| /* |
| * Copyright (C) 2021, Mahmoud Mandour <ma.mandourr@gmail.com> |
| * |
| * License: GNU GPL, version 2 or later. |
| * See the COPYING file in the top-level directory. |
| */ |
| |
| #include <inttypes.h> |
| #include <stdio.h> |
| #include <glib.h> |
| |
| #include <qemu-plugin.h> |
| |
| #define STRTOLL(x) g_ascii_strtoll(x, NULL, 10) |
| |
| QEMU_PLUGIN_EXPORT int qemu_plugin_version = QEMU_PLUGIN_VERSION; |
| |
| static enum qemu_plugin_mem_rw rw = QEMU_PLUGIN_MEM_RW; |
| |
| static GHashTable *miss_ht; |
| |
| static GMutex hashtable_lock; |
| static GRand *rng; |
| |
| static int limit; |
| static bool sys; |
| |
| enum EvictionPolicy { |
| LRU, |
| FIFO, |
| RAND, |
| }; |
| |
| enum EvictionPolicy policy; |
| |
| /* |
| * A CacheSet is a set of cache blocks. A memory block that maps to a set can be |
| * put in any of the blocks inside the set. The number of block per set is |
| * called the associativity (assoc). |
| * |
| * Each block contains the stored tag and a valid bit. Since this is not |
| * a functional simulator, the data itself is not stored. We only identify |
| * whether a block is in the cache or not by searching for its tag. |
| * |
| * In order to search for memory data in the cache, the set identifier and tag |
| * are extracted from the address and the set is probed to see whether a tag |
| * match occur. |
| * |
| * An address is logically divided into three portions: The block offset, |
| * the set number, and the tag. |
| * |
| * The set number is used to identify the set in which the block may exist. |
| * The tag is compared against all the tags of a set to search for a match. If a |
| * match is found, then the access is a hit. |
| * |
| * The CacheSet also contains bookkeaping information about eviction details. |
| */ |
| |
| typedef struct { |
| uint64_t tag; |
| bool valid; |
| } CacheBlock; |
| |
| typedef struct { |
| CacheBlock *blocks; |
| uint64_t *lru_priorities; |
| uint64_t lru_gen_counter; |
| GQueue *fifo_queue; |
| } CacheSet; |
| |
| typedef struct { |
| CacheSet *sets; |
| int num_sets; |
| int cachesize; |
| int assoc; |
| int blksize_shift; |
| uint64_t set_mask; |
| uint64_t tag_mask; |
| uint64_t accesses; |
| uint64_t misses; |
| } Cache; |
| |
| typedef struct { |
| char *disas_str; |
| const char *symbol; |
| uint64_t addr; |
| uint64_t l1_dmisses; |
| uint64_t l1_imisses; |
| uint64_t l2_misses; |
| } InsnData; |
| |
| void (*update_hit)(Cache *cache, int set, int blk); |
| void (*update_miss)(Cache *cache, int set, int blk); |
| |
| void (*metadata_init)(Cache *cache); |
| void (*metadata_destroy)(Cache *cache); |
| |
| static int cores; |
| static Cache **l1_dcaches, **l1_icaches; |
| |
| static bool use_l2; |
| static Cache **l2_ucaches; |
| |
| static GMutex *l1_dcache_locks; |
| static GMutex *l1_icache_locks; |
| static GMutex *l2_ucache_locks; |
| |
| static uint64_t l1_dmem_accesses; |
| static uint64_t l1_imem_accesses; |
| static uint64_t l1_imisses; |
| static uint64_t l1_dmisses; |
| |
| static uint64_t l2_mem_accesses; |
| static uint64_t l2_misses; |
| |
| static int pow_of_two(int num) |
| { |
| g_assert((num & (num - 1)) == 0); |
| int ret = 0; |
| while (num /= 2) { |
| ret++; |
| } |
| return ret; |
| } |
| |
| /* |
| * LRU evection policy: For each set, a generation counter is maintained |
| * alongside a priority array. |
| * |
| * On each set access, the generation counter is incremented. |
| * |
| * On a cache hit: The hit-block is assigned the current generation counter, |
| * indicating that it is the most recently used block. |
| * |
| * On a cache miss: The block with the least priority is searched and replaced |
| * with the newly-cached block, of which the priority is set to the current |
| * generation number. |
| */ |
| |
| static void lru_priorities_init(Cache *cache) |
| { |
| int i; |
| |
| for (i = 0; i < cache->num_sets; i++) { |
| cache->sets[i].lru_priorities = g_new0(uint64_t, cache->assoc); |
| cache->sets[i].lru_gen_counter = 0; |
| } |
| } |
| |
| static void lru_update_blk(Cache *cache, int set_idx, int blk_idx) |
| { |
| CacheSet *set = &cache->sets[set_idx]; |
| set->lru_priorities[blk_idx] = cache->sets[set_idx].lru_gen_counter; |
| set->lru_gen_counter++; |
| } |
| |
| static int lru_get_lru_block(Cache *cache, int set_idx) |
| { |
| int i, min_idx, min_priority; |
| |
| min_priority = cache->sets[set_idx].lru_priorities[0]; |
| min_idx = 0; |
| |
| for (i = 1; i < cache->assoc; i++) { |
| if (cache->sets[set_idx].lru_priorities[i] < min_priority) { |
| min_priority = cache->sets[set_idx].lru_priorities[i]; |
| min_idx = i; |
| } |
| } |
| return min_idx; |
| } |
| |
| static void lru_priorities_destroy(Cache *cache) |
| { |
| int i; |
| |
| for (i = 0; i < cache->num_sets; i++) { |
| g_free(cache->sets[i].lru_priorities); |
| } |
| } |
| |
| /* |
| * FIFO eviction policy: a FIFO queue is maintained for each CacheSet that |
| * stores accesses to the cache. |
| * |
| * On a compulsory miss: The block index is enqueued to the fifo_queue to |
| * indicate that it's the latest cached block. |
| * |
| * On a conflict miss: The first-in block is removed from the cache and the new |
| * block is put in its place and enqueued to the FIFO queue. |
| */ |
| |
| static void fifo_init(Cache *cache) |
| { |
| int i; |
| |
| for (i = 0; i < cache->num_sets; i++) { |
| cache->sets[i].fifo_queue = g_queue_new(); |
| } |
| } |
| |
| static int fifo_get_first_block(Cache *cache, int set) |
| { |
| GQueue *q = cache->sets[set].fifo_queue; |
| return GPOINTER_TO_INT(g_queue_pop_tail(q)); |
| } |
| |
| static void fifo_update_on_miss(Cache *cache, int set, int blk_idx) |
| { |
| GQueue *q = cache->sets[set].fifo_queue; |
| g_queue_push_head(q, GINT_TO_POINTER(blk_idx)); |
| } |
| |
| static void fifo_destroy(Cache *cache) |
| { |
| int i; |
| |
| for (i = 0; i < cache->num_sets; i++) { |
| g_queue_free(cache->sets[i].fifo_queue); |
| } |
| } |
| |
| static inline uint64_t extract_tag(Cache *cache, uint64_t addr) |
| { |
| return addr & cache->tag_mask; |
| } |
| |
| static inline uint64_t extract_set(Cache *cache, uint64_t addr) |
| { |
| return (addr & cache->set_mask) >> cache->blksize_shift; |
| } |
| |
| static const char *cache_config_error(int blksize, int assoc, int cachesize) |
| { |
| if (cachesize % blksize != 0) { |
| return "cache size must be divisible by block size"; |
| } else if (cachesize % (blksize * assoc) != 0) { |
| return "cache size must be divisible by set size (assoc * block size)"; |
| } else { |
| return NULL; |
| } |
| } |
| |
| static bool bad_cache_params(int blksize, int assoc, int cachesize) |
| { |
| return (cachesize % blksize) != 0 || (cachesize % (blksize * assoc) != 0); |
| } |
| |
| static Cache *cache_init(int blksize, int assoc, int cachesize) |
| { |
| Cache *cache; |
| int i; |
| uint64_t blk_mask; |
| |
| /* |
| * This function shall not be called directly, and hence expects suitable |
| * parameters. |
| */ |
| g_assert(!bad_cache_params(blksize, assoc, cachesize)); |
| |
| cache = g_new(Cache, 1); |
| cache->assoc = assoc; |
| cache->cachesize = cachesize; |
| cache->num_sets = cachesize / (blksize * assoc); |
| cache->sets = g_new(CacheSet, cache->num_sets); |
| cache->blksize_shift = pow_of_two(blksize); |
| cache->accesses = 0; |
| cache->misses = 0; |
| |
| for (i = 0; i < cache->num_sets; i++) { |
| cache->sets[i].blocks = g_new0(CacheBlock, assoc); |
| } |
| |
| blk_mask = blksize - 1; |
| cache->set_mask = ((cache->num_sets - 1) << cache->blksize_shift); |
| cache->tag_mask = ~(cache->set_mask | blk_mask); |
| |
| if (metadata_init) { |
| metadata_init(cache); |
| } |
| |
| return cache; |
| } |
| |
| static Cache **caches_init(int blksize, int assoc, int cachesize) |
| { |
| Cache **caches; |
| int i; |
| |
| if (bad_cache_params(blksize, assoc, cachesize)) { |
| return NULL; |
| } |
| |
| caches = g_new(Cache *, cores); |
| |
| for (i = 0; i < cores; i++) { |
| caches[i] = cache_init(blksize, assoc, cachesize); |
| } |
| |
| return caches; |
| } |
| |
| static int get_invalid_block(Cache *cache, uint64_t set) |
| { |
| int i; |
| |
| for (i = 0; i < cache->assoc; i++) { |
| if (!cache->sets[set].blocks[i].valid) { |
| return i; |
| } |
| } |
| |
| return -1; |
| } |
| |
| static int get_replaced_block(Cache *cache, int set) |
| { |
| switch (policy) { |
| case RAND: |
| return g_rand_int_range(rng, 0, cache->assoc); |
| case LRU: |
| return lru_get_lru_block(cache, set); |
| case FIFO: |
| return fifo_get_first_block(cache, set); |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| static int in_cache(Cache *cache, uint64_t addr) |
| { |
| int i; |
| uint64_t tag, set; |
| |
| tag = extract_tag(cache, addr); |
| set = extract_set(cache, addr); |
| |
| for (i = 0; i < cache->assoc; i++) { |
| if (cache->sets[set].blocks[i].tag == tag && |
| cache->sets[set].blocks[i].valid) { |
| return i; |
| } |
| } |
| |
| return -1; |
| } |
| |
| /** |
| * access_cache(): Simulate a cache access |
| * @cache: The cache under simulation |
| * @addr: The address of the requested memory location |
| * |
| * Returns true if the requested data is hit in the cache and false when missed. |
| * The cache is updated on miss for the next access. |
| */ |
| static bool access_cache(Cache *cache, uint64_t addr) |
| { |
| int hit_blk, replaced_blk; |
| uint64_t tag, set; |
| |
| tag = extract_tag(cache, addr); |
| set = extract_set(cache, addr); |
| |
| hit_blk = in_cache(cache, addr); |
| if (hit_blk != -1) { |
| if (update_hit) { |
| update_hit(cache, set, hit_blk); |
| } |
| return true; |
| } |
| |
| replaced_blk = get_invalid_block(cache, set); |
| |
| if (replaced_blk == -1) { |
| replaced_blk = get_replaced_block(cache, set); |
| } |
| |
| if (update_miss) { |
| update_miss(cache, set, replaced_blk); |
| } |
| |
| cache->sets[set].blocks[replaced_blk].tag = tag; |
| cache->sets[set].blocks[replaced_blk].valid = true; |
| |
| return false; |
| } |
| |
| static void vcpu_mem_access(unsigned int vcpu_index, qemu_plugin_meminfo_t info, |
| uint64_t vaddr, void *userdata) |
| { |
| uint64_t effective_addr; |
| struct qemu_plugin_hwaddr *hwaddr; |
| int cache_idx; |
| InsnData *insn; |
| bool hit_in_l1; |
| |
| hwaddr = qemu_plugin_get_hwaddr(info, vaddr); |
| if (hwaddr && qemu_plugin_hwaddr_is_io(hwaddr)) { |
| return; |
| } |
| |
| effective_addr = hwaddr ? qemu_plugin_hwaddr_phys_addr(hwaddr) : vaddr; |
| cache_idx = vcpu_index % cores; |
| |
| g_mutex_lock(&l1_dcache_locks[cache_idx]); |
| hit_in_l1 = access_cache(l1_dcaches[cache_idx], effective_addr); |
| if (!hit_in_l1) { |
| insn = userdata; |
| __atomic_fetch_add(&insn->l1_dmisses, 1, __ATOMIC_SEQ_CST); |
| l1_dcaches[cache_idx]->misses++; |
| } |
| l1_dcaches[cache_idx]->accesses++; |
| g_mutex_unlock(&l1_dcache_locks[cache_idx]); |
| |
| if (hit_in_l1 || !use_l2) { |
| /* No need to access L2 */ |
| return; |
| } |
| |
| g_mutex_lock(&l2_ucache_locks[cache_idx]); |
| if (!access_cache(l2_ucaches[cache_idx], effective_addr)) { |
| insn = userdata; |
| __atomic_fetch_add(&insn->l2_misses, 1, __ATOMIC_SEQ_CST); |
| l2_ucaches[cache_idx]->misses++; |
| } |
| l2_ucaches[cache_idx]->accesses++; |
| g_mutex_unlock(&l2_ucache_locks[cache_idx]); |
| } |
| |
| static void vcpu_insn_exec(unsigned int vcpu_index, void *userdata) |
| { |
| uint64_t insn_addr; |
| InsnData *insn; |
| int cache_idx; |
| bool hit_in_l1; |
| |
| insn_addr = ((InsnData *) userdata)->addr; |
| |
| cache_idx = vcpu_index % cores; |
| g_mutex_lock(&l1_icache_locks[cache_idx]); |
| hit_in_l1 = access_cache(l1_icaches[cache_idx], insn_addr); |
| if (!hit_in_l1) { |
| insn = userdata; |
| __atomic_fetch_add(&insn->l1_imisses, 1, __ATOMIC_SEQ_CST); |
| l1_icaches[cache_idx]->misses++; |
| } |
| l1_icaches[cache_idx]->accesses++; |
| g_mutex_unlock(&l1_icache_locks[cache_idx]); |
| |
| if (hit_in_l1 || !use_l2) { |
| /* No need to access L2 */ |
| return; |
| } |
| |
| g_mutex_lock(&l2_ucache_locks[cache_idx]); |
| if (!access_cache(l2_ucaches[cache_idx], insn_addr)) { |
| insn = userdata; |
| __atomic_fetch_add(&insn->l2_misses, 1, __ATOMIC_SEQ_CST); |
| l2_ucaches[cache_idx]->misses++; |
| } |
| l2_ucaches[cache_idx]->accesses++; |
| g_mutex_unlock(&l2_ucache_locks[cache_idx]); |
| } |
| |
| static void vcpu_tb_trans(qemu_plugin_id_t id, struct qemu_plugin_tb *tb) |
| { |
| size_t n_insns; |
| size_t i; |
| InsnData *data; |
| |
| n_insns = qemu_plugin_tb_n_insns(tb); |
| for (i = 0; i < n_insns; i++) { |
| struct qemu_plugin_insn *insn = qemu_plugin_tb_get_insn(tb, i); |
| uint64_t effective_addr; |
| |
| if (sys) { |
| effective_addr = (uint64_t) qemu_plugin_insn_haddr(insn); |
| } else { |
| effective_addr = (uint64_t) qemu_plugin_insn_vaddr(insn); |
| } |
| |
| /* |
| * Instructions might get translated multiple times, we do not create |
| * new entries for those instructions. Instead, we fetch the same |
| * entry from the hash table and register it for the callback again. |
| */ |
| g_mutex_lock(&hashtable_lock); |
| data = g_hash_table_lookup(miss_ht, GUINT_TO_POINTER(effective_addr)); |
| if (data == NULL) { |
| data = g_new0(InsnData, 1); |
| data->disas_str = qemu_plugin_insn_disas(insn); |
| data->symbol = qemu_plugin_insn_symbol(insn); |
| data->addr = effective_addr; |
| g_hash_table_insert(miss_ht, GUINT_TO_POINTER(effective_addr), |
| (gpointer) data); |
| } |
| g_mutex_unlock(&hashtable_lock); |
| |
| qemu_plugin_register_vcpu_mem_cb(insn, vcpu_mem_access, |
| QEMU_PLUGIN_CB_NO_REGS, |
| rw, data); |
| |
| qemu_plugin_register_vcpu_insn_exec_cb(insn, vcpu_insn_exec, |
| QEMU_PLUGIN_CB_NO_REGS, data); |
| } |
| } |
| |
| static void insn_free(gpointer data) |
| { |
| InsnData *insn = (InsnData *) data; |
| g_free(insn->disas_str); |
| g_free(insn); |
| } |
| |
| static void cache_free(Cache *cache) |
| { |
| for (int i = 0; i < cache->num_sets; i++) { |
| g_free(cache->sets[i].blocks); |
| } |
| |
| if (metadata_destroy) { |
| metadata_destroy(cache); |
| } |
| |
| g_free(cache->sets); |
| g_free(cache); |
| } |
| |
| static void caches_free(Cache **caches) |
| { |
| int i; |
| |
| for (i = 0; i < cores; i++) { |
| cache_free(caches[i]); |
| } |
| } |
| |
| static void append_stats_line(GString *line, |
| uint64_t l1_daccess, uint64_t l1_dmisses, |
| uint64_t l1_iaccess, uint64_t l1_imisses, |
| uint64_t l2_access, uint64_t l2_misses) |
| { |
| double l1_dmiss_rate = ((double) l1_dmisses) / (l1_daccess) * 100.0; |
| double l1_imiss_rate = ((double) l1_imisses) / (l1_iaccess) * 100.0; |
| |
| g_string_append_printf(line, "%-14" PRIu64 " %-12" PRIu64 " %9.4lf%%" |
| " %-14" PRIu64 " %-12" PRIu64 " %9.4lf%%", |
| l1_daccess, |
| l1_dmisses, |
| l1_daccess ? l1_dmiss_rate : 0.0, |
| l1_iaccess, |
| l1_imisses, |
| l1_iaccess ? l1_imiss_rate : 0.0); |
| |
| if (l2_access && l2_misses) { |
| double l2_miss_rate = ((double) l2_misses) / (l2_access) * 100.0; |
| g_string_append_printf(line, |
| " %-12" PRIu64 " %-11" PRIu64 " %10.4lf%%", |
| l2_access, |
| l2_misses, |
| l2_access ? l2_miss_rate : 0.0); |
| } |
| |
| g_string_append(line, "\n"); |
| } |
| |
| static void sum_stats(void) |
| { |
| int i; |
| |
| g_assert(cores > 1); |
| for (i = 0; i < cores; i++) { |
| l1_imisses += l1_icaches[i]->misses; |
| l1_dmisses += l1_dcaches[i]->misses; |
| l1_imem_accesses += l1_icaches[i]->accesses; |
| l1_dmem_accesses += l1_dcaches[i]->accesses; |
| |
| if (use_l2) { |
| l2_misses += l2_ucaches[i]->misses; |
| l2_mem_accesses += l2_ucaches[i]->accesses; |
| } |
| } |
| } |
| |
| static int dcmp(gconstpointer a, gconstpointer b) |
| { |
| InsnData *insn_a = (InsnData *) a; |
| InsnData *insn_b = (InsnData *) b; |
| |
| return insn_a->l1_dmisses < insn_b->l1_dmisses ? 1 : -1; |
| } |
| |
| static int icmp(gconstpointer a, gconstpointer b) |
| { |
| InsnData *insn_a = (InsnData *) a; |
| InsnData *insn_b = (InsnData *) b; |
| |
| return insn_a->l1_imisses < insn_b->l1_imisses ? 1 : -1; |
| } |
| |
| static int l2_cmp(gconstpointer a, gconstpointer b) |
| { |
| InsnData *insn_a = (InsnData *) a; |
| InsnData *insn_b = (InsnData *) b; |
| |
| return insn_a->l2_misses < insn_b->l2_misses ? 1 : -1; |
| } |
| |
| static void log_stats(void) |
| { |
| int i; |
| Cache *icache, *dcache, *l2_cache; |
| |
| g_autoptr(GString) rep = g_string_new("core #, data accesses, data misses," |
| " dmiss rate, insn accesses," |
| " insn misses, imiss rate"); |
| |
| if (use_l2) { |
| g_string_append(rep, ", l2 accesses, l2 misses, l2 miss rate"); |
| } |
| |
| g_string_append(rep, "\n"); |
| |
| for (i = 0; i < cores; i++) { |
| g_string_append_printf(rep, "%-8d", i); |
| dcache = l1_dcaches[i]; |
| icache = l1_icaches[i]; |
| l2_cache = use_l2 ? l2_ucaches[i] : NULL; |
| append_stats_line(rep, dcache->accesses, dcache->misses, |
| icache->accesses, icache->misses, |
| l2_cache ? l2_cache->accesses : 0, |
| l2_cache ? l2_cache->misses : 0); |
| } |
| |
| if (cores > 1) { |
| sum_stats(); |
| g_string_append_printf(rep, "%-8s", "sum"); |
| append_stats_line(rep, l1_dmem_accesses, l1_dmisses, |
| l1_imem_accesses, l1_imisses, |
| l2_cache ? l2_mem_accesses : 0, l2_cache ? l2_misses : 0); |
| } |
| |
| g_string_append(rep, "\n"); |
| qemu_plugin_outs(rep->str); |
| } |
| |
| static void log_top_insns(void) |
| { |
| int i; |
| GList *curr, *miss_insns; |
| InsnData *insn; |
| |
| miss_insns = g_hash_table_get_values(miss_ht); |
| miss_insns = g_list_sort(miss_insns, dcmp); |
| g_autoptr(GString) rep = g_string_new(""); |
| g_string_append_printf(rep, "%s", "address, data misses, instruction\n"); |
| |
| for (curr = miss_insns, i = 0; curr && i < limit; i++, curr = curr->next) { |
| insn = (InsnData *) curr->data; |
| g_string_append_printf(rep, "0x%" PRIx64, insn->addr); |
| if (insn->symbol) { |
| g_string_append_printf(rep, " (%s)", insn->symbol); |
| } |
| g_string_append_printf(rep, ", %" PRId64 ", %s\n", |
| insn->l1_dmisses, insn->disas_str); |
| } |
| |
| miss_insns = g_list_sort(miss_insns, icmp); |
| g_string_append_printf(rep, "%s", "\naddress, fetch misses, instruction\n"); |
| |
| for (curr = miss_insns, i = 0; curr && i < limit; i++, curr = curr->next) { |
| insn = (InsnData *) curr->data; |
| g_string_append_printf(rep, "0x%" PRIx64, insn->addr); |
| if (insn->symbol) { |
| g_string_append_printf(rep, " (%s)", insn->symbol); |
| } |
| g_string_append_printf(rep, ", %" PRId64 ", %s\n", |
| insn->l1_imisses, insn->disas_str); |
| } |
| |
| if (!use_l2) { |
| goto finish; |
| } |
| |
| miss_insns = g_list_sort(miss_insns, l2_cmp); |
| g_string_append_printf(rep, "%s", "\naddress, L2 misses, instruction\n"); |
| |
| for (curr = miss_insns, i = 0; curr && i < limit; i++, curr = curr->next) { |
| insn = (InsnData *) curr->data; |
| g_string_append_printf(rep, "0x%" PRIx64, insn->addr); |
| if (insn->symbol) { |
| g_string_append_printf(rep, " (%s)", insn->symbol); |
| } |
| g_string_append_printf(rep, ", %" PRId64 ", %s\n", |
| insn->l2_misses, insn->disas_str); |
| } |
| |
| finish: |
| qemu_plugin_outs(rep->str); |
| g_list_free(miss_insns); |
| } |
| |
| static void plugin_exit(qemu_plugin_id_t id, void *p) |
| { |
| log_stats(); |
| log_top_insns(); |
| |
| caches_free(l1_dcaches); |
| caches_free(l1_icaches); |
| |
| g_free(l1_dcache_locks); |
| g_free(l1_icache_locks); |
| |
| if (use_l2) { |
| caches_free(l2_ucaches); |
| g_free(l2_ucache_locks); |
| } |
| |
| g_hash_table_destroy(miss_ht); |
| } |
| |
| static void policy_init(void) |
| { |
| switch (policy) { |
| case LRU: |
| update_hit = lru_update_blk; |
| update_miss = lru_update_blk; |
| metadata_init = lru_priorities_init; |
| metadata_destroy = lru_priorities_destroy; |
| break; |
| case FIFO: |
| update_miss = fifo_update_on_miss; |
| metadata_init = fifo_init; |
| metadata_destroy = fifo_destroy; |
| break; |
| case RAND: |
| rng = g_rand_new(); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| QEMU_PLUGIN_EXPORT |
| int qemu_plugin_install(qemu_plugin_id_t id, const qemu_info_t *info, |
| int argc, char **argv) |
| { |
| int i; |
| int l1_iassoc, l1_iblksize, l1_icachesize; |
| int l1_dassoc, l1_dblksize, l1_dcachesize; |
| int l2_assoc, l2_blksize, l2_cachesize; |
| |
| limit = 32; |
| sys = info->system_emulation; |
| |
| l1_dassoc = 8; |
| l1_dblksize = 64; |
| l1_dcachesize = l1_dblksize * l1_dassoc * 32; |
| |
| l1_iassoc = 8; |
| l1_iblksize = 64; |
| l1_icachesize = l1_iblksize * l1_iassoc * 32; |
| |
| l2_assoc = 16; |
| l2_blksize = 64; |
| l2_cachesize = l2_assoc * l2_blksize * 2048; |
| |
| policy = LRU; |
| |
| cores = sys ? qemu_plugin_n_vcpus() : 1; |
| |
| for (i = 0; i < argc; i++) { |
| char *opt = argv[i]; |
| g_auto(GStrv) tokens = g_strsplit(opt, "=", 2); |
| |
| if (g_strcmp0(tokens[0], "iblksize") == 0) { |
| l1_iblksize = STRTOLL(tokens[1]); |
| } else if (g_strcmp0(tokens[0], "iassoc") == 0) { |
| l1_iassoc = STRTOLL(tokens[1]); |
| } else if (g_strcmp0(tokens[0], "icachesize") == 0) { |
| l1_icachesize = STRTOLL(tokens[1]); |
| } else if (g_strcmp0(tokens[0], "dblksize") == 0) { |
| l1_dblksize = STRTOLL(tokens[1]); |
| } else if (g_strcmp0(tokens[0], "dassoc") == 0) { |
| l1_dassoc = STRTOLL(tokens[1]); |
| } else if (g_strcmp0(tokens[0], "dcachesize") == 0) { |
| l1_dcachesize = STRTOLL(tokens[1]); |
| } else if (g_strcmp0(tokens[0], "limit") == 0) { |
| limit = STRTOLL(tokens[1]); |
| } else if (g_strcmp0(tokens[0], "cores") == 0) { |
| cores = STRTOLL(tokens[1]); |
| } else if (g_strcmp0(tokens[0], "l2cachesize") == 0) { |
| use_l2 = true; |
| l2_cachesize = STRTOLL(tokens[1]); |
| } else if (g_strcmp0(tokens[0], "l2blksize") == 0) { |
| use_l2 = true; |
| l2_blksize = STRTOLL(tokens[1]); |
| } else if (g_strcmp0(tokens[0], "l2assoc") == 0) { |
| use_l2 = true; |
| l2_assoc = STRTOLL(tokens[1]); |
| } else if (g_strcmp0(tokens[0], "l2") == 0) { |
| if (!qemu_plugin_bool_parse(tokens[0], tokens[1], &use_l2)) { |
| fprintf(stderr, "boolean argument parsing failed: %s\n", opt); |
| return -1; |
| } |
| } else if (g_strcmp0(tokens[0], "evict") == 0) { |
| if (g_strcmp0(tokens[1], "rand") == 0) { |
| policy = RAND; |
| } else if (g_strcmp0(tokens[1], "lru") == 0) { |
| policy = LRU; |
| } else if (g_strcmp0(tokens[1], "fifo") == 0) { |
| policy = FIFO; |
| } else { |
| fprintf(stderr, "invalid eviction policy: %s\n", opt); |
| return -1; |
| } |
| } else { |
| fprintf(stderr, "option parsing failed: %s\n", opt); |
| return -1; |
| } |
| } |
| |
| policy_init(); |
| |
| l1_dcaches = caches_init(l1_dblksize, l1_dassoc, l1_dcachesize); |
| if (!l1_dcaches) { |
| const char *err = cache_config_error(l1_dblksize, l1_dassoc, l1_dcachesize); |
| fprintf(stderr, "dcache cannot be constructed from given parameters\n"); |
| fprintf(stderr, "%s\n", err); |
| return -1; |
| } |
| |
| l1_icaches = caches_init(l1_iblksize, l1_iassoc, l1_icachesize); |
| if (!l1_icaches) { |
| const char *err = cache_config_error(l1_iblksize, l1_iassoc, l1_icachesize); |
| fprintf(stderr, "icache cannot be constructed from given parameters\n"); |
| fprintf(stderr, "%s\n", err); |
| return -1; |
| } |
| |
| l2_ucaches = use_l2 ? caches_init(l2_blksize, l2_assoc, l2_cachesize) : NULL; |
| if (!l2_ucaches && use_l2) { |
| const char *err = cache_config_error(l2_blksize, l2_assoc, l2_cachesize); |
| fprintf(stderr, "L2 cache cannot be constructed from given parameters\n"); |
| fprintf(stderr, "%s\n", err); |
| return -1; |
| } |
| |
| l1_dcache_locks = g_new0(GMutex, cores); |
| l1_icache_locks = g_new0(GMutex, cores); |
| l2_ucache_locks = use_l2 ? g_new0(GMutex, cores) : NULL; |
| |
| qemu_plugin_register_vcpu_tb_trans_cb(id, vcpu_tb_trans); |
| qemu_plugin_register_atexit_cb(id, plugin_exit, NULL); |
| |
| miss_ht = g_hash_table_new_full(NULL, g_direct_equal, NULL, insn_free); |
| |
| return 0; |
| } |