blob: d5f2057eb1e77d7c3c8ed44c97631410979dcc55 [file] [log] [blame]
/*
* PowerPC MMU, TLB and BAT emulation helpers for QEMU.
*
* Copyright (c) 2003-2007 Jocelyn Mayer
* Copyright (c) 2013 David Gibson, IBM Corporation
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/exec-all.h"
#include "exec/page-protection.h"
#include "sysemu/kvm.h"
#include "kvm_ppc.h"
#include "internal.h"
#include "mmu-hash32.h"
#include "mmu-books.h"
#include "exec/log.h"
/* #define DEBUG_BATS */
#ifdef DEBUG_BATS
# define LOG_BATS(...) qemu_log_mask(CPU_LOG_MMU, __VA_ARGS__)
#else
# define LOG_BATS(...) do { } while (0)
#endif
static int ppc_hash32_pte_prot(int mmu_idx,
target_ulong sr, ppc_hash_pte32_t pte)
{
unsigned pp, key;
key = !!(mmuidx_pr(mmu_idx) ? (sr & SR32_KP) : (sr & SR32_KS));
pp = pte.pte1 & HPTE32_R_PP;
return ppc_hash32_pp_prot(key, pp, !!(sr & SR32_NX));
}
static target_ulong hash32_bat_size(int mmu_idx,
target_ulong batu, target_ulong batl)
{
if ((mmuidx_pr(mmu_idx) && !(batu & BATU32_VP))
|| (!mmuidx_pr(mmu_idx) && !(batu & BATU32_VS))) {
return 0;
}
return BATU32_BEPI & ~((batu & BATU32_BL) << 15);
}
static int hash32_bat_prot(PowerPCCPU *cpu,
target_ulong batu, target_ulong batl)
{
int pp, prot;
prot = 0;
pp = batl & BATL32_PP;
if (pp != 0) {
prot = PAGE_READ | PAGE_EXEC;
if (pp == 0x2) {
prot |= PAGE_WRITE;
}
}
return prot;
}
static hwaddr ppc_hash32_bat_lookup(PowerPCCPU *cpu, target_ulong ea,
MMUAccessType access_type, int *prot,
int mmu_idx)
{
CPUPPCState *env = &cpu->env;
target_ulong *BATlt, *BATut;
bool ifetch = access_type == MMU_INST_FETCH;
int i;
LOG_BATS("%s: %cBAT v " TARGET_FMT_lx "\n", __func__,
ifetch ? 'I' : 'D', ea);
if (ifetch) {
BATlt = env->IBAT[1];
BATut = env->IBAT[0];
} else {
BATlt = env->DBAT[1];
BATut = env->DBAT[0];
}
for (i = 0; i < env->nb_BATs; i++) {
target_ulong batu = BATut[i];
target_ulong batl = BATlt[i];
target_ulong mask;
mask = hash32_bat_size(mmu_idx, batu, batl);
LOG_BATS("%s: %cBAT%d v " TARGET_FMT_lx " BATu " TARGET_FMT_lx
" BATl " TARGET_FMT_lx "\n", __func__,
ifetch ? 'I' : 'D', i, ea, batu, batl);
if (mask && ((ea & mask) == (batu & BATU32_BEPI))) {
hwaddr raddr = (batl & mask) | (ea & ~mask);
*prot = hash32_bat_prot(cpu, batu, batl);
return raddr & TARGET_PAGE_MASK;
}
}
/* No hit */
#if defined(DEBUG_BATS)
if (qemu_log_enabled()) {
target_ulong *BATu, *BATl;
target_ulong BEPIl, BEPIu, bl;
LOG_BATS("no BAT match for " TARGET_FMT_lx ":\n", ea);
for (i = 0; i < 4; i++) {
BATu = &BATut[i];
BATl = &BATlt[i];
BEPIu = *BATu & BATU32_BEPIU;
BEPIl = *BATu & BATU32_BEPIL;
bl = (*BATu & 0x00001FFC) << 15;
LOG_BATS("%s: %cBAT%d v " TARGET_FMT_lx " BATu " TARGET_FMT_lx
" BATl " TARGET_FMT_lx "\n\t" TARGET_FMT_lx " "
TARGET_FMT_lx " " TARGET_FMT_lx "\n",
__func__, ifetch ? 'I' : 'D', i, ea,
*BATu, *BATl, BEPIu, BEPIl, bl);
}
}
#endif
return -1;
}
static bool ppc_hash32_direct_store(PowerPCCPU *cpu, target_ulong sr,
target_ulong eaddr,
MMUAccessType access_type,
hwaddr *raddr, int *prot, int mmu_idx,
bool guest_visible)
{
CPUState *cs = CPU(cpu);
CPUPPCState *env = &cpu->env;
int key = !!(mmuidx_pr(mmu_idx) ? (sr & SR32_KP) : (sr & SR32_KS));
qemu_log_mask(CPU_LOG_MMU, "direct store...\n");
if (access_type == MMU_INST_FETCH) {
/* No code fetch is allowed in direct-store areas */
if (guest_visible) {
cs->exception_index = POWERPC_EXCP_ISI;
env->error_code = 0x10000000;
}
return false;
}
/*
* From ppc_cpu_get_phys_page_debug, env->access_type is not set.
* Assume ACCESS_INT for that case.
*/
switch (guest_visible ? env->access_type : ACCESS_INT) {
case ACCESS_INT:
/* Integer load/store : only access allowed */
break;
case ACCESS_FLOAT:
/* Floating point load/store */
cs->exception_index = POWERPC_EXCP_ALIGN;
env->error_code = POWERPC_EXCP_ALIGN_FP;
env->spr[SPR_DAR] = eaddr;
return false;
case ACCESS_RES:
/* lwarx, ldarx or srwcx. */
env->error_code = 0;
env->spr[SPR_DAR] = eaddr;
if (access_type == MMU_DATA_STORE) {
env->spr[SPR_DSISR] = 0x06000000;
} else {
env->spr[SPR_DSISR] = 0x04000000;
}
return false;
case ACCESS_CACHE:
/*
* dcba, dcbt, dcbtst, dcbf, dcbi, dcbst, dcbz, or icbi
*
* Should make the instruction do no-op. As it already do
* no-op, it's quite easy :-)
*/
*raddr = eaddr;
return true;
case ACCESS_EXT:
/* eciwx or ecowx */
cs->exception_index = POWERPC_EXCP_DSI;
env->error_code = 0;
env->spr[SPR_DAR] = eaddr;
if (access_type == MMU_DATA_STORE) {
env->spr[SPR_DSISR] = 0x06100000;
} else {
env->spr[SPR_DSISR] = 0x04100000;
}
return false;
default:
cpu_abort(cs, "ERROR: insn should not need address translation\n");
}
*prot = key ? PAGE_READ | PAGE_WRITE : PAGE_READ;
if (check_prot_access_type(*prot, access_type)) {
*raddr = eaddr;
return true;
}
if (guest_visible) {
cs->exception_index = POWERPC_EXCP_DSI;
env->error_code = 0;
env->spr[SPR_DAR] = eaddr;
if (access_type == MMU_DATA_STORE) {
env->spr[SPR_DSISR] = 0x0a000000;
} else {
env->spr[SPR_DSISR] = 0x08000000;
}
}
return false;
}
hwaddr get_pteg_offset32(PowerPCCPU *cpu, hwaddr hash)
{
target_ulong mask = ppc_hash32_hpt_mask(cpu);
return (hash * HASH_PTEG_SIZE_32) & mask;
}
static hwaddr ppc_hash32_pteg_search(PowerPCCPU *cpu, hwaddr pteg_off,
bool secondary, target_ulong ptem,
ppc_hash_pte32_t *pte)
{
hwaddr pte_offset = pteg_off;
target_ulong pte0, pte1;
int i;
for (i = 0; i < HPTES_PER_GROUP; i++) {
pte0 = ppc_hash32_load_hpte0(cpu, pte_offset);
/*
* pte0 contains the valid bit and must be read before pte1,
* otherwise we might see an old pte1 with a new valid bit and
* thus an inconsistent hpte value
*/
smp_rmb();
pte1 = ppc_hash32_load_hpte1(cpu, pte_offset);
if ((pte0 & HPTE32_V_VALID)
&& (secondary == !!(pte0 & HPTE32_V_SECONDARY))
&& HPTE32_V_COMPARE(pte0, ptem)) {
pte->pte0 = pte0;
pte->pte1 = pte1;
return pte_offset;
}
pte_offset += HASH_PTE_SIZE_32;
}
return -1;
}
static void ppc_hash32_set_r(PowerPCCPU *cpu, hwaddr pte_offset, uint32_t pte1)
{
target_ulong base = ppc_hash32_hpt_base(cpu);
hwaddr offset = pte_offset + 6;
/* The HW performs a non-atomic byte update */
stb_phys(CPU(cpu)->as, base + offset, ((pte1 >> 8) & 0xff) | 0x01);
}
static void ppc_hash32_set_c(PowerPCCPU *cpu, hwaddr pte_offset, uint64_t pte1)
{
target_ulong base = ppc_hash32_hpt_base(cpu);
hwaddr offset = pte_offset + 7;
/* The HW performs a non-atomic byte update */
stb_phys(CPU(cpu)->as, base + offset, (pte1 & 0xff) | 0x80);
}
static hwaddr ppc_hash32_htab_lookup(PowerPCCPU *cpu,
target_ulong sr, target_ulong eaddr,
ppc_hash_pte32_t *pte)
{
hwaddr pteg_off, pte_offset;
hwaddr hash;
uint32_t vsid, pgidx, ptem;
vsid = sr & SR32_VSID;
pgidx = (eaddr & ~SEGMENT_MASK_256M) >> TARGET_PAGE_BITS;
hash = vsid ^ pgidx;
ptem = (vsid << 7) | (pgidx >> 10);
/* Page address translation */
qemu_log_mask(CPU_LOG_MMU, "htab_base " HWADDR_FMT_plx
" htab_mask " HWADDR_FMT_plx
" hash " HWADDR_FMT_plx "\n",
ppc_hash32_hpt_base(cpu), ppc_hash32_hpt_mask(cpu), hash);
/* Primary PTEG lookup */
qemu_log_mask(CPU_LOG_MMU, "0 htab=" HWADDR_FMT_plx "/" HWADDR_FMT_plx
" vsid=%" PRIx32 " ptem=%" PRIx32
" hash=" HWADDR_FMT_plx "\n",
ppc_hash32_hpt_base(cpu), ppc_hash32_hpt_mask(cpu),
vsid, ptem, hash);
pteg_off = get_pteg_offset32(cpu, hash);
pte_offset = ppc_hash32_pteg_search(cpu, pteg_off, 0, ptem, pte);
if (pte_offset == -1) {
/* Secondary PTEG lookup */
qemu_log_mask(CPU_LOG_MMU, "1 htab=" HWADDR_FMT_plx "/" HWADDR_FMT_plx
" vsid=%" PRIx32 " api=%" PRIx32
" hash=" HWADDR_FMT_plx "\n", ppc_hash32_hpt_base(cpu),
ppc_hash32_hpt_mask(cpu), vsid, ptem, ~hash);
pteg_off = get_pteg_offset32(cpu, ~hash);
pte_offset = ppc_hash32_pteg_search(cpu, pteg_off, 1, ptem, pte);
}
return pte_offset;
}
static hwaddr ppc_hash32_pte_raddr(target_ulong sr, ppc_hash_pte32_t pte,
target_ulong eaddr)
{
hwaddr rpn = pte.pte1 & HPTE32_R_RPN;
hwaddr mask = ~TARGET_PAGE_MASK;
return (rpn & ~mask) | (eaddr & mask);
}
bool ppc_hash32_xlate(PowerPCCPU *cpu, vaddr eaddr, MMUAccessType access_type,
hwaddr *raddrp, int *psizep, int *protp, int mmu_idx,
bool guest_visible)
{
CPUState *cs = CPU(cpu);
CPUPPCState *env = &cpu->env;
target_ulong sr;
hwaddr pte_offset;
ppc_hash_pte32_t pte;
int prot;
hwaddr raddr;
/* There are no hash32 large pages. */
*psizep = TARGET_PAGE_BITS;
/* 1. Handle real mode accesses */
if (mmuidx_real(mmu_idx)) {
/* Translation is off */
*raddrp = eaddr;
*protp = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
return true;
}
/* 2. Check Block Address Translation entries (BATs) */
if (env->nb_BATs != 0) {
raddr = ppc_hash32_bat_lookup(cpu, eaddr, access_type, protp, mmu_idx);
if (raddr != -1) {
if (!check_prot_access_type(*protp, access_type)) {
if (guest_visible) {
if (access_type == MMU_INST_FETCH) {
cs->exception_index = POWERPC_EXCP_ISI;
env->error_code = 0x08000000;
} else {
cs->exception_index = POWERPC_EXCP_DSI;
env->error_code = 0;
env->spr[SPR_DAR] = eaddr;
if (access_type == MMU_DATA_STORE) {
env->spr[SPR_DSISR] = 0x0a000000;
} else {
env->spr[SPR_DSISR] = 0x08000000;
}
}
}
return false;
}
*raddrp = raddr;
return true;
}
}
/* 3. Look up the Segment Register */
sr = env->sr[eaddr >> 28];
/* 4. Handle direct store segments */
if (sr & SR32_T) {
return ppc_hash32_direct_store(cpu, sr, eaddr, access_type,
raddrp, protp, mmu_idx, guest_visible);
}
/* 5. Check for segment level no-execute violation */
if (access_type == MMU_INST_FETCH && (sr & SR32_NX)) {
if (guest_visible) {
cs->exception_index = POWERPC_EXCP_ISI;
env->error_code = 0x10000000;
}
return false;
}
/* 6. Locate the PTE in the hash table */
pte_offset = ppc_hash32_htab_lookup(cpu, sr, eaddr, &pte);
if (pte_offset == -1) {
if (guest_visible) {
if (access_type == MMU_INST_FETCH) {
cs->exception_index = POWERPC_EXCP_ISI;
env->error_code = 0x40000000;
} else {
cs->exception_index = POWERPC_EXCP_DSI;
env->error_code = 0;
env->spr[SPR_DAR] = eaddr;
if (access_type == MMU_DATA_STORE) {
env->spr[SPR_DSISR] = 0x42000000;
} else {
env->spr[SPR_DSISR] = 0x40000000;
}
}
}
return false;
}
qemu_log_mask(CPU_LOG_MMU,
"found PTE at offset %08" HWADDR_PRIx "\n", pte_offset);
/* 7. Check access permissions */
prot = ppc_hash32_pte_prot(mmu_idx, sr, pte);
if (!check_prot_access_type(prot, access_type)) {
/* Access right violation */
qemu_log_mask(CPU_LOG_MMU, "PTE access rejected\n");
if (guest_visible) {
if (access_type == MMU_INST_FETCH) {
cs->exception_index = POWERPC_EXCP_ISI;
env->error_code = 0x08000000;
} else {
cs->exception_index = POWERPC_EXCP_DSI;
env->error_code = 0;
env->spr[SPR_DAR] = eaddr;
if (access_type == MMU_DATA_STORE) {
env->spr[SPR_DSISR] = 0x0a000000;
} else {
env->spr[SPR_DSISR] = 0x08000000;
}
}
}
return false;
}
qemu_log_mask(CPU_LOG_MMU, "PTE access granted !\n");
/* 8. Update PTE referenced and changed bits if necessary */
if (!(pte.pte1 & HPTE32_R_R)) {
ppc_hash32_set_r(cpu, pte_offset, pte.pte1);
}
if (!(pte.pte1 & HPTE32_R_C)) {
if (access_type == MMU_DATA_STORE) {
ppc_hash32_set_c(cpu, pte_offset, pte.pte1);
} else {
/*
* Treat the page as read-only for now, so that a later write
* will pass through this function again to set the C bit
*/
prot &= ~PAGE_WRITE;
}
}
/* 9. Determine the real address from the PTE */
*raddrp = ppc_hash32_pte_raddr(sr, pte, eaddr);
*protp = prot;
return true;
}