */ |
| |
| /* Recurse to load the lower 32-bits. */ |
| tcg_out_movi(s, TCG_TYPE_I32, ret, sval); |
| |
| /* Insert data into the high 32-bits. */ |
| uval = uval >> 31 >> 1; |
| if (facilities & FACILITY_EXT_IMM) { |
| if (uval < 0x10000) { |
| tcg_out_insn(s, RI, IIHL, ret, uval); |
| } else if ((uval & 0xffff) == 0) { |
| tcg_out_insn(s, RI, IIHH, ret, uval >> 16); |
| } else { |
| tcg_out_insn(s, RIL, IIHF, ret, uval); |
| } |
| } else { |
| if (uval & 0xffff) { |
| tcg_out_insn(s, RI, IIHL, ret, uval); |
| } |
| if (uval & 0xffff0000) { |
| tcg_out_insn(s, RI, IIHH, ret, uval >> 16); |
| } |
| } |
| } |
| |
| |
| /* Emit a load/store type instruction. Inputs are: |
| DATA: The register to be loaded or stored. |
| BASE+OFS: The effective address. |
| OPC_RX: If the operation has an RX format opcode (e.g. STC), otherwise 0. |
| OPC_RXY: The RXY format opcode for the operation (e.g. STCY). */ |
| |
| static void tcg_out_mem(TCGContext *s, S390Opcode opc_rx, S390Opcode opc_rxy, |
| TCGReg data, TCGReg base, TCGReg index, |
| tcg_target_long ofs) |
| { |
| if (ofs < -0x80000 || ofs >= 0x80000) { |
| /* Combine the low 16 bits of the offset with the actual load insn; |
| the high 48 bits must come from an immediate load. */ |
| tcg_out_movi(s, TCG_TYPE_PTR, TCG_TMP0, ofs & ~0xffff); |
| ofs &= 0xffff; |
| |
| /* If we were already given an index register, add it in. */ |
| if (index != TCG_REG_NONE) { |
| tcg_out_insn(s, RRE, AGR, TCG_TMP0, index); |
| } |
| index = TCG_TMP0; |
| } |
| |
| if (opc_rx && ofs >= 0 && ofs < 0x1000) { |
| tcg_out_insn_RX(s, opc_rx, data, base, index, ofs); |
| } else { |
| tcg_out_insn_RXY(s, opc_rxy, data, base, index, ofs); |
| } |
| } |
| |
| |
| /* load data without address translation or endianness conversion */ |
| static inline void tcg_out_ld(TCGContext *s, TCGType type, TCGReg data, |
| TCGReg base, tcg_target_long ofs) |
| { |
| if (type == TCG_TYPE_I32) { |
| tcg_out_mem(s, RX_L, RXY_LY, data, base, TCG_REG_NONE, ofs); |
| } else { |
| tcg_out_mem(s, 0, RXY_LG, data, base, TCG_REG_NONE, ofs); |
| } |
| } |
| |
| static inline void tcg_out_st(TCGContext *s, TCGType type, TCGReg data, |
| TCGReg base, tcg_target_long ofs) |
| { |
| if (type == TCG_TYPE_I32) { |
| tcg_out_mem(s, RX_ST, RXY_STY, data, base, TCG_REG_NONE, ofs); |
| } else { |
| tcg_out_mem(s, 0, RXY_STG, data, base, TCG_REG_NONE, ofs); |
| } |
| } |
| |
| /* load data from an absolute host address */ |
| static void tcg_out_ld_abs(TCGContext *s, TCGType type, TCGReg dest, void *abs) |
| { |
| tcg_target_long addr = (tcg_target_long)abs; |
| |
| if (facilities & FACILITY_GEN_INST_EXT) { |
| tcg_target_long disp = (addr - (tcg_target_long)s->code_ptr) >> 1; |
| if (disp == (int32_t)disp) { |
| if (type == TCG_TYPE_I32) { |
| tcg_out_insn(s, RIL, LRL, dest, disp); |
| } else { |
| tcg_out_insn(s, RIL, LGRL, dest, disp); |
| } |
| return; |
| } |
| } |
| |
| tcg_out_movi(s, TCG_TYPE_PTR, dest, addr & ~0xffff); |
| tcg_out_ld(s, type, dest, dest, addr & 0xffff); |
| } |
| |
| static void tgen_ext8s(TCGContext *s, TCGType type, TCGReg dest, TCGReg src) |
| { |
| if (facilities & FACILITY_EXT_IMM) { |
| tcg_out_insn(s, RRE, LGBR, dest, src); |
| return; |
| } |
| |
| if (type == TCG_TYPE_I32) { |
| if (dest == src) { |
| tcg_out_sh32(s, RS_SLL, dest, TCG_REG_NONE, 24); |
| } else { |
| tcg_out_sh64(s, RSY_SLLG, dest, src, TCG_REG_NONE, 24); |
| } |
| tcg_out_sh32(s, RS_SRA, dest, TCG_REG_NONE, 24); |
| } else { |
| tcg_out_sh64(s, RSY_SLLG, dest, src, TCG_REG_NONE, 56); |
| tcg_out_sh64(s, RSY_SRAG, dest, dest, TCG_REG_NONE, 56); |
| } |
| } |
| |
| static void tgen_ext8u(TCGContext *s, TCGType type, TCGReg dest, TCGReg src) |
| { |
| if (facilities & FACILITY_EXT_IMM) { |
| tcg_out_insn(s, RRE, LLGCR, dest, src); |
| return; |
| } |
| |
| if (dest == src) { |
| tcg_out_movi(s, type, TCG_TMP0, 0xff); |
| src = TCG_TMP0; |
| } else { |
| tcg_out_movi(s, type, dest, 0xff); |
| } |
| if (type == TCG_TYPE_I32) { |
| tcg_out_insn(s, RR, NR, dest, src); |
| } else { |
| tcg_out_insn(s, RRE, NGR, dest, src); |
| } |
| } |
| |
| static void tgen_ext16s(TCGContext *s, TCGType type, TCGReg dest, TCGReg src) |
| { |
| if (facilities & FACILITY_EXT_IMM) { |
| tcg_out_insn(s, RRE, LGHR, dest, src); |
| return; |
| } |
| |
| if (type == TCG_TYPE_I32) { |
| if (dest == src) { |
| tcg_out_sh32(s, RS_SLL, dest, TCG_REG_NONE, 16); |
| } else { |
| tcg_out_sh64(s, RSY_SLLG, dest, src, TCG_REG_NONE, 16); |
| } |
| tcg_out_sh32(s, RS_SRA, dest, TCG_REG_NONE, 16); |
| } else { |
| tcg_out_sh64(s, RSY_SLLG, dest, src, TCG_REG_NONE, 48); |
| tcg_out_sh64(s, RSY_SRAG, dest, dest, TCG_REG_NONE, 48); |
| } |
| } |
| |
| static void tgen_ext16u(TCGContext *s, TCGType type, TCGReg dest, TCGReg src) |
| { |
| if (facilities & FACILITY_EXT_IMM) { |
| tcg_out_insn(s, RRE, LLGHR, dest, src); |
| return; |
| } |
| |
| if (dest == src) { |
| tcg_out_movi(s, type, TCG_TMP0, 0xffff); |
| src = TCG_TMP0; |
| } else { |
| tcg_out_movi(s, type, dest, 0xffff); |
| } |
| if (type == TCG_TYPE_I32) { |
| tcg_out_insn(s, RR, NR, dest, src); |
| } else { |
| tcg_out_insn(s, RRE, NGR, dest, src); |
| } |
| } |
| |
| static inline void tgen_ext32s(TCGContext *s, TCGReg dest, TCGReg src) |
| { |
| tcg_out_insn(s, RRE, LGFR, dest, src); |
| } |
| |
| static inline void tgen_ext32u(TCGContext *s, TCGReg dest, TCGReg src) |
| { |
| tcg_out_insn(s, RRE, LLGFR, dest, src); |
| } |
| |
| static inline void tgen32_addi(TCGContext *s, TCGReg dest, int32_t val) |
| { |
| if (val == (int16_t)val) { |
| tcg_out_insn(s, RI, AHI, dest, val); |
| } else { |
| tcg_out_insn(s, RIL, AFI, dest, val); |
| } |
| } |
| |
| static inline void tgen64_addi(TCGContext *s, TCGReg dest, int64_t val) |
| { |
| if (val == (int16_t)val) { |
| tcg_out_insn(s, RI, AGHI, dest, val); |
| } else if (val == (int32_t)val) { |
| tcg_out_insn(s, RIL, AGFI, dest, val); |
| } else if (val == (uint32_t)val) { |
| tcg_out_insn(s, RIL, ALGFI, dest, val); |
| } else { |
| tcg_abort(); |
| } |
| |
| } |
| |
| static void tgen64_andi(TCGContext *s, TCGReg dest, tcg_target_ulong val) |
| { |
| static const S390Opcode ni_insns[4] = { |
| RI_NILL, RI_NILH, RI_NIHL, RI_NIHH |
| }; |
| static const S390Opcode nif_insns[2] = { |
| RIL_NILF, RIL_NIHF |
| }; |
| |
| int i; |
| |
| /* Look for no-op. */ |
| if (val == -1) { |
| return; |
| } |
| |
| /* Look for the zero-extensions. */ |
| if (val == 0xffffffff) { |
| tgen_ext32u(s, dest, dest); |
| return; |
| } |
| |
| if (facilities & FACILITY_EXT_IMM) { |
| if (val == 0xff) { |
| tgen_ext8u(s, TCG_TYPE_I64, dest, dest); |
| return; |
| } |
| if (val == 0xffff) { |
| tgen_ext16u(s, TCG_TYPE_I64, dest, dest); |
| return; |
| } |
| |
| /* Try all 32-bit insns that can perform it in one go. */ |
| for (i = 0; i < 4; i++) { |
| tcg_target_ulong mask = ~(0xffffull << i*16); |
| if ((val & mask) == mask) { |
| tcg_out_insn_RI(s, ni_insns[i], dest, val >> i*16); |
| return; |
| } |
| } |
| |
| /* Try all 48-bit insns that can perform it in one go. */ |
| if (facilities & FACILITY_EXT_IMM) { |
| for (i = 0; i < 2; i++) { |
| tcg_target_ulong mask = ~(0xffffffffull << i*32); |
| if ((val & mask) == mask) { |
| tcg_out_insn_RIL(s, nif_insns[i], dest, val >> i*32); |
| return; |
| } |
| } |
| } |
| |
| /* Perform the AND via sequential modifications to the high and low |
| parts. Do this via recursion to handle 16-bit vs 32-bit masks in |
| each half. */ |
| tgen64_andi(s, dest, val | 0xffffffff00000000ull); |
| tgen64_andi(s, dest, val | 0x00000000ffffffffull); |
| } else { |
| /* With no extended-immediate facility, just emit the sequence. */ |
| for (i = 0; i < 4; i++) { |
| tcg_target_ulong mask = 0xffffull << i*16; |
| if ((val & mask) != mask) { |
| tcg_out_insn_RI(s, ni_insns[i], dest, val >> i*16); |
| } |
| } |
| } |
| } |
| |
| static void tgen64_ori(TCGContext *s, TCGReg dest, tcg_target_ulong val) |
| { |
| static const S390Opcode oi_insns[4] = { |
| RI_OILL, RI_OILH, RI_OIHL, RI_OIHH |
| }; |
| static const S390Opcode nif_insns[2] = { |
| RIL_OILF, RIL_OIHF |
| }; |
| |
| int i; |
| |
| /* Look for no-op. */ |
| if (val == 0) { |
| return; |
| } |
| |
| if (facilities & FACILITY_EXT_IMM) { |
| /* Try all 32-bit insns that can perform it in one go. */ |
| for (i = 0; i < 4; i++) { |
| tcg_target_ulong mask = (0xffffull << i*16); |
| if ((val & mask) != 0 && (val & ~mask) == 0) { |
| tcg_out_insn_RI(s, oi_insns[i], dest, val >> i*16); |
| return; |
| } |
| } |
| |
| /* Try all 48-bit insns that can perform it in one go. */ |
| for (i = 0; i < 2; i++) { |
| tcg_target_ulong mask = (0xffffffffull << i*32); |
| if ((val & mask) != 0 && (val & ~mask) == 0) { |
| tcg_out_insn_RIL(s, nif_insns[i], dest, val >> i*32); |
| return; |
| } |
| } |
| |
| /* Perform the OR via sequential modifications to the high and |
| low parts. Do this via recursion to handle 16-bit vs 32-bit |
| masks in each half. */ |
| tgen64_ori(s, dest, val & 0x00000000ffffffffull); |
| tgen64_ori(s, dest, val & 0xffffffff00000000ull); |
| } else { |
| /* With no extended-immediate facility, we don't need to be so |
| clever. Just iterate over the insns and mask in the constant. */ |
| for (i = 0; i < 4; i++) { |
| tcg_target_ulong mask = (0xffffull << i*16); |
| if ((val & mask) != 0) { |
| tcg_out_insn_RI(s, oi_insns[i], dest, val >> i*16); |
| } |
| } |
| } |
| } |
| |
| static void tgen64_xori(TCGContext *s, TCGReg dest, tcg_target_ulong val) |
| { |
| /* Perform the xor by parts. */ |
| if (val & 0xffffffff) { |
| tcg_out_insn(s, RIL, XILF, dest, val); |
| } |
| if (val > 0xffffffff) { |
| tcg_out_insn(s, RIL, XIHF, dest, val >> 31 >> 1); |
| } |
| } |
| |
| static int tgen_cmp(TCGContext *s, TCGType type, TCGCond c, TCGReg r1, |
| TCGArg c2, int c2const) |
| { |
| bool is_unsigned = (c > TCG_COND_GT); |
| if (c2const) { |
| if (c2 == 0) { |
| if (type == TCG_TYPE_I32) { |
| tcg_out_insn(s, RR, LTR, r1, r1); |
| } else { |
| tcg_out_insn(s, RRE, LTGR, r1, r1); |
| } |
| return tcg_cond_to_ltr_cond[c]; |
| } else { |
| if (is_unsigned) { |
| if (type == TCG_TYPE_I32) { |
| tcg_out_insn(s, RIL, CLFI, r1, c2); |
| } else { |
| tcg_out_insn(s, RIL, CLGFI, r1, c2); |
| } |
| } else { |
| if (type == TCG_TYPE_I32) { |
| tcg_out_insn(s, RIL, CFI, r1, c2); |
| } else { |
| tcg_out_insn(s, RIL, CGFI, r1, c2); |
| } |
| } |
| } |
| } else { |
| if (is_unsigned) { |
| if (type == TCG_TYPE_I32) { |
| tcg_out_insn(s, RR, CLR, r1, c2); |
| } else { |
| tcg_out_insn(s, RRE, CLGR, r1, c2); |
| } |
| } else { |
| if (type == TCG_TYPE_I32) { |
| tcg_out_insn(s, RR, CR, r1, c2); |
| } else { |
| tcg_out_insn(s, RRE, CGR, r1, c2); |
| } |
| } |
| } |
| return tcg_cond_to_s390_cond[c]; |
| } |
| |
| static void tgen_setcond(TCGContext *s, TCGType type, TCGCond c, |
| TCGReg dest, TCGReg r1, TCGArg c2, int c2const) |
| { |
| int cc = tgen_cmp(s, type, c, r1, c2, c2const); |
| |
| /* Emit: r1 = 1; if (cc) goto over; r1 = 0; over: */ |
| tcg_out_movi(s, type, dest, 1); |
| tcg_out_insn(s, RI, BRC, cc, (4 + 4) >> 1); |
| tcg_out_movi(s, type, dest, 0); |
| } |
| |
| static void tgen_gotoi(TCGContext *s, int cc, tcg_target_long dest) |
| { |
| tcg_target_long off = (dest - (tcg_target_long)s->code_ptr) >> 1; |
| if (off > -0x8000 && off < 0x7fff) { |
| tcg_out_insn(s, RI, BRC, cc, off); |
| } else if (off == (int32_t)off) { |
| tcg_out_insn(s, RIL, BRCL, cc, off); |
| } else { |
| tcg_out_movi(s, TCG_TYPE_PTR, TCG_TMP0, dest); |
| tcg_out_insn(s, RR, BCR, cc, TCG_TMP0); |
| } |
| } |
| |
| static void tgen_branch(TCGContext *s, int cc, int labelno) |
| { |
| TCGLabel* l = &s->labels[labelno]; |
| if (l->has_value) { |
| tgen_gotoi(s, cc, l->u.value); |
| } else if (USE_LONG_BRANCHES) { |
| tcg_out16(s, RIL_BRCL | (cc << 4)); |
| tcg_out_reloc(s, s->code_ptr, R_390_PC32DBL, labelno, -2); |
| s->code_ptr += 4; |
| } else { |
| tcg_out16(s, RI_BRC | (cc << 4)); |
| tcg_out_reloc(s, s->code_ptr, R_390_PC16DBL, labelno, -2); |
| s->code_ptr += 2; |
| } |
| } |
| |
| static void tgen_compare_branch(TCGContext *s, S390Opcode opc, int cc, |
| TCGReg r1, TCGReg r2, int labelno) |
| { |
| TCGLabel* l = &s->labels[labelno]; |
| tcg_target_long off; |
| |
| if (l->has_value) { |
| off = (l->u.value - (tcg_target_long)s->code_ptr) >> 1; |
| } else { |
| /* We need to keep the offset unchanged for retranslation. */ |
| off = ((int16_t *)s->code_ptr)[1]; |
| tcg_out_reloc(s, s->code_ptr + 2, R_390_PC16DBL, labelno, -2); |
| } |
| |
| tcg_out16(s, (opc & 0xff00) | (r1 << 4) | r2); |
| tcg_out16(s, off); |
| tcg_out16(s, cc << 12 | (opc & 0xff)); |
| } |
| |
| static void tgen_compare_imm_branch(TCGContext *s, S390Opcode opc, int cc, |
| TCGReg r1, int i2, int labelno) |
| { |
| TCGLabel* l = &s->labels[labelno]; |
| tcg_target_long off; |
| |
| if (l->has_value) { |
| off = (l->u.value - (tcg_target_long)s->code_ptr) >> 1; |
| } else { |
| /* We need to keep the offset unchanged for retranslation. */ |
| off = ((int16_t *)s->code_ptr)[1]; |
| tcg_out_reloc(s, s->code_ptr + 2, R_390_PC16DBL, labelno, -2); |
| } |
| |
| tcg_out16(s, (opc & 0xff00) | (r1 << 4) | cc); |
| tcg_out16(s, off); |
| tcg_out16(s, (i2 << 8) | (opc & 0xff)); |
| } |
| |
| static void tgen_brcond(TCGContext *s, TCGType type, TCGCond c, |
| TCGReg r1, TCGArg c2, int c2const, int labelno) |
| { |
| int cc; |
| |
| if (facilities & FACILITY_GEN_INST_EXT) { |
| bool is_unsigned = (c > TCG_COND_GT); |
| bool in_range; |
| S390Opcode opc; |
| |
| cc = tcg_cond_to_s390_cond[c]; |
| |
| if (!c2const) { |
| opc = (type == TCG_TYPE_I32 |
| ? (is_unsigned ? RIE_CLRJ : RIE_CRJ) |
| : (is_unsigned ? RIE_CLGRJ : RIE_CGRJ)); |
| tgen_compare_branch(s, opc, cc, r1, c2, labelno); |
| return; |
| } |
| |
| /* COMPARE IMMEDIATE AND BRANCH RELATIVE has an 8-bit immediate field. |
| If the immediate we've been given does not fit that range, we'll |
| fall back to separate compare and branch instructions using the |
| larger comparison range afforded by COMPARE IMMEDIATE. */ |
| if (type == TCG_TYPE_I32) { |
| if (is_unsigned) { |
| opc = RIE_CLIJ; |
| in_range = (uint32_t)c2 == (uint8_t)c2; |
| } else { |
| opc = RIE_CIJ; |
| in_range = (int32_t)c2 == (int8_t)c2; |
| } |
| } else { |
| if (is_unsigned) { |
| opc = RIE_CLGIJ; |
| in_range = (uint64_t)c2 == (uint8_t)c2; |
| } else { |
| opc = RIE_CGIJ; |
| in_range = (int64_t)c2 == (int8_t)c2; |
| } |
| } |
| if (in_range) { |
| tgen_compare_imm_branch(s, opc, cc, r1, c2, labelno); |
| return; |
| } |
| } |
| |
| cc = tgen_cmp(s, type, c, r1, c2, c2const); |
| tgen_branch(s, cc, labelno); |
| } |
| |
| static void tgen_calli(TCGContext *s, tcg_target_long dest) |
| { |
| tcg_target_long off = (dest - (tcg_target_long)s->code_ptr) >> 1; |
| if (off == (int32_t)off) { |
| tcg_out_insn(s, RIL, BRASL, TCG_REG_R14, off); |
| } else { |
| tcg_out_movi(s, TCG_TYPE_PTR, TCG_TMP0, dest); |
| tcg_out_insn(s, RR, BASR, TCG_REG_R14, TCG_TMP0); |
| } |
| } |
| |
| static void tcg_out_qemu_ld_direct(TCGContext *s, int opc, TCGReg data, |
| TCGReg base, TCGReg index, int disp) |
| { |
| #ifdef TARGET_WORDS_BIGENDIAN |
| const int bswap = 0; |
| #else |
| const int bswap = 1; |
| #endif |
| switch (opc) { |
| case LD_UINT8: |
| tcg_out_insn(s, RXY, LLGC, data, base, index, disp); |
| break; |
| case LD_INT8: |
| tcg_out_insn(s, RXY, LGB, data, base, index, disp); |
| break; |
| case LD_UINT16: |
| if (bswap) { |
| /* swapped unsigned halfword load with upper bits zeroed */ |
| tcg_out_insn(s, RXY, LRVH, data, base, index, disp); |
| tgen_ext16u(s, TCG_TYPE_I64, data, data); |
| } else { |
| tcg_out_insn(s, RXY, LLGH, data, base, index, disp); |
| } |
| break; |
| case LD_INT16: |
| if (bswap) { |
| /* swapped sign-extended halfword load */ |
| tcg_out_insn(s, RXY, LRVH, data, base, index, disp); |
| tgen_ext16s(s, TCG_TYPE_I64, data, data); |
| } else { |
| tcg_out_insn(s, RXY, LGH, data, base, index, disp); |
| } |
| break; |
| case LD_UINT32: |
| if (bswap) { |
| /* swapped unsigned int load with upper bits zeroed */ |
| tcg_out_insn(s, RXY, LRV, data, base, index, disp); |
| tgen_ext32u(s, data, data); |
| } else { |
| tcg_out_insn(s, RXY, LLGF, data, base, index, disp); |
| } |
| break; |
| case LD_INT32: |
| if (bswap) { |
| /* swapped sign-extended int load */ |
| tcg_out_insn(s, RXY, LRV, data, base, index, disp); |
| tgen_ext32s(s, data, data); |
| } else { |
| tcg_out_insn(s, RXY, LGF, data, base, index, disp); |
| } |
| break; |
| case LD_UINT64: |
| if (bswap) { |
| tcg_out_insn(s, RXY, LRVG, data, base, index, disp); |
| } else { |
| tcg_out_insn(s, RXY, LG, data, base, index, disp); |
| } |
| break; |
| default: |
| tcg_abort(); |
| } |
| } |
| |
| static void tcg_out_qemu_st_direct(TCGContext *s, int opc, TCGReg data, |
| TCGReg base, TCGReg index, int disp) |
| { |
| #ifdef TARGET_WORDS_BIGENDIAN |
| const int bswap = 0; |
| #else |
| const int bswap = 1; |
| #endif |
| switch (opc) { |
| case LD_UINT8: |
| if (disp >= 0 && disp < 0x1000) { |
| tcg_out_insn(s, RX, STC, data, base, index, disp); |
| } else { |
| tcg_out_insn(s, RXY, STCY, data, base, index, disp); |
| } |
| break; |
| case LD_UINT16: |
| if (bswap) { |
| tcg_out_insn(s, RXY, STRVH, data, base, index, disp); |
| } else if (disp >= 0 && disp < 0x1000) { |
| tcg_out_insn(s, RX, STH, data, base, index, disp); |
| } else { |
| tcg_out_insn(s, RXY, STHY, data, base, index, disp); |
| } |
| break; |
| case LD_UINT32: |
| if (bswap) { |
| tcg_out_insn(s, RXY, STRV, data, base, index, disp); |
| } else if (disp >= 0 && disp < 0x1000) { |
| tcg_out_insn(s, RX, ST, data, base, index, disp); |
| } else { |
| tcg_out_insn(s, RXY, STY, data, base, index, disp); |
| } |
| break; |
| case LD_UINT64: |
| if (bswap) { |
| tcg_out_insn(s, RXY, STRVG, data, base, index, disp); |
| } else { |
| tcg_out_insn(s, RXY, STG, data, base, index, disp); |
| } |
| break; |
| default: |
| tcg_abort(); |
| } |
| } |
| |
| #if defined(CONFIG_SOFTMMU) |
| static void tgen64_andi_tmp(TCGContext *s, TCGReg dest, tcg_target_ulong val) |
| { |
| if (tcg_match_andi(0, val)) { |
| tcg_out_movi(s, TCG_TYPE_I64, TCG_TMP0, val); |
| tcg_out_insn(s, RRE, NGR, dest, TCG_TMP0); |
| } else { |
| tgen64_andi(s, dest, val); |
| } |
| } |
| |
| static void tcg_prepare_qemu_ldst(TCGContext* s, TCGReg data_reg, |
| TCGReg addr_reg, int mem_index, int opc, |
| uint16_t **label2_ptr_p, int is_store) |
| { |
| const TCGReg arg0 = TCG_REG_R2; |
| const TCGReg arg1 = TCG_REG_R3; |
| int s_bits = opc & 3; |
| uint16_t *label1_ptr; |
| tcg_target_long ofs; |
| |
| if (TARGET_LONG_BITS == 32) { |
| tgen_ext32u(s, arg0, addr_reg); |
| } else { |
| tcg_out_mov(s, TCG_TYPE_I64, arg0, addr_reg); |
| } |
| |
| tcg_out_sh64(s, RSY_SRLG, arg1, addr_reg, TCG_REG_NONE, |
| TARGET_PAGE_BITS - CPU_TLB_ENTRY_BITS); |
| |
| tgen64_andi_tmp(s, arg0, TARGET_PAGE_MASK | ((1 << s_bits) - 1)); |
| tgen64_andi_tmp(s, arg1, (CPU_TLB_SIZE - 1) << CPU_TLB_ENTRY_BITS); |
| |
| if (is_store) { |
| ofs = offsetof(CPUArchState, tlb_table[mem_index][0].addr_write); |
| } else { |
| ofs = offsetof(CPUArchState, tlb_table[mem_index][0].addr_read); |
| } |
| assert(ofs < 0x80000); |
| |
| if (TARGET_LONG_BITS == 32) { |
| tcg_out_mem(s, RX_C, RXY_CY, arg0, arg1, TCG_AREG0, ofs); |
| } else { |
| tcg_out_mem(s, 0, RXY_CG, arg0, arg1, TCG_AREG0, ofs); |
| } |
| |
| if (TARGET_LONG_BITS == 32) { |
| tgen_ext32u(s, arg0, addr_reg); |
| } else { |
| tcg_out_mov(s, TCG_TYPE_I64, arg0, addr_reg); |
| } |
| |
| label1_ptr = (uint16_t*)s->code_ptr; |
| |
| /* je label1 (offset will be patched in later) */ |
| tcg_out_insn(s, RI, BRC, S390_CC_EQ, 0); |
| |
| /* call load/store helper */ |
| if (is_store) { |
| /* Make sure to zero-extend the value to the full register |
| for the calling convention. */ |
| switch (opc) { |
| case LD_UINT8: |
| tgen_ext8u(s, TCG_TYPE_I64, arg1, data_reg); |
| break; |
| case LD_UINT16: |
| tgen_ext16u(s, TCG_TYPE_I64, arg1, data_reg); |
| break; |
| case LD_UINT32: |
| tgen_ext32u(s, arg1, data_reg); |
| break; |
| case LD_UINT64: |
| tcg_out_mov(s, TCG_TYPE_I64, arg1, data_reg); |
| break; |
| default: |
| tcg_abort(); |
| } |
| tcg_out_movi(s, TCG_TYPE_I32, TCG_REG_R4, mem_index); |
| #ifdef CONFIG_TCG_PASS_AREG0 |
| /* XXX/FIXME: suboptimal */ |
| tcg_out_mov(s, TCG_TYPE_I32, tcg_target_call_iarg_regs[2], |
| tcg_target_call_iarg_regs[1]); |
| tcg_out_mov(s, TCG_TYPE_TL, tcg_target_call_iarg_regs[1], |
| tcg_target_call_iarg_regs[0]); |
| tcg_out_mov(s, TCG_TYPE_PTR, tcg_target_call_iarg_regs[0], |
| TCG_AREG0); |
| #endif |
| tgen_calli(s, (tcg_target_ulong)qemu_st_helpers[s_bits]); |
| } else { |
| tcg_out_movi(s, TCG_TYPE_I32, arg1, mem_index); |
| #ifdef CONFIG_TCG_PASS_AREG0 |
| /* XXX/FIXME: suboptimal */ |
| tcg_out_mov(s, TCG_TYPE_I32, tcg_target_call_iarg_regs[3], |
| tcg_target_call_iarg_regs[2]); |
| tcg_out_mov(s, TCG_TYPE_I64, tcg_target_call_iarg_regs[2], |
| tcg_target_call_iarg_regs[1]); |
| tcg_out_mov(s, TCG_TYPE_TL, tcg_target_call_iarg_regs[1], |
| tcg_target_call_iarg_regs[0]); |
| tcg_out_mov(s, TCG_TYPE_PTR, tcg_target_call_iarg_regs[0], |
| TCG_AREG0); |
| #endif |
| tgen_calli(s, (tcg_target_ulong)qemu_ld_helpers[s_bits]); |
| |
| /* sign extension */ |
| switch (opc) { |
| case LD_INT8: |
| tgen_ext8s(s, TCG_TYPE_I64, data_reg, arg0); |
| break; |
| case LD_INT16: |
| tgen_ext16s(s, TCG_TYPE_I64, data_reg, arg0); |
| break; |
| case LD_INT32: |
| tgen_ext32s(s, data_reg, arg0); |
| break; |
| default: |
| /* unsigned -> just copy */ |
| tcg_out_mov(s, TCG_TYPE_I64, data_reg, arg0); |
| break; |
| } |
| } |
| |
| /* jump to label2 (end) */ |
| *label2_ptr_p = (uint16_t*)s->code_ptr; |
| |
| tcg_out_insn(s, RI, BRC, S390_CC_ALWAYS, 0); |
| |
| /* this is label1, patch branch */ |
| *(label1_ptr + 1) = ((unsigned long)s->code_ptr - |
| (unsigned long)label1_ptr) >> 1; |
| |
| ofs = offsetof(CPUArchState, tlb_table[mem_index][0].addend); |
| assert(ofs < 0x80000); |
| |
| tcg_out_mem(s, 0, RXY_AG, arg0, arg1, TCG_AREG0, ofs); |
| } |
| |
| static void tcg_finish_qemu_ldst(TCGContext* s, uint16_t *label2_ptr) |
| { |
| /* patch branch */ |
| *(label2_ptr + 1) = ((unsigned long)s->code_ptr - |
| (unsigned long)label2_ptr) >> 1; |
| } |
| #else |
| static void tcg_prepare_user_ldst(TCGContext *s, TCGReg *addr_reg, |
| TCGReg *index_reg, tcg_target_long *disp) |
| { |
| if (TARGET_LONG_BITS == 32) { |
| tgen_ext32u(s, TCG_TMP0, *addr_reg); |
| *addr_reg = TCG_TMP0; |
| } |
| if (GUEST_BASE < 0x80000) { |
| *index_reg = TCG_REG_NONE; |
| *disp = GUEST_BASE; |
| } else { |
| *index_reg = TCG_GUEST_BASE_REG; |
| *disp = 0; |
| } |
| } |
| #endif /* CONFIG_SOFTMMU */ |
| |
| /* load data with address translation (if applicable) |
| and endianness conversion */ |
| static void tcg_out_qemu_ld(TCGContext* s, const TCGArg* args, int opc) |
| { |
| TCGReg addr_reg, data_reg; |
| #if defined(CONFIG_SOFTMMU) |
| int mem_index; |
| uint16_t *label2_ptr; |
| #else |
| TCGReg index_reg; |
| tcg_target_long disp; |
| #endif |
| |
| data_reg = *args++; |
| addr_reg = *args++; |
| |
| #if defined(CONFIG_SOFTMMU) |
| mem_index = *args; |
| |
| tcg_prepare_qemu_ldst(s, data_reg, addr_reg, mem_index, |
| opc, &label2_ptr, 0); |
| |
| tcg_out_qemu_ld_direct(s, opc, data_reg, TCG_REG_R2, TCG_REG_NONE, 0); |
| |
| tcg_finish_qemu_ldst(s, label2_ptr); |
| #else |
| tcg_prepare_user_ldst(s, &addr_reg, &index_reg, &disp); |
| tcg_out_qemu_ld_direct(s, opc, data_reg, addr_reg, index_reg, disp); |
| #endif |
| } |
| |
| static void tcg_out_qemu_st(TCGContext* s, const TCGArg* args, int opc) |
| { |
| TCGReg addr_reg, data_reg; |
| #if defined(CONFIG_SOFTMMU) |
| int mem_index; |
| uint16_t *label2_ptr; |
| #else |
| TCGReg index_reg; |
| tcg_target_long disp; |
| #endif |
| |
| data_reg = *args++; |
| addr_reg = *args++; |
| |
| #if defined(CONFIG_SOFTMMU) |
| mem_index = *args; |
| |
| tcg_prepare_qemu_ldst(s, data_reg, addr_reg, mem_index, |
| opc, &label2_ptr, 1); |
| |
| tcg_out_qemu_st_direct(s, opc, data_reg, TCG_REG_R2, TCG_REG_NONE, 0); |
| |
| tcg_finish_qemu_ldst(s, label2_ptr); |
| #else |
| tcg_prepare_user_ldst(s, &addr_reg, &index_reg, &disp); |
| tcg_out_qemu_st_direct(s, opc, data_reg, addr_reg, index_reg, disp); |
| #endif |
| } |
| |
| #if TCG_TARGET_REG_BITS == 64 |
| # define OP_32_64(x) \ |
| case glue(glue(INDEX_op_,x),_i32): \ |
| case glue(glue(INDEX_op_,x),_i64) |
| #else |
| # define OP_32_64(x) \ |
| case glue(glue(INDEX_op_,x),_i32) |
| #endif |
| |
| static inline void tcg_out_op(TCGContext *s, TCGOpcode opc, |
| const TCGArg *args, const int *const_args) |
| { |
| S390Opcode op; |
| |
| switch (opc) { |
| case INDEX_op_exit_tb: |
| /* return value */ |
| tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_R2, args[0]); |
| tgen_gotoi(s, S390_CC_ALWAYS, (unsigned long)tb_ret_addr); |
| break; |
| |
| case INDEX_op_goto_tb: |
| if (s->tb_jmp_offset) { |
| tcg_abort(); |
| } else { |
| /* load address stored at s->tb_next + args[0] */ |
| tcg_out_ld_abs(s, TCG_TYPE_PTR, TCG_TMP0, s->tb_next + args[0]); |
| /* and go there */ |
| tcg_out_insn(s, RR, BCR, S390_CC_ALWAYS, TCG_TMP0); |
| } |
| s->tb_next_offset[args[0]] = s->code_ptr - s->code_buf; |
| break; |
| |
| case INDEX_op_call: |
| if (const_args[0]) { |
| tgen_calli(s, args[0]); |
| } else { |
| tcg_out_insn(s, RR, BASR, TCG_REG_R14, args[0]); |
| } |
| break; |
| |
| case INDEX_op_mov_i32: |
| tcg_out_mov(s, TCG_TYPE_I32, args[0], args[1]); |
| break; |
| case INDEX_op_movi_i32: |
| tcg_out_movi(s, TCG_TYPE_I32, args[0], args[1]); |
| break; |
| |
| OP_32_64(ld8u): |
| /* ??? LLC (RXY format) is only present with the extended-immediate |
| facility, whereas LLGC is always present. */ |
| tcg_out_mem(s, 0, RXY_LLGC, args[0], args[1], TCG_REG_NONE, args[2]); |
| break; |
| |
| OP_32_64(ld8s): |
| /* ??? LB is no smaller than LGB, so no point to using it. */ |
| tcg_out_mem(s, 0, RXY_LGB, args[0], args[1], TCG_REG_NONE, args[2]); |
| break; |
| |
| OP_32_64(ld16u): |
| /* ??? LLH (RXY format) is only present with the extended-immediate |
| facility, whereas LLGH is always present. */ |
| tcg_out_mem(s, 0, RXY_LLGH, args[0], args[1], TCG_REG_NONE, args[2]); |
| break; |
| |
| case INDEX_op_ld16s_i32: |
| tcg_out_mem(s, RX_LH, RXY_LHY, args[0], args[1], TCG_REG_NONE, args[2]); |
| break; |
| |
| case INDEX_op_ld_i32: |
| tcg_out_ld(s, TCG_TYPE_I32, args[0], args[1], args[2]); |
| break; |
| |
| OP_32_64(st8): |
| tcg_out_mem(s, RX_STC, RXY_STCY, args[0], args[1], |
| TCG_REG_NONE, args[2]); |
| break; |
| |
| OP_32_64(st16): |
| tcg_out_mem(s, RX_STH, RXY_STHY, args[0], args[1], |
| TCG_REG_NONE, args[2]); |
| break; |
| |
| case INDEX_op_st_i32: |
| tcg_out_st(s, TCG_TYPE_I32, args[0], args[1], args[2]); |
| break; |
| |
| case INDEX_op_add_i32: |
| if (const_args[2]) { |
| tgen32_addi(s, args[0], args[2]); |
| } else { |
| tcg_out_insn(s, RR, AR, args[0], args[2]); |
| } |
| break; |
| case INDEX_op_sub_i32: |
| if (const_args[2]) { |
| tgen32_addi(s, args[0], -args[2]); |
| } else { |
| tcg_out_insn(s, RR, SR, args[0], args[2]); |
| } |
| break; |
| |
| case INDEX_op_and_i32: |
| if (const_args[2]) { |
| tgen64_andi(s, args[0], args[2] | 0xffffffff00000000ull); |
| } else { |
| tcg_out_insn(s, RR, NR, args[0], args[2]); |
| } |
| break; |
| case INDEX_op_or_i32: |
| if (const_args[2]) { |
| tgen64_ori(s, args[0], args[2] & 0xffffffff); |
| } else { |
| tcg_out_insn(s, RR, OR, args[0], args[2]); |
| } |
| break; |
| case INDEX_op_xor_i32: |
| if (const_args[2]) { |
| tgen64_xori(s, args[0], args[2] & 0xffffffff); |
| } else { |
| tcg_out_insn(s, RR, XR, args[0], args[2]); |
| } |
| break; |
| |
| case INDEX_op_neg_i32: |
| tcg_out_insn(s, RR, LCR, args[0], args[1]); |
| break; |
| |
| case INDEX_op_mul_i32: |
| if (const_args[2]) { |
| if ((int32_t)args[2] == (int16_t)args[2]) { |
| tcg_out_insn(s, RI, MHI, args[0], args[2]); |
| } else { |
| tcg_out_insn(s, RIL, MSFI, args[0], args[2]); |
| } |
| } else { |
| tcg_out_insn(s, RRE, MSR, args[0], args[2]); |
| } |
| break; |
| |
| case INDEX_op_div2_i32: |
| tcg_out_insn(s, RR, DR, TCG_REG_R2, args[4]); |
| break; |
| case INDEX_op_divu2_i32: |
| tcg_out_insn(s, RRE, DLR, TCG_REG_R2, args[4]); |
| break; |
| |
| case INDEX_op_shl_i32: |
| op = RS_SLL; |
| do_shift32: |
| if (const_args[2]) { |
| tcg_out_sh32(s, op, args[0], TCG_REG_NONE, args[2]); |
| } else { |
| tcg_out_sh32(s, op, args[0], args[2], 0); |
| } |
| break; |
| case INDEX_op_shr_i32: |
| op = RS_SRL; |
| goto do_shift32; |
| case INDEX_op_sar_i32: |
| op = RS_SRA; |
| goto do_shift32; |
| |
| case INDEX_op_rotl_i32: |
| /* ??? Using tcg_out_sh64 here for the format; it is a 32-bit rol. */ |
| if (const_args[2]) { |
| tcg_out_sh64(s, RSY_RLL, args[0], args[1], TCG_REG_NONE, args[2]); |
| } else { |
| tcg_out_sh64(s, RSY_RLL, args[0], args[1], args[2], 0); |
| } |
| break; |
| case INDEX_op_rotr_i32: |
| if (const_args[2]) { |
| tcg_out_sh64(s, RSY_RLL, args[0], args[1], |
| TCG_REG_NONE, (32 - args[2]) & 31); |
| } else { |
| tcg_out_insn(s, RR, LCR, TCG_TMP0, args[2]); |
| tcg_out_sh64(s, RSY_RLL, args[0], args[1], TCG_TMP0, 0); |
| } |
| break; |
| |
| case INDEX_op_ext8s_i32: |
| tgen_ext8s(s, TCG_TYPE_I32, args[0], args[1]); |
| break; |
| case INDEX_op_ext16s_i32: |
| tgen_ext16s(s, TCG_TYPE_I32, args[0], args[1]); |
| break; |
| case INDEX_op_ext8u_i32: |
| tgen_ext8u(s, TCG_TYPE_I32, args[0], args[1]); |
| break; |
| case INDEX_op_ext16u_i32: |
| tgen_ext16u(s, TCG_TYPE_I32, args[0], args[1]); |
| break; |
| |
| OP_32_64(bswap16): |
| /* The TCG bswap definition requires bits 0-47 already be zero. |
| Thus we don't need the G-type insns to implement bswap16_i64. */ |
| tcg_out_insn(s, RRE, LRVR, args[0], args[1]); |
| tcg_out_sh32(s, RS_SRL, args[0], TCG_REG_NONE, 16); |
| break; |
| OP_32_64(bswap32): |
| tcg_out_insn(s, RRE, LRVR, args[0], args[1]); |
| break; |
| |
| case INDEX_op_br: |
| tgen_branch(s, S390_CC_ALWAYS, args[0]); |
| break; |
| |
| case INDEX_op_brcond_i32: |
| tgen_brcond(s, TCG_TYPE_I32, args[2], args[0], |
| args[1], const_args[1], args[3]); |
| break; |
| case INDEX_op_setcond_i32: |
| tgen_setcond(s, TCG_TYPE_I32, args[3], args[0], args[1], |
| args[2], const_args[2]); |
| break; |
| |
| case INDEX_op_qemu_ld8u: |
| tcg_out_qemu_ld(s, args, LD_UINT8); |
| break; |
| case INDEX_op_qemu_ld8s: |
| tcg_out_qemu_ld(s, args, LD_INT8); |
| break; |
| case INDEX_op_qemu_ld16u: |
| tcg_out_qemu_ld(s, args, LD_UINT16); |
| break; |
| case INDEX_op_qemu_ld16s: |
| tcg_out_qemu_ld(s, args, LD_INT16); |
| break; |
| case INDEX_op_qemu_ld32: |
| /* ??? Technically we can use a non-extending instruction. */ |
| tcg_out_qemu_ld(s, args, LD_UINT32); |
| break; |
| case INDEX_op_qemu_ld64: |
| tcg_out_qemu_ld(s, args, LD_UINT64); |
| break; |
| |
| case INDEX_op_qemu_st8: |
| tcg_out_qemu_st(s, args, LD_UINT8); |
| break; |
| case INDEX_op_qemu_st16: |
| tcg_out_qemu_st(s, args, LD_UINT16); |
| break; |
| case INDEX_op_qemu_st32: |
| tcg_out_qemu_st(s, args, LD_UINT32); |
| break; |
| case INDEX_op_qemu_st64: |
| tcg_out_qemu_st(s, args, LD_UINT64); |
| break; |
| |
| #if TCG_TARGET_REG_BITS == 64 |
| case INDEX_op_mov_i64: |
| tcg_out_mov(s, TCG_TYPE_I64, args[0], args[1]); |
| break; |
| case INDEX_op_movi_i64: |
| tcg_out_movi(s, TCG_TYPE_I64, args[0], args[1]); |
| break; |
| |
| case INDEX_op_ld16s_i64: |
| tcg_out_mem(s, 0, RXY_LGH, args[0], args[1], TCG_REG_NONE, args[2]); |
| break; |
| case INDEX_op_ld32u_i64: |
| tcg_out_mem(s, 0, RXY_LLGF, args[0], args[1], TCG_REG_NONE, args[2]); |
| break; |
| case INDEX_op_ld32s_i64: |
| tcg_out_mem(s, 0, RXY_LGF, args[0], args[1], TCG_REG_NONE, args[2]); |
| break; |
| case INDEX_op_ld_i64: |
| tcg_out_ld(s, TCG_TYPE_I64, args[0], args[1], args[2]); |
| break; |
| |
| case INDEX_op_st32_i64: |
| tcg_out_st(s, TCG_TYPE_I32, args[0], args[1], args[2]); |
| break; |
| case INDEX_op_st_i64: |
| tcg_out_st(s, TCG_TYPE_I64, args[0], args[1], args[2]); |
| break; |
| |
| case INDEX_op_add_i64: |
| if (const_args[2]) { |
| tgen64_addi(s, args[0], args[2]); |
| } else { |
| tcg_out_insn(s, RRE, AGR, args[0], args[2]); |
| } |
| break; |
| case INDEX_op_sub_i64: |
| if (const_args[2]) { |
| tgen64_addi(s, args[0], -args[2]); |
| } else { |
| tcg_out_insn(s, RRE, SGR, args[0], args[2]); |
| } |
| break; |
| |
| case INDEX_op_and_i64: |
| if (const_args[2]) { |
| tgen64_andi(s, args[0], args[2]); |
| } else { |
| tcg_out_insn(s, RRE, NGR, args[0], args[2]); |
| } |
| break; |
| case INDEX_op_or_i64: |
| if (const_args[2]) { |
| tgen64_ori(s, args[0], args[2]); |
| } else { |
| tcg_out_insn(s, RRE, OGR, args[0], args[2]); |
| } |
| break; |
| case INDEX_op_xor_i64: |
| if (const_args[2]) { |
| tgen64_xori(s, args[0], args[2]); |
| } else { |
| tcg_out_insn(s, RRE, XGR, args[0], args[2]); |
| } |
| break; |
| |
| case INDEX_op_neg_i64: |
| tcg_out_insn(s, RRE, LCGR, args[0], args[1]); |
| break; |
| case INDEX_op_bswap64_i64: |
| tcg_out_insn(s, RRE, LRVGR, args[0], args[1]); |
| break; |
| |
| case INDEX_op_mul_i64: |
| if (const_args[2]) { |
| if (args[2] == (int16_t)args[2]) { |
| tcg_out_insn(s, RI, MGHI, args[0], args[2]); |
| } else { |
| tcg_out_insn(s, RIL, MSGFI, args[0], args[2]); |
| } |
| } else { |
| tcg_out_insn(s, RRE, MSGR, args[0], args[2]); |
| } |
| break; |
| |
| case INDEX_op_div2_i64: |
| /* ??? We get an unnecessary sign-extension of the dividend |
| into R3 with this definition, but as we do in fact always |
| produce both quotient and remainder using INDEX_op_div_i64 |
| instead requires jumping through even more hoops. */ |
| tcg_out_insn(s, RRE, DSGR, TCG_REG_R2, args[4]); |
| break; |
| case INDEX_op_divu2_i64: |
| tcg_out_insn(s, RRE, DLGR, TCG_REG_R2, args[4]); |
| break; |
| |
| case INDEX_op_shl_i64: |
| op = RSY_SLLG; |
| do_shift64: |
| if (const_args[2]) { |
| tcg_out_sh64(s, op, args[0], args[1], TCG_REG_NONE, args[2]); |
| } else { |
| tcg_out_sh64(s, op, args[0], args[1], args[2], 0); |
| } |
| break; |
| case INDEX_op_shr_i64: |
| op = RSY_SRLG; |
| goto do_shift64; |
| case INDEX_op_sar_i64: |
| op = RSY_SRAG; |
| goto do_shift64; |
| |
| case INDEX_op_rotl_i64: |
| if (const_args[2]) { |
| tcg_out_sh64(s, RSY_RLLG, args[0], args[1], |
| TCG_REG_NONE, args[2]); |
| } else { |
| tcg_out_sh64(s, RSY_RLLG, args[0], args[1], args[2], 0); |
| } |
| break; |
| case INDEX_op_rotr_i64: |
| if (const_args[2]) { |
| tcg_out_sh64(s, RSY_RLLG, args[0], args[1], |
| TCG_REG_NONE, (64 - args[2]) & 63); |
| } else { |
| /* We can use the smaller 32-bit negate because only the |
| low 6 bits are examined for the rotate. */ |
| tcg_out_insn(s, RR, LCR, TCG_TMP0, args[2]); |
| tcg_out_sh64(s, RSY_RLLG, args[0], args[1], TCG_TMP0, 0); |
| } |
| break; |
| |
| case INDEX_op_ext8s_i64: |
| tgen_ext8s(s, TCG_TYPE_I64, args[0], args[1]); |
| break; |
| case INDEX_op_ext16s_i64: |
| tgen_ext16s(s, TCG_TYPE_I64, args[0], args[1]); |
| break; |
| case INDEX_op_ext32s_i64: |
| tgen_ext32s(s, args[0], args[1]); |
| break; |
| case INDEX_op_ext8u_i64: |
| tgen_ext8u(s, TCG_TYPE_I64, args[0], args[1]); |
| break; |
| case INDEX_op_ext16u_i64: |
| tgen_ext16u(s, TCG_TYPE_I64, args[0], args[1]); |
| break; |
| case INDEX_op_ext32u_i64: |
| tgen_ext32u(s, args[0], args[1]); |
| break; |
| |
| case INDEX_op_brcond_i64: |
| tgen_brcond(s, TCG_TYPE_I64, args[2], args[0], |
| args[1], const_args[1], args[3]); |
| break; |
| case INDEX_op_setcond_i64: |
| tgen_setcond(s, TCG_TYPE_I64, args[3], args[0], args[1], |
| args[2], const_args[2]); |
| break; |
| |
| case INDEX_op_qemu_ld32u: |
| tcg_out_qemu_ld(s, args, LD_UINT32); |
| break; |
| case INDEX_op_qemu_ld32s: |
| tcg_out_qemu_ld(s, args, LD_INT32); |
| break; |
| #endif /* TCG_TARGET_REG_BITS == 64 */ |
| |
| case INDEX_op_jmp: |
| /* This one is obsolete and never emitted. */ |
| tcg_abort(); |
| break; |
| |
| default: |
| fprintf(stderr,"unimplemented opc 0x%x\n",opc); |
| tcg_abort(); |
| } |
| } |
| |
| static const TCGTargetOpDef s390_op_defs[] = { |
| { INDEX_op_exit_tb, { } }, |
| { INDEX_op_goto_tb, { } }, |
| { INDEX_op_call, { "ri" } }, |
| { INDEX_op_jmp, { "ri" } }, |
| { INDEX_op_br, { } }, |
| |
| { INDEX_op_mov_i32, { "r", "r" } }, |
| { INDEX_op_movi_i32, { "r" } }, |
| |
| { INDEX_op_ld8u_i32, { "r", "r" } }, |
| { INDEX_op_ld8s_i32, { "r", "r" } }, |
| { INDEX_op_ld16u_i32, { "r", "r" } }, |
| { INDEX_op_ld16s_i32, { "r", "r" } }, |
| { INDEX_op_ld_i32, { "r", "r" } }, |
| { INDEX_op_st8_i32, { "r", "r" } }, |
| { INDEX_op_st16_i32, { "r", "r" } }, |
| { INDEX_op_st_i32, { "r", "r" } }, |
| |
| { INDEX_op_add_i32, { "r", "0", "rWI" } }, |
| { INDEX_op_sub_i32, { "r", "0", "rWNI" } }, |
| { INDEX_op_mul_i32, { "r", "0", "rK" } }, |
| |
| { INDEX_op_div2_i32, { "b", "a", "0", "1", "r" } }, |
| { INDEX_op_divu2_i32, { "b", "a", "0", "1", "r" } }, |
| |
| { INDEX_op_and_i32, { "r", "0", "rWA" } }, |
| { INDEX_op_or_i32, { "r", "0", "rWO" } }, |
| { INDEX_op_xor_i32, { "r", "0", "rWX" } }, |
| |
| { INDEX_op_neg_i32, { "r", "r" } }, |
| |
| { INDEX_op_shl_i32, { "r", "0", "Ri" } }, |
| { INDEX_op_shr_i32, { "r", "0", "Ri" } }, |
| { INDEX_op_sar_i32, { "r", "0", "Ri" } }, |
| |
| { INDEX_op_rotl_i32, { "r", "r", "Ri" } }, |
| { INDEX_op_rotr_i32, { "r", "r", "Ri" } }, |
| |
| { INDEX_op_ext8s_i32, { "r", "r" } }, |
| { INDEX_op_ext8u_i32, { "r", "r" } }, |
| { INDEX_op_ext16s_i32, { "r", "r" } }, |
| { INDEX_op_ext16u_i32, { "r", "r" } }, |
| |
| { INDEX_op_bswap16_i32, { "r", "r" } }, |
| { INDEX_op_bswap32_i32, { "r", "r" } }, |
| |
| { INDEX_op_brcond_i32, { "r", "rWC" } }, |
| { INDEX_op_setcond_i32, { "r", "r", "rWC" } }, |
| |
| { INDEX_op_qemu_ld8u, { "r", "L" } }, |
| { INDEX_op_qemu_ld8s, { "r", "L" } }, |
| { INDEX_op_qemu_ld16u, { "r", "L" } }, |
| { INDEX_op_qemu_ld16s, { "r", "L" } }, |
| { INDEX_op_qemu_ld32, { "r", "L" } }, |
| { INDEX_op_qemu_ld64, { "r", "L" } }, |
| |
| { INDEX_op_qemu_st8, { "L", "L" } }, |
| { INDEX_op_qemu_st16, { "L", "L" } }, |
| { INDEX_op_qemu_st32, { "L", "L" } }, |
| { INDEX_op_qemu_st64, { "L", "L" } }, |
| |
| #if defined(__s390x__) |
| { INDEX_op_mov_i64, { "r", "r" } }, |
| { INDEX_op_movi_i64, { "r" } }, |
| |
| { INDEX_op_ld8u_i64, { "r", "r" } }, |
| { INDEX_op_ld8s_i64, { "r", "r" } }, |
| { INDEX_op_ld16u_i64, { "r", "r" } }, |
| { INDEX_op_ld16s_i64, { "r", "r" } }, |
| { INDEX_op_ld32u_i64, { "r", "r" } }, |
| { INDEX_op_ld32s_i64, { "r", "r" } }, |
| { INDEX_op_ld_i64, { "r", "r" } }, |
| |
| { INDEX_op_st8_i64, { "r", "r" } }, |
| { INDEX_op_st16_i64, { "r", "r" } }, |
| { INDEX_op_st32_i64, { "r", "r" } }, |
| { INDEX_op_st_i64, { "r", "r" } }, |
| |
| { INDEX_op_add_i64, { "r", "0", "rI" } }, |
| { INDEX_op_sub_i64, { "r", "0", "rNI" } }, |
| { INDEX_op_mul_i64, { "r", "0", "rK" } }, |
| |
| { INDEX_op_div2_i64, { "b", "a", "0", "1", "r" } }, |
| { INDEX_op_divu2_i64, { "b", "a", "0", "1", "r" } }, |
| |
| { INDEX_op_and_i64, { "r", "0", "rA" } }, |
| { INDEX_op_or_i64, { "r", "0", "rO" } }, |
| { INDEX_op_xor_i64, { "r", "0", "rX" } }, |
| |
| { INDEX_op_neg_i64, { "r", "r" } }, |
| |
| { INDEX_op_shl_i64, { "r", "r", "Ri" } }, |
| { INDEX_op_shr_i64, { "r", "r", "Ri" } }, |
| { INDEX_op_sar_i64, { "r", "r", "Ri" } }, |
| |
| { INDEX_op_rotl_i64, { "r", "r", "Ri" } }, |
| { INDEX_op_rotr_i64, { "r", "r", "Ri" } }, |
| |
| { INDEX_op_ext8s_i64, { "r", "r" } }, |
| { INDEX_op_ext8u_i64, { "r", "r" } }, |
| { INDEX_op_ext16s_i64, { "r", "r" } }, |
| { INDEX_op_ext16u_i64, { "r", "r" } }, |
| { INDEX_op_ext32s_i64, { "r", "r" } }, |
| { INDEX_op_ext32u_i64, { "r", "r" } }, |
| |
| { INDEX_op_bswap16_i64, { "r", "r" } }, |
| { INDEX_op_bswap32_i64, { "r", "r" } }, |
| { INDEX_op_bswap64_i64, { "r", "r" } }, |
| |
| { INDEX_op_brcond_i64, { "r", "rC" } }, |
| { INDEX_op_setcond_i64, { "r", "r", "rC" } }, |
| |
| { INDEX_op_qemu_ld32u, { "r", "L" } }, |
| { INDEX_op_qemu_ld32s, { "r", "L" } }, |
| #endif |
| |
| { -1 }, |
| }; |
| |
| /* ??? Linux kernels provide an AUXV entry AT_HWCAP that provides most of |
| this information. However, getting at that entry is not easy this far |
| away from main. Our options are: start searching from environ, but |
| that fails as soon as someone does a setenv in between. Read the data |
| from /proc/self/auxv. Or do the probing ourselves. The only thing |
| extra that AT_HWCAP gives us is HWCAP_S390_HIGH_GPRS, which indicates |
| that the kernel saves all 64-bits of the registers around traps while |
| in 31-bit mode. But this is true of all "recent" kernels (ought to dig |
| back and see from when this might not be true). */ |
| |
| #include <signal.h> |
| |
| static volatile sig_atomic_t got_sigill; |
| |
| static void sigill_handler(int sig) |
| { |
| got_sigill = 1; |
| } |
| |
| static void query_facilities(void) |
| { |
| struct sigaction sa_old, sa_new; |
| register int r0 __asm__("0"); |
| register void *r1 __asm__("1"); |
| int fail; |
| |
| memset(&sa_new, 0, sizeof(sa_new)); |
| sa_new.sa_handler = sigill_handler; |
| sigaction(SIGILL, &sa_new, &sa_old); |
| |
| /* First, try STORE FACILITY LIST EXTENDED. If this is present, then |
| we need not do any more probing. Unfortunately, this itself is an |
| extension and the original STORE FACILITY LIST instruction is |
| kernel-only, storing its results at absolute address 200. */ |
| /* stfle 0(%r1) */ |
| r1 = &facilities; |
| asm volatile(".word 0xb2b0,0x1000" |
| : "=r"(r0) : "0"(0), "r"(r1) : "memory", "cc"); |
| |
| if (got_sigill) { |
| /* STORE FACILITY EXTENDED is not available. Probe for one of each |
| kind of instruction that we're interested in. */ |
| /* ??? Possibly some of these are in practice never present unless |
| the store-facility-extended facility is also present. But since |
| that isn't documented it's just better to probe for each. */ |
| |
| /* Test for z/Architecture. Required even in 31-bit mode. */ |
| got_sigill = 0; |
| /* agr %r0,%r0 */ |
| asm volatile(".word 0xb908,0x0000" : "=r"(r0) : : "cc"); |
| if (!got_sigill) { |
| facilities |= FACILITY_ZARCH_ACTIVE; |
| } |
| |
| /* Test for long displacement. */ |
| got_sigill = 0; |
| /* ly %r0,0(%r1) */ |
| r1 = &facilities; |
| asm volatile(".word 0xe300,0x1000,0x0058" |
| : "=r"(r0) : "r"(r1) : "cc"); |
| if (!got_sigill) { |
| facilities |= FACILITY_LONG_DISP; |
| } |
| |
| /* Test for extended immediates. */ |
| got_sigill = 0; |
| /* afi %r0,0 */ |
| asm volatile(".word 0xc209,0x0000,0x0000" : : : "cc"); |
| if (!got_sigill) { |
| facilities |= FACILITY_EXT_IMM; |
| } |
| |
| /* Test for general-instructions-extension. */ |
| got_sigill = 0; |
| /* msfi %r0,1 */ |
| asm volatile(".word 0xc201,0x0000,0x0001"); |
| if (!got_sigill) { |
| facilities |= FACILITY_GEN_INST_EXT; |
| } |
| } |
| |
| sigaction(SIGILL, &sa_old, NULL); |
| |
| /* The translator currently uses these extensions unconditionally. |
| Pruning this back to the base ESA/390 architecture doesn't seem |
| worthwhile, since even the KVM target requires z/Arch. */ |
| fail = 0; |
| if ((facilities & FACILITY_ZARCH_ACTIVE) == 0) { |
| fprintf(stderr, "TCG: z/Arch facility is required.\n"); |
| fprintf(stderr, "TCG: Boot with a 64-bit enabled kernel.\n"); |
| fail = 1; |
| } |
| if ((facilities & FACILITY_LONG_DISP) == 0) { |
| fprintf(stderr, "TCG: long-displacement facility is required.\n"); |
| fail = 1; |
| } |
| |
| /* So far there's just enough support for 31-bit mode to let the |
| compile succeed. This is good enough to run QEMU with KVM. */ |
| if (sizeof(void *) != 8) { |
| fprintf(stderr, "TCG: 31-bit mode is not supported.\n"); |
| fail = 1; |
| } |
| |
| if (fail) { |
| exit(-1); |
| } |
| } |
| |
| static void tcg_target_init(TCGContext *s) |
| { |
| #if !defined(CONFIG_USER_ONLY) |
| /* fail safe */ |
| if ((1 << CPU_TLB_ENTRY_BITS) != sizeof(CPUTLBEntry)) { |
| tcg_abort(); |
| } |
| #endif |
| |
| query_facilities(); |
| |
| tcg_regset_set32(tcg_target_available_regs[TCG_TYPE_I32], 0, 0xffff); |
| tcg_regset_set32(tcg_target_available_regs[TCG_TYPE_I64], 0, 0xffff); |
| |
| tcg_regset_clear(tcg_target_call_clobber_regs); |
| tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R0); |
| tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R1); |
| tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R2); |
| tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R3); |
| tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R4); |
| tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R5); |
| /* The return register can be considered call-clobbered. */ |
| tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R14); |
| |
| tcg_regset_clear(s->reserved_regs); |
| tcg_regset_set_reg(s->reserved_regs, TCG_TMP0); |
| /* XXX many insns can't be used with R0, so we better avoid it for now */ |
| tcg_regset_set_reg(s->reserved_regs, TCG_REG_R0); |
| tcg_regset_set_reg(s->reserved_regs, TCG_REG_CALL_STACK); |
| |
| tcg_add_target_add_op_defs(s390_op_defs); |
| tcg_set_frame(s, TCG_AREG0, offsetof(CPUArchState, temp_buf), |
| CPU_TEMP_BUF_NLONGS * sizeof(long)); |
| } |
| |
| static void tcg_target_qemu_prologue(TCGContext *s) |
| { |
| /* stmg %r6,%r15,48(%r15) (save registers) */ |
| tcg_out_insn(s, RXY, STMG, TCG_REG_R6, TCG_REG_R15, TCG_REG_R15, 48); |
| |
| /* aghi %r15,-160 (stack frame) */ |
| tcg_out_insn(s, RI, AGHI, TCG_REG_R15, -160); |
| |
| if (GUEST_BASE >= 0x80000) { |
| tcg_out_movi(s, TCG_TYPE_PTR, TCG_GUEST_BASE_REG, GUEST_BASE); |
| tcg_regset_set_reg(s->reserved_regs, TCG_GUEST_BASE_REG); |
| } |
| |
| tcg_out_mov(s, TCG_TYPE_PTR, TCG_AREG0, tcg_target_call_iarg_regs[0]); |
| /* br %r3 (go to TB) */ |
| tcg_out_insn(s, RR, BCR, S390_CC_ALWAYS, tcg_target_call_iarg_regs[1]); |
| |
| tb_ret_addr = s->code_ptr; |
| |
| /* lmg %r6,%r15,208(%r15) (restore registers) */ |
| tcg_out_insn(s, RXY, LMG, TCG_REG_R6, TCG_REG_R15, TCG_REG_R15, 208); |
| |
| /* br %r14 (return) */ |
| tcg_out_insn(s, RR, BCR, S390_CC_ALWAYS, TCG_REG_R14); |
| } |