blob: 27673e1c70e014818650b180032ce97b95b6636f [file] [log] [blame]
/*
* SD Association Host Standard Specification v2.0 controller emulation
*
* Datasheet: PartA2_SD_Host_Controller_Simplified_Specification_Ver2.00.pdf
*
* Copyright (c) 2011 Samsung Electronics Co., Ltd.
* Mitsyanko Igor <i.mitsyanko@samsung.com>
* Peter A.G. Crosthwaite <peter.crosthwaite@petalogix.com>
*
* Based on MMC controller for Samsung S5PC1xx-based board emulation
* by Alexey Merkulov and Vladimir Monakhov.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/units.h"
#include "qemu/error-report.h"
#include "qapi/error.h"
#include "hw/irq.h"
#include "hw/qdev-properties.h"
#include "sysemu/dma.h"
#include "qemu/timer.h"
#include "qemu/bitops.h"
#include "hw/sd/sdhci.h"
#include "migration/vmstate.h"
#include "sdhci-internal.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "trace.h"
#include "qom/object.h"
#define TYPE_SDHCI_BUS "sdhci-bus"
/* This is reusing the SDBus typedef from SD_BUS */
DECLARE_INSTANCE_CHECKER(SDBus, SDHCI_BUS,
TYPE_SDHCI_BUS)
#define MASKED_WRITE(reg, mask, val) (reg = (reg & (mask)) | (val))
static inline unsigned int sdhci_get_fifolen(SDHCIState *s)
{
return 1 << (9 + FIELD_EX32(s->capareg, SDHC_CAPAB, MAXBLOCKLENGTH));
}
/* return true on error */
static bool sdhci_check_capab_freq_range(SDHCIState *s, const char *desc,
uint8_t freq, Error **errp)
{
if (s->sd_spec_version >= 3) {
return false;
}
switch (freq) {
case 0:
case 10 ... 63:
break;
default:
error_setg(errp, "SD %s clock frequency can have value"
"in range 0-63 only", desc);
return true;
}
return false;
}
static void sdhci_check_capareg(SDHCIState *s, Error **errp)
{
uint64_t msk = s->capareg;
uint32_t val;
bool y;
switch (s->sd_spec_version) {
case 4:
val = FIELD_EX64(s->capareg, SDHC_CAPAB, BUS64BIT_V4);
trace_sdhci_capareg("64-bit system bus (v4)", val);
msk = FIELD_DP64(msk, SDHC_CAPAB, BUS64BIT_V4, 0);
val = FIELD_EX64(s->capareg, SDHC_CAPAB, UHS_II);
trace_sdhci_capareg("UHS-II", val);
msk = FIELD_DP64(msk, SDHC_CAPAB, UHS_II, 0);
val = FIELD_EX64(s->capareg, SDHC_CAPAB, ADMA3);
trace_sdhci_capareg("ADMA3", val);
msk = FIELD_DP64(msk, SDHC_CAPAB, ADMA3, 0);
/* fallthrough */
case 3:
val = FIELD_EX64(s->capareg, SDHC_CAPAB, ASYNC_INT);
trace_sdhci_capareg("async interrupt", val);
msk = FIELD_DP64(msk, SDHC_CAPAB, ASYNC_INT, 0);
val = FIELD_EX64(s->capareg, SDHC_CAPAB, SLOT_TYPE);
if (val) {
error_setg(errp, "slot-type not supported");
return;
}
trace_sdhci_capareg("slot type", val);
msk = FIELD_DP64(msk, SDHC_CAPAB, SLOT_TYPE, 0);
if (val != 2) {
val = FIELD_EX64(s->capareg, SDHC_CAPAB, EMBEDDED_8BIT);
trace_sdhci_capareg("8-bit bus", val);
}
msk = FIELD_DP64(msk, SDHC_CAPAB, EMBEDDED_8BIT, 0);
val = FIELD_EX64(s->capareg, SDHC_CAPAB, BUS_SPEED);
trace_sdhci_capareg("bus speed mask", val);
msk = FIELD_DP64(msk, SDHC_CAPAB, BUS_SPEED, 0);
val = FIELD_EX64(s->capareg, SDHC_CAPAB, DRIVER_STRENGTH);
trace_sdhci_capareg("driver strength mask", val);
msk = FIELD_DP64(msk, SDHC_CAPAB, DRIVER_STRENGTH, 0);
val = FIELD_EX64(s->capareg, SDHC_CAPAB, TIMER_RETUNING);
trace_sdhci_capareg("timer re-tuning", val);
msk = FIELD_DP64(msk, SDHC_CAPAB, TIMER_RETUNING, 0);
val = FIELD_EX64(s->capareg, SDHC_CAPAB, SDR50_TUNING);
trace_sdhci_capareg("use SDR50 tuning", val);
msk = FIELD_DP64(msk, SDHC_CAPAB, SDR50_TUNING, 0);
val = FIELD_EX64(s->capareg, SDHC_CAPAB, RETUNING_MODE);
trace_sdhci_capareg("re-tuning mode", val);
msk = FIELD_DP64(msk, SDHC_CAPAB, RETUNING_MODE, 0);
val = FIELD_EX64(s->capareg, SDHC_CAPAB, CLOCK_MULT);
trace_sdhci_capareg("clock multiplier", val);
msk = FIELD_DP64(msk, SDHC_CAPAB, CLOCK_MULT, 0);
/* fallthrough */
case 2: /* default version */
val = FIELD_EX64(s->capareg, SDHC_CAPAB, ADMA2);
trace_sdhci_capareg("ADMA2", val);
msk = FIELD_DP64(msk, SDHC_CAPAB, ADMA2, 0);
val = FIELD_EX64(s->capareg, SDHC_CAPAB, ADMA1);
trace_sdhci_capareg("ADMA1", val);
msk = FIELD_DP64(msk, SDHC_CAPAB, ADMA1, 0);
val = FIELD_EX64(s->capareg, SDHC_CAPAB, BUS64BIT);
trace_sdhci_capareg("64-bit system bus (v3)", val);
msk = FIELD_DP64(msk, SDHC_CAPAB, BUS64BIT, 0);
/* fallthrough */
case 1:
y = FIELD_EX64(s->capareg, SDHC_CAPAB, TOUNIT);
msk = FIELD_DP64(msk, SDHC_CAPAB, TOUNIT, 0);
val = FIELD_EX64(s->capareg, SDHC_CAPAB, TOCLKFREQ);
trace_sdhci_capareg(y ? "timeout (MHz)" : "Timeout (KHz)", val);
if (sdhci_check_capab_freq_range(s, "timeout", val, errp)) {
return;
}
msk = FIELD_DP64(msk, SDHC_CAPAB, TOCLKFREQ, 0);
val = FIELD_EX64(s->capareg, SDHC_CAPAB, BASECLKFREQ);
trace_sdhci_capareg(y ? "base (MHz)" : "Base (KHz)", val);
if (sdhci_check_capab_freq_range(s, "base", val, errp)) {
return;
}
msk = FIELD_DP64(msk, SDHC_CAPAB, BASECLKFREQ, 0);
val = FIELD_EX64(s->capareg, SDHC_CAPAB, MAXBLOCKLENGTH);
if (val >= 3) {
error_setg(errp, "block size can be 512, 1024 or 2048 only");
return;
}
trace_sdhci_capareg("max block length", sdhci_get_fifolen(s));
msk = FIELD_DP64(msk, SDHC_CAPAB, MAXBLOCKLENGTH, 0);
val = FIELD_EX64(s->capareg, SDHC_CAPAB, HIGHSPEED);
trace_sdhci_capareg("high speed", val);
msk = FIELD_DP64(msk, SDHC_CAPAB, HIGHSPEED, 0);
val = FIELD_EX64(s->capareg, SDHC_CAPAB, SDMA);
trace_sdhci_capareg("SDMA", val);
msk = FIELD_DP64(msk, SDHC_CAPAB, SDMA, 0);
val = FIELD_EX64(s->capareg, SDHC_CAPAB, SUSPRESUME);
trace_sdhci_capareg("suspend/resume", val);
msk = FIELD_DP64(msk, SDHC_CAPAB, SUSPRESUME, 0);
val = FIELD_EX64(s->capareg, SDHC_CAPAB, V33);
trace_sdhci_capareg("3.3v", val);
msk = FIELD_DP64(msk, SDHC_CAPAB, V33, 0);
val = FIELD_EX64(s->capareg, SDHC_CAPAB, V30);
trace_sdhci_capareg("3.0v", val);
msk = FIELD_DP64(msk, SDHC_CAPAB, V30, 0);
val = FIELD_EX64(s->capareg, SDHC_CAPAB, V18);
trace_sdhci_capareg("1.8v", val);
msk = FIELD_DP64(msk, SDHC_CAPAB, V18, 0);
break;
default:
error_setg(errp, "Unsupported spec version: %u", s->sd_spec_version);
}
if (msk) {
qemu_log_mask(LOG_UNIMP,
"SDHCI: unknown CAPAB mask: 0x%016" PRIx64 "\n", msk);
}
}
static uint8_t sdhci_slotint(SDHCIState *s)
{
return (s->norintsts & s->norintsigen) || (s->errintsts & s->errintsigen) ||
((s->norintsts & SDHC_NIS_INSERT) && (s->wakcon & SDHC_WKUP_ON_INS)) ||
((s->norintsts & SDHC_NIS_REMOVE) && (s->wakcon & SDHC_WKUP_ON_RMV));
}
/* Return true if IRQ was pending and delivered */
static bool sdhci_update_irq(SDHCIState *s)
{
bool pending = sdhci_slotint(s);
qemu_set_irq(s->irq, pending);
return pending;
}
static void sdhci_raise_insertion_irq(void *opaque)
{
SDHCIState *s = (SDHCIState *)opaque;
if (s->norintsts & SDHC_NIS_REMOVE) {
timer_mod(s->insert_timer,
qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_INSERTION_DELAY);
} else {
s->prnsts = 0x1ff0000;
if (s->norintstsen & SDHC_NISEN_INSERT) {
s->norintsts |= SDHC_NIS_INSERT;
}
sdhci_update_irq(s);
}
}
static void sdhci_set_inserted(DeviceState *dev, bool level)
{
SDHCIState *s = (SDHCIState *)dev;
trace_sdhci_set_inserted(level ? "insert" : "eject");
if ((s->norintsts & SDHC_NIS_REMOVE) && level) {
/* Give target some time to notice card ejection */
timer_mod(s->insert_timer,
qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_INSERTION_DELAY);
} else {
if (level) {
s->prnsts = 0x1ff0000;
if (s->norintstsen & SDHC_NISEN_INSERT) {
s->norintsts |= SDHC_NIS_INSERT;
}
} else {
s->prnsts = 0x1fa0000;
s->pwrcon &= ~SDHC_POWER_ON;
s->clkcon &= ~SDHC_CLOCK_SDCLK_EN;
if (s->norintstsen & SDHC_NISEN_REMOVE) {
s->norintsts |= SDHC_NIS_REMOVE;
}
}
sdhci_update_irq(s);
}
}
static void sdhci_set_readonly(DeviceState *dev, bool level)
{
SDHCIState *s = (SDHCIState *)dev;
if (level) {
s->prnsts &= ~SDHC_WRITE_PROTECT;
} else {
/* Write enabled */
s->prnsts |= SDHC_WRITE_PROTECT;
}
}
static void sdhci_reset(SDHCIState *s)
{
DeviceState *dev = DEVICE(s);
timer_del(s->insert_timer);
timer_del(s->transfer_timer);
/* Set all registers to 0. Capabilities/Version registers are not cleared
* and assumed to always preserve their value, given to them during
* initialization */
memset(&s->sdmasysad, 0, (uintptr_t)&s->capareg - (uintptr_t)&s->sdmasysad);
/* Reset other state based on current card insertion/readonly status */
sdhci_set_inserted(dev, sdbus_get_inserted(&s->sdbus));
sdhci_set_readonly(dev, sdbus_get_readonly(&s->sdbus));
s->data_count = 0;
s->stopped_state = sdhc_not_stopped;
s->pending_insert_state = false;
}
static void sdhci_poweron_reset(DeviceState *dev)
{
/* QOM (ie power-on) reset. This is identical to reset
* commanded via device register apart from handling of the
* 'pending insert on powerup' quirk.
*/
SDHCIState *s = (SDHCIState *)dev;
sdhci_reset(s);
if (s->pending_insert_quirk) {
s->pending_insert_state = true;
}
}
static void sdhci_data_transfer(void *opaque);
#define BLOCK_SIZE_MASK (4 * KiB - 1)
static void sdhci_send_command(SDHCIState *s)
{
SDRequest request;
uint8_t response[16];
int rlen;
bool timeout = false;
s->errintsts = 0;
s->acmd12errsts = 0;
request.cmd = s->cmdreg >> 8;
request.arg = s->argument;
trace_sdhci_send_command(request.cmd, request.arg);
rlen = sdbus_do_command(&s->sdbus, &request, response);
if (s->cmdreg & SDHC_CMD_RESPONSE) {
if (rlen == 4) {
s->rspreg[0] = ldl_be_p(response);
s->rspreg[1] = s->rspreg[2] = s->rspreg[3] = 0;
trace_sdhci_response4(s->rspreg[0]);
} else if (rlen == 16) {
s->rspreg[0] = ldl_be_p(&response[11]);
s->rspreg[1] = ldl_be_p(&response[7]);
s->rspreg[2] = ldl_be_p(&response[3]);
s->rspreg[3] = (response[0] << 16) | (response[1] << 8) |
response[2];
trace_sdhci_response16(s->rspreg[3], s->rspreg[2],
s->rspreg[1], s->rspreg[0]);
} else {
timeout = true;
trace_sdhci_error("timeout waiting for command response");
if (s->errintstsen & SDHC_EISEN_CMDTIMEOUT) {
s->errintsts |= SDHC_EIS_CMDTIMEOUT;
s->norintsts |= SDHC_NIS_ERR;
}
}
if (!(s->quirks & SDHCI_QUIRK_NO_BUSY_IRQ) &&
(s->norintstsen & SDHC_NISEN_TRSCMP) &&
(s->cmdreg & SDHC_CMD_RESPONSE) == SDHC_CMD_RSP_WITH_BUSY) {
s->norintsts |= SDHC_NIS_TRSCMP;
}
}
if (s->norintstsen & SDHC_NISEN_CMDCMP) {
s->norintsts |= SDHC_NIS_CMDCMP;
}
sdhci_update_irq(s);
if (!timeout && (s->blksize & BLOCK_SIZE_MASK) &&
(s->cmdreg & SDHC_CMD_DATA_PRESENT)) {
s->data_count = 0;
sdhci_data_transfer(s);
}
}
static void sdhci_end_transfer(SDHCIState *s)
{
/* Automatically send CMD12 to stop transfer if AutoCMD12 enabled */
if ((s->trnmod & SDHC_TRNS_ACMD12) != 0) {
SDRequest request;
uint8_t response[16];
request.cmd = 0x0C;
request.arg = 0;
trace_sdhci_end_transfer(request.cmd, request.arg);
sdbus_do_command(&s->sdbus, &request, response);
/* Auto CMD12 response goes to the upper Response register */
s->rspreg[3] = ldl_be_p(response);
}
s->prnsts &= ~(SDHC_DOING_READ | SDHC_DOING_WRITE |
SDHC_DAT_LINE_ACTIVE | SDHC_DATA_INHIBIT |
SDHC_SPACE_AVAILABLE | SDHC_DATA_AVAILABLE);
if (s->norintstsen & SDHC_NISEN_TRSCMP) {
s->norintsts |= SDHC_NIS_TRSCMP;
}
sdhci_update_irq(s);
}
/*
* Programmed i/o data transfer
*/
/* Fill host controller's read buffer with BLKSIZE bytes of data from card */
static void sdhci_read_block_from_card(SDHCIState *s)
{
const uint16_t blk_size = s->blksize & BLOCK_SIZE_MASK;
if ((s->trnmod & SDHC_TRNS_MULTI) &&
(s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0)) {
return;
}
if (!FIELD_EX32(s->hostctl2, SDHC_HOSTCTL2, EXECUTE_TUNING)) {
/* Device is not in tuning */
sdbus_read_data(&s->sdbus, s->fifo_buffer, blk_size);
}
if (FIELD_EX32(s->hostctl2, SDHC_HOSTCTL2, EXECUTE_TUNING)) {
/* Device is in tuning */
s->hostctl2 &= ~R_SDHC_HOSTCTL2_EXECUTE_TUNING_MASK;
s->hostctl2 |= R_SDHC_HOSTCTL2_SAMPLING_CLKSEL_MASK;
s->prnsts &= ~(SDHC_DAT_LINE_ACTIVE | SDHC_DOING_READ |
SDHC_DATA_INHIBIT);
goto read_done;
}
/* New data now available for READ through Buffer Port Register */
s->prnsts |= SDHC_DATA_AVAILABLE;
if (s->norintstsen & SDHC_NISEN_RBUFRDY) {
s->norintsts |= SDHC_NIS_RBUFRDY;
}
/* Clear DAT line active status if that was the last block */
if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
((s->trnmod & SDHC_TRNS_MULTI) && s->blkcnt == 1)) {
s->prnsts &= ~SDHC_DAT_LINE_ACTIVE;
}
/* If stop at block gap request was set and it's not the last block of
* data - generate Block Event interrupt */
if (s->stopped_state == sdhc_gap_read && (s->trnmod & SDHC_TRNS_MULTI) &&
s->blkcnt != 1) {
s->prnsts &= ~SDHC_DAT_LINE_ACTIVE;
if (s->norintstsen & SDHC_EISEN_BLKGAP) {
s->norintsts |= SDHC_EIS_BLKGAP;
}
}
read_done:
sdhci_update_irq(s);
}
/* Read @size byte of data from host controller @s BUFFER DATA PORT register */
static uint32_t sdhci_read_dataport(SDHCIState *s, unsigned size)
{
uint32_t value = 0;
int i;
/* first check that a valid data exists in host controller input buffer */
if ((s->prnsts & SDHC_DATA_AVAILABLE) == 0) {
trace_sdhci_error("read from empty buffer");
return 0;
}
for (i = 0; i < size; i++) {
assert(s->data_count < s->buf_maxsz);
value |= s->fifo_buffer[s->data_count] << i * 8;
s->data_count++;
/* check if we've read all valid data (blksize bytes) from buffer */
if ((s->data_count) >= (s->blksize & BLOCK_SIZE_MASK)) {
trace_sdhci_read_dataport(s->data_count);
s->prnsts &= ~SDHC_DATA_AVAILABLE; /* no more data in a buffer */
s->data_count = 0; /* next buff read must start at position [0] */
if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
s->blkcnt--;
}
/* if that was the last block of data */
if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
((s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0)) ||
/* stop at gap request */
(s->stopped_state == sdhc_gap_read &&
!(s->prnsts & SDHC_DAT_LINE_ACTIVE))) {
sdhci_end_transfer(s);
} else { /* if there are more data, read next block from card */
sdhci_read_block_from_card(s);
}
break;
}
}
return value;
}
/* Write data from host controller FIFO to card */
static void sdhci_write_block_to_card(SDHCIState *s)
{
if (s->prnsts & SDHC_SPACE_AVAILABLE) {
if (s->norintstsen & SDHC_NISEN_WBUFRDY) {
s->norintsts |= SDHC_NIS_WBUFRDY;
}
sdhci_update_irq(s);
return;
}
if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
if (s->blkcnt == 0) {
return;
} else {
s->blkcnt--;
}
}
sdbus_write_data(&s->sdbus, s->fifo_buffer, s->blksize & BLOCK_SIZE_MASK);
/* Next data can be written through BUFFER DATORT register */
s->prnsts |= SDHC_SPACE_AVAILABLE;
/* Finish transfer if that was the last block of data */
if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
((s->trnmod & SDHC_TRNS_MULTI) &&
(s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0))) {
sdhci_end_transfer(s);
} else if (s->norintstsen & SDHC_NISEN_WBUFRDY) {
s->norintsts |= SDHC_NIS_WBUFRDY;
}
/* Generate Block Gap Event if requested and if not the last block */
if (s->stopped_state == sdhc_gap_write && (s->trnmod & SDHC_TRNS_MULTI) &&
s->blkcnt > 0) {
s->prnsts &= ~SDHC_DOING_WRITE;
if (s->norintstsen & SDHC_EISEN_BLKGAP) {
s->norintsts |= SDHC_EIS_BLKGAP;
}
sdhci_end_transfer(s);
}
sdhci_update_irq(s);
}
/* Write @size bytes of @value data to host controller @s Buffer Data Port
* register */
static void sdhci_write_dataport(SDHCIState *s, uint32_t value, unsigned size)
{
unsigned i;
/* Check that there is free space left in a buffer */
if (!(s->prnsts & SDHC_SPACE_AVAILABLE)) {
trace_sdhci_error("Can't write to data buffer: buffer full");
return;
}
for (i = 0; i < size; i++) {
assert(s->data_count < s->buf_maxsz);
s->fifo_buffer[s->data_count] = value & 0xFF;
s->data_count++;
value >>= 8;
if (s->data_count >= (s->blksize & BLOCK_SIZE_MASK)) {
trace_sdhci_write_dataport(s->data_count);
s->data_count = 0;
s->prnsts &= ~SDHC_SPACE_AVAILABLE;
if (s->prnsts & SDHC_DOING_WRITE) {
sdhci_write_block_to_card(s);
}
}
}
}
/*
* Single DMA data transfer
*/
/* Multi block SDMA transfer */
static void sdhci_sdma_transfer_multi_blocks(SDHCIState *s)
{
bool page_aligned = false;
unsigned int begin;
const uint16_t block_size = s->blksize & BLOCK_SIZE_MASK;
uint32_t boundary_chk = 1 << (((s->blksize & ~BLOCK_SIZE_MASK) >> 12) + 12);
uint32_t boundary_count = boundary_chk - (s->sdmasysad % boundary_chk);
if (!(s->trnmod & SDHC_TRNS_BLK_CNT_EN) || !s->blkcnt) {
qemu_log_mask(LOG_UNIMP, "infinite transfer is not supported\n");
return;
}
/* XXX: Some sd/mmc drivers (for example, u-boot-slp) do not account for
* possible stop at page boundary if initial address is not page aligned,
* allow them to work properly */
if ((s->sdmasysad % boundary_chk) == 0) {
page_aligned = true;
}
s->prnsts |= SDHC_DATA_INHIBIT | SDHC_DAT_LINE_ACTIVE;
if (s->trnmod & SDHC_TRNS_READ) {
s->prnsts |= SDHC_DOING_READ;
while (s->blkcnt) {
if (s->data_count == 0) {
sdbus_read_data(&s->sdbus, s->fifo_buffer, block_size);
}
begin = s->data_count;
if (((boundary_count + begin) < block_size) && page_aligned) {
s->data_count = boundary_count + begin;
boundary_count = 0;
} else {
s->data_count = block_size;
boundary_count -= block_size - begin;
if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
s->blkcnt--;
}
}
dma_memory_write(s->dma_as, s->sdmasysad, &s->fifo_buffer[begin],
s->data_count - begin, MEMTXATTRS_UNSPECIFIED);
s->sdmasysad += s->data_count - begin;
if (s->data_count == block_size) {
s->data_count = 0;
}
if (page_aligned && boundary_count == 0) {
break;
}
}
} else {
s->prnsts |= SDHC_DOING_WRITE;
while (s->blkcnt) {
begin = s->data_count;
if (((boundary_count + begin) < block_size) && page_aligned) {
s->data_count = boundary_count + begin;
boundary_count = 0;
} else {
s->data_count = block_size;
boundary_count -= block_size - begin;
}
dma_memory_read(s->dma_as, s->sdmasysad, &s->fifo_buffer[begin],
s->data_count - begin, MEMTXATTRS_UNSPECIFIED);
s->sdmasysad += s->data_count - begin;
if (s->data_count == block_size) {
sdbus_write_data(&s->sdbus, s->fifo_buffer, block_size);
s->data_count = 0;
if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
s->blkcnt--;
}
}
if (page_aligned && boundary_count == 0) {
break;
}
}
}
if (s->blkcnt == 0) {
sdhci_end_transfer(s);
} else {
if (s->norintstsen & SDHC_NISEN_DMA) {
s->norintsts |= SDHC_NIS_DMA;
}
sdhci_update_irq(s);
}
}
/* single block SDMA transfer */
static void sdhci_sdma_transfer_single_block(SDHCIState *s)
{
uint32_t datacnt = s->blksize & BLOCK_SIZE_MASK;
if (s->trnmod & SDHC_TRNS_READ) {
sdbus_read_data(&s->sdbus, s->fifo_buffer, datacnt);
dma_memory_write(s->dma_as, s->sdmasysad, s->fifo_buffer, datacnt,
MEMTXATTRS_UNSPECIFIED);
} else {
dma_memory_read(s->dma_as, s->sdmasysad, s->fifo_buffer, datacnt,
MEMTXATTRS_UNSPECIFIED);
sdbus_write_data(&s->sdbus, s->fifo_buffer, datacnt);
}
s->blkcnt--;
sdhci_end_transfer(s);
}
typedef struct ADMADescr {
hwaddr addr;
uint16_t length;
uint8_t attr;
uint8_t incr;
} ADMADescr;
static void get_adma_description(SDHCIState *s, ADMADescr *dscr)
{
uint32_t adma1 = 0;
uint64_t adma2 = 0;
hwaddr entry_addr = (hwaddr)s->admasysaddr;
switch (SDHC_DMA_TYPE(s->hostctl1)) {
case SDHC_CTRL_ADMA2_32:
dma_memory_read(s->dma_as, entry_addr, &adma2, sizeof(adma2),
MEMTXATTRS_UNSPECIFIED);
adma2 = le64_to_cpu(adma2);
/* The spec does not specify endianness of descriptor table.
* We currently assume that it is LE.
*/
dscr->addr = (hwaddr)extract64(adma2, 32, 32) & ~0x3ull;
dscr->length = (uint16_t)extract64(adma2, 16, 16);
dscr->attr = (uint8_t)extract64(adma2, 0, 7);
dscr->incr = 8;
break;
case SDHC_CTRL_ADMA1_32:
dma_memory_read(s->dma_as, entry_addr, &adma1, sizeof(adma1),
MEMTXATTRS_UNSPECIFIED);
adma1 = le32_to_cpu(adma1);
dscr->addr = (hwaddr)(adma1 & 0xFFFFF000);
dscr->attr = (uint8_t)extract32(adma1, 0, 7);
dscr->incr = 4;
if ((dscr->attr & SDHC_ADMA_ATTR_ACT_MASK) == SDHC_ADMA_ATTR_SET_LEN) {
dscr->length = (uint16_t)extract32(adma1, 12, 16);
} else {
dscr->length = 4 * KiB;
}
break;
case SDHC_CTRL_ADMA2_64:
dma_memory_read(s->dma_as, entry_addr, &dscr->attr, 1,
MEMTXATTRS_UNSPECIFIED);
dma_memory_read(s->dma_as, entry_addr + 2, &dscr->length, 2,
MEMTXATTRS_UNSPECIFIED);
dscr->length = le16_to_cpu(dscr->length);
dma_memory_read(s->dma_as, entry_addr + 4, &dscr->addr, 8,
MEMTXATTRS_UNSPECIFIED);
dscr->addr = le64_to_cpu(dscr->addr);
dscr->attr &= (uint8_t) ~0xC0;
dscr->incr = 12;
break;
}
}
/* Advanced DMA data transfer */
static void sdhci_do_adma(SDHCIState *s)
{
unsigned int begin, length;
const uint16_t block_size = s->blksize & BLOCK_SIZE_MASK;
const MemTxAttrs attrs = { .memory = true };
ADMADescr dscr = {};
MemTxResult res;
int i;
if (s->trnmod & SDHC_TRNS_BLK_CNT_EN && !s->blkcnt) {
/* Stop Multiple Transfer */
sdhci_end_transfer(s);
return;
}
for (i = 0; i < SDHC_ADMA_DESCS_PER_DELAY; ++i) {
s->admaerr &= ~SDHC_ADMAERR_LENGTH_MISMATCH;
get_adma_description(s, &dscr);
trace_sdhci_adma_loop(dscr.addr, dscr.length, dscr.attr);
if ((dscr.attr & SDHC_ADMA_ATTR_VALID) == 0) {
/* Indicate that error occurred in ST_FDS state */
s->admaerr &= ~SDHC_ADMAERR_STATE_MASK;
s->admaerr |= SDHC_ADMAERR_STATE_ST_FDS;
/* Generate ADMA error interrupt */
if (s->errintstsen & SDHC_EISEN_ADMAERR) {
s->errintsts |= SDHC_EIS_ADMAERR;
s->norintsts |= SDHC_NIS_ERR;
}
sdhci_update_irq(s);
return;
}
length = dscr.length ? dscr.length : 64 * KiB;
switch (dscr.attr & SDHC_ADMA_ATTR_ACT_MASK) {
case SDHC_ADMA_ATTR_ACT_TRAN: /* data transfer */
s->prnsts |= SDHC_DATA_INHIBIT | SDHC_DAT_LINE_ACTIVE;
if (s->trnmod & SDHC_TRNS_READ) {
s->prnsts |= SDHC_DOING_READ;
while (length) {
if (s->data_count == 0) {
sdbus_read_data(&s->sdbus, s->fifo_buffer, block_size);
}
begin = s->data_count;
if ((length + begin) < block_size) {
s->data_count = length + begin;
length = 0;
} else {
s->data_count = block_size;
length -= block_size - begin;
}
res = dma_memory_write(s->dma_as, dscr.addr,
&s->fifo_buffer[begin],
s->data_count - begin,
attrs);
if (res != MEMTX_OK) {
break;
}
dscr.addr += s->data_count - begin;
if (s->data_count == block_size) {
s->data_count = 0;
if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
s->blkcnt--;
if (s->blkcnt == 0) {
break;
}
}
}
}
} else {
s->prnsts |= SDHC_DOING_WRITE;
while (length) {
begin = s->data_count;
if ((length + begin) < block_size) {
s->data_count = length + begin;
length = 0;
} else {
s->data_count = block_size;
length -= block_size - begin;
}
res = dma_memory_read(s->dma_as, dscr.addr,
&s->fifo_buffer[begin],
s->data_count - begin,
attrs);
if (res != MEMTX_OK) {
break;
}
dscr.addr += s->data_count - begin;
if (s->data_count == block_size) {
sdbus_write_data(&s->sdbus, s->fifo_buffer, block_size);
s->data_count = 0;
if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
s->blkcnt--;
if (s->blkcnt == 0) {
break;
}
}
}
}
}
if (res != MEMTX_OK) {
if (s->errintstsen & SDHC_EISEN_ADMAERR) {
trace_sdhci_error("Set ADMA error flag");
s->errintsts |= SDHC_EIS_ADMAERR;
s->norintsts |= SDHC_NIS_ERR;
}
sdhci_update_irq(s);
} else {
s->admasysaddr += dscr.incr;
}
break;
case SDHC_ADMA_ATTR_ACT_LINK: /* link to next descriptor table */
s->admasysaddr = dscr.addr;
trace_sdhci_adma("link", s->admasysaddr);
break;
default:
s->admasysaddr += dscr.incr;
break;
}
if (dscr.attr & SDHC_ADMA_ATTR_INT) {
trace_sdhci_adma("interrupt", s->admasysaddr);
if (s->norintstsen & SDHC_NISEN_DMA) {
s->norintsts |= SDHC_NIS_DMA;
}
if (sdhci_update_irq(s) && !(dscr.attr & SDHC_ADMA_ATTR_END)) {
/* IRQ delivered, reschedule current transfer */
break;
}
}
/* ADMA transfer terminates if blkcnt == 0 or by END attribute */
if (((s->trnmod & SDHC_TRNS_BLK_CNT_EN) &&
(s->blkcnt == 0)) || (dscr.attr & SDHC_ADMA_ATTR_END)) {
trace_sdhci_adma_transfer_completed();
if (length || ((dscr.attr & SDHC_ADMA_ATTR_END) &&
(s->trnmod & SDHC_TRNS_BLK_CNT_EN) &&
s->blkcnt != 0)) {
trace_sdhci_error("SD/MMC host ADMA length mismatch");
s->admaerr |= SDHC_ADMAERR_LENGTH_MISMATCH |
SDHC_ADMAERR_STATE_ST_TFR;
if (s->errintstsen & SDHC_EISEN_ADMAERR) {
trace_sdhci_error("Set ADMA error flag");
s->errintsts |= SDHC_EIS_ADMAERR;
s->norintsts |= SDHC_NIS_ERR;
}
sdhci_update_irq(s);
}
sdhci_end_transfer(s);
return;
}
}
/* we have unfinished business - reschedule to continue ADMA */
timer_mod(s->transfer_timer,
qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_TRANSFER_DELAY);
}
/* Perform data transfer according to controller configuration */
static void sdhci_data_transfer(void *opaque)
{
SDHCIState *s = (SDHCIState *)opaque;
if (s->trnmod & SDHC_TRNS_DMA) {
switch (SDHC_DMA_TYPE(s->hostctl1)) {
case SDHC_CTRL_SDMA:
if ((s->blkcnt == 1) || !(s->trnmod & SDHC_TRNS_MULTI)) {
sdhci_sdma_transfer_single_block(s);
} else {
sdhci_sdma_transfer_multi_blocks(s);
}
break;
case SDHC_CTRL_ADMA1_32:
if (!(s->capareg & R_SDHC_CAPAB_ADMA1_MASK)) {
trace_sdhci_error("ADMA1 not supported");
break;
}
sdhci_do_adma(s);
break;
case SDHC_CTRL_ADMA2_32:
if (!(s->capareg & R_SDHC_CAPAB_ADMA2_MASK)) {
trace_sdhci_error("ADMA2 not supported");
break;
}
sdhci_do_adma(s);
break;
case SDHC_CTRL_ADMA2_64:
if (!(s->capareg & R_SDHC_CAPAB_ADMA2_MASK) ||
!(s->capareg & R_SDHC_CAPAB_BUS64BIT_MASK)) {
trace_sdhci_error("64 bit ADMA not supported");
break;
}
sdhci_do_adma(s);
break;
default:
trace_sdhci_error("Unsupported DMA type");
break;
}
} else {
if ((s->trnmod & SDHC_TRNS_READ) && sdbus_data_ready(&s->sdbus)) {
s->prnsts |= SDHC_DOING_READ | SDHC_DATA_INHIBIT |
SDHC_DAT_LINE_ACTIVE;
sdhci_read_block_from_card(s);
} else {
s->prnsts |= SDHC_DOING_WRITE | SDHC_DAT_LINE_ACTIVE |
SDHC_SPACE_AVAILABLE | SDHC_DATA_INHIBIT;
sdhci_write_block_to_card(s);
}
}
}
static bool sdhci_can_issue_command(SDHCIState *s)
{
if (!SDHC_CLOCK_IS_ON(s->clkcon) ||
(((s->prnsts & SDHC_DATA_INHIBIT) || s->stopped_state) &&
((s->cmdreg & SDHC_CMD_DATA_PRESENT) ||
((s->cmdreg & SDHC_CMD_RESPONSE) == SDHC_CMD_RSP_WITH_BUSY &&
!(SDHC_COMMAND_TYPE(s->cmdreg) == SDHC_CMD_ABORT))))) {
return false;
}
return true;
}
/* The Buffer Data Port register must be accessed in sequential and
* continuous manner */
static inline bool
sdhci_buff_access_is_sequential(SDHCIState *s, unsigned byte_num)
{
if ((s->data_count & 0x3) != byte_num) {
trace_sdhci_error("Non-sequential access to Buffer Data Port register"
"is prohibited\n");
return false;
}
return true;
}
static void sdhci_resume_pending_transfer(SDHCIState *s)
{
timer_del(s->transfer_timer);
sdhci_data_transfer(s);
}
static uint64_t sdhci_read(void *opaque, hwaddr offset, unsigned size)
{
SDHCIState *s = (SDHCIState *)opaque;
uint32_t ret = 0;
if (timer_pending(s->transfer_timer)) {
sdhci_resume_pending_transfer(s);
}
switch (offset & ~0x3) {
case SDHC_SYSAD:
ret = s->sdmasysad;
break;
case SDHC_BLKSIZE:
ret = s->blksize | (s->blkcnt << 16);
break;
case SDHC_ARGUMENT:
ret = s->argument;
break;
case SDHC_TRNMOD:
ret = s->trnmod | (s->cmdreg << 16);
break;
case SDHC_RSPREG0 ... SDHC_RSPREG3:
ret = s->rspreg[((offset & ~0x3) - SDHC_RSPREG0) >> 2];
break;
case SDHC_BDATA:
if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) {
ret = sdhci_read_dataport(s, size);
trace_sdhci_access("rd", size << 3, offset, "->", ret, ret);
return ret;
}
break;
case SDHC_PRNSTS:
ret = s->prnsts;
ret = FIELD_DP32(ret, SDHC_PRNSTS, DAT_LVL,
sdbus_get_dat_lines(&s->sdbus));
ret = FIELD_DP32(ret, SDHC_PRNSTS, CMD_LVL,
sdbus_get_cmd_line(&s->sdbus));
break;
case SDHC_HOSTCTL:
ret = s->hostctl1 | (s->pwrcon << 8) | (s->blkgap << 16) |
(s->wakcon << 24);
break;
case SDHC_CLKCON:
ret = s->clkcon | (s->timeoutcon << 16);
break;
case SDHC_NORINTSTS:
ret = s->norintsts | (s->errintsts << 16);
break;
case SDHC_NORINTSTSEN:
ret = s->norintstsen | (s->errintstsen << 16);
break;
case SDHC_NORINTSIGEN:
ret = s->norintsigen | (s->errintsigen << 16);
break;
case SDHC_ACMD12ERRSTS:
ret = s->acmd12errsts | (s->hostctl2 << 16);
break;
case SDHC_CAPAB:
ret = (uint32_t)s->capareg;
break;
case SDHC_CAPAB + 4:
ret = (uint32_t)(s->capareg >> 32);
break;
case SDHC_MAXCURR:
ret = (uint32_t)s->maxcurr;
break;
case SDHC_MAXCURR + 4:
ret = (uint32_t)(s->maxcurr >> 32);
break;
case SDHC_ADMAERR:
ret = s->admaerr;
break;
case SDHC_ADMASYSADDR:
ret = (uint32_t)s->admasysaddr;
break;
case SDHC_ADMASYSADDR + 4:
ret = (uint32_t)(s->admasysaddr >> 32);
break;
case SDHC_SLOT_INT_STATUS:
ret = (s->version << 16) | sdhci_slotint(s);
break;
default:
qemu_log_mask(LOG_UNIMP, "SDHC rd_%ub @0x%02" HWADDR_PRIx " "
"not implemented\n", size, offset);
break;
}
ret >>= (offset & 0x3) * 8;
ret &= (1ULL << (size * 8)) - 1;
trace_sdhci_access("rd", size << 3, offset, "->", ret, ret);
return ret;
}
static inline void sdhci_blkgap_write(SDHCIState *s, uint8_t value)
{
if ((value & SDHC_STOP_AT_GAP_REQ) && (s->blkgap & SDHC_STOP_AT_GAP_REQ)) {
return;
}
s->blkgap = value & SDHC_STOP_AT_GAP_REQ;
if ((value & SDHC_CONTINUE_REQ) && s->stopped_state &&
(s->blkgap & SDHC_STOP_AT_GAP_REQ) == 0) {
if (s->stopped_state == sdhc_gap_read) {
s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_READ;
sdhci_read_block_from_card(s);
} else {
s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_WRITE;
sdhci_write_block_to_card(s);
}
s->stopped_state = sdhc_not_stopped;
} else if (!s->stopped_state && (value & SDHC_STOP_AT_GAP_REQ)) {
if (s->prnsts & SDHC_DOING_READ) {
s->stopped_state = sdhc_gap_read;
} else if (s->prnsts & SDHC_DOING_WRITE) {
s->stopped_state = sdhc_gap_write;
}
}
}
static inline void sdhci_reset_write(SDHCIState *s, uint8_t value)
{
switch (value) {
case SDHC_RESET_ALL:
sdhci_reset(s);
break;
case SDHC_RESET_CMD:
s->prnsts &= ~SDHC_CMD_INHIBIT;
s->norintsts &= ~SDHC_NIS_CMDCMP;
break;
case SDHC_RESET_DATA:
s->data_count = 0;
s->prnsts &= ~(SDHC_SPACE_AVAILABLE | SDHC_DATA_AVAILABLE |
SDHC_DOING_READ | SDHC_DOING_WRITE |
SDHC_DATA_INHIBIT | SDHC_DAT_LINE_ACTIVE);
s->blkgap &= ~(SDHC_STOP_AT_GAP_REQ | SDHC_CONTINUE_REQ);
s->stopped_state = sdhc_not_stopped;
s->norintsts &= ~(SDHC_NIS_WBUFRDY | SDHC_NIS_RBUFRDY |
SDHC_NIS_DMA | SDHC_NIS_TRSCMP | SDHC_NIS_BLKGAP);
break;
}
}
static void
sdhci_write(void *opaque, hwaddr offset, uint64_t val, unsigned size)
{
SDHCIState *s = (SDHCIState *)opaque;
unsigned shift = 8 * (offset & 0x3);
uint32_t mask = ~(((1ULL << (size * 8)) - 1) << shift);
uint32_t value = val;
value <<= shift;
if (timer_pending(s->transfer_timer)) {
sdhci_resume_pending_transfer(s);
}
switch (offset & ~0x3) {
case SDHC_SYSAD:
if (!TRANSFERRING_DATA(s->prnsts)) {
s->sdmasysad = (s->sdmasysad & mask) | value;
MASKED_WRITE(s->sdmasysad, mask, value);
/* Writing to last byte of sdmasysad might trigger transfer */
if (!(mask & 0xFF000000) && s->blkcnt &&
(s->blksize & BLOCK_SIZE_MASK) &&
SDHC_DMA_TYPE(s->hostctl1) == SDHC_CTRL_SDMA) {
if (s->trnmod & SDHC_TRNS_MULTI) {
sdhci_sdma_transfer_multi_blocks(s);
} else {
sdhci_sdma_transfer_single_block(s);
}
}
}
break;
case SDHC_BLKSIZE:
if (!TRANSFERRING_DATA(s->prnsts)) {
uint16_t blksize = s->blksize;
/*
* [14:12] SDMA Buffer Boundary
* [11:00] Transfer Block Size
*/
MASKED_WRITE(s->blksize, mask, extract32(value, 0, 15));
MASKED_WRITE(s->blkcnt, mask >> 16, value >> 16);
/* Limit block size to the maximum buffer size */
if (extract32(s->blksize, 0, 12) > s->buf_maxsz) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: Size 0x%x is larger than "
"the maximum buffer 0x%x\n", __func__, s->blksize,
s->buf_maxsz);
s->blksize = deposit32(s->blksize, 0, 12, s->buf_maxsz);
}
/*
* If the block size is programmed to a different value from
* the previous one, reset the data pointer of s->fifo_buffer[]
* so that s->fifo_buffer[] can be filled in using the new block
* size in the next transfer.
*/
if (blksize != s->blksize) {
s->data_count = 0;
}
}
break;
case SDHC_ARGUMENT:
MASKED_WRITE(s->argument, mask, value);
break;
case SDHC_TRNMOD:
/* DMA can be enabled only if it is supported as indicated by
* capabilities register */
if (!(s->capareg & R_SDHC_CAPAB_SDMA_MASK)) {
value &= ~SDHC_TRNS_DMA;
}
/* TRNMOD writes are inhibited while Command Inhibit (DAT) is true */
if (s->prnsts & SDHC_DATA_INHIBIT) {
mask |= 0xffff;
}
MASKED_WRITE(s->trnmod, mask, value & SDHC_TRNMOD_MASK);
MASKED_WRITE(s->cmdreg, mask >> 16, value >> 16);
/* Writing to the upper byte of CMDREG triggers SD command generation */
if ((mask & 0xFF000000) || !sdhci_can_issue_command(s)) {
break;
}
sdhci_send_command(s);
break;
case SDHC_BDATA:
if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) {
sdhci_write_dataport(s, value >> shift, size);
}
break;
case SDHC_HOSTCTL:
if (!(mask & 0xFF0000)) {
sdhci_blkgap_write(s, value >> 16);
}
MASKED_WRITE(s->hostctl1, mask, value);
MASKED_WRITE(s->pwrcon, mask >> 8, value >> 8);
MASKED_WRITE(s->wakcon, mask >> 24, value >> 24);
if (!(s->prnsts & SDHC_CARD_PRESENT) || ((s->pwrcon >> 1) & 0x7) < 5 ||
!(s->capareg & (1 << (31 - ((s->pwrcon >> 1) & 0x7))))) {
s->pwrcon &= ~SDHC_POWER_ON;
}
break;
case SDHC_CLKCON:
if (!(mask & 0xFF000000)) {
sdhci_reset_write(s, value >> 24);
}
MASKED_WRITE(s->clkcon, mask, value);
MASKED_WRITE(s->timeoutcon, mask >> 16, value >> 16);
if (s->clkcon & SDHC_CLOCK_INT_EN) {
s->clkcon |= SDHC_CLOCK_INT_STABLE;
} else {
s->clkcon &= ~SDHC_CLOCK_INT_STABLE;
}
break;
case SDHC_NORINTSTS:
if (s->norintstsen & SDHC_NISEN_CARDINT) {
value &= ~SDHC_NIS_CARDINT;
}
s->norintsts &= mask | ~value;
s->errintsts &= (mask >> 16) | ~(value >> 16);
if (s->errintsts) {
s->norintsts |= SDHC_NIS_ERR;
} else {
s->norintsts &= ~SDHC_NIS_ERR;
}
sdhci_update_irq(s);
break;
case SDHC_NORINTSTSEN:
MASKED_WRITE(s->norintstsen, mask, value);
MASKED_WRITE(s->errintstsen, mask >> 16, value >> 16);
s->norintsts &= s->norintstsen;
s->errintsts &= s->errintstsen;
if (s->errintsts) {
s->norintsts |= SDHC_NIS_ERR;
} else {
s->norintsts &= ~SDHC_NIS_ERR;
}
/* Quirk for Raspberry Pi: pending card insert interrupt
* appears when first enabled after power on */
if ((s->norintstsen & SDHC_NISEN_INSERT) && s->pending_insert_state) {
assert(s->pending_insert_quirk);
s->norintsts |= SDHC_NIS_INSERT;
s->pending_insert_state = false;
}
sdhci_update_irq(s);
break;
case SDHC_NORINTSIGEN:
MASKED_WRITE(s->norintsigen, mask, value);
MASKED_WRITE(s->errintsigen, mask >> 16, value >> 16);
sdhci_update_irq(s);
break;
case SDHC_ADMAERR:
MASKED_WRITE(s->admaerr, mask, value);
break;
case SDHC_ADMASYSADDR:
s->admasysaddr = (s->admasysaddr & (0xFFFFFFFF00000000ULL |
(uint64_t)mask)) | (uint64_t)value;
break;
case SDHC_ADMASYSADDR + 4:
s->admasysaddr = (s->admasysaddr & (0x00000000FFFFFFFFULL |
((uint64_t)mask << 32))) | ((uint64_t)value << 32);
break;
case SDHC_FEAER:
s->acmd12errsts |= value;
s->errintsts |= (value >> 16) & s->errintstsen;
if (s->acmd12errsts) {
s->errintsts |= SDHC_EIS_CMD12ERR;
}
if (s->errintsts) {
s->norintsts |= SDHC_NIS_ERR;
}
sdhci_update_irq(s);
break;
case SDHC_ACMD12ERRSTS:
MASKED_WRITE(s->acmd12errsts, mask, value & UINT16_MAX);
if (s->uhs_mode >= UHS_I) {
MASKED_WRITE(s->hostctl2, mask >> 16, value >> 16);
if (FIELD_EX32(s->hostctl2, SDHC_HOSTCTL2, V18_ENA)) {
sdbus_set_voltage(&s->sdbus, SD_VOLTAGE_1_8V);
} else {
sdbus_set_voltage(&s->sdbus, SD_VOLTAGE_3_3V);
}
}
break;
case SDHC_CAPAB:
case SDHC_CAPAB + 4:
case SDHC_MAXCURR:
case SDHC_MAXCURR + 4:
qemu_log_mask(LOG_GUEST_ERROR, "SDHC wr_%ub @0x%02" HWADDR_PRIx
" <- 0x%08x read-only\n", size, offset, value >> shift);
break;
default:
qemu_log_mask(LOG_UNIMP, "SDHC wr_%ub @0x%02" HWADDR_PRIx " <- 0x%08x "
"not implemented\n", size, offset, value >> shift);
break;
}
trace_sdhci_access("wr", size << 3, offset, "<-",
value >> shift, value >> shift);
}
static const MemoryRegionOps sdhci_mmio_le_ops = {
.read = sdhci_read,
.write = sdhci_write,
.valid = {
.min_access_size = 1,
.max_access_size = 4,
.unaligned = false
},
.endianness = DEVICE_LITTLE_ENDIAN,
};
static const MemoryRegionOps sdhci_mmio_be_ops = {
.read = sdhci_read,
.write = sdhci_write,
.impl = {
.min_access_size = 4,
.max_access_size = 4,
},
.valid = {
.min_access_size = 1,
.max_access_size = 4,
.unaligned = false
},
.endianness = DEVICE_BIG_ENDIAN,
};
static void sdhci_init_readonly_registers(SDHCIState *s, Error **errp)
{
ERRP_GUARD();
switch (s->sd_spec_version) {
case 2 ... 3:
break;
default:
error_setg(errp, "Only Spec v2/v3 are supported");
return;
}
s->version = (SDHC_HCVER_VENDOR << 8) | (s->sd_spec_version - 1);
sdhci_check_capareg(s, errp);
if (*errp) {
return;
}
}
/* --- qdev common --- */
void sdhci_initfn(SDHCIState *s)
{
qbus_init(&s->sdbus, sizeof(s->sdbus), TYPE_SDHCI_BUS, DEVICE(s), "sd-bus");
s->insert_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, sdhci_raise_insertion_irq, s);
s->transfer_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, sdhci_data_transfer, s);
s->io_ops = &sdhci_mmio_le_ops;
}
void sdhci_uninitfn(SDHCIState *s)
{
timer_free(s->insert_timer);
timer_free(s->transfer_timer);
g_free(s->fifo_buffer);
s->fifo_buffer = NULL;
}
void sdhci_common_realize(SDHCIState *s, Error **errp)
{
ERRP_GUARD();
switch (s->endianness) {
case DEVICE_LITTLE_ENDIAN:
/* s->io_ops is little endian by default */
break;
case DEVICE_BIG_ENDIAN:
if (s->io_ops != &sdhci_mmio_le_ops) {
error_setg(errp, "SD controller doesn't support big endianness");
return;
}
s->io_ops = &sdhci_mmio_be_ops;
break;
default:
error_setg(errp, "Incorrect endianness");
return;
}
sdhci_init_readonly_registers(s, errp);
if (*errp) {
return;
}
s->buf_maxsz = sdhci_get_fifolen(s);
s->fifo_buffer = g_malloc0(s->buf_maxsz);
memory_region_init_io(&s->iomem, OBJECT(s), s->io_ops, s, "sdhci",
SDHC_REGISTERS_MAP_SIZE);
}
void sdhci_common_unrealize(SDHCIState *s)
{
/* This function is expected to be called only once for each class:
* - SysBus: via DeviceClass->unrealize(),
* - PCI: via PCIDeviceClass->exit().
* However to avoid double-free and/or use-after-free we still nullify
* this variable (better safe than sorry!). */
g_free(s->fifo_buffer);
s->fifo_buffer = NULL;
}
static bool sdhci_pending_insert_vmstate_needed(void *opaque)
{
SDHCIState *s = opaque;
return s->pending_insert_state;
}
static const VMStateDescription sdhci_pending_insert_vmstate = {
.name = "sdhci/pending-insert",
.version_id = 1,
.minimum_version_id = 1,
.needed = sdhci_pending_insert_vmstate_needed,
.fields = (const VMStateField[]) {
VMSTATE_BOOL(pending_insert_state, SDHCIState),
VMSTATE_END_OF_LIST()
},
};
const VMStateDescription sdhci_vmstate = {
.name = "sdhci",
.version_id = 1,
.minimum_version_id = 1,
.fields = (const VMStateField[]) {
VMSTATE_UINT32(sdmasysad, SDHCIState),
VMSTATE_UINT16(blksize, SDHCIState),
VMSTATE_UINT16(blkcnt, SDHCIState),
VMSTATE_UINT32(argument, SDHCIState),
VMSTATE_UINT16(trnmod, SDHCIState),
VMSTATE_UINT16(cmdreg, SDHCIState),
VMSTATE_UINT32_ARRAY(rspreg, SDHCIState, 4),
VMSTATE_UINT32(prnsts, SDHCIState),
VMSTATE_UINT8(hostctl1, SDHCIState),
VMSTATE_UINT8(pwrcon, SDHCIState),
VMSTATE_UINT8(blkgap, SDHCIState),
VMSTATE_UINT8(wakcon, SDHCIState),
VMSTATE_UINT16(clkcon, SDHCIState),
VMSTATE_UINT8(timeoutcon, SDHCIState),
VMSTATE_UINT8(admaerr, SDHCIState),
VMSTATE_UINT16(norintsts, SDHCIState),
VMSTATE_UINT16(errintsts, SDHCIState),
VMSTATE_UINT16(norintstsen, SDHCIState),
VMSTATE_UINT16(errintstsen, SDHCIState),
VMSTATE_UINT16(norintsigen, SDHCIState),
VMSTATE_UINT16(errintsigen, SDHCIState),
VMSTATE_UINT16(acmd12errsts, SDHCIState),
VMSTATE_UINT16(data_count, SDHCIState),
VMSTATE_UINT64(admasysaddr, SDHCIState),
VMSTATE_UINT8(stopped_state, SDHCIState),
VMSTATE_VBUFFER_UINT32(fifo_buffer, SDHCIState, 1, NULL, buf_maxsz),
VMSTATE_TIMER_PTR(insert_timer, SDHCIState),
VMSTATE_TIMER_PTR(transfer_timer, SDHCIState),
VMSTATE_END_OF_LIST()
},
.subsections = (const VMStateDescription * const []) {
&sdhci_pending_insert_vmstate,
NULL
},
};
void sdhci_common_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
dc->vmsd = &sdhci_vmstate;
dc->reset = sdhci_poweron_reset;
}
/* --- qdev SysBus --- */
static Property sdhci_sysbus_properties[] = {
DEFINE_SDHCI_COMMON_PROPERTIES(SDHCIState),
DEFINE_PROP_BOOL("pending-insert-quirk", SDHCIState, pending_insert_quirk,
false),
DEFINE_PROP_LINK("dma", SDHCIState,
dma_mr, TYPE_MEMORY_REGION, MemoryRegion *),
DEFINE_PROP_END_OF_LIST(),
};
static void sdhci_sysbus_init(Object *obj)
{
SDHCIState *s = SYSBUS_SDHCI(obj);
sdhci_initfn(s);
}
static void sdhci_sysbus_finalize(Object *obj)
{
SDHCIState *s = SYSBUS_SDHCI(obj);
if (s->dma_mr) {
object_unparent(OBJECT(s->dma_mr));
}
sdhci_uninitfn(s);
}
static void sdhci_sysbus_realize(DeviceState *dev, Error **errp)
{
ERRP_GUARD();
SDHCIState *s = SYSBUS_SDHCI(dev);
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
sdhci_common_realize(s, errp);
if (*errp) {
return;
}
if (s->dma_mr) {
s->dma_as = &s->sysbus_dma_as;
address_space_init(s->dma_as, s->dma_mr, "sdhci-dma");
} else {
/* use system_memory() if property "dma" not set */
s->dma_as = &address_space_memory;
}
sysbus_init_irq(sbd, &s->irq);
sysbus_init_mmio(sbd, &s->iomem);
}
static void sdhci_sysbus_unrealize(DeviceState *dev)
{
SDHCIState *s = SYSBUS_SDHCI(dev);
sdhci_common_unrealize(s);
if (s->dma_mr) {
address_space_destroy(s->dma_as);
}
}
static void sdhci_sysbus_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
device_class_set_props(dc, sdhci_sysbus_properties);
dc->realize = sdhci_sysbus_realize;
dc->unrealize = sdhci_sysbus_unrealize;
sdhci_common_class_init(klass, data);
}
static const TypeInfo sdhci_sysbus_info = {
.name = TYPE_SYSBUS_SDHCI,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(SDHCIState),
.instance_init = sdhci_sysbus_init,
.instance_finalize = sdhci_sysbus_finalize,
.class_init = sdhci_sysbus_class_init,
};
/* --- qdev bus master --- */
static void sdhci_bus_class_init(ObjectClass *klass, void *data)
{
SDBusClass *sbc = SD_BUS_CLASS(klass);
sbc->set_inserted = sdhci_set_inserted;
sbc->set_readonly = sdhci_set_readonly;
}
static const TypeInfo sdhci_bus_info = {
.name = TYPE_SDHCI_BUS,
.parent = TYPE_SD_BUS,
.instance_size = sizeof(SDBus),
.class_init = sdhci_bus_class_init,
};
/* --- qdev i.MX eSDHC --- */
#define USDHC_MIX_CTRL 0x48
#define USDHC_VENDOR_SPEC 0xc0
#define USDHC_IMX_FRC_SDCLK_ON (1 << 8)
#define USDHC_DLL_CTRL 0x60
#define USDHC_TUNING_CTRL 0xcc
#define USDHC_TUNE_CTRL_STATUS 0x68
#define USDHC_WTMK_LVL 0x44
/* Undocumented register used by guests working around erratum ERR004536 */
#define USDHC_UNDOCUMENTED_REG27 0x6c
#define USDHC_CTRL_4BITBUS (0x1 << 1)
#define USDHC_CTRL_8BITBUS (0x2 << 1)
#define USDHC_PRNSTS_SDSTB (1 << 3)
static uint64_t usdhc_read(void *opaque, hwaddr offset, unsigned size)
{
SDHCIState *s = SYSBUS_SDHCI(opaque);
uint32_t ret;
uint16_t hostctl1;
switch (offset) {
default:
return sdhci_read(opaque, offset, size);
case SDHC_HOSTCTL:
/*
* For a detailed explanation on the following bit
* manipulation code see comments in a similar part of
* usdhc_write()
*/
hostctl1 = SDHC_DMA_TYPE(s->hostctl1) << (8 - 3);
if (s->hostctl1 & SDHC_CTRL_8BITBUS) {
hostctl1 |= USDHC_CTRL_8BITBUS;
}
if (s->hostctl1 & SDHC_CTRL_4BITBUS) {
hostctl1 |= USDHC_CTRL_4BITBUS;
}
ret = hostctl1;
ret |= (uint32_t)s->blkgap << 16;
ret |= (uint32_t)s->wakcon << 24;
break;
case SDHC_PRNSTS:
/* Add SDSTB (SD Clock Stable) bit to PRNSTS */
ret = sdhci_read(opaque, offset, size) & ~USDHC_PRNSTS_SDSTB;
if (s->clkcon & SDHC_CLOCK_INT_STABLE) {
ret |= USDHC_PRNSTS_SDSTB;
}
break;
case USDHC_VENDOR_SPEC:
ret = s->vendor_spec;
break;
case USDHC_DLL_CTRL:
case USDHC_TUNE_CTRL_STATUS:
case USDHC_UNDOCUMENTED_REG27:
case USDHC_TUNING_CTRL:
case USDHC_MIX_CTRL:
case USDHC_WTMK_LVL:
ret = 0;
break;
}
return ret;
}
static void
usdhc_write(void *opaque, hwaddr offset, uint64_t val, unsigned size)
{
SDHCIState *s = SYSBUS_SDHCI(opaque);
uint8_t hostctl1;
uint32_t value = (uint32_t)val;
switch (offset) {
case USDHC_DLL_CTRL:
case USDHC_TUNE_CTRL_STATUS:
case USDHC_UNDOCUMENTED_REG27:
case USDHC_TUNING_CTRL:
case USDHC_WTMK_LVL:
break;
case USDHC_VENDOR_SPEC:
s->vendor_spec = value;
switch (s->vendor) {
case SDHCI_VENDOR_IMX:
if (value & USDHC_IMX_FRC_SDCLK_ON) {
s->prnsts &= ~SDHC_IMX_CLOCK_GATE_OFF;
} else {
s->prnsts |= SDHC_IMX_CLOCK_GATE_OFF;
}
break;
default:
break;
}
break;
case SDHC_HOSTCTL:
/*
* Here's What ESDHCI has at offset 0x28 (SDHC_HOSTCTL)
*
* 7 6 5 4 3 2 1 0
* |-----------+--------+--------+-----------+----------+---------|
* | Card | Card | Endian | DATA3 | Data | Led |
* | Detect | Detect | Mode | as Card | Transfer | Control |
* | Signal | Test | | Detection | Width | |
* | Selection | Level | | Pin | | |
* |-----------+--------+--------+-----------+----------+---------|
*
* and 0x29
*
* 15 10 9 8
* |----------+------|
* | Reserved | DMA |
* | | Sel. |
* | | |
* |----------+------|
*
* and here's what SDCHI spec expects those offsets to be:
*
* 0x28 (Host Control Register)
*
* 7 6 5 4 3 2 1 0
* |--------+--------+----------+------+--------+----------+---------|
* | Card | Card | Extended | DMA | High | Data | LED |
* | Detect | Detect | Data | Sel. | Speed | Transfer | Control |
* | Signal | Test | Transfer | | Enable | Width | |
* | Sel. | Level | Width | | | | |
* |--------+--------+----------+------+--------+----------+---------|
*
* and 0x29 (Power Control Register)
*
* |----------------------------------|
* | Power Control Register |
* | |
* | Description omitted, |
* | since it has no analog in ESDHCI |
* | |
* |----------------------------------|
*
* Since offsets 0x2A and 0x2B should be compatible between
* both IP specs we only need to reconcile least 16-bit of the
* word we've been given.
*/
/*
* First, save bits 7 6 and 0 since they are identical
*/
hostctl1 = value & (SDHC_CTRL_LED |
SDHC_CTRL_CDTEST_INS |
SDHC_CTRL_CDTEST_EN);
/*
* Second, split "Data Transfer Width" from bits 2 and 1 in to
* bits 5 and 1
*/
if (value & USDHC_CTRL_8BITBUS) {
hostctl1 |= SDHC_CTRL_8BITBUS;
}
if (value & USDHC_CTRL_4BITBUS) {
hostctl1 |= USDHC_CTRL_4BITBUS;
}
/*
* Third, move DMA select from bits 9 and 8 to bits 4 and 3
*/
hostctl1 |= SDHC_DMA_TYPE(value >> (8 - 3));
/*
* Now place the corrected value into low 16-bit of the value
* we are going to give standard SDHCI write function
*
* NOTE: This transformation should be the inverse of what can
* be found in drivers/mmc/host/sdhci-esdhc-imx.c in Linux
* kernel
*/
value &= ~UINT16_MAX;
value |= hostctl1;
value |= (uint16_t)s->pwrcon << 8;
sdhci_write(opaque, offset, value, size);
break;
case USDHC_MIX_CTRL:
/*
* So, when SD/MMC stack in Linux tries to write to "Transfer
* Mode Register", ESDHC i.MX quirk code will translate it
* into a write to ESDHC_MIX_CTRL, so we do the opposite in
* order to get where we started
*
* Note that Auto CMD23 Enable bit is located in a wrong place
* on i.MX, but since it is not used by QEMU we do not care.
*
* We don't want to call sdhci_write(.., SDHC_TRNMOD, ...)
* here because it will result in a call to
* sdhci_send_command(s) which we don't want.
*
*/
s->trnmod = value & UINT16_MAX;
break;
case SDHC_TRNMOD:
/*
* Similar to above, but this time a write to "Command
* Register" will be translated into a 4-byte write to
* "Transfer Mode register" where lower 16-bit of value would
* be set to zero. So what we do is fill those bits with
* cached value from s->trnmod and let the SDHCI
* infrastructure handle the rest
*/
sdhci_write(opaque, offset, val | s->trnmod, size);
break;
case SDHC_BLKSIZE:
/*
* ESDHCI does not implement "Host SDMA Buffer Boundary", and
* Linux driver will try to zero this field out which will
* break the rest of SDHCI emulation.
*
* Linux defaults to maximum possible setting (512K boundary)
* and it seems to be the only option that i.MX IP implements,
* so we artificially set it to that value.
*/
val |= 0x7 << 12;
/* FALLTHROUGH */
default:
sdhci_write(opaque, offset, val, size);
break;
}
}
static const MemoryRegionOps usdhc_mmio_ops = {
.read = usdhc_read,
.write = usdhc_write,
.valid = {
.min_access_size = 1,
.max_access_size = 4,
.unaligned = false
},
.endianness = DEVICE_LITTLE_ENDIAN,
};
static void imx_usdhc_init(Object *obj)
{
SDHCIState *s = SYSBUS_SDHCI(obj);
s->io_ops = &usdhc_mmio_ops;
s->quirks = SDHCI_QUIRK_NO_BUSY_IRQ;
}
static const TypeInfo imx_usdhc_info = {
.name = TYPE_IMX_USDHC,
.parent = TYPE_SYSBUS_SDHCI,
.instance_init = imx_usdhc_init,
};
/* --- qdev Samsung s3c --- */
#define S3C_SDHCI_CONTROL2 0x80
#define S3C_SDHCI_CONTROL3 0x84
#define S3C_SDHCI_CONTROL4 0x8c
static uint64_t sdhci_s3c_read(void *opaque, hwaddr offset, unsigned size)
{
uint64_t ret;
switch (offset) {
case S3C_SDHCI_CONTROL2:
case S3C_SDHCI_CONTROL3:
case S3C_SDHCI_CONTROL4:
/* ignore */
ret = 0;
break;
default:
ret = sdhci_read(opaque, offset, size);
break;
}
return ret;
}
static void sdhci_s3c_write(void *opaque, hwaddr offset, uint64_t val,
unsigned size)
{
switch (offset) {
case S3C_SDHCI_CONTROL2:
case S3C_SDHCI_CONTROL3:
case S3C_SDHCI_CONTROL4:
/* ignore */
break;
default:
sdhci_write(opaque, offset, val, size);
break;
}
}
static const MemoryRegionOps sdhci_s3c_mmio_ops = {
.read = sdhci_s3c_read,
.write = sdhci_s3c_write,
.valid = {
.min_access_size = 1,
.max_access_size = 4,
.unaligned = false
},
.endianness = DEVICE_LITTLE_ENDIAN,
};
static void sdhci_s3c_init(Object *obj)
{
SDHCIState *s = SYSBUS_SDHCI(obj);
s->io_ops = &sdhci_s3c_mmio_ops;
}
static const TypeInfo sdhci_s3c_info = {
.name = TYPE_S3C_SDHCI ,
.parent = TYPE_SYSBUS_SDHCI,
.instance_init = sdhci_s3c_init,
};
static void sdhci_register_types(void)
{
type_register_static(&sdhci_sysbus_info);
type_register_static(&sdhci_bus_info);
type_register_static(&imx_usdhc_info);
type_register_static(&sdhci_s3c_info);
}
type_init(sdhci_register_types)