| #include "qemu/osdep.h" |
| #include "ui/console.h" |
| |
| #include "cursor_hidden.xpm" |
| #include "cursor_left_ptr.xpm" |
| |
| /* for creating built-in cursors */ |
| static QEMUCursor *cursor_parse_xpm(const char *xpm[]) |
| { |
| QEMUCursor *c; |
| uint32_t ctab[128]; |
| unsigned int width, height, colors, chars; |
| unsigned int line = 0, i, r, g, b, x, y, pixel; |
| char name[16]; |
| uint8_t idx; |
| |
| /* parse header line: width, height, #colors, #chars */ |
| if (sscanf(xpm[line], "%u %u %u %u", |
| &width, &height, &colors, &chars) != 4) { |
| fprintf(stderr, "%s: header parse error: \"%s\"\n", |
| __func__, xpm[line]); |
| return NULL; |
| } |
| if (chars != 1) { |
| fprintf(stderr, "%s: chars != 1 not supported\n", __func__); |
| return NULL; |
| } |
| line++; |
| |
| /* parse color table */ |
| for (i = 0; i < colors; i++, line++) { |
| if (sscanf(xpm[line], "%c c %15s", &idx, name) == 2) { |
| if (sscanf(name, "#%02x%02x%02x", &r, &g, &b) == 3) { |
| ctab[idx] = (0xff << 24) | (b << 16) | (g << 8) | r; |
| continue; |
| } |
| if (strcmp(name, "None") == 0) { |
| ctab[idx] = 0x00000000; |
| continue; |
| } |
| } |
| fprintf(stderr, "%s: color parse error: \"%s\"\n", |
| __func__, xpm[line]); |
| return NULL; |
| } |
| |
| /* parse pixel data */ |
| c = cursor_alloc(width, height); |
| for (pixel = 0, y = 0; y < height; y++, line++) { |
| for (x = 0; x < height; x++, pixel++) { |
| idx = xpm[line][x]; |
| c->data[pixel] = ctab[idx]; |
| } |
| } |
| return c; |
| } |
| |
| /* nice for debugging */ |
| void cursor_print_ascii_art(QEMUCursor *c, const char *prefix) |
| { |
| uint32_t *data = c->data; |
| int x,y; |
| |
| for (y = 0; y < c->height; y++) { |
| fprintf(stderr, "%s: %2d: |", prefix, y); |
| for (x = 0; x < c->width; x++, data++) { |
| if ((*data & 0xff000000) != 0xff000000) { |
| fprintf(stderr, " "); /* transparent */ |
| } else if ((*data & 0x00ffffff) == 0x00ffffff) { |
| fprintf(stderr, "."); /* white */ |
| } else if ((*data & 0x00ffffff) == 0x00000000) { |
| fprintf(stderr, "X"); /* black */ |
| } else { |
| fprintf(stderr, "o"); /* other */ |
| } |
| } |
| fprintf(stderr, "|\n"); |
| } |
| } |
| |
| QEMUCursor *cursor_builtin_hidden(void) |
| { |
| return cursor_parse_xpm(cursor_hidden_xpm); |
| } |
| |
| QEMUCursor *cursor_builtin_left_ptr(void) |
| { |
| return cursor_parse_xpm(cursor_left_ptr_xpm); |
| } |
| |
| QEMUCursor *cursor_alloc(int width, int height) |
| { |
| QEMUCursor *c; |
| int datasize = width * height * sizeof(uint32_t); |
| |
| c = g_malloc0(sizeof(QEMUCursor) + datasize); |
| c->width = width; |
| c->height = height; |
| c->refcount = 1; |
| return c; |
| } |
| |
| void cursor_get(QEMUCursor *c) |
| { |
| c->refcount++; |
| } |
| |
| void cursor_put(QEMUCursor *c) |
| { |
| if (c == NULL) |
| return; |
| c->refcount--; |
| if (c->refcount) |
| return; |
| g_free(c); |
| } |
| |
| int cursor_get_mono_bpl(QEMUCursor *c) |
| { |
| return DIV_ROUND_UP(c->width, 8); |
| } |
| |
| void cursor_set_mono(QEMUCursor *c, |
| uint32_t foreground, uint32_t background, uint8_t *image, |
| int transparent, uint8_t *mask) |
| { |
| uint32_t *data = c->data; |
| uint8_t bit; |
| int x,y,bpl; |
| bool expand_bitmap_only = image == mask; |
| bool has_inverted_colors = false; |
| const uint32_t inverted = 0x80000000; |
| |
| /* |
| * Converts a monochrome bitmap with XOR mask 'image' and AND mask 'mask': |
| * https://docs.microsoft.com/en-us/windows-hardware/drivers/display/drawing-monochrome-pointers |
| */ |
| bpl = cursor_get_mono_bpl(c); |
| for (y = 0; y < c->height; y++) { |
| bit = 0x80; |
| for (x = 0; x < c->width; x++, data++) { |
| if (transparent && mask[x/8] & bit) { |
| if (!expand_bitmap_only && image[x / 8] & bit) { |
| *data = inverted; |
| has_inverted_colors = true; |
| } else { |
| *data = 0x00000000; |
| } |
| } else if (!transparent && !(mask[x/8] & bit)) { |
| *data = 0x00000000; |
| } else if (image[x/8] & bit) { |
| *data = 0xff000000 | foreground; |
| } else { |
| *data = 0xff000000 | background; |
| } |
| bit >>= 1; |
| if (bit == 0) { |
| bit = 0x80; |
| } |
| } |
| mask += bpl; |
| image += bpl; |
| } |
| |
| /* |
| * If there are any pixels with inverted colors, create an outline (fill |
| * transparent neighbors with the background color) and use the foreground |
| * color as "inverted" color. |
| */ |
| if (has_inverted_colors) { |
| data = c->data; |
| for (y = 0; y < c->height; y++) { |
| for (x = 0; x < c->width; x++, data++) { |
| if (*data == 0 /* transparent */ && |
| ((x > 0 && data[-1] == inverted) || |
| (x + 1 < c->width && data[1] == inverted) || |
| (y > 0 && data[-c->width] == inverted) || |
| (y + 1 < c->height && data[c->width] == inverted))) { |
| *data = 0xff000000 | background; |
| } |
| } |
| } |
| data = c->data; |
| for (x = 0; x < c->width * c->height; x++, data++) { |
| if (*data == inverted) { |
| *data = 0xff000000 | foreground; |
| } |
| } |
| } |
| } |
| |
| void cursor_get_mono_image(QEMUCursor *c, int foreground, uint8_t *image) |
| { |
| uint32_t *data = c->data; |
| uint8_t bit; |
| int x,y,bpl; |
| |
| bpl = cursor_get_mono_bpl(c); |
| memset(image, 0, bpl * c->height); |
| for (y = 0; y < c->height; y++) { |
| bit = 0x80; |
| for (x = 0; x < c->width; x++, data++) { |
| if (((*data & 0xff000000) == 0xff000000) && |
| ((*data & 0x00ffffff) == foreground)) { |
| image[x/8] |= bit; |
| } |
| bit >>= 1; |
| if (bit == 0) { |
| bit = 0x80; |
| } |
| } |
| image += bpl; |
| } |
| } |
| |
| void cursor_get_mono_mask(QEMUCursor *c, int transparent, uint8_t *mask) |
| { |
| uint32_t *data = c->data; |
| uint8_t bit; |
| int x,y,bpl; |
| |
| bpl = cursor_get_mono_bpl(c); |
| memset(mask, 0, bpl * c->height); |
| for (y = 0; y < c->height; y++) { |
| bit = 0x80; |
| for (x = 0; x < c->width; x++, data++) { |
| if ((*data & 0xff000000) != 0xff000000) { |
| if (transparent != 0) { |
| mask[x/8] |= bit; |
| } |
| } else { |
| if (transparent == 0) { |
| mask[x/8] |= bit; |
| } |
| } |
| bit >>= 1; |
| if (bit == 0) { |
| bit = 0x80; |
| } |
| } |
| mask += bpl; |
| } |
| } |