| /* |
| * QEMU ARM CPU -- internal functions and types |
| * |
| * Copyright (c) 2014 Linaro Ltd |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version 2 |
| * of the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, see |
| * <http://www.gnu.org/licenses/gpl-2.0.html> |
| * |
| * This header defines functions, types, etc which need to be shared |
| * between different source files within target/arm/ but which are |
| * private to it and not required by the rest of QEMU. |
| */ |
| |
| #ifndef TARGET_ARM_INTERNALS_H |
| #define TARGET_ARM_INTERNALS_H |
| |
| #include "hw/registerfields.h" |
| #include "tcg/tcg-gvec-desc.h" |
| #include "syndrome.h" |
| #include "cpu-features.h" |
| |
| /* register banks for CPU modes */ |
| #define BANK_USRSYS 0 |
| #define BANK_SVC 1 |
| #define BANK_ABT 2 |
| #define BANK_UND 3 |
| #define BANK_IRQ 4 |
| #define BANK_FIQ 5 |
| #define BANK_HYP 6 |
| #define BANK_MON 7 |
| |
| static inline bool excp_is_internal(int excp) |
| { |
| /* Return true if this exception number represents a QEMU-internal |
| * exception that will not be passed to the guest. |
| */ |
| return excp == EXCP_INTERRUPT |
| || excp == EXCP_HLT |
| || excp == EXCP_DEBUG |
| || excp == EXCP_HALTED |
| || excp == EXCP_EXCEPTION_EXIT |
| || excp == EXCP_KERNEL_TRAP |
| || excp == EXCP_SEMIHOST; |
| } |
| |
| /* Scale factor for generic timers, ie number of ns per tick. |
| * This gives a 62.5MHz timer. |
| */ |
| #define GTIMER_SCALE 16 |
| |
| /* Bit definitions for the v7M CONTROL register */ |
| FIELD(V7M_CONTROL, NPRIV, 0, 1) |
| FIELD(V7M_CONTROL, SPSEL, 1, 1) |
| FIELD(V7M_CONTROL, FPCA, 2, 1) |
| FIELD(V7M_CONTROL, SFPA, 3, 1) |
| |
| /* Bit definitions for v7M exception return payload */ |
| FIELD(V7M_EXCRET, ES, 0, 1) |
| FIELD(V7M_EXCRET, RES0, 1, 1) |
| FIELD(V7M_EXCRET, SPSEL, 2, 1) |
| FIELD(V7M_EXCRET, MODE, 3, 1) |
| FIELD(V7M_EXCRET, FTYPE, 4, 1) |
| FIELD(V7M_EXCRET, DCRS, 5, 1) |
| FIELD(V7M_EXCRET, S, 6, 1) |
| FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */ |
| |
| /* Minimum value which is a magic number for exception return */ |
| #define EXC_RETURN_MIN_MAGIC 0xff000000 |
| /* Minimum number which is a magic number for function or exception return |
| * when using v8M security extension |
| */ |
| #define FNC_RETURN_MIN_MAGIC 0xfefffffe |
| |
| /* Bit definitions for DBGWCRn and DBGWCRn_EL1 */ |
| FIELD(DBGWCR, E, 0, 1) |
| FIELD(DBGWCR, PAC, 1, 2) |
| FIELD(DBGWCR, LSC, 3, 2) |
| FIELD(DBGWCR, BAS, 5, 8) |
| FIELD(DBGWCR, HMC, 13, 1) |
| FIELD(DBGWCR, SSC, 14, 2) |
| FIELD(DBGWCR, LBN, 16, 4) |
| FIELD(DBGWCR, WT, 20, 1) |
| FIELD(DBGWCR, MASK, 24, 5) |
| FIELD(DBGWCR, SSCE, 29, 1) |
| |
| /* We use a few fake FSR values for internal purposes in M profile. |
| * M profile cores don't have A/R format FSRs, but currently our |
| * get_phys_addr() code assumes A/R profile and reports failures via |
| * an A/R format FSR value. We then translate that into the proper |
| * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt(). |
| * Mostly the FSR values we use for this are those defined for v7PMSA, |
| * since we share some of that codepath. A few kinds of fault are |
| * only for M profile and have no A/R equivalent, though, so we have |
| * to pick a value from the reserved range (which we never otherwise |
| * generate) to use for these. |
| * These values will never be visible to the guest. |
| */ |
| #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */ |
| #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */ |
| |
| /** |
| * raise_exception: Raise the specified exception. |
| * Raise a guest exception with the specified value, syndrome register |
| * and target exception level. This should be called from helper functions, |
| * and never returns because we will longjump back up to the CPU main loop. |
| */ |
| G_NORETURN void raise_exception(CPUARMState *env, uint32_t excp, |
| uint32_t syndrome, uint32_t target_el); |
| |
| /* |
| * Similarly, but also use unwinding to restore cpu state. |
| */ |
| G_NORETURN void raise_exception_ra(CPUARMState *env, uint32_t excp, |
| uint32_t syndrome, uint32_t target_el, |
| uintptr_t ra); |
| |
| /* |
| * For AArch64, map a given EL to an index in the banked_spsr array. |
| * Note that this mapping and the AArch32 mapping defined in bank_number() |
| * must agree such that the AArch64<->AArch32 SPSRs have the architecturally |
| * mandated mapping between each other. |
| */ |
| static inline unsigned int aarch64_banked_spsr_index(unsigned int el) |
| { |
| static const unsigned int map[4] = { |
| [1] = BANK_SVC, /* EL1. */ |
| [2] = BANK_HYP, /* EL2. */ |
| [3] = BANK_MON, /* EL3. */ |
| }; |
| assert(el >= 1 && el <= 3); |
| return map[el]; |
| } |
| |
| /* Map CPU modes onto saved register banks. */ |
| static inline int bank_number(int mode) |
| { |
| switch (mode) { |
| case ARM_CPU_MODE_USR: |
| case ARM_CPU_MODE_SYS: |
| return BANK_USRSYS; |
| case ARM_CPU_MODE_SVC: |
| return BANK_SVC; |
| case ARM_CPU_MODE_ABT: |
| return BANK_ABT; |
| case ARM_CPU_MODE_UND: |
| return BANK_UND; |
| case ARM_CPU_MODE_IRQ: |
| return BANK_IRQ; |
| case ARM_CPU_MODE_FIQ: |
| return BANK_FIQ; |
| case ARM_CPU_MODE_HYP: |
| return BANK_HYP; |
| case ARM_CPU_MODE_MON: |
| return BANK_MON; |
| } |
| g_assert_not_reached(); |
| } |
| |
| /** |
| * r14_bank_number: Map CPU mode onto register bank for r14 |
| * |
| * Given an AArch32 CPU mode, return the index into the saved register |
| * banks to use for the R14 (LR) in that mode. This is the same as |
| * bank_number(), except for the special case of Hyp mode, where |
| * R14 is shared with USR and SYS, unlike its R13 and SPSR. |
| * This should be used as the index into env->banked_r14[], and |
| * bank_number() used for the index into env->banked_r13[] and |
| * env->banked_spsr[]. |
| */ |
| static inline int r14_bank_number(int mode) |
| { |
| return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode); |
| } |
| |
| void arm_cpu_register(const ARMCPUInfo *info); |
| void aarch64_cpu_register(const ARMCPUInfo *info); |
| |
| void register_cp_regs_for_features(ARMCPU *cpu); |
| void init_cpreg_list(ARMCPU *cpu); |
| |
| void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu); |
| void arm_translate_init(void); |
| |
| void arm_restore_state_to_opc(CPUState *cs, |
| const TranslationBlock *tb, |
| const uint64_t *data); |
| |
| #ifdef CONFIG_TCG |
| void arm_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb); |
| #endif /* CONFIG_TCG */ |
| |
| typedef enum ARMFPRounding { |
| FPROUNDING_TIEEVEN, |
| FPROUNDING_POSINF, |
| FPROUNDING_NEGINF, |
| FPROUNDING_ZERO, |
| FPROUNDING_TIEAWAY, |
| FPROUNDING_ODD |
| } ARMFPRounding; |
| |
| extern const FloatRoundMode arm_rmode_to_sf_map[6]; |
| |
| static inline FloatRoundMode arm_rmode_to_sf(ARMFPRounding rmode) |
| { |
| assert((unsigned)rmode < ARRAY_SIZE(arm_rmode_to_sf_map)); |
| return arm_rmode_to_sf_map[rmode]; |
| } |
| |
| static inline void aarch64_save_sp(CPUARMState *env, int el) |
| { |
| if (env->pstate & PSTATE_SP) { |
| env->sp_el[el] = env->xregs[31]; |
| } else { |
| env->sp_el[0] = env->xregs[31]; |
| } |
| } |
| |
| static inline void aarch64_restore_sp(CPUARMState *env, int el) |
| { |
| if (env->pstate & PSTATE_SP) { |
| env->xregs[31] = env->sp_el[el]; |
| } else { |
| env->xregs[31] = env->sp_el[0]; |
| } |
| } |
| |
| static inline void update_spsel(CPUARMState *env, uint32_t imm) |
| { |
| unsigned int cur_el = arm_current_el(env); |
| /* Update PSTATE SPSel bit; this requires us to update the |
| * working stack pointer in xregs[31]. |
| */ |
| if (!((imm ^ env->pstate) & PSTATE_SP)) { |
| return; |
| } |
| aarch64_save_sp(env, cur_el); |
| env->pstate = deposit32(env->pstate, 0, 1, imm); |
| |
| /* We rely on illegal updates to SPsel from EL0 to get trapped |
| * at translation time. |
| */ |
| assert(cur_el >= 1 && cur_el <= 3); |
| aarch64_restore_sp(env, cur_el); |
| } |
| |
| /* |
| * arm_pamax |
| * @cpu: ARMCPU |
| * |
| * Returns the implementation defined bit-width of physical addresses. |
| * The ARMv8 reference manuals refer to this as PAMax(). |
| */ |
| unsigned int arm_pamax(ARMCPU *cpu); |
| |
| /* Return true if extended addresses are enabled. |
| * This is always the case if our translation regime is 64 bit, |
| * but depends on TTBCR.EAE for 32 bit. |
| */ |
| static inline bool extended_addresses_enabled(CPUARMState *env) |
| { |
| uint64_t tcr = env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1]; |
| if (arm_feature(env, ARM_FEATURE_PMSA) && |
| arm_feature(env, ARM_FEATURE_V8)) { |
| return true; |
| } |
| return arm_el_is_aa64(env, 1) || |
| (arm_feature(env, ARM_FEATURE_LPAE) && (tcr & TTBCR_EAE)); |
| } |
| |
| /* Update a QEMU watchpoint based on the information the guest has set in the |
| * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers. |
| */ |
| void hw_watchpoint_update(ARMCPU *cpu, int n); |
| /* Update the QEMU watchpoints for every guest watchpoint. This does a |
| * complete delete-and-reinstate of the QEMU watchpoint list and so is |
| * suitable for use after migration or on reset. |
| */ |
| void hw_watchpoint_update_all(ARMCPU *cpu); |
| /* Update a QEMU breakpoint based on the information the guest has set in the |
| * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers. |
| */ |
| void hw_breakpoint_update(ARMCPU *cpu, int n); |
| /* Update the QEMU breakpoints for every guest breakpoint. This does a |
| * complete delete-and-reinstate of the QEMU breakpoint list and so is |
| * suitable for use after migration or on reset. |
| */ |
| void hw_breakpoint_update_all(ARMCPU *cpu); |
| |
| /* Callback function for checking if a breakpoint should trigger. */ |
| bool arm_debug_check_breakpoint(CPUState *cs); |
| |
| /* Callback function for checking if a watchpoint should trigger. */ |
| bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp); |
| |
| /* Adjust addresses (in BE32 mode) before testing against watchpoint |
| * addresses. |
| */ |
| vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len); |
| |
| /* Callback function for when a watchpoint or breakpoint triggers. */ |
| void arm_debug_excp_handler(CPUState *cs); |
| |
| #if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG) |
| static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type) |
| { |
| return false; |
| } |
| static inline void arm_handle_psci_call(ARMCPU *cpu) |
| { |
| g_assert_not_reached(); |
| } |
| #else |
| /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */ |
| bool arm_is_psci_call(ARMCPU *cpu, int excp_type); |
| /* Actually handle a PSCI call */ |
| void arm_handle_psci_call(ARMCPU *cpu); |
| #endif |
| |
| /** |
| * arm_clear_exclusive: clear the exclusive monitor |
| * @env: CPU env |
| * Clear the CPU's exclusive monitor, like the guest CLREX instruction. |
| */ |
| static inline void arm_clear_exclusive(CPUARMState *env) |
| { |
| env->exclusive_addr = -1; |
| } |
| |
| /** |
| * ARMFaultType: type of an ARM MMU fault |
| * This corresponds to the v8A pseudocode's Fault enumeration, |
| * with extensions for QEMU internal conditions. |
| */ |
| typedef enum ARMFaultType { |
| ARMFault_None, |
| ARMFault_AccessFlag, |
| ARMFault_Alignment, |
| ARMFault_Background, |
| ARMFault_Domain, |
| ARMFault_Permission, |
| ARMFault_Translation, |
| ARMFault_AddressSize, |
| ARMFault_SyncExternal, |
| ARMFault_SyncExternalOnWalk, |
| ARMFault_SyncParity, |
| ARMFault_SyncParityOnWalk, |
| ARMFault_AsyncParity, |
| ARMFault_AsyncExternal, |
| ARMFault_Debug, |
| ARMFault_TLBConflict, |
| ARMFault_UnsuppAtomicUpdate, |
| ARMFault_Lockdown, |
| ARMFault_Exclusive, |
| ARMFault_ICacheMaint, |
| ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */ |
| ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */ |
| ARMFault_GPCFOnWalk, |
| ARMFault_GPCFOnOutput, |
| } ARMFaultType; |
| |
| typedef enum ARMGPCF { |
| GPCF_None, |
| GPCF_AddressSize, |
| GPCF_Walk, |
| GPCF_EABT, |
| GPCF_Fail, |
| } ARMGPCF; |
| |
| /** |
| * ARMMMUFaultInfo: Information describing an ARM MMU Fault |
| * @type: Type of fault |
| * @gpcf: Subtype of ARMFault_GPCFOn{Walk,Output}. |
| * @level: Table walk level (for translation, access flag and permission faults) |
| * @domain: Domain of the fault address (for non-LPAE CPUs only) |
| * @s2addr: Address that caused a fault at stage 2 |
| * @paddr: physical address that caused a fault for gpc |
| * @paddr_space: physical address space that caused a fault for gpc |
| * @stage2: True if we faulted at stage 2 |
| * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk |
| * @s1ns: True if we faulted on a non-secure IPA while in secure state |
| * @ea: True if we should set the EA (external abort type) bit in syndrome |
| */ |
| typedef struct ARMMMUFaultInfo ARMMMUFaultInfo; |
| struct ARMMMUFaultInfo { |
| ARMFaultType type; |
| ARMGPCF gpcf; |
| target_ulong s2addr; |
| target_ulong paddr; |
| ARMSecuritySpace paddr_space; |
| int level; |
| int domain; |
| bool stage2; |
| bool s1ptw; |
| bool s1ns; |
| bool ea; |
| }; |
| |
| /** |
| * arm_fi_to_sfsc: Convert fault info struct to short-format FSC |
| * Compare pseudocode EncodeSDFSC(), though unlike that function |
| * we set up a whole FSR-format code including domain field and |
| * putting the high bit of the FSC into bit 10. |
| */ |
| static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi) |
| { |
| uint32_t fsc; |
| |
| switch (fi->type) { |
| case ARMFault_None: |
| return 0; |
| case ARMFault_AccessFlag: |
| fsc = fi->level == 1 ? 0x3 : 0x6; |
| break; |
| case ARMFault_Alignment: |
| fsc = 0x1; |
| break; |
| case ARMFault_Permission: |
| fsc = fi->level == 1 ? 0xd : 0xf; |
| break; |
| case ARMFault_Domain: |
| fsc = fi->level == 1 ? 0x9 : 0xb; |
| break; |
| case ARMFault_Translation: |
| fsc = fi->level == 1 ? 0x5 : 0x7; |
| break; |
| case ARMFault_SyncExternal: |
| fsc = 0x8 | (fi->ea << 12); |
| break; |
| case ARMFault_SyncExternalOnWalk: |
| fsc = fi->level == 1 ? 0xc : 0xe; |
| fsc |= (fi->ea << 12); |
| break; |
| case ARMFault_SyncParity: |
| fsc = 0x409; |
| break; |
| case ARMFault_SyncParityOnWalk: |
| fsc = fi->level == 1 ? 0x40c : 0x40e; |
| break; |
| case ARMFault_AsyncParity: |
| fsc = 0x408; |
| break; |
| case ARMFault_AsyncExternal: |
| fsc = 0x406 | (fi->ea << 12); |
| break; |
| case ARMFault_Debug: |
| fsc = 0x2; |
| break; |
| case ARMFault_TLBConflict: |
| fsc = 0x400; |
| break; |
| case ARMFault_Lockdown: |
| fsc = 0x404; |
| break; |
| case ARMFault_Exclusive: |
| fsc = 0x405; |
| break; |
| case ARMFault_ICacheMaint: |
| fsc = 0x4; |
| break; |
| case ARMFault_Background: |
| fsc = 0x0; |
| break; |
| case ARMFault_QEMU_NSCExec: |
| fsc = M_FAKE_FSR_NSC_EXEC; |
| break; |
| case ARMFault_QEMU_SFault: |
| fsc = M_FAKE_FSR_SFAULT; |
| break; |
| default: |
| /* Other faults can't occur in a context that requires a |
| * short-format status code. |
| */ |
| g_assert_not_reached(); |
| } |
| |
| fsc |= (fi->domain << 4); |
| return fsc; |
| } |
| |
| /** |
| * arm_fi_to_lfsc: Convert fault info struct to long-format FSC |
| * Compare pseudocode EncodeLDFSC(), though unlike that function |
| * we fill in also the LPAE bit 9 of a DFSR format. |
| */ |
| static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi) |
| { |
| uint32_t fsc; |
| |
| switch (fi->type) { |
| case ARMFault_None: |
| return 0; |
| case ARMFault_AddressSize: |
| assert(fi->level >= -1 && fi->level <= 3); |
| if (fi->level < 0) { |
| fsc = 0b101001; |
| } else { |
| fsc = fi->level; |
| } |
| break; |
| case ARMFault_AccessFlag: |
| assert(fi->level >= 0 && fi->level <= 3); |
| fsc = 0b001000 | fi->level; |
| break; |
| case ARMFault_Permission: |
| assert(fi->level >= 0 && fi->level <= 3); |
| fsc = 0b001100 | fi->level; |
| break; |
| case ARMFault_Translation: |
| assert(fi->level >= -1 && fi->level <= 3); |
| if (fi->level < 0) { |
| fsc = 0b101011; |
| } else { |
| fsc = 0b000100 | fi->level; |
| } |
| break; |
| case ARMFault_SyncExternal: |
| fsc = 0x10 | (fi->ea << 12); |
| break; |
| case ARMFault_SyncExternalOnWalk: |
| assert(fi->level >= -1 && fi->level <= 3); |
| if (fi->level < 0) { |
| fsc = 0b010011; |
| } else { |
| fsc = 0b010100 | fi->level; |
| } |
| fsc |= fi->ea << 12; |
| break; |
| case ARMFault_SyncParity: |
| fsc = 0x18; |
| break; |
| case ARMFault_SyncParityOnWalk: |
| assert(fi->level >= -1 && fi->level <= 3); |
| if (fi->level < 0) { |
| fsc = 0b011011; |
| } else { |
| fsc = 0b011100 | fi->level; |
| } |
| break; |
| case ARMFault_AsyncParity: |
| fsc = 0x19; |
| break; |
| case ARMFault_AsyncExternal: |
| fsc = 0x11 | (fi->ea << 12); |
| break; |
| case ARMFault_Alignment: |
| fsc = 0x21; |
| break; |
| case ARMFault_Debug: |
| fsc = 0x22; |
| break; |
| case ARMFault_TLBConflict: |
| fsc = 0x30; |
| break; |
| case ARMFault_UnsuppAtomicUpdate: |
| fsc = 0x31; |
| break; |
| case ARMFault_Lockdown: |
| fsc = 0x34; |
| break; |
| case ARMFault_Exclusive: |
| fsc = 0x35; |
| break; |
| case ARMFault_GPCFOnWalk: |
| assert(fi->level >= -1 && fi->level <= 3); |
| if (fi->level < 0) { |
| fsc = 0b100011; |
| } else { |
| fsc = 0b100100 | fi->level; |
| } |
| break; |
| case ARMFault_GPCFOnOutput: |
| fsc = 0b101000; |
| break; |
| default: |
| /* Other faults can't occur in a context that requires a |
| * long-format status code. |
| */ |
| g_assert_not_reached(); |
| } |
| |
| fsc |= 1 << 9; |
| return fsc; |
| } |
| |
| static inline bool arm_extabort_type(MemTxResult result) |
| { |
| /* The EA bit in syndromes and fault status registers is an |
| * IMPDEF classification of external aborts. ARM implementations |
| * usually use this to indicate AXI bus Decode error (0) or |
| * Slave error (1); in QEMU we follow that. |
| */ |
| return result != MEMTX_DECODE_ERROR; |
| } |
| |
| #ifdef CONFIG_USER_ONLY |
| void arm_cpu_record_sigsegv(CPUState *cpu, vaddr addr, |
| MMUAccessType access_type, |
| bool maperr, uintptr_t ra); |
| void arm_cpu_record_sigbus(CPUState *cpu, vaddr addr, |
| MMUAccessType access_type, uintptr_t ra); |
| #else |
| bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size, |
| MMUAccessType access_type, int mmu_idx, |
| bool probe, uintptr_t retaddr); |
| #endif |
| |
| static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx) |
| { |
| return mmu_idx & ARM_MMU_IDX_COREIDX_MASK; |
| } |
| |
| static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx) |
| { |
| if (arm_feature(env, ARM_FEATURE_M)) { |
| return mmu_idx | ARM_MMU_IDX_M; |
| } else { |
| return mmu_idx | ARM_MMU_IDX_A; |
| } |
| } |
| |
| static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx) |
| { |
| /* AArch64 is always a-profile. */ |
| return mmu_idx | ARM_MMU_IDX_A; |
| } |
| |
| int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx); |
| |
| /* Return the MMU index for a v7M CPU in the specified security state */ |
| ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate); |
| |
| /* |
| * Return true if the stage 1 translation regime is using LPAE |
| * format page tables |
| */ |
| bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx); |
| |
| /* Raise a data fault alignment exception for the specified virtual address */ |
| G_NORETURN void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr, |
| MMUAccessType access_type, |
| int mmu_idx, uintptr_t retaddr); |
| |
| #ifndef CONFIG_USER_ONLY |
| /* arm_cpu_do_transaction_failed: handle a memory system error response |
| * (eg "no device/memory present at address") by raising an external abort |
| * exception |
| */ |
| void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr, |
| vaddr addr, unsigned size, |
| MMUAccessType access_type, |
| int mmu_idx, MemTxAttrs attrs, |
| MemTxResult response, uintptr_t retaddr); |
| #endif |
| |
| /* Call any registered EL change hooks */ |
| static inline void arm_call_pre_el_change_hook(ARMCPU *cpu) |
| { |
| ARMELChangeHook *hook, *next; |
| QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) { |
| hook->hook(cpu, hook->opaque); |
| } |
| } |
| static inline void arm_call_el_change_hook(ARMCPU *cpu) |
| { |
| ARMELChangeHook *hook, *next; |
| QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) { |
| hook->hook(cpu, hook->opaque); |
| } |
| } |
| |
| /* Return true if this address translation regime has two ranges. */ |
| static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx) |
| { |
| switch (mmu_idx) { |
| case ARMMMUIdx_Stage1_E0: |
| case ARMMMUIdx_Stage1_E1: |
| case ARMMMUIdx_Stage1_E1_PAN: |
| case ARMMMUIdx_E10_0: |
| case ARMMMUIdx_E10_1: |
| case ARMMMUIdx_E10_1_PAN: |
| case ARMMMUIdx_E20_0: |
| case ARMMMUIdx_E20_2: |
| case ARMMMUIdx_E20_2_PAN: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx) |
| { |
| switch (mmu_idx) { |
| case ARMMMUIdx_Stage1_E1_PAN: |
| case ARMMMUIdx_E10_1_PAN: |
| case ARMMMUIdx_E20_2_PAN: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| static inline bool regime_is_stage2(ARMMMUIdx mmu_idx) |
| { |
| return mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S; |
| } |
| |
| /* Return the exception level which controls this address translation regime */ |
| static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) |
| { |
| switch (mmu_idx) { |
| case ARMMMUIdx_E20_0: |
| case ARMMMUIdx_E20_2: |
| case ARMMMUIdx_E20_2_PAN: |
| case ARMMMUIdx_Stage2: |
| case ARMMMUIdx_Stage2_S: |
| case ARMMMUIdx_E2: |
| return 2; |
| case ARMMMUIdx_E3: |
| return 3; |
| case ARMMMUIdx_E10_0: |
| case ARMMMUIdx_Stage1_E0: |
| return arm_el_is_aa64(env, 3) || !arm_is_secure_below_el3(env) ? 1 : 3; |
| case ARMMMUIdx_Stage1_E1: |
| case ARMMMUIdx_Stage1_E1_PAN: |
| case ARMMMUIdx_E10_1: |
| case ARMMMUIdx_E10_1_PAN: |
| case ARMMMUIdx_MPrivNegPri: |
| case ARMMMUIdx_MUserNegPri: |
| case ARMMMUIdx_MPriv: |
| case ARMMMUIdx_MUser: |
| case ARMMMUIdx_MSPrivNegPri: |
| case ARMMMUIdx_MSUserNegPri: |
| case ARMMMUIdx_MSPriv: |
| case ARMMMUIdx_MSUser: |
| return 1; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) |
| { |
| switch (mmu_idx) { |
| case ARMMMUIdx_E20_0: |
| case ARMMMUIdx_Stage1_E0: |
| case ARMMMUIdx_MUser: |
| case ARMMMUIdx_MSUser: |
| case ARMMMUIdx_MUserNegPri: |
| case ARMMMUIdx_MSUserNegPri: |
| return true; |
| default: |
| return false; |
| case ARMMMUIdx_E10_0: |
| case ARMMMUIdx_E10_1: |
| case ARMMMUIdx_E10_1_PAN: |
| g_assert_not_reached(); |
| } |
| } |
| |
| /* Return the SCTLR value which controls this address translation regime */ |
| static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) |
| { |
| return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; |
| } |
| |
| /* |
| * These are the fields in VTCR_EL2 which affect both the Secure stage 2 |
| * and the Non-Secure stage 2 translation regimes (and hence which are |
| * not present in VSTCR_EL2). |
| */ |
| #define VTCR_SHARED_FIELD_MASK \ |
| (R_VTCR_IRGN0_MASK | R_VTCR_ORGN0_MASK | R_VTCR_SH0_MASK | \ |
| R_VTCR_PS_MASK | R_VTCR_VS_MASK | R_VTCR_HA_MASK | R_VTCR_HD_MASK | \ |
| R_VTCR_DS_MASK) |
| |
| /* Return the value of the TCR controlling this translation regime */ |
| static inline uint64_t regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) |
| { |
| if (mmu_idx == ARMMMUIdx_Stage2) { |
| return env->cp15.vtcr_el2; |
| } |
| if (mmu_idx == ARMMMUIdx_Stage2_S) { |
| /* |
| * Secure stage 2 shares fields from VTCR_EL2. We merge those |
| * in with the VSTCR_EL2 value to synthesize a single VTCR_EL2 format |
| * value so the callers don't need to special case this. |
| * |
| * If a future architecture change defines bits in VSTCR_EL2 that |
| * overlap with these VTCR_EL2 fields we may need to revisit this. |
| */ |
| uint64_t v = env->cp15.vstcr_el2 & ~VTCR_SHARED_FIELD_MASK; |
| v |= env->cp15.vtcr_el2 & VTCR_SHARED_FIELD_MASK; |
| return v; |
| } |
| return env->cp15.tcr_el[regime_el(env, mmu_idx)]; |
| } |
| |
| /* Return true if the translation regime is using LPAE format page tables */ |
| static inline bool regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) |
| { |
| int el = regime_el(env, mmu_idx); |
| if (el == 2 || arm_el_is_aa64(env, el)) { |
| return true; |
| } |
| if (arm_feature(env, ARM_FEATURE_PMSA) && |
| arm_feature(env, ARM_FEATURE_V8)) { |
| return true; |
| } |
| if (arm_feature(env, ARM_FEATURE_LPAE) |
| && (regime_tcr(env, mmu_idx) & TTBCR_EAE)) { |
| return true; |
| } |
| return false; |
| } |
| |
| /** |
| * arm_num_brps: Return number of implemented breakpoints. |
| * Note that the ID register BRPS field is "number of bps - 1", |
| * and we return the actual number of breakpoints. |
| */ |
| static inline int arm_num_brps(ARMCPU *cpu) |
| { |
| if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { |
| return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1; |
| } else { |
| return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1; |
| } |
| } |
| |
| /** |
| * arm_num_wrps: Return number of implemented watchpoints. |
| * Note that the ID register WRPS field is "number of wps - 1", |
| * and we return the actual number of watchpoints. |
| */ |
| static inline int arm_num_wrps(ARMCPU *cpu) |
| { |
| if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { |
| return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1; |
| } else { |
| return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1; |
| } |
| } |
| |
| /** |
| * arm_num_ctx_cmps: Return number of implemented context comparators. |
| * Note that the ID register CTX_CMPS field is "number of cmps - 1", |
| * and we return the actual number of comparators. |
| */ |
| static inline int arm_num_ctx_cmps(ARMCPU *cpu) |
| { |
| if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { |
| return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1; |
| } else { |
| return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1; |
| } |
| } |
| |
| /** |
| * v7m_using_psp: Return true if using process stack pointer |
| * Return true if the CPU is currently using the process stack |
| * pointer, or false if it is using the main stack pointer. |
| */ |
| static inline bool v7m_using_psp(CPUARMState *env) |
| { |
| /* Handler mode always uses the main stack; for thread mode |
| * the CONTROL.SPSEL bit determines the answer. |
| * Note that in v7M it is not possible to be in Handler mode with |
| * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both. |
| */ |
| return !arm_v7m_is_handler_mode(env) && |
| env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK; |
| } |
| |
| /** |
| * v7m_sp_limit: Return SP limit for current CPU state |
| * Return the SP limit value for the current CPU security state |
| * and stack pointer. |
| */ |
| static inline uint32_t v7m_sp_limit(CPUARMState *env) |
| { |
| if (v7m_using_psp(env)) { |
| return env->v7m.psplim[env->v7m.secure]; |
| } else { |
| return env->v7m.msplim[env->v7m.secure]; |
| } |
| } |
| |
| /** |
| * v7m_cpacr_pass: |
| * Return true if the v7M CPACR permits access to the FPU for the specified |
| * security state and privilege level. |
| */ |
| static inline bool v7m_cpacr_pass(CPUARMState *env, |
| bool is_secure, bool is_priv) |
| { |
| switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) { |
| case 0: |
| case 2: /* UNPREDICTABLE: we treat like 0 */ |
| return false; |
| case 1: |
| return is_priv; |
| case 3: |
| return true; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| /** |
| * aarch32_mode_name(): Return name of the AArch32 CPU mode |
| * @psr: Program Status Register indicating CPU mode |
| * |
| * Returns, for debug logging purposes, a printable representation |
| * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by |
| * the low bits of the specified PSR. |
| */ |
| static inline const char *aarch32_mode_name(uint32_t psr) |
| { |
| static const char cpu_mode_names[16][4] = { |
| "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt", |
| "???", "???", "hyp", "und", "???", "???", "???", "sys" |
| }; |
| |
| return cpu_mode_names[psr & 0xf]; |
| } |
| |
| /** |
| * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request |
| * |
| * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following |
| * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit. |
| * Must be called with the iothread lock held. |
| */ |
| void arm_cpu_update_virq(ARMCPU *cpu); |
| |
| /** |
| * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request |
| * |
| * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following |
| * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit. |
| * Must be called with the iothread lock held. |
| */ |
| void arm_cpu_update_vfiq(ARMCPU *cpu); |
| |
| /** |
| * arm_cpu_update_vserr: Update CPU_INTERRUPT_VSERR bit |
| * |
| * Update the CPU_INTERRUPT_VSERR bit in cs->interrupt_request, |
| * following a change to the HCR_EL2.VSE bit. |
| */ |
| void arm_cpu_update_vserr(ARMCPU *cpu); |
| |
| /** |
| * arm_mmu_idx_el: |
| * @env: The cpu environment |
| * @el: The EL to use. |
| * |
| * Return the full ARMMMUIdx for the translation regime for EL. |
| */ |
| ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el); |
| |
| /** |
| * arm_mmu_idx: |
| * @env: The cpu environment |
| * |
| * Return the full ARMMMUIdx for the current translation regime. |
| */ |
| ARMMMUIdx arm_mmu_idx(CPUARMState *env); |
| |
| /** |
| * arm_stage1_mmu_idx: |
| * @env: The cpu environment |
| * |
| * Return the ARMMMUIdx for the stage1 traversal for the current regime. |
| */ |
| #ifdef CONFIG_USER_ONLY |
| static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) |
| { |
| return ARMMMUIdx_Stage1_E0; |
| } |
| static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) |
| { |
| return ARMMMUIdx_Stage1_E0; |
| } |
| #else |
| ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx); |
| ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env); |
| #endif |
| |
| /** |
| * arm_mmu_idx_is_stage1_of_2: |
| * @mmu_idx: The ARMMMUIdx to test |
| * |
| * Return true if @mmu_idx is a NOTLB mmu_idx that is the |
| * first stage of a two stage regime. |
| */ |
| static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx) |
| { |
| switch (mmu_idx) { |
| case ARMMMUIdx_Stage1_E0: |
| case ARMMMUIdx_Stage1_E1: |
| case ARMMMUIdx_Stage1_E1_PAN: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features, |
| const ARMISARegisters *id) |
| { |
| uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV; |
| |
| if ((features >> ARM_FEATURE_V4T) & 1) { |
| valid |= CPSR_T; |
| } |
| if ((features >> ARM_FEATURE_V5) & 1) { |
| valid |= CPSR_Q; /* V5TE in reality*/ |
| } |
| if ((features >> ARM_FEATURE_V6) & 1) { |
| valid |= CPSR_E | CPSR_GE; |
| } |
| if ((features >> ARM_FEATURE_THUMB2) & 1) { |
| valid |= CPSR_IT; |
| } |
| if (isar_feature_aa32_jazelle(id)) { |
| valid |= CPSR_J; |
| } |
| if (isar_feature_aa32_pan(id)) { |
| valid |= CPSR_PAN; |
| } |
| if (isar_feature_aa32_dit(id)) { |
| valid |= CPSR_DIT; |
| } |
| if (isar_feature_aa32_ssbs(id)) { |
| valid |= CPSR_SSBS; |
| } |
| |
| return valid; |
| } |
| |
| static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id) |
| { |
| uint32_t valid; |
| |
| valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV; |
| if (isar_feature_aa64_bti(id)) { |
| valid |= PSTATE_BTYPE; |
| } |
| if (isar_feature_aa64_pan(id)) { |
| valid |= PSTATE_PAN; |
| } |
| if (isar_feature_aa64_uao(id)) { |
| valid |= PSTATE_UAO; |
| } |
| if (isar_feature_aa64_dit(id)) { |
| valid |= PSTATE_DIT; |
| } |
| if (isar_feature_aa64_ssbs(id)) { |
| valid |= PSTATE_SSBS; |
| } |
| if (isar_feature_aa64_mte(id)) { |
| valid |= PSTATE_TCO; |
| } |
| |
| return valid; |
| } |
| |
| /* Granule size (i.e. page size) */ |
| typedef enum ARMGranuleSize { |
| /* Same order as TG0 encoding */ |
| Gran4K, |
| Gran64K, |
| Gran16K, |
| GranInvalid, |
| } ARMGranuleSize; |
| |
| /** |
| * arm_granule_bits: Return address size of the granule in bits |
| * |
| * Return the address size of the granule in bits. This corresponds |
| * to the pseudocode TGxGranuleBits(). |
| */ |
| static inline int arm_granule_bits(ARMGranuleSize gran) |
| { |
| switch (gran) { |
| case Gran64K: |
| return 16; |
| case Gran16K: |
| return 14; |
| case Gran4K: |
| return 12; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| /* |
| * Parameters of a given virtual address, as extracted from the |
| * translation control register (TCR) for a given regime. |
| */ |
| typedef struct ARMVAParameters { |
| unsigned tsz : 8; |
| unsigned ps : 3; |
| unsigned sh : 2; |
| unsigned select : 1; |
| bool tbi : 1; |
| bool epd : 1; |
| bool hpd : 1; |
| bool tsz_oob : 1; /* tsz has been clamped to legal range */ |
| bool ds : 1; |
| bool ha : 1; |
| bool hd : 1; |
| ARMGranuleSize gran : 2; |
| } ARMVAParameters; |
| |
| /** |
| * aa64_va_parameters: Return parameters for an AArch64 virtual address |
| * @env: CPU |
| * @va: virtual address to look up |
| * @mmu_idx: determines translation regime to use |
| * @data: true if this is a data access |
| * @el1_is_aa32: true if we are asking about stage 2 when EL1 is AArch32 |
| * (ignored if @mmu_idx is for a stage 1 regime; only affects tsz/tsz_oob) |
| */ |
| ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, |
| ARMMMUIdx mmu_idx, bool data, |
| bool el1_is_aa32); |
| |
| int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx); |
| int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx); |
| int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx); |
| |
| /* Determine if allocation tags are available. */ |
| static inline bool allocation_tag_access_enabled(CPUARMState *env, int el, |
| uint64_t sctlr) |
| { |
| if (el < 3 |
| && arm_feature(env, ARM_FEATURE_EL3) |
| && !(env->cp15.scr_el3 & SCR_ATA)) { |
| return false; |
| } |
| if (el < 2 && arm_is_el2_enabled(env)) { |
| uint64_t hcr = arm_hcr_el2_eff(env); |
| if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { |
| return false; |
| } |
| } |
| sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA); |
| return sctlr != 0; |
| } |
| |
| #ifndef CONFIG_USER_ONLY |
| |
| /* Security attributes for an address, as returned by v8m_security_lookup. */ |
| typedef struct V8M_SAttributes { |
| bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */ |
| bool ns; |
| bool nsc; |
| uint8_t sregion; |
| bool srvalid; |
| uint8_t iregion; |
| bool irvalid; |
| } V8M_SAttributes; |
| |
| void v8m_security_lookup(CPUARMState *env, uint32_t address, |
| MMUAccessType access_type, ARMMMUIdx mmu_idx, |
| bool secure, V8M_SAttributes *sattrs); |
| |
| /* Cacheability and shareability attributes for a memory access */ |
| typedef struct ARMCacheAttrs { |
| /* |
| * If is_s2_format is true, attrs is the S2 descriptor bits [5:2] |
| * Otherwise, attrs is the same as the MAIR_EL1 8-bit format |
| */ |
| unsigned int attrs:8; |
| unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */ |
| bool is_s2_format:1; |
| } ARMCacheAttrs; |
| |
| /* Fields that are valid upon success. */ |
| typedef struct GetPhysAddrResult { |
| CPUTLBEntryFull f; |
| ARMCacheAttrs cacheattrs; |
| } GetPhysAddrResult; |
| |
| /** |
| * get_phys_addr: get the physical address for a virtual address |
| * @env: CPUARMState |
| * @address: virtual address to get physical address for |
| * @access_type: 0 for read, 1 for write, 2 for execute |
| * @mmu_idx: MMU index indicating required translation regime |
| * @result: set on translation success. |
| * @fi: set to fault info if the translation fails |
| * |
| * Find the physical address corresponding to the given virtual address, |
| * by doing a translation table walk on MMU based systems or using the |
| * MPU state on MPU based systems. |
| * |
| * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, |
| * prot and page_size may not be filled in, and the populated fsr value provides |
| * information on why the translation aborted, in the format of a |
| * DFSR/IFSR fault register, with the following caveats: |
| * * we honour the short vs long DFSR format differences. |
| * * the WnR bit is never set (the caller must do this). |
| * * for PSMAv5 based systems we don't bother to return a full FSR format |
| * value. |
| */ |
| bool get_phys_addr(CPUARMState *env, target_ulong address, |
| MMUAccessType access_type, ARMMMUIdx mmu_idx, |
| GetPhysAddrResult *result, ARMMMUFaultInfo *fi) |
| __attribute__((nonnull)); |
| |
| /** |
| * get_phys_addr_with_space_nogpc: get the physical address for a virtual |
| * address |
| * @env: CPUARMState |
| * @address: virtual address to get physical address for |
| * @access_type: 0 for read, 1 for write, 2 for execute |
| * @mmu_idx: MMU index indicating required translation regime |
| * @space: security space for the access |
| * @result: set on translation success. |
| * @fi: set to fault info if the translation fails |
| * |
| * Similar to get_phys_addr, but use the given security space and don't perform |
| * a Granule Protection Check on the resulting address. |
| */ |
| bool get_phys_addr_with_space_nogpc(CPUARMState *env, target_ulong address, |
| MMUAccessType access_type, |
| ARMMMUIdx mmu_idx, ARMSecuritySpace space, |
| GetPhysAddrResult *result, |
| ARMMMUFaultInfo *fi) |
| __attribute__((nonnull)); |
| |
| bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, |
| MMUAccessType access_type, ARMMMUIdx mmu_idx, |
| bool is_secure, GetPhysAddrResult *result, |
| ARMMMUFaultInfo *fi, uint32_t *mregion); |
| |
| void arm_log_exception(CPUState *cs); |
| |
| #endif /* !CONFIG_USER_ONLY */ |
| |
| /* |
| * SVE predicates are 1/8 the size of SVE vectors, and cannot use |
| * the same simd_desc() encoding due to restrictions on size. |
| * Use these instead. |
| */ |
| FIELD(PREDDESC, OPRSZ, 0, 6) |
| FIELD(PREDDESC, ESZ, 6, 2) |
| FIELD(PREDDESC, DATA, 8, 24) |
| |
| /* |
| * The SVE simd_data field, for memory ops, contains either |
| * rd (5 bits) or a shift count (2 bits). |
| */ |
| #define SVE_MTEDESC_SHIFT 5 |
| |
| /* Bits within a descriptor passed to the helper_mte_check* functions. */ |
| FIELD(MTEDESC, MIDX, 0, 4) |
| FIELD(MTEDESC, TBI, 4, 2) |
| FIELD(MTEDESC, TCMA, 6, 2) |
| FIELD(MTEDESC, WRITE, 8, 1) |
| FIELD(MTEDESC, ALIGN, 9, 3) |
| FIELD(MTEDESC, SIZEM1, 12, SIMD_DATA_BITS - 12) /* size - 1 */ |
| |
| bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr); |
| uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra); |
| |
| /** |
| * mte_mops_probe: Check where the next MTE failure is for a FEAT_MOPS operation |
| * @env: CPU env |
| * @ptr: start address of memory region (dirty pointer) |
| * @size: length of region (guaranteed not to cross a page boundary) |
| * @desc: MTEDESC descriptor word (0 means no MTE checks) |
| * Returns: the size of the region that can be copied without hitting |
| * an MTE tag failure |
| * |
| * Note that we assume that the caller has already checked the TBI |
| * and TCMA bits with mte_checks_needed() and an MTE check is definitely |
| * required. |
| */ |
| uint64_t mte_mops_probe(CPUARMState *env, uint64_t ptr, uint64_t size, |
| uint32_t desc); |
| |
| /** |
| * mte_mops_probe_rev: Check where the next MTE failure is for a FEAT_MOPS |
| * operation going in the reverse direction |
| * @env: CPU env |
| * @ptr: *end* address of memory region (dirty pointer) |
| * @size: length of region (guaranteed not to cross a page boundary) |
| * @desc: MTEDESC descriptor word (0 means no MTE checks) |
| * Returns: the size of the region that can be copied without hitting |
| * an MTE tag failure |
| * |
| * Note that we assume that the caller has already checked the TBI |
| * and TCMA bits with mte_checks_needed() and an MTE check is definitely |
| * required. |
| */ |
| uint64_t mte_mops_probe_rev(CPUARMState *env, uint64_t ptr, uint64_t size, |
| uint32_t desc); |
| |
| /** |
| * mte_check_fail: Record an MTE tag check failure |
| * @env: CPU env |
| * @desc: MTEDESC descriptor word |
| * @dirty_ptr: Failing dirty address |
| * @ra: TCG retaddr |
| * |
| * This may never return (if the MTE tag checks are configured to fault). |
| */ |
| void mte_check_fail(CPUARMState *env, uint32_t desc, |
| uint64_t dirty_ptr, uintptr_t ra); |
| |
| /** |
| * mte_mops_set_tags: Set MTE tags for a portion of a FEAT_MOPS operation |
| * @env: CPU env |
| * @dirty_ptr: Start address of memory region (dirty pointer) |
| * @size: length of region (guaranteed not to cross page boundary) |
| * @desc: MTEDESC descriptor word |
| */ |
| void mte_mops_set_tags(CPUARMState *env, uint64_t dirty_ptr, uint64_t size, |
| uint32_t desc); |
| |
| static inline int allocation_tag_from_addr(uint64_t ptr) |
| { |
| return extract64(ptr, 56, 4); |
| } |
| |
| static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag) |
| { |
| return deposit64(ptr, 56, 4, rtag); |
| } |
| |
| /* Return true if tbi bits mean that the access is checked. */ |
| static inline bool tbi_check(uint32_t desc, int bit55) |
| { |
| return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1; |
| } |
| |
| /* Return true if tcma bits mean that the access is unchecked. */ |
| static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag) |
| { |
| /* |
| * We had extracted bit55 and ptr_tag for other reasons, so fold |
| * (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test. |
| */ |
| bool match = ((ptr_tag + bit55) & 0xf) == 0; |
| bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1; |
| return tcma && match; |
| } |
| |
| /* |
| * For TBI, ideally, we would do nothing. Proper behaviour on fault is |
| * for the tag to be present in the FAR_ELx register. But for user-only |
| * mode, we do not have a TLB with which to implement this, so we must |
| * remove the top byte. |
| */ |
| static inline uint64_t useronly_clean_ptr(uint64_t ptr) |
| { |
| #ifdef CONFIG_USER_ONLY |
| /* TBI0 is known to be enabled, while TBI1 is disabled. */ |
| ptr &= sextract64(ptr, 0, 56); |
| #endif |
| return ptr; |
| } |
| |
| static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr) |
| { |
| #ifdef CONFIG_USER_ONLY |
| int64_t clean_ptr = sextract64(ptr, 0, 56); |
| if (tbi_check(desc, clean_ptr < 0)) { |
| ptr = clean_ptr; |
| } |
| #endif |
| return ptr; |
| } |
| |
| /* Values for M-profile PSR.ECI for MVE insns */ |
| enum MVEECIState { |
| ECI_NONE = 0, /* No completed beats */ |
| ECI_A0 = 1, /* Completed: A0 */ |
| ECI_A0A1 = 2, /* Completed: A0, A1 */ |
| /* 3 is reserved */ |
| ECI_A0A1A2 = 4, /* Completed: A0, A1, A2 */ |
| ECI_A0A1A2B0 = 5, /* Completed: A0, A1, A2, B0 */ |
| /* All other values reserved */ |
| }; |
| |
| /* Definitions for the PMU registers */ |
| #define PMCRN_MASK 0xf800 |
| #define PMCRN_SHIFT 11 |
| #define PMCRLP 0x80 |
| #define PMCRLC 0x40 |
| #define PMCRDP 0x20 |
| #define PMCRX 0x10 |
| #define PMCRD 0x8 |
| #define PMCRC 0x4 |
| #define PMCRP 0x2 |
| #define PMCRE 0x1 |
| /* |
| * Mask of PMCR bits writable by guest (not including WO bits like C, P, |
| * which can be written as 1 to trigger behaviour but which stay RAZ). |
| */ |
| #define PMCR_WRITABLE_MASK (PMCRLP | PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE) |
| |
| #define PMXEVTYPER_P 0x80000000 |
| #define PMXEVTYPER_U 0x40000000 |
| #define PMXEVTYPER_NSK 0x20000000 |
| #define PMXEVTYPER_NSU 0x10000000 |
| #define PMXEVTYPER_NSH 0x08000000 |
| #define PMXEVTYPER_M 0x04000000 |
| #define PMXEVTYPER_MT 0x02000000 |
| #define PMXEVTYPER_EVTCOUNT 0x0000ffff |
| #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \ |
| PMXEVTYPER_NSU | PMXEVTYPER_NSH | \ |
| PMXEVTYPER_M | PMXEVTYPER_MT | \ |
| PMXEVTYPER_EVTCOUNT) |
| |
| #define PMCCFILTR 0xf8000000 |
| #define PMCCFILTR_M PMXEVTYPER_M |
| #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M) |
| |
| static inline uint32_t pmu_num_counters(CPUARMState *env) |
| { |
| ARMCPU *cpu = env_archcpu(env); |
| |
| return (cpu->isar.reset_pmcr_el0 & PMCRN_MASK) >> PMCRN_SHIFT; |
| } |
| |
| /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */ |
| static inline uint64_t pmu_counter_mask(CPUARMState *env) |
| { |
| return (1ULL << 31) | ((1ULL << pmu_num_counters(env)) - 1); |
| } |
| |
| #ifdef TARGET_AARCH64 |
| int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg); |
| int aarch64_gdb_get_sve_reg(CPUARMState *env, GByteArray *buf, int reg); |
| int aarch64_gdb_set_sve_reg(CPUARMState *env, uint8_t *buf, int reg); |
| int aarch64_gdb_get_fpu_reg(CPUARMState *env, GByteArray *buf, int reg); |
| int aarch64_gdb_set_fpu_reg(CPUARMState *env, uint8_t *buf, int reg); |
| int aarch64_gdb_get_pauth_reg(CPUARMState *env, GByteArray *buf, int reg); |
| int aarch64_gdb_set_pauth_reg(CPUARMState *env, uint8_t *buf, int reg); |
| void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp); |
| void arm_cpu_sme_finalize(ARMCPU *cpu, Error **errp); |
| void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp); |
| void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp); |
| void aarch64_max_tcg_initfn(Object *obj); |
| void aarch64_add_pauth_properties(Object *obj); |
| void aarch64_add_sve_properties(Object *obj); |
| void aarch64_add_sme_properties(Object *obj); |
| #endif |
| |
| /* Read the CONTROL register as the MRS instruction would. */ |
| uint32_t arm_v7m_mrs_control(CPUARMState *env, uint32_t secure); |
| |
| /* |
| * Return a pointer to the location where we currently store the |
| * stack pointer for the requested security state and thread mode. |
| * This pointer will become invalid if the CPU state is updated |
| * such that the stack pointers are switched around (eg changing |
| * the SPSEL control bit). |
| */ |
| uint32_t *arm_v7m_get_sp_ptr(CPUARMState *env, bool secure, |
| bool threadmode, bool spsel); |
| |
| bool el_is_in_host(CPUARMState *env, int el); |
| |
| void aa32_max_features(ARMCPU *cpu); |
| int exception_target_el(CPUARMState *env); |
| bool arm_singlestep_active(CPUARMState *env); |
| bool arm_generate_debug_exceptions(CPUARMState *env); |
| |
| /** |
| * pauth_ptr_mask: |
| * @param: parameters defining the MMU setup |
| * |
| * Return a mask of the address bits that contain the authentication code, |
| * given the MMU config defined by @param. |
| */ |
| static inline uint64_t pauth_ptr_mask(ARMVAParameters param) |
| { |
| int bot_pac_bit = 64 - param.tsz; |
| int top_pac_bit = 64 - 8 * param.tbi; |
| |
| return MAKE_64BIT_MASK(bot_pac_bit, top_pac_bit - bot_pac_bit); |
| } |
| |
| /* Add the cpreg definitions for debug related system registers */ |
| void define_debug_regs(ARMCPU *cpu); |
| |
| /* Effective value of MDCR_EL2 */ |
| static inline uint64_t arm_mdcr_el2_eff(CPUARMState *env) |
| { |
| return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0; |
| } |
| |
| /* Powers of 2 for sve_vq_map et al. */ |
| #define SVE_VQ_POW2_MAP \ |
| ((1 << (1 - 1)) | (1 << (2 - 1)) | \ |
| (1 << (4 - 1)) | (1 << (8 - 1)) | (1 << (16 - 1))) |
| |
| /* |
| * Return true if it is possible to take a fine-grained-trap to EL2. |
| */ |
| static inline bool arm_fgt_active(CPUARMState *env, int el) |
| { |
| /* |
| * The Arm ARM only requires the "{E2H,TGE} != {1,1}" test for traps |
| * that can affect EL0, but it is harmless to do the test also for |
| * traps on registers that are only accessible at EL1 because if the test |
| * returns true then we can't be executing at EL1 anyway. |
| * FGT traps only happen when EL2 is enabled and EL1 is AArch64; |
| * traps from AArch32 only happen for the EL0 is AArch32 case. |
| */ |
| return cpu_isar_feature(aa64_fgt, env_archcpu(env)) && |
| el < 2 && arm_is_el2_enabled(env) && |
| arm_el_is_aa64(env, 1) && |
| (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE) && |
| (!arm_feature(env, ARM_FEATURE_EL3) || (env->cp15.scr_el3 & SCR_FGTEN)); |
| } |
| |
| void assert_hflags_rebuild_correctly(CPUARMState *env); |
| |
| /* |
| * Although the ARM implementation of hardware assisted debugging |
| * allows for different breakpoints per-core, the current GDB |
| * interface treats them as a global pool of registers (which seems to |
| * be the case for x86, ppc and s390). As a result we store one copy |
| * of registers which is used for all active cores. |
| * |
| * Write access is serialised by virtue of the GDB protocol which |
| * updates things. Read access (i.e. when the values are copied to the |
| * vCPU) is also gated by GDB's run control. |
| * |
| * This is not unreasonable as most of the time debugging kernels you |
| * never know which core will eventually execute your function. |
| */ |
| |
| typedef struct { |
| uint64_t bcr; |
| uint64_t bvr; |
| } HWBreakpoint; |
| |
| /* |
| * The watchpoint registers can cover more area than the requested |
| * watchpoint so we need to store the additional information |
| * somewhere. We also need to supply a CPUWatchpoint to the GDB stub |
| * when the watchpoint is hit. |
| */ |
| typedef struct { |
| uint64_t wcr; |
| uint64_t wvr; |
| CPUWatchpoint details; |
| } HWWatchpoint; |
| |
| /* Maximum and current break/watch point counts */ |
| extern int max_hw_bps, max_hw_wps; |
| extern GArray *hw_breakpoints, *hw_watchpoints; |
| |
| #define cur_hw_wps (hw_watchpoints->len) |
| #define cur_hw_bps (hw_breakpoints->len) |
| #define get_hw_bp(i) (&g_array_index(hw_breakpoints, HWBreakpoint, i)) |
| #define get_hw_wp(i) (&g_array_index(hw_watchpoints, HWWatchpoint, i)) |
| |
| bool find_hw_breakpoint(CPUState *cpu, target_ulong pc); |
| int insert_hw_breakpoint(target_ulong pc); |
| int delete_hw_breakpoint(target_ulong pc); |
| |
| bool check_watchpoint_in_range(int i, target_ulong addr); |
| CPUWatchpoint *find_hw_watchpoint(CPUState *cpu, target_ulong addr); |
| int insert_hw_watchpoint(target_ulong addr, target_ulong len, int type); |
| int delete_hw_watchpoint(target_ulong addr, target_ulong len, int type); |
| #endif |