|  | /* | 
|  | * Simple C functions to supplement the C library | 
|  | * | 
|  | * Copyright (c) 2006 Fabrice Bellard | 
|  | * | 
|  | * Permission is hereby granted, free of charge, to any person obtaining a copy | 
|  | * of this software and associated documentation files (the "Software"), to deal | 
|  | * in the Software without restriction, including without limitation the rights | 
|  | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | 
|  | * copies of the Software, and to permit persons to whom the Software is | 
|  | * furnished to do so, subject to the following conditions: | 
|  | * | 
|  | * The above copyright notice and this permission notice shall be included in | 
|  | * all copies or substantial portions of the Software. | 
|  | * | 
|  | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | 
|  | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | 
|  | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | 
|  | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | 
|  | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | 
|  | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | 
|  | * THE SOFTWARE. | 
|  | */ | 
|  |  | 
|  | #include "qemu/osdep.h" | 
|  | #include "qemu/host-utils.h" | 
|  | #include <math.h> | 
|  |  | 
|  | #ifdef __FreeBSD__ | 
|  | #include <sys/sysctl.h> | 
|  | #include <sys/user.h> | 
|  | #endif | 
|  |  | 
|  | #ifdef __NetBSD__ | 
|  | #include <sys/sysctl.h> | 
|  | #endif | 
|  |  | 
|  | #ifdef __HAIKU__ | 
|  | #include <kernel/image.h> | 
|  | #endif | 
|  |  | 
|  | #ifdef __APPLE__ | 
|  | #include <mach-o/dyld.h> | 
|  | #endif | 
|  |  | 
|  | #ifdef G_OS_WIN32 | 
|  | #include <pathcch.h> | 
|  | #include <wchar.h> | 
|  | #endif | 
|  |  | 
|  | #include "qemu/ctype.h" | 
|  | #include "qemu/cutils.h" | 
|  | #include "qemu/error-report.h" | 
|  |  | 
|  | void strpadcpy(char *buf, int buf_size, const char *str, char pad) | 
|  | { | 
|  | int len = qemu_strnlen(str, buf_size); | 
|  | memcpy(buf, str, len); | 
|  | memset(buf + len, pad, buf_size - len); | 
|  | } | 
|  |  | 
|  | void pstrcpy(char *buf, int buf_size, const char *str) | 
|  | { | 
|  | int c; | 
|  | char *q = buf; | 
|  |  | 
|  | if (buf_size <= 0) | 
|  | return; | 
|  |  | 
|  | for(;;) { | 
|  | c = *str++; | 
|  | if (c == 0 || q >= buf + buf_size - 1) | 
|  | break; | 
|  | *q++ = c; | 
|  | } | 
|  | *q = '\0'; | 
|  | } | 
|  |  | 
|  | /* strcat and truncate. */ | 
|  | char *pstrcat(char *buf, int buf_size, const char *s) | 
|  | { | 
|  | int len; | 
|  | len = strlen(buf); | 
|  | if (len < buf_size) | 
|  | pstrcpy(buf + len, buf_size - len, s); | 
|  | return buf; | 
|  | } | 
|  |  | 
|  | int strstart(const char *str, const char *val, const char **ptr) | 
|  | { | 
|  | const char *p, *q; | 
|  | p = str; | 
|  | q = val; | 
|  | while (*q != '\0') { | 
|  | if (*p != *q) | 
|  | return 0; | 
|  | p++; | 
|  | q++; | 
|  | } | 
|  | if (ptr) | 
|  | *ptr = p; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int stristart(const char *str, const char *val, const char **ptr) | 
|  | { | 
|  | const char *p, *q; | 
|  | p = str; | 
|  | q = val; | 
|  | while (*q != '\0') { | 
|  | if (qemu_toupper(*p) != qemu_toupper(*q)) | 
|  | return 0; | 
|  | p++; | 
|  | q++; | 
|  | } | 
|  | if (ptr) | 
|  | *ptr = p; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* XXX: use host strnlen if available ? */ | 
|  | int qemu_strnlen(const char *s, int max_len) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for(i = 0; i < max_len; i++) { | 
|  | if (s[i] == '\0') { | 
|  | break; | 
|  | } | 
|  | } | 
|  | return i; | 
|  | } | 
|  |  | 
|  | char *qemu_strsep(char **input, const char *delim) | 
|  | { | 
|  | char *result = *input; | 
|  | if (result != NULL) { | 
|  | char *p; | 
|  |  | 
|  | for (p = result; *p != '\0'; p++) { | 
|  | if (strchr(delim, *p)) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (*p == '\0') { | 
|  | *input = NULL; | 
|  | } else { | 
|  | *p = '\0'; | 
|  | *input = p + 1; | 
|  | } | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | time_t mktimegm(struct tm *tm) | 
|  | { | 
|  | time_t t; | 
|  | int y = tm->tm_year + 1900, m = tm->tm_mon + 1, d = tm->tm_mday; | 
|  | if (m < 3) { | 
|  | m += 12; | 
|  | y--; | 
|  | } | 
|  | t = 86400ULL * (d + (153 * m - 457) / 5 + 365 * y + y / 4 - y / 100 + | 
|  | y / 400 - 719469); | 
|  | t += 3600 * tm->tm_hour + 60 * tm->tm_min + tm->tm_sec; | 
|  | return t; | 
|  | } | 
|  |  | 
|  | static int64_t suffix_mul(char suffix, int64_t unit) | 
|  | { | 
|  | switch (qemu_toupper(suffix)) { | 
|  | case 'B': | 
|  | return 1; | 
|  | case 'K': | 
|  | return unit; | 
|  | case 'M': | 
|  | return unit * unit; | 
|  | case 'G': | 
|  | return unit * unit * unit; | 
|  | case 'T': | 
|  | return unit * unit * unit * unit; | 
|  | case 'P': | 
|  | return unit * unit * unit * unit * unit; | 
|  | case 'E': | 
|  | return unit * unit * unit * unit * unit * unit; | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Convert size string to bytes. | 
|  | * | 
|  | * The size parsing supports the following syntaxes | 
|  | * - 12345 - decimal, scale determined by @default_suffix and @unit | 
|  | * - 12345{bBkKmMgGtTpPeE} - decimal, scale determined by suffix and @unit | 
|  | * - 12345.678{kKmMgGtTpPeE} - decimal, scale determined by suffix, and | 
|  | *   fractional portion is truncated to byte | 
|  | * - 0x7fEE - hexadecimal, unit determined by @default_suffix | 
|  | * | 
|  | * The following are intentionally not supported | 
|  | * - hex with scaling suffix, such as 0x20M | 
|  | * - octal, such as 08 | 
|  | * - fractional hex, such as 0x1.8 | 
|  | * - floating point exponents, such as 1e3 | 
|  | * | 
|  | * The end pointer will be returned in *end, if not NULL.  If there is | 
|  | * no fraction, the input can be decimal or hexadecimal; if there is a | 
|  | * fraction, then the input must be decimal and there must be a suffix | 
|  | * (possibly by @default_suffix) larger than Byte, and the fractional | 
|  | * portion may suffer from precision loss or rounding.  The input must | 
|  | * be positive. | 
|  | * | 
|  | * Return -ERANGE on overflow (with *@end advanced), and -EINVAL on | 
|  | * other error (with *@end left unchanged). | 
|  | */ | 
|  | static int do_strtosz(const char *nptr, const char **end, | 
|  | const char default_suffix, int64_t unit, | 
|  | uint64_t *result) | 
|  | { | 
|  | int retval; | 
|  | const char *endptr, *f; | 
|  | unsigned char c; | 
|  | uint64_t val, valf = 0; | 
|  | int64_t mul; | 
|  |  | 
|  | /* Parse integral portion as decimal. */ | 
|  | retval = qemu_strtou64(nptr, &endptr, 10, &val); | 
|  | if (retval) { | 
|  | goto out; | 
|  | } | 
|  | if (memchr(nptr, '-', endptr - nptr) != NULL) { | 
|  | endptr = nptr; | 
|  | retval = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | if (val == 0 && (*endptr == 'x' || *endptr == 'X')) { | 
|  | /* Input looks like hex; reparse, and insist on no fraction or suffix. */ | 
|  | retval = qemu_strtou64(nptr, &endptr, 16, &val); | 
|  | if (retval) { | 
|  | goto out; | 
|  | } | 
|  | if (*endptr == '.' || suffix_mul(*endptr, unit) > 0) { | 
|  | endptr = nptr; | 
|  | retval = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | } else if (*endptr == '.') { | 
|  | /* | 
|  | * Input looks like a fraction.  Make sure even 1.k works | 
|  | * without fractional digits.  If we see an exponent, treat | 
|  | * the entire input as invalid instead. | 
|  | */ | 
|  | double fraction; | 
|  |  | 
|  | f = endptr; | 
|  | retval = qemu_strtod_finite(f, &endptr, &fraction); | 
|  | if (retval) { | 
|  | endptr++; | 
|  | } else if (memchr(f, 'e', endptr - f) || memchr(f, 'E', endptr - f)) { | 
|  | endptr = nptr; | 
|  | retval = -EINVAL; | 
|  | goto out; | 
|  | } else { | 
|  | /* Extract into a 64-bit fixed-point fraction. */ | 
|  | valf = (uint64_t)(fraction * 0x1p64); | 
|  | } | 
|  | } | 
|  | c = *endptr; | 
|  | mul = suffix_mul(c, unit); | 
|  | if (mul > 0) { | 
|  | endptr++; | 
|  | } else { | 
|  | mul = suffix_mul(default_suffix, unit); | 
|  | assert(mul > 0); | 
|  | } | 
|  | if (mul == 1) { | 
|  | /* When a fraction is present, a scale is required. */ | 
|  | if (valf != 0) { | 
|  | endptr = nptr; | 
|  | retval = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | } else { | 
|  | uint64_t valh, tmp; | 
|  |  | 
|  | /* Compute exact result: 64.64 x 64.0 -> 128.64 fixed point */ | 
|  | mulu64(&val, &valh, val, mul); | 
|  | mulu64(&valf, &tmp, valf, mul); | 
|  | val += tmp; | 
|  | valh += val < tmp; | 
|  |  | 
|  | /* Round 0.5 upward. */ | 
|  | tmp = valf >> 63; | 
|  | val += tmp; | 
|  | valh += val < tmp; | 
|  |  | 
|  | /* Report overflow. */ | 
|  | if (valh != 0) { | 
|  | retval = -ERANGE; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | retval = 0; | 
|  |  | 
|  | out: | 
|  | if (end) { | 
|  | *end = endptr; | 
|  | } else if (*endptr) { | 
|  | retval = -EINVAL; | 
|  | } | 
|  | if (retval == 0) { | 
|  | *result = val; | 
|  | } | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | int qemu_strtosz(const char *nptr, const char **end, uint64_t *result) | 
|  | { | 
|  | return do_strtosz(nptr, end, 'B', 1024, result); | 
|  | } | 
|  |  | 
|  | int qemu_strtosz_MiB(const char *nptr, const char **end, uint64_t *result) | 
|  | { | 
|  | return do_strtosz(nptr, end, 'M', 1024, result); | 
|  | } | 
|  |  | 
|  | int qemu_strtosz_metric(const char *nptr, const char **end, uint64_t *result) | 
|  | { | 
|  | return do_strtosz(nptr, end, 'B', 1000, result); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Helper function for error checking after strtol() and the like | 
|  | */ | 
|  | static int check_strtox_error(const char *nptr, char *ep, | 
|  | const char **endptr, bool check_zero, | 
|  | int libc_errno) | 
|  | { | 
|  | assert(ep >= nptr); | 
|  |  | 
|  | /* Windows has a bug in that it fails to parse 0 from "0x" in base 16 */ | 
|  | if (check_zero && ep == nptr && libc_errno == 0) { | 
|  | char *tmp; | 
|  |  | 
|  | errno = 0; | 
|  | if (strtol(nptr, &tmp, 10) == 0 && errno == 0 && | 
|  | (*tmp == 'x' || *tmp == 'X')) { | 
|  | ep = tmp; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (endptr) { | 
|  | *endptr = ep; | 
|  | } | 
|  |  | 
|  | /* Turn "no conversion" into an error */ | 
|  | if (libc_errno == 0 && ep == nptr) { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Fail when we're expected to consume the string, but didn't */ | 
|  | if (!endptr && *ep) { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return -libc_errno; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Convert string @nptr to an integer, and store it in @result. | 
|  | * | 
|  | * This is a wrapper around strtol() that is harder to misuse. | 
|  | * Semantics of @nptr, @endptr, @base match strtol() with differences | 
|  | * noted below. | 
|  | * | 
|  | * @nptr may be null, and no conversion is performed then. | 
|  | * | 
|  | * If no conversion is performed, store @nptr in *@endptr and return | 
|  | * -EINVAL. | 
|  | * | 
|  | * If @endptr is null, and the string isn't fully converted, return | 
|  | * -EINVAL.  This is the case when the pointer that would be stored in | 
|  | * a non-null @endptr points to a character other than '\0'. | 
|  | * | 
|  | * If the conversion overflows @result, store INT_MAX in @result, | 
|  | * and return -ERANGE. | 
|  | * | 
|  | * If the conversion underflows @result, store INT_MIN in @result, | 
|  | * and return -ERANGE. | 
|  | * | 
|  | * Else store the converted value in @result, and return zero. | 
|  | */ | 
|  | int qemu_strtoi(const char *nptr, const char **endptr, int base, | 
|  | int *result) | 
|  | { | 
|  | char *ep; | 
|  | long long lresult; | 
|  |  | 
|  | assert((unsigned) base <= 36 && base != 1); | 
|  | if (!nptr) { | 
|  | if (endptr) { | 
|  | *endptr = nptr; | 
|  | } | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | errno = 0; | 
|  | lresult = strtoll(nptr, &ep, base); | 
|  | if (lresult < INT_MIN) { | 
|  | *result = INT_MIN; | 
|  | errno = ERANGE; | 
|  | } else if (lresult > INT_MAX) { | 
|  | *result = INT_MAX; | 
|  | errno = ERANGE; | 
|  | } else { | 
|  | *result = lresult; | 
|  | } | 
|  | return check_strtox_error(nptr, ep, endptr, lresult == 0, errno); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Convert string @nptr to an unsigned integer, and store it in @result. | 
|  | * | 
|  | * This is a wrapper around strtoul() that is harder to misuse. | 
|  | * Semantics of @nptr, @endptr, @base match strtoul() with differences | 
|  | * noted below. | 
|  | * | 
|  | * @nptr may be null, and no conversion is performed then. | 
|  | * | 
|  | * If no conversion is performed, store @nptr in *@endptr and return | 
|  | * -EINVAL. | 
|  | * | 
|  | * If @endptr is null, and the string isn't fully converted, return | 
|  | * -EINVAL.  This is the case when the pointer that would be stored in | 
|  | * a non-null @endptr points to a character other than '\0'. | 
|  | * | 
|  | * If the conversion overflows @result, store UINT_MAX in @result, | 
|  | * and return -ERANGE. | 
|  | * | 
|  | * Else store the converted value in @result, and return zero. | 
|  | * | 
|  | * Note that a number with a leading minus sign gets converted without | 
|  | * the minus sign, checked for overflow (see above), then negated (in | 
|  | * @result's type).  This is exactly how strtoul() works. | 
|  | */ | 
|  | int qemu_strtoui(const char *nptr, const char **endptr, int base, | 
|  | unsigned int *result) | 
|  | { | 
|  | char *ep; | 
|  | long long lresult; | 
|  |  | 
|  | assert((unsigned) base <= 36 && base != 1); | 
|  | if (!nptr) { | 
|  | if (endptr) { | 
|  | *endptr = nptr; | 
|  | } | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | errno = 0; | 
|  | lresult = strtoull(nptr, &ep, base); | 
|  |  | 
|  | /* Windows returns 1 for negative out-of-range values.  */ | 
|  | if (errno == ERANGE) { | 
|  | *result = -1; | 
|  | } else { | 
|  | if (lresult > UINT_MAX) { | 
|  | *result = UINT_MAX; | 
|  | errno = ERANGE; | 
|  | } else if (lresult < INT_MIN) { | 
|  | *result = UINT_MAX; | 
|  | errno = ERANGE; | 
|  | } else { | 
|  | *result = lresult; | 
|  | } | 
|  | } | 
|  | return check_strtox_error(nptr, ep, endptr, lresult == 0, errno); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Convert string @nptr to a long integer, and store it in @result. | 
|  | * | 
|  | * This is a wrapper around strtol() that is harder to misuse. | 
|  | * Semantics of @nptr, @endptr, @base match strtol() with differences | 
|  | * noted below. | 
|  | * | 
|  | * @nptr may be null, and no conversion is performed then. | 
|  | * | 
|  | * If no conversion is performed, store @nptr in *@endptr and return | 
|  | * -EINVAL. | 
|  | * | 
|  | * If @endptr is null, and the string isn't fully converted, return | 
|  | * -EINVAL.  This is the case when the pointer that would be stored in | 
|  | * a non-null @endptr points to a character other than '\0'. | 
|  | * | 
|  | * If the conversion overflows @result, store LONG_MAX in @result, | 
|  | * and return -ERANGE. | 
|  | * | 
|  | * If the conversion underflows @result, store LONG_MIN in @result, | 
|  | * and return -ERANGE. | 
|  | * | 
|  | * Else store the converted value in @result, and return zero. | 
|  | */ | 
|  | int qemu_strtol(const char *nptr, const char **endptr, int base, | 
|  | long *result) | 
|  | { | 
|  | char *ep; | 
|  |  | 
|  | assert((unsigned) base <= 36 && base != 1); | 
|  | if (!nptr) { | 
|  | if (endptr) { | 
|  | *endptr = nptr; | 
|  | } | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | errno = 0; | 
|  | *result = strtol(nptr, &ep, base); | 
|  | return check_strtox_error(nptr, ep, endptr, *result == 0, errno); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Convert string @nptr to an unsigned long, and store it in @result. | 
|  | * | 
|  | * This is a wrapper around strtoul() that is harder to misuse. | 
|  | * Semantics of @nptr, @endptr, @base match strtoul() with differences | 
|  | * noted below. | 
|  | * | 
|  | * @nptr may be null, and no conversion is performed then. | 
|  | * | 
|  | * If no conversion is performed, store @nptr in *@endptr and return | 
|  | * -EINVAL. | 
|  | * | 
|  | * If @endptr is null, and the string isn't fully converted, return | 
|  | * -EINVAL.  This is the case when the pointer that would be stored in | 
|  | * a non-null @endptr points to a character other than '\0'. | 
|  | * | 
|  | * If the conversion overflows @result, store ULONG_MAX in @result, | 
|  | * and return -ERANGE. | 
|  | * | 
|  | * Else store the converted value in @result, and return zero. | 
|  | * | 
|  | * Note that a number with a leading minus sign gets converted without | 
|  | * the minus sign, checked for overflow (see above), then negated (in | 
|  | * @result's type).  This is exactly how strtoul() works. | 
|  | */ | 
|  | int qemu_strtoul(const char *nptr, const char **endptr, int base, | 
|  | unsigned long *result) | 
|  | { | 
|  | char *ep; | 
|  |  | 
|  | assert((unsigned) base <= 36 && base != 1); | 
|  | if (!nptr) { | 
|  | if (endptr) { | 
|  | *endptr = nptr; | 
|  | } | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | errno = 0; | 
|  | *result = strtoul(nptr, &ep, base); | 
|  | /* Windows returns 1 for negative out-of-range values.  */ | 
|  | if (errno == ERANGE) { | 
|  | *result = -1; | 
|  | } | 
|  | return check_strtox_error(nptr, ep, endptr, *result == 0, errno); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Convert string @nptr to an int64_t. | 
|  | * | 
|  | * Works like qemu_strtol(), except it stores INT64_MAX on overflow, | 
|  | * and INT64_MIN on underflow. | 
|  | */ | 
|  | int qemu_strtoi64(const char *nptr, const char **endptr, int base, | 
|  | int64_t *result) | 
|  | { | 
|  | char *ep; | 
|  |  | 
|  | assert((unsigned) base <= 36 && base != 1); | 
|  | if (!nptr) { | 
|  | if (endptr) { | 
|  | *endptr = nptr; | 
|  | } | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* This assumes int64_t is long long TODO relax */ | 
|  | QEMU_BUILD_BUG_ON(sizeof(int64_t) != sizeof(long long)); | 
|  | errno = 0; | 
|  | *result = strtoll(nptr, &ep, base); | 
|  | return check_strtox_error(nptr, ep, endptr, *result == 0, errno); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Convert string @nptr to an uint64_t. | 
|  | * | 
|  | * Works like qemu_strtoul(), except it stores UINT64_MAX on overflow. | 
|  | */ | 
|  | int qemu_strtou64(const char *nptr, const char **endptr, int base, | 
|  | uint64_t *result) | 
|  | { | 
|  | char *ep; | 
|  |  | 
|  | assert((unsigned) base <= 36 && base != 1); | 
|  | if (!nptr) { | 
|  | if (endptr) { | 
|  | *endptr = nptr; | 
|  | } | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* This assumes uint64_t is unsigned long long TODO relax */ | 
|  | QEMU_BUILD_BUG_ON(sizeof(uint64_t) != sizeof(unsigned long long)); | 
|  | errno = 0; | 
|  | *result = strtoull(nptr, &ep, base); | 
|  | /* Windows returns 1 for negative out-of-range values.  */ | 
|  | if (errno == ERANGE) { | 
|  | *result = -1; | 
|  | } | 
|  | return check_strtox_error(nptr, ep, endptr, *result == 0, errno); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Convert string @nptr to a double. | 
|  | * | 
|  | * This is a wrapper around strtod() that is harder to misuse. | 
|  | * Semantics of @nptr and @endptr match strtod() with differences | 
|  | * noted below. | 
|  | * | 
|  | * @nptr may be null, and no conversion is performed then. | 
|  | * | 
|  | * If no conversion is performed, store @nptr in *@endptr and return | 
|  | * -EINVAL. | 
|  | * | 
|  | * If @endptr is null, and the string isn't fully converted, return | 
|  | * -EINVAL. This is the case when the pointer that would be stored in | 
|  | * a non-null @endptr points to a character other than '\0'. | 
|  | * | 
|  | * If the conversion overflows, store +/-HUGE_VAL in @result, depending | 
|  | * on the sign, and return -ERANGE. | 
|  | * | 
|  | * If the conversion underflows, store +/-0.0 in @result, depending on the | 
|  | * sign, and return -ERANGE. | 
|  | * | 
|  | * Else store the converted value in @result, and return zero. | 
|  | */ | 
|  | int qemu_strtod(const char *nptr, const char **endptr, double *result) | 
|  | { | 
|  | char *ep; | 
|  |  | 
|  | if (!nptr) { | 
|  | if (endptr) { | 
|  | *endptr = nptr; | 
|  | } | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | errno = 0; | 
|  | *result = strtod(nptr, &ep); | 
|  | return check_strtox_error(nptr, ep, endptr, false, errno); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Convert string @nptr to a finite double. | 
|  | * | 
|  | * Works like qemu_strtod(), except that "NaN" and "inf" are rejected | 
|  | * with -EINVAL and no conversion is performed. | 
|  | */ | 
|  | int qemu_strtod_finite(const char *nptr, const char **endptr, double *result) | 
|  | { | 
|  | double tmp; | 
|  | int ret; | 
|  |  | 
|  | ret = qemu_strtod(nptr, endptr, &tmp); | 
|  | if (!ret && !isfinite(tmp)) { | 
|  | if (endptr) { | 
|  | *endptr = nptr; | 
|  | } | 
|  | ret = -EINVAL; | 
|  | } | 
|  |  | 
|  | if (ret != -EINVAL) { | 
|  | *result = tmp; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Searches for the first occurrence of 'c' in 's', and returns a pointer | 
|  | * to the trailing null byte if none was found. | 
|  | */ | 
|  | #ifndef HAVE_STRCHRNUL | 
|  | const char *qemu_strchrnul(const char *s, int c) | 
|  | { | 
|  | const char *e = strchr(s, c); | 
|  | if (!e) { | 
|  | e = s + strlen(s); | 
|  | } | 
|  | return e; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * parse_uint: | 
|  | * | 
|  | * @s: String to parse | 
|  | * @value: Destination for parsed integer value | 
|  | * @endptr: Destination for pointer to first character not consumed | 
|  | * @base: integer base, between 2 and 36 inclusive, or 0 | 
|  | * | 
|  | * Parse unsigned integer | 
|  | * | 
|  | * Parsed syntax is like strtoull()'s: arbitrary whitespace, a single optional | 
|  | * '+' or '-', an optional "0x" if @base is 0 or 16, one or more digits. | 
|  | * | 
|  | * If @s is null, or @base is invalid, or @s doesn't start with an | 
|  | * integer in the syntax above, set *@value to 0, *@endptr to @s, and | 
|  | * return -EINVAL. | 
|  | * | 
|  | * Set *@endptr to point right beyond the parsed integer (even if the integer | 
|  | * overflows or is negative, all digits will be parsed and *@endptr will | 
|  | * point right beyond them). | 
|  | * | 
|  | * If the integer is negative, set *@value to 0, and return -ERANGE. | 
|  | * | 
|  | * If the integer overflows unsigned long long, set *@value to | 
|  | * ULLONG_MAX, and return -ERANGE. | 
|  | * | 
|  | * Else, set *@value to the parsed integer, and return 0. | 
|  | */ | 
|  | int parse_uint(const char *s, unsigned long long *value, char **endptr, | 
|  | int base) | 
|  | { | 
|  | int r = 0; | 
|  | char *endp = (char *)s; | 
|  | unsigned long long val = 0; | 
|  |  | 
|  | assert((unsigned) base <= 36 && base != 1); | 
|  | if (!s) { | 
|  | r = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | errno = 0; | 
|  | val = strtoull(s, &endp, base); | 
|  | if (errno) { | 
|  | r = -errno; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (endp == s) { | 
|  | r = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* make sure we reject negative numbers: */ | 
|  | while (qemu_isspace(*s)) { | 
|  | s++; | 
|  | } | 
|  | if (*s == '-') { | 
|  | val = 0; | 
|  | r = -ERANGE; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | out: | 
|  | *value = val; | 
|  | *endptr = endp; | 
|  | return r; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * parse_uint_full: | 
|  | * | 
|  | * @s: String to parse | 
|  | * @value: Destination for parsed integer value | 
|  | * @base: integer base, between 2 and 36 inclusive, or 0 | 
|  | * | 
|  | * Parse unsigned integer from entire string | 
|  | * | 
|  | * Have the same behavior of parse_uint(), but with an additional check | 
|  | * for additional data after the parsed number. If extra characters are present | 
|  | * after the parsed number, the function will return -EINVAL, and *@v will | 
|  | * be set to 0. | 
|  | */ | 
|  | int parse_uint_full(const char *s, unsigned long long *value, int base) | 
|  | { | 
|  | char *endp; | 
|  | int r; | 
|  |  | 
|  | r = parse_uint(s, value, &endp, base); | 
|  | if (r < 0) { | 
|  | return r; | 
|  | } | 
|  | if (*endp) { | 
|  | *value = 0; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int qemu_parse_fd(const char *param) | 
|  | { | 
|  | long fd; | 
|  | char *endptr; | 
|  |  | 
|  | errno = 0; | 
|  | fd = strtol(param, &endptr, 10); | 
|  | if (param == endptr /* no conversion performed */                    || | 
|  | errno != 0      /* not representable as long; possibly others */ || | 
|  | *endptr != '\0' /* final string not empty */                     || | 
|  | fd < 0          /* invalid as file descriptor */                 || | 
|  | fd > INT_MAX    /* not representable as int */) { | 
|  | return -1; | 
|  | } | 
|  | return fd; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Implementation of  ULEB128 (http://en.wikipedia.org/wiki/LEB128) | 
|  | * Input is limited to 14-bit numbers | 
|  | */ | 
|  | int uleb128_encode_small(uint8_t *out, uint32_t n) | 
|  | { | 
|  | g_assert(n <= 0x3fff); | 
|  | if (n < 0x80) { | 
|  | *out = n; | 
|  | return 1; | 
|  | } else { | 
|  | *out++ = (n & 0x7f) | 0x80; | 
|  | *out = n >> 7; | 
|  | return 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | int uleb128_decode_small(const uint8_t *in, uint32_t *n) | 
|  | { | 
|  | if (!(*in & 0x80)) { | 
|  | *n = *in; | 
|  | return 1; | 
|  | } else { | 
|  | *n = *in++ & 0x7f; | 
|  | /* we exceed 14 bit number */ | 
|  | if (*in & 0x80) { | 
|  | return -1; | 
|  | } | 
|  | *n |= *in << 7; | 
|  | return 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper to parse debug environment variables | 
|  | */ | 
|  | int parse_debug_env(const char *name, int max, int initial) | 
|  | { | 
|  | char *debug_env = getenv(name); | 
|  | char *inv = NULL; | 
|  | long debug; | 
|  |  | 
|  | if (!debug_env) { | 
|  | return initial; | 
|  | } | 
|  | errno = 0; | 
|  | debug = strtol(debug_env, &inv, 10); | 
|  | if (inv == debug_env) { | 
|  | return initial; | 
|  | } | 
|  | if (debug < 0 || debug > max || errno != 0) { | 
|  | warn_report("%s not in [0, %d]", name, max); | 
|  | return initial; | 
|  | } | 
|  | return debug; | 
|  | } | 
|  |  | 
|  | const char *si_prefix(unsigned int exp10) | 
|  | { | 
|  | static const char *prefixes[] = { | 
|  | "a", "f", "p", "n", "u", "m", "", "K", "M", "G", "T", "P", "E" | 
|  | }; | 
|  |  | 
|  | exp10 += 18; | 
|  | assert(exp10 % 3 == 0 && exp10 / 3 < ARRAY_SIZE(prefixes)); | 
|  | return prefixes[exp10 / 3]; | 
|  | } | 
|  |  | 
|  | const char *iec_binary_prefix(unsigned int exp2) | 
|  | { | 
|  | static const char *prefixes[] = { "", "Ki", "Mi", "Gi", "Ti", "Pi", "Ei" }; | 
|  |  | 
|  | assert(exp2 % 10 == 0 && exp2 / 10 < ARRAY_SIZE(prefixes)); | 
|  | return prefixes[exp2 / 10]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return human readable string for size @val. | 
|  | * @val can be anything that uint64_t allows (no more than "16 EiB"). | 
|  | * Use IEC binary units like KiB, MiB, and so forth. | 
|  | * Caller is responsible for passing it to g_free(). | 
|  | */ | 
|  | char *size_to_str(uint64_t val) | 
|  | { | 
|  | uint64_t div; | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * The exponent (returned in i) minus one gives us | 
|  | * floor(log2(val * 1024 / 1000).  The correction makes us | 
|  | * switch to the higher power when the integer part is >= 1000. | 
|  | * (see e41b509d68afb1f for more info) | 
|  | */ | 
|  | frexp(val / (1000.0 / 1024.0), &i); | 
|  | i = (i - 1) / 10 * 10; | 
|  | div = 1ULL << i; | 
|  |  | 
|  | return g_strdup_printf("%0.3g %sB", (double)val / div, iec_binary_prefix(i)); | 
|  | } | 
|  |  | 
|  | char *freq_to_str(uint64_t freq_hz) | 
|  | { | 
|  | double freq = freq_hz; | 
|  | size_t exp10 = 0; | 
|  |  | 
|  | while (freq >= 1000.0) { | 
|  | freq /= 1000.0; | 
|  | exp10 += 3; | 
|  | } | 
|  |  | 
|  | return g_strdup_printf("%0.3g %sHz", freq, si_prefix(exp10)); | 
|  | } | 
|  |  | 
|  | int qemu_pstrcmp0(const char **str1, const char **str2) | 
|  | { | 
|  | return g_strcmp0(*str1, *str2); | 
|  | } | 
|  |  | 
|  | static inline bool starts_with_prefix(const char *dir) | 
|  | { | 
|  | size_t prefix_len = strlen(CONFIG_PREFIX); | 
|  | return !memcmp(dir, CONFIG_PREFIX, prefix_len) && | 
|  | (!dir[prefix_len] || G_IS_DIR_SEPARATOR(dir[prefix_len])); | 
|  | } | 
|  |  | 
|  | /* Return the next path component in dir, and store its length in *p_len.  */ | 
|  | static inline const char *next_component(const char *dir, int *p_len) | 
|  | { | 
|  | int len; | 
|  | while ((*dir && G_IS_DIR_SEPARATOR(*dir)) || | 
|  | (*dir == '.' && (G_IS_DIR_SEPARATOR(dir[1]) || dir[1] == '\0'))) { | 
|  | dir++; | 
|  | } | 
|  | len = 0; | 
|  | while (dir[len] && !G_IS_DIR_SEPARATOR(dir[len])) { | 
|  | len++; | 
|  | } | 
|  | *p_len = len; | 
|  | return dir; | 
|  | } | 
|  |  | 
|  | static const char *exec_dir; | 
|  |  | 
|  | void qemu_init_exec_dir(const char *argv0) | 
|  | { | 
|  | #ifdef G_OS_WIN32 | 
|  | char *p; | 
|  | char buf[MAX_PATH]; | 
|  | DWORD len; | 
|  |  | 
|  | if (exec_dir) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | len = GetModuleFileName(NULL, buf, sizeof(buf) - 1); | 
|  | if (len == 0) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | buf[len] = 0; | 
|  | p = buf + len - 1; | 
|  | while (p != buf && *p != '\\') { | 
|  | p--; | 
|  | } | 
|  | *p = 0; | 
|  | if (access(buf, R_OK) == 0) { | 
|  | exec_dir = g_strdup(buf); | 
|  | } else { | 
|  | exec_dir = CONFIG_BINDIR; | 
|  | } | 
|  | #else | 
|  | char *p = NULL; | 
|  | char buf[PATH_MAX]; | 
|  |  | 
|  | if (exec_dir) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | #if defined(__linux__) | 
|  | { | 
|  | int len; | 
|  | len = readlink("/proc/self/exe", buf, sizeof(buf) - 1); | 
|  | if (len > 0) { | 
|  | buf[len] = 0; | 
|  | p = buf; | 
|  | } | 
|  | } | 
|  | #elif defined(__FreeBSD__) \ | 
|  | || (defined(__NetBSD__) && defined(KERN_PROC_PATHNAME)) | 
|  | { | 
|  | #if defined(__FreeBSD__) | 
|  | static int mib[4] = {CTL_KERN, KERN_PROC, KERN_PROC_PATHNAME, -1}; | 
|  | #else | 
|  | static int mib[4] = {CTL_KERN, KERN_PROC_ARGS, -1, KERN_PROC_PATHNAME}; | 
|  | #endif | 
|  | size_t len = sizeof(buf) - 1; | 
|  |  | 
|  | *buf = '\0'; | 
|  | if (!sysctl(mib, ARRAY_SIZE(mib), buf, &len, NULL, 0) && | 
|  | *buf) { | 
|  | buf[sizeof(buf) - 1] = '\0'; | 
|  | p = buf; | 
|  | } | 
|  | } | 
|  | #elif defined(__APPLE__) | 
|  | { | 
|  | char fpath[PATH_MAX]; | 
|  | uint32_t len = sizeof(fpath); | 
|  | if (_NSGetExecutablePath(fpath, &len) == 0) { | 
|  | p = realpath(fpath, buf); | 
|  | if (!p) { | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  | #elif defined(__HAIKU__) | 
|  | { | 
|  | image_info ii; | 
|  | int32_t c = 0; | 
|  |  | 
|  | *buf = '\0'; | 
|  | while (get_next_image_info(0, &c, &ii) == B_OK) { | 
|  | if (ii.type == B_APP_IMAGE) { | 
|  | strncpy(buf, ii.name, sizeof(buf)); | 
|  | buf[sizeof(buf) - 1] = 0; | 
|  | p = buf; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif | 
|  | /* If we don't have any way of figuring out the actual executable | 
|  | location then try argv[0].  */ | 
|  | if (!p && argv0) { | 
|  | p = realpath(argv0, buf); | 
|  | } | 
|  | if (p) { | 
|  | exec_dir = g_path_get_dirname(p); | 
|  | } else { | 
|  | exec_dir = CONFIG_BINDIR; | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | const char *qemu_get_exec_dir(void) | 
|  | { | 
|  | return exec_dir; | 
|  | } | 
|  |  | 
|  | char *get_relocated_path(const char *dir) | 
|  | { | 
|  | size_t prefix_len = strlen(CONFIG_PREFIX); | 
|  | const char *bindir = CONFIG_BINDIR; | 
|  | const char *exec_dir = qemu_get_exec_dir(); | 
|  | GString *result; | 
|  | int len_dir, len_bindir; | 
|  |  | 
|  | /* Fail if qemu_init_exec_dir was not called.  */ | 
|  | assert(exec_dir[0]); | 
|  |  | 
|  | result = g_string_new(exec_dir); | 
|  | g_string_append(result, "/qemu-bundle"); | 
|  | if (access(result->str, R_OK) == 0) { | 
|  | #ifdef G_OS_WIN32 | 
|  | size_t size = mbsrtowcs(NULL, &dir, 0, &(mbstate_t){0}) + 1; | 
|  | PWSTR wdir = g_new(WCHAR, size); | 
|  | mbsrtowcs(wdir, &dir, size, &(mbstate_t){0}); | 
|  |  | 
|  | PCWSTR wdir_skipped_root; | 
|  | PathCchSkipRoot(wdir, &wdir_skipped_root); | 
|  |  | 
|  | size = wcsrtombs(NULL, &wdir_skipped_root, 0, &(mbstate_t){0}); | 
|  | char *cursor = result->str + result->len; | 
|  | g_string_set_size(result, result->len + size); | 
|  | wcsrtombs(cursor, &wdir_skipped_root, size + 1, &(mbstate_t){0}); | 
|  | g_free(wdir); | 
|  | #else | 
|  | g_string_append(result, dir); | 
|  | #endif | 
|  | } else if (!starts_with_prefix(dir) || !starts_with_prefix(bindir)) { | 
|  | g_string_assign(result, dir); | 
|  | } else { | 
|  | g_string_assign(result, exec_dir); | 
|  |  | 
|  | /* Advance over common components.  */ | 
|  | len_dir = len_bindir = prefix_len; | 
|  | do { | 
|  | dir += len_dir; | 
|  | bindir += len_bindir; | 
|  | dir = next_component(dir, &len_dir); | 
|  | bindir = next_component(bindir, &len_bindir); | 
|  | } while (len_dir && len_dir == len_bindir && !memcmp(dir, bindir, len_dir)); | 
|  |  | 
|  | /* Ascend from bindir to the common prefix with dir.  */ | 
|  | while (len_bindir) { | 
|  | bindir += len_bindir; | 
|  | g_string_append(result, "/.."); | 
|  | bindir = next_component(bindir, &len_bindir); | 
|  | } | 
|  |  | 
|  | if (*dir) { | 
|  | assert(G_IS_DIR_SEPARATOR(dir[-1])); | 
|  | g_string_append(result, dir - 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | return g_string_free(result, false); | 
|  | } |