| /* |
| * QEMU NVM Express Controller |
| * |
| * Copyright (c) 2012, Intel Corporation |
| * |
| * Written by Keith Busch <keith.busch@intel.com> |
| * |
| * This code is licensed under the GNU GPL v2 or later. |
| */ |
| |
| /** |
| * Reference Specs: http://www.nvmexpress.org, 1.2, 1.1, 1.0e |
| * |
| * http://www.nvmexpress.org/resources/ |
| */ |
| |
| /** |
| * Usage: add options: |
| * -drive file=<file>,if=none,id=<drive_id> |
| * -device nvme,drive=<drive_id>,serial=<serial>,id=<id[optional]>, \ |
| * cmb_size_mb=<cmb_size_mb[optional]>, \ |
| * [pmrdev=<mem_backend_file_id>,] \ |
| * num_queues=<N[optional]> |
| * |
| * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at |
| * offset 0 in BAR2 and supports only WDS, RDS and SQS for now. |
| * |
| * cmb_size_mb= and pmrdev= options are mutually exclusive due to limitation |
| * in available BAR's. cmb_size_mb= will take precedence over pmrdev= when |
| * both provided. |
| * Enabling pmr emulation can be achieved by pointing to memory-backend-file. |
| * For example: |
| * -object memory-backend-file,id=<mem_id>,share=on,mem-path=<file_path>, \ |
| * size=<size> .... -device nvme,...,pmrdev=<mem_id> |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/units.h" |
| #include "hw/block/block.h" |
| #include "hw/pci/msix.h" |
| #include "hw/pci/pci.h" |
| #include "hw/qdev-properties.h" |
| #include "migration/vmstate.h" |
| #include "sysemu/sysemu.h" |
| #include "qapi/error.h" |
| #include "qapi/visitor.h" |
| #include "sysemu/hostmem.h" |
| #include "sysemu/block-backend.h" |
| #include "exec/ram_addr.h" |
| |
| #include "qemu/log.h" |
| #include "qemu/module.h" |
| #include "qemu/cutils.h" |
| #include "trace.h" |
| #include "nvme.h" |
| |
| #define NVME_GUEST_ERR(trace, fmt, ...) \ |
| do { \ |
| (trace_##trace)(__VA_ARGS__); \ |
| qemu_log_mask(LOG_GUEST_ERROR, #trace \ |
| " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \ |
| } while (0) |
| |
| static void nvme_process_sq(void *opaque); |
| |
| static void nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size) |
| { |
| if (n->cmbsz && addr >= n->ctrl_mem.addr && |
| addr < (n->ctrl_mem.addr + int128_get64(n->ctrl_mem.size))) { |
| memcpy(buf, (void *)&n->cmbuf[addr - n->ctrl_mem.addr], size); |
| } else { |
| pci_dma_read(&n->parent_obj, addr, buf, size); |
| } |
| } |
| |
| static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid) |
| { |
| return sqid < n->num_queues && n->sq[sqid] != NULL ? 0 : -1; |
| } |
| |
| static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid) |
| { |
| return cqid < n->num_queues && n->cq[cqid] != NULL ? 0 : -1; |
| } |
| |
| static void nvme_inc_cq_tail(NvmeCQueue *cq) |
| { |
| cq->tail++; |
| if (cq->tail >= cq->size) { |
| cq->tail = 0; |
| cq->phase = !cq->phase; |
| } |
| } |
| |
| static void nvme_inc_sq_head(NvmeSQueue *sq) |
| { |
| sq->head = (sq->head + 1) % sq->size; |
| } |
| |
| static uint8_t nvme_cq_full(NvmeCQueue *cq) |
| { |
| return (cq->tail + 1) % cq->size == cq->head; |
| } |
| |
| static uint8_t nvme_sq_empty(NvmeSQueue *sq) |
| { |
| return sq->head == sq->tail; |
| } |
| |
| static void nvme_irq_check(NvmeCtrl *n) |
| { |
| if (msix_enabled(&(n->parent_obj))) { |
| return; |
| } |
| if (~n->bar.intms & n->irq_status) { |
| pci_irq_assert(&n->parent_obj); |
| } else { |
| pci_irq_deassert(&n->parent_obj); |
| } |
| } |
| |
| static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq) |
| { |
| if (cq->irq_enabled) { |
| if (msix_enabled(&(n->parent_obj))) { |
| trace_nvme_irq_msix(cq->vector); |
| msix_notify(&(n->parent_obj), cq->vector); |
| } else { |
| trace_nvme_irq_pin(); |
| assert(cq->cqid < 64); |
| n->irq_status |= 1 << cq->cqid; |
| nvme_irq_check(n); |
| } |
| } else { |
| trace_nvme_irq_masked(); |
| } |
| } |
| |
| static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq) |
| { |
| if (cq->irq_enabled) { |
| if (msix_enabled(&(n->parent_obj))) { |
| return; |
| } else { |
| assert(cq->cqid < 64); |
| n->irq_status &= ~(1 << cq->cqid); |
| nvme_irq_check(n); |
| } |
| } |
| } |
| |
| static uint16_t nvme_map_prp(QEMUSGList *qsg, QEMUIOVector *iov, uint64_t prp1, |
| uint64_t prp2, uint32_t len, NvmeCtrl *n) |
| { |
| hwaddr trans_len = n->page_size - (prp1 % n->page_size); |
| trans_len = MIN(len, trans_len); |
| int num_prps = (len >> n->page_bits) + 1; |
| |
| if (unlikely(!prp1)) { |
| trace_nvme_err_invalid_prp(); |
| return NVME_INVALID_FIELD | NVME_DNR; |
| } else if (n->cmbsz && prp1 >= n->ctrl_mem.addr && |
| prp1 < n->ctrl_mem.addr + int128_get64(n->ctrl_mem.size)) { |
| qsg->nsg = 0; |
| qemu_iovec_init(iov, num_prps); |
| qemu_iovec_add(iov, (void *)&n->cmbuf[prp1 - n->ctrl_mem.addr], trans_len); |
| } else { |
| pci_dma_sglist_init(qsg, &n->parent_obj, num_prps); |
| qemu_sglist_add(qsg, prp1, trans_len); |
| } |
| len -= trans_len; |
| if (len) { |
| if (unlikely(!prp2)) { |
| trace_nvme_err_invalid_prp2_missing(); |
| goto unmap; |
| } |
| if (len > n->page_size) { |
| uint64_t prp_list[n->max_prp_ents]; |
| uint32_t nents, prp_trans; |
| int i = 0; |
| |
| nents = (len + n->page_size - 1) >> n->page_bits; |
| prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t); |
| nvme_addr_read(n, prp2, (void *)prp_list, prp_trans); |
| while (len != 0) { |
| uint64_t prp_ent = le64_to_cpu(prp_list[i]); |
| |
| if (i == n->max_prp_ents - 1 && len > n->page_size) { |
| if (unlikely(!prp_ent || prp_ent & (n->page_size - 1))) { |
| trace_nvme_err_invalid_prplist_ent(prp_ent); |
| goto unmap; |
| } |
| |
| i = 0; |
| nents = (len + n->page_size - 1) >> n->page_bits; |
| prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t); |
| nvme_addr_read(n, prp_ent, (void *)prp_list, |
| prp_trans); |
| prp_ent = le64_to_cpu(prp_list[i]); |
| } |
| |
| if (unlikely(!prp_ent || prp_ent & (n->page_size - 1))) { |
| trace_nvme_err_invalid_prplist_ent(prp_ent); |
| goto unmap; |
| } |
| |
| trans_len = MIN(len, n->page_size); |
| if (qsg->nsg){ |
| qemu_sglist_add(qsg, prp_ent, trans_len); |
| } else { |
| qemu_iovec_add(iov, (void *)&n->cmbuf[prp_ent - n->ctrl_mem.addr], trans_len); |
| } |
| len -= trans_len; |
| i++; |
| } |
| } else { |
| if (unlikely(prp2 & (n->page_size - 1))) { |
| trace_nvme_err_invalid_prp2_align(prp2); |
| goto unmap; |
| } |
| if (qsg->nsg) { |
| qemu_sglist_add(qsg, prp2, len); |
| } else { |
| qemu_iovec_add(iov, (void *)&n->cmbuf[prp2 - n->ctrl_mem.addr], trans_len); |
| } |
| } |
| } |
| return NVME_SUCCESS; |
| |
| unmap: |
| qemu_sglist_destroy(qsg); |
| return NVME_INVALID_FIELD | NVME_DNR; |
| } |
| |
| static uint16_t nvme_dma_write_prp(NvmeCtrl *n, uint8_t *ptr, uint32_t len, |
| uint64_t prp1, uint64_t prp2) |
| { |
| QEMUSGList qsg; |
| QEMUIOVector iov; |
| uint16_t status = NVME_SUCCESS; |
| |
| if (nvme_map_prp(&qsg, &iov, prp1, prp2, len, n)) { |
| return NVME_INVALID_FIELD | NVME_DNR; |
| } |
| if (qsg.nsg > 0) { |
| if (dma_buf_write(ptr, len, &qsg)) { |
| status = NVME_INVALID_FIELD | NVME_DNR; |
| } |
| qemu_sglist_destroy(&qsg); |
| } else { |
| if (qemu_iovec_to_buf(&iov, 0, ptr, len) != len) { |
| status = NVME_INVALID_FIELD | NVME_DNR; |
| } |
| qemu_iovec_destroy(&iov); |
| } |
| return status; |
| } |
| |
| static uint16_t nvme_dma_read_prp(NvmeCtrl *n, uint8_t *ptr, uint32_t len, |
| uint64_t prp1, uint64_t prp2) |
| { |
| QEMUSGList qsg; |
| QEMUIOVector iov; |
| uint16_t status = NVME_SUCCESS; |
| |
| trace_nvme_dma_read(prp1, prp2); |
| |
| if (nvme_map_prp(&qsg, &iov, prp1, prp2, len, n)) { |
| return NVME_INVALID_FIELD | NVME_DNR; |
| } |
| if (qsg.nsg > 0) { |
| if (unlikely(dma_buf_read(ptr, len, &qsg))) { |
| trace_nvme_err_invalid_dma(); |
| status = NVME_INVALID_FIELD | NVME_DNR; |
| } |
| qemu_sglist_destroy(&qsg); |
| } else { |
| if (unlikely(qemu_iovec_from_buf(&iov, 0, ptr, len) != len)) { |
| trace_nvme_err_invalid_dma(); |
| status = NVME_INVALID_FIELD | NVME_DNR; |
| } |
| qemu_iovec_destroy(&iov); |
| } |
| return status; |
| } |
| |
| static void nvme_post_cqes(void *opaque) |
| { |
| NvmeCQueue *cq = opaque; |
| NvmeCtrl *n = cq->ctrl; |
| NvmeRequest *req, *next; |
| |
| QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) { |
| NvmeSQueue *sq; |
| hwaddr addr; |
| |
| if (nvme_cq_full(cq)) { |
| break; |
| } |
| |
| QTAILQ_REMOVE(&cq->req_list, req, entry); |
| sq = req->sq; |
| req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase); |
| req->cqe.sq_id = cpu_to_le16(sq->sqid); |
| req->cqe.sq_head = cpu_to_le16(sq->head); |
| addr = cq->dma_addr + cq->tail * n->cqe_size; |
| nvme_inc_cq_tail(cq); |
| pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe, |
| sizeof(req->cqe)); |
| QTAILQ_INSERT_TAIL(&sq->req_list, req, entry); |
| } |
| if (cq->tail != cq->head) { |
| nvme_irq_assert(n, cq); |
| } |
| } |
| |
| static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req) |
| { |
| assert(cq->cqid == req->sq->cqid); |
| QTAILQ_REMOVE(&req->sq->out_req_list, req, entry); |
| QTAILQ_INSERT_TAIL(&cq->req_list, req, entry); |
| timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500); |
| } |
| |
| static void nvme_rw_cb(void *opaque, int ret) |
| { |
| NvmeRequest *req = opaque; |
| NvmeSQueue *sq = req->sq; |
| NvmeCtrl *n = sq->ctrl; |
| NvmeCQueue *cq = n->cq[sq->cqid]; |
| |
| if (!ret) { |
| block_acct_done(blk_get_stats(n->conf.blk), &req->acct); |
| req->status = NVME_SUCCESS; |
| } else { |
| block_acct_failed(blk_get_stats(n->conf.blk), &req->acct); |
| req->status = NVME_INTERNAL_DEV_ERROR; |
| } |
| if (req->has_sg) { |
| qemu_sglist_destroy(&req->qsg); |
| } |
| nvme_enqueue_req_completion(cq, req); |
| } |
| |
| static uint16_t nvme_flush(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd, |
| NvmeRequest *req) |
| { |
| req->has_sg = false; |
| block_acct_start(blk_get_stats(n->conf.blk), &req->acct, 0, |
| BLOCK_ACCT_FLUSH); |
| req->aiocb = blk_aio_flush(n->conf.blk, nvme_rw_cb, req); |
| |
| return NVME_NO_COMPLETE; |
| } |
| |
| static uint16_t nvme_write_zeros(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd, |
| NvmeRequest *req) |
| { |
| NvmeRwCmd *rw = (NvmeRwCmd *)cmd; |
| const uint8_t lba_index = NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas); |
| const uint8_t data_shift = ns->id_ns.lbaf[lba_index].ds; |
| uint64_t slba = le64_to_cpu(rw->slba); |
| uint32_t nlb = le16_to_cpu(rw->nlb) + 1; |
| uint64_t offset = slba << data_shift; |
| uint32_t count = nlb << data_shift; |
| |
| if (unlikely(slba + nlb > ns->id_ns.nsze)) { |
| trace_nvme_err_invalid_lba_range(slba, nlb, ns->id_ns.nsze); |
| return NVME_LBA_RANGE | NVME_DNR; |
| } |
| |
| req->has_sg = false; |
| block_acct_start(blk_get_stats(n->conf.blk), &req->acct, 0, |
| BLOCK_ACCT_WRITE); |
| req->aiocb = blk_aio_pwrite_zeroes(n->conf.blk, offset, count, |
| BDRV_REQ_MAY_UNMAP, nvme_rw_cb, req); |
| return NVME_NO_COMPLETE; |
| } |
| |
| static uint16_t nvme_rw(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd, |
| NvmeRequest *req) |
| { |
| NvmeRwCmd *rw = (NvmeRwCmd *)cmd; |
| uint32_t nlb = le32_to_cpu(rw->nlb) + 1; |
| uint64_t slba = le64_to_cpu(rw->slba); |
| uint64_t prp1 = le64_to_cpu(rw->prp1); |
| uint64_t prp2 = le64_to_cpu(rw->prp2); |
| |
| uint8_t lba_index = NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas); |
| uint8_t data_shift = ns->id_ns.lbaf[lba_index].ds; |
| uint64_t data_size = (uint64_t)nlb << data_shift; |
| uint64_t data_offset = slba << data_shift; |
| int is_write = rw->opcode == NVME_CMD_WRITE ? 1 : 0; |
| enum BlockAcctType acct = is_write ? BLOCK_ACCT_WRITE : BLOCK_ACCT_READ; |
| |
| trace_nvme_rw(is_write ? "write" : "read", nlb, data_size, slba); |
| |
| if (unlikely((slba + nlb) > ns->id_ns.nsze)) { |
| block_acct_invalid(blk_get_stats(n->conf.blk), acct); |
| trace_nvme_err_invalid_lba_range(slba, nlb, ns->id_ns.nsze); |
| return NVME_LBA_RANGE | NVME_DNR; |
| } |
| |
| if (nvme_map_prp(&req->qsg, &req->iov, prp1, prp2, data_size, n)) { |
| block_acct_invalid(blk_get_stats(n->conf.blk), acct); |
| return NVME_INVALID_FIELD | NVME_DNR; |
| } |
| |
| dma_acct_start(n->conf.blk, &req->acct, &req->qsg, acct); |
| if (req->qsg.nsg > 0) { |
| req->has_sg = true; |
| req->aiocb = is_write ? |
| dma_blk_write(n->conf.blk, &req->qsg, data_offset, BDRV_SECTOR_SIZE, |
| nvme_rw_cb, req) : |
| dma_blk_read(n->conf.blk, &req->qsg, data_offset, BDRV_SECTOR_SIZE, |
| nvme_rw_cb, req); |
| } else { |
| req->has_sg = false; |
| req->aiocb = is_write ? |
| blk_aio_pwritev(n->conf.blk, data_offset, &req->iov, 0, nvme_rw_cb, |
| req) : |
| blk_aio_preadv(n->conf.blk, data_offset, &req->iov, 0, nvme_rw_cb, |
| req); |
| } |
| |
| return NVME_NO_COMPLETE; |
| } |
| |
| static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req) |
| { |
| NvmeNamespace *ns; |
| uint32_t nsid = le32_to_cpu(cmd->nsid); |
| |
| if (unlikely(nsid == 0 || nsid > n->num_namespaces)) { |
| trace_nvme_err_invalid_ns(nsid, n->num_namespaces); |
| return NVME_INVALID_NSID | NVME_DNR; |
| } |
| |
| ns = &n->namespaces[nsid - 1]; |
| switch (cmd->opcode) { |
| case NVME_CMD_FLUSH: |
| return nvme_flush(n, ns, cmd, req); |
| case NVME_CMD_WRITE_ZEROS: |
| return nvme_write_zeros(n, ns, cmd, req); |
| case NVME_CMD_WRITE: |
| case NVME_CMD_READ: |
| return nvme_rw(n, ns, cmd, req); |
| default: |
| trace_nvme_err_invalid_opc(cmd->opcode); |
| return NVME_INVALID_OPCODE | NVME_DNR; |
| } |
| } |
| |
| static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n) |
| { |
| n->sq[sq->sqid] = NULL; |
| timer_del(sq->timer); |
| timer_free(sq->timer); |
| g_free(sq->io_req); |
| if (sq->sqid) { |
| g_free(sq); |
| } |
| } |
| |
| static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeCmd *cmd) |
| { |
| NvmeDeleteQ *c = (NvmeDeleteQ *)cmd; |
| NvmeRequest *req, *next; |
| NvmeSQueue *sq; |
| NvmeCQueue *cq; |
| uint16_t qid = le16_to_cpu(c->qid); |
| |
| if (unlikely(!qid || nvme_check_sqid(n, qid))) { |
| trace_nvme_err_invalid_del_sq(qid); |
| return NVME_INVALID_QID | NVME_DNR; |
| } |
| |
| trace_nvme_del_sq(qid); |
| |
| sq = n->sq[qid]; |
| while (!QTAILQ_EMPTY(&sq->out_req_list)) { |
| req = QTAILQ_FIRST(&sq->out_req_list); |
| assert(req->aiocb); |
| blk_aio_cancel(req->aiocb); |
| } |
| if (!nvme_check_cqid(n, sq->cqid)) { |
| cq = n->cq[sq->cqid]; |
| QTAILQ_REMOVE(&cq->sq_list, sq, entry); |
| |
| nvme_post_cqes(cq); |
| QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) { |
| if (req->sq == sq) { |
| QTAILQ_REMOVE(&cq->req_list, req, entry); |
| QTAILQ_INSERT_TAIL(&sq->req_list, req, entry); |
| } |
| } |
| } |
| |
| nvme_free_sq(sq, n); |
| return NVME_SUCCESS; |
| } |
| |
| static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr, |
| uint16_t sqid, uint16_t cqid, uint16_t size) |
| { |
| int i; |
| NvmeCQueue *cq; |
| |
| sq->ctrl = n; |
| sq->dma_addr = dma_addr; |
| sq->sqid = sqid; |
| sq->size = size; |
| sq->cqid = cqid; |
| sq->head = sq->tail = 0; |
| sq->io_req = g_new(NvmeRequest, sq->size); |
| |
| QTAILQ_INIT(&sq->req_list); |
| QTAILQ_INIT(&sq->out_req_list); |
| for (i = 0; i < sq->size; i++) { |
| sq->io_req[i].sq = sq; |
| QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry); |
| } |
| sq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_process_sq, sq); |
| |
| assert(n->cq[cqid]); |
| cq = n->cq[cqid]; |
| QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry); |
| n->sq[sqid] = sq; |
| } |
| |
| static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeCmd *cmd) |
| { |
| NvmeSQueue *sq; |
| NvmeCreateSq *c = (NvmeCreateSq *)cmd; |
| |
| uint16_t cqid = le16_to_cpu(c->cqid); |
| uint16_t sqid = le16_to_cpu(c->sqid); |
| uint16_t qsize = le16_to_cpu(c->qsize); |
| uint16_t qflags = le16_to_cpu(c->sq_flags); |
| uint64_t prp1 = le64_to_cpu(c->prp1); |
| |
| trace_nvme_create_sq(prp1, sqid, cqid, qsize, qflags); |
| |
| if (unlikely(!cqid || nvme_check_cqid(n, cqid))) { |
| trace_nvme_err_invalid_create_sq_cqid(cqid); |
| return NVME_INVALID_CQID | NVME_DNR; |
| } |
| if (unlikely(!sqid || !nvme_check_sqid(n, sqid))) { |
| trace_nvme_err_invalid_create_sq_sqid(sqid); |
| return NVME_INVALID_QID | NVME_DNR; |
| } |
| if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) { |
| trace_nvme_err_invalid_create_sq_size(qsize); |
| return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR; |
| } |
| if (unlikely(!prp1 || prp1 & (n->page_size - 1))) { |
| trace_nvme_err_invalid_create_sq_addr(prp1); |
| return NVME_INVALID_FIELD | NVME_DNR; |
| } |
| if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) { |
| trace_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags)); |
| return NVME_INVALID_FIELD | NVME_DNR; |
| } |
| sq = g_malloc0(sizeof(*sq)); |
| nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1); |
| return NVME_SUCCESS; |
| } |
| |
| static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n) |
| { |
| n->cq[cq->cqid] = NULL; |
| timer_del(cq->timer); |
| timer_free(cq->timer); |
| msix_vector_unuse(&n->parent_obj, cq->vector); |
| if (cq->cqid) { |
| g_free(cq); |
| } |
| } |
| |
| static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeCmd *cmd) |
| { |
| NvmeDeleteQ *c = (NvmeDeleteQ *)cmd; |
| NvmeCQueue *cq; |
| uint16_t qid = le16_to_cpu(c->qid); |
| |
| if (unlikely(!qid || nvme_check_cqid(n, qid))) { |
| trace_nvme_err_invalid_del_cq_cqid(qid); |
| return NVME_INVALID_CQID | NVME_DNR; |
| } |
| |
| cq = n->cq[qid]; |
| if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) { |
| trace_nvme_err_invalid_del_cq_notempty(qid); |
| return NVME_INVALID_QUEUE_DEL; |
| } |
| nvme_irq_deassert(n, cq); |
| trace_nvme_del_cq(qid); |
| nvme_free_cq(cq, n); |
| return NVME_SUCCESS; |
| } |
| |
| static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr, |
| uint16_t cqid, uint16_t vector, uint16_t size, uint16_t irq_enabled) |
| { |
| cq->ctrl = n; |
| cq->cqid = cqid; |
| cq->size = size; |
| cq->dma_addr = dma_addr; |
| cq->phase = 1; |
| cq->irq_enabled = irq_enabled; |
| cq->vector = vector; |
| cq->head = cq->tail = 0; |
| QTAILQ_INIT(&cq->req_list); |
| QTAILQ_INIT(&cq->sq_list); |
| msix_vector_use(&n->parent_obj, cq->vector); |
| n->cq[cqid] = cq; |
| cq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_post_cqes, cq); |
| } |
| |
| static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeCmd *cmd) |
| { |
| NvmeCQueue *cq; |
| NvmeCreateCq *c = (NvmeCreateCq *)cmd; |
| uint16_t cqid = le16_to_cpu(c->cqid); |
| uint16_t vector = le16_to_cpu(c->irq_vector); |
| uint16_t qsize = le16_to_cpu(c->qsize); |
| uint16_t qflags = le16_to_cpu(c->cq_flags); |
| uint64_t prp1 = le64_to_cpu(c->prp1); |
| |
| trace_nvme_create_cq(prp1, cqid, vector, qsize, qflags, |
| NVME_CQ_FLAGS_IEN(qflags) != 0); |
| |
| if (unlikely(!cqid || !nvme_check_cqid(n, cqid))) { |
| trace_nvme_err_invalid_create_cq_cqid(cqid); |
| return NVME_INVALID_CQID | NVME_DNR; |
| } |
| if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) { |
| trace_nvme_err_invalid_create_cq_size(qsize); |
| return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR; |
| } |
| if (unlikely(!prp1)) { |
| trace_nvme_err_invalid_create_cq_addr(prp1); |
| return NVME_INVALID_FIELD | NVME_DNR; |
| } |
| if (unlikely(vector > n->num_queues)) { |
| trace_nvme_err_invalid_create_cq_vector(vector); |
| return NVME_INVALID_IRQ_VECTOR | NVME_DNR; |
| } |
| if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) { |
| trace_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags)); |
| return NVME_INVALID_FIELD | NVME_DNR; |
| } |
| |
| cq = g_malloc0(sizeof(*cq)); |
| nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1, |
| NVME_CQ_FLAGS_IEN(qflags)); |
| return NVME_SUCCESS; |
| } |
| |
| static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeIdentify *c) |
| { |
| uint64_t prp1 = le64_to_cpu(c->prp1); |
| uint64_t prp2 = le64_to_cpu(c->prp2); |
| |
| trace_nvme_identify_ctrl(); |
| |
| return nvme_dma_read_prp(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl), |
| prp1, prp2); |
| } |
| |
| static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeIdentify *c) |
| { |
| NvmeNamespace *ns; |
| uint32_t nsid = le32_to_cpu(c->nsid); |
| uint64_t prp1 = le64_to_cpu(c->prp1); |
| uint64_t prp2 = le64_to_cpu(c->prp2); |
| |
| trace_nvme_identify_ns(nsid); |
| |
| if (unlikely(nsid == 0 || nsid > n->num_namespaces)) { |
| trace_nvme_err_invalid_ns(nsid, n->num_namespaces); |
| return NVME_INVALID_NSID | NVME_DNR; |
| } |
| |
| ns = &n->namespaces[nsid - 1]; |
| |
| return nvme_dma_read_prp(n, (uint8_t *)&ns->id_ns, sizeof(ns->id_ns), |
| prp1, prp2); |
| } |
| |
| static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeIdentify *c) |
| { |
| static const int data_len = 4 * KiB; |
| uint32_t min_nsid = le32_to_cpu(c->nsid); |
| uint64_t prp1 = le64_to_cpu(c->prp1); |
| uint64_t prp2 = le64_to_cpu(c->prp2); |
| uint32_t *list; |
| uint16_t ret; |
| int i, j = 0; |
| |
| trace_nvme_identify_nslist(min_nsid); |
| |
| list = g_malloc0(data_len); |
| for (i = 0; i < n->num_namespaces; i++) { |
| if (i < min_nsid) { |
| continue; |
| } |
| list[j++] = cpu_to_le32(i + 1); |
| if (j == data_len / sizeof(uint32_t)) { |
| break; |
| } |
| } |
| ret = nvme_dma_read_prp(n, (uint8_t *)list, data_len, prp1, prp2); |
| g_free(list); |
| return ret; |
| } |
| |
| static uint16_t nvme_identify(NvmeCtrl *n, NvmeCmd *cmd) |
| { |
| NvmeIdentify *c = (NvmeIdentify *)cmd; |
| |
| switch (le32_to_cpu(c->cns)) { |
| case 0x00: |
| return nvme_identify_ns(n, c); |
| case 0x01: |
| return nvme_identify_ctrl(n, c); |
| case 0x02: |
| return nvme_identify_nslist(n, c); |
| default: |
| trace_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns)); |
| return NVME_INVALID_FIELD | NVME_DNR; |
| } |
| } |
| |
| static inline void nvme_set_timestamp(NvmeCtrl *n, uint64_t ts) |
| { |
| trace_nvme_setfeat_timestamp(ts); |
| |
| n->host_timestamp = le64_to_cpu(ts); |
| n->timestamp_set_qemu_clock_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL); |
| } |
| |
| static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n) |
| { |
| uint64_t current_time = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL); |
| uint64_t elapsed_time = current_time - n->timestamp_set_qemu_clock_ms; |
| |
| union nvme_timestamp { |
| struct { |
| uint64_t timestamp:48; |
| uint64_t sync:1; |
| uint64_t origin:3; |
| uint64_t rsvd1:12; |
| }; |
| uint64_t all; |
| }; |
| |
| union nvme_timestamp ts; |
| ts.all = 0; |
| |
| /* |
| * If the sum of the Timestamp value set by the host and the elapsed |
| * time exceeds 2^48, the value returned should be reduced modulo 2^48. |
| */ |
| ts.timestamp = (n->host_timestamp + elapsed_time) & 0xffffffffffff; |
| |
| /* If the host timestamp is non-zero, set the timestamp origin */ |
| ts.origin = n->host_timestamp ? 0x01 : 0x00; |
| |
| trace_nvme_getfeat_timestamp(ts.all); |
| |
| return cpu_to_le64(ts.all); |
| } |
| |
| static uint16_t nvme_get_feature_timestamp(NvmeCtrl *n, NvmeCmd *cmd) |
| { |
| uint64_t prp1 = le64_to_cpu(cmd->prp1); |
| uint64_t prp2 = le64_to_cpu(cmd->prp2); |
| |
| uint64_t timestamp = nvme_get_timestamp(n); |
| |
| return nvme_dma_read_prp(n, (uint8_t *)×tamp, |
| sizeof(timestamp), prp1, prp2); |
| } |
| |
| static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req) |
| { |
| uint32_t dw10 = le32_to_cpu(cmd->cdw10); |
| uint32_t result; |
| |
| switch (dw10) { |
| case NVME_VOLATILE_WRITE_CACHE: |
| result = blk_enable_write_cache(n->conf.blk); |
| trace_nvme_getfeat_vwcache(result ? "enabled" : "disabled"); |
| break; |
| case NVME_NUMBER_OF_QUEUES: |
| result = cpu_to_le32((n->num_queues - 2) | ((n->num_queues - 2) << 16)); |
| trace_nvme_getfeat_numq(result); |
| break; |
| case NVME_TIMESTAMP: |
| return nvme_get_feature_timestamp(n, cmd); |
| break; |
| default: |
| trace_nvme_err_invalid_getfeat(dw10); |
| return NVME_INVALID_FIELD | NVME_DNR; |
| } |
| |
| req->cqe.result = result; |
| return NVME_SUCCESS; |
| } |
| |
| static uint16_t nvme_set_feature_timestamp(NvmeCtrl *n, NvmeCmd *cmd) |
| { |
| uint16_t ret; |
| uint64_t timestamp; |
| uint64_t prp1 = le64_to_cpu(cmd->prp1); |
| uint64_t prp2 = le64_to_cpu(cmd->prp2); |
| |
| ret = nvme_dma_write_prp(n, (uint8_t *)×tamp, |
| sizeof(timestamp), prp1, prp2); |
| if (ret != NVME_SUCCESS) { |
| return ret; |
| } |
| |
| nvme_set_timestamp(n, timestamp); |
| |
| return NVME_SUCCESS; |
| } |
| |
| static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req) |
| { |
| uint32_t dw10 = le32_to_cpu(cmd->cdw10); |
| uint32_t dw11 = le32_to_cpu(cmd->cdw11); |
| |
| switch (dw10) { |
| case NVME_VOLATILE_WRITE_CACHE: |
| blk_set_enable_write_cache(n->conf.blk, dw11 & 1); |
| break; |
| case NVME_NUMBER_OF_QUEUES: |
| trace_nvme_setfeat_numq((dw11 & 0xFFFF) + 1, |
| ((dw11 >> 16) & 0xFFFF) + 1, |
| n->num_queues - 1, n->num_queues - 1); |
| req->cqe.result = |
| cpu_to_le32((n->num_queues - 2) | ((n->num_queues - 2) << 16)); |
| break; |
| |
| case NVME_TIMESTAMP: |
| return nvme_set_feature_timestamp(n, cmd); |
| break; |
| |
| default: |
| trace_nvme_err_invalid_setfeat(dw10); |
| return NVME_INVALID_FIELD | NVME_DNR; |
| } |
| return NVME_SUCCESS; |
| } |
| |
| static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req) |
| { |
| switch (cmd->opcode) { |
| case NVME_ADM_CMD_DELETE_SQ: |
| return nvme_del_sq(n, cmd); |
| case NVME_ADM_CMD_CREATE_SQ: |
| return nvme_create_sq(n, cmd); |
| case NVME_ADM_CMD_DELETE_CQ: |
| return nvme_del_cq(n, cmd); |
| case NVME_ADM_CMD_CREATE_CQ: |
| return nvme_create_cq(n, cmd); |
| case NVME_ADM_CMD_IDENTIFY: |
| return nvme_identify(n, cmd); |
| case NVME_ADM_CMD_SET_FEATURES: |
| return nvme_set_feature(n, cmd, req); |
| case NVME_ADM_CMD_GET_FEATURES: |
| return nvme_get_feature(n, cmd, req); |
| default: |
| trace_nvme_err_invalid_admin_opc(cmd->opcode); |
| return NVME_INVALID_OPCODE | NVME_DNR; |
| } |
| } |
| |
| static void nvme_process_sq(void *opaque) |
| { |
| NvmeSQueue *sq = opaque; |
| NvmeCtrl *n = sq->ctrl; |
| NvmeCQueue *cq = n->cq[sq->cqid]; |
| |
| uint16_t status; |
| hwaddr addr; |
| NvmeCmd cmd; |
| NvmeRequest *req; |
| |
| while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) { |
| addr = sq->dma_addr + sq->head * n->sqe_size; |
| nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd)); |
| nvme_inc_sq_head(sq); |
| |
| req = QTAILQ_FIRST(&sq->req_list); |
| QTAILQ_REMOVE(&sq->req_list, req, entry); |
| QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry); |
| memset(&req->cqe, 0, sizeof(req->cqe)); |
| req->cqe.cid = cmd.cid; |
| |
| status = sq->sqid ? nvme_io_cmd(n, &cmd, req) : |
| nvme_admin_cmd(n, &cmd, req); |
| if (status != NVME_NO_COMPLETE) { |
| req->status = status; |
| nvme_enqueue_req_completion(cq, req); |
| } |
| } |
| } |
| |
| static void nvme_clear_ctrl(NvmeCtrl *n) |
| { |
| int i; |
| |
| blk_drain(n->conf.blk); |
| |
| for (i = 0; i < n->num_queues; i++) { |
| if (n->sq[i] != NULL) { |
| nvme_free_sq(n->sq[i], n); |
| } |
| } |
| for (i = 0; i < n->num_queues; i++) { |
| if (n->cq[i] != NULL) { |
| nvme_free_cq(n->cq[i], n); |
| } |
| } |
| |
| blk_flush(n->conf.blk); |
| n->bar.cc = 0; |
| } |
| |
| static int nvme_start_ctrl(NvmeCtrl *n) |
| { |
| uint32_t page_bits = NVME_CC_MPS(n->bar.cc) + 12; |
| uint32_t page_size = 1 << page_bits; |
| |
| if (unlikely(n->cq[0])) { |
| trace_nvme_err_startfail_cq(); |
| return -1; |
| } |
| if (unlikely(n->sq[0])) { |
| trace_nvme_err_startfail_sq(); |
| return -1; |
| } |
| if (unlikely(!n->bar.asq)) { |
| trace_nvme_err_startfail_nbarasq(); |
| return -1; |
| } |
| if (unlikely(!n->bar.acq)) { |
| trace_nvme_err_startfail_nbaracq(); |
| return -1; |
| } |
| if (unlikely(n->bar.asq & (page_size - 1))) { |
| trace_nvme_err_startfail_asq_misaligned(n->bar.asq); |
| return -1; |
| } |
| if (unlikely(n->bar.acq & (page_size - 1))) { |
| trace_nvme_err_startfail_acq_misaligned(n->bar.acq); |
| return -1; |
| } |
| if (unlikely(NVME_CC_MPS(n->bar.cc) < |
| NVME_CAP_MPSMIN(n->bar.cap))) { |
| trace_nvme_err_startfail_page_too_small( |
| NVME_CC_MPS(n->bar.cc), |
| NVME_CAP_MPSMIN(n->bar.cap)); |
| return -1; |
| } |
| if (unlikely(NVME_CC_MPS(n->bar.cc) > |
| NVME_CAP_MPSMAX(n->bar.cap))) { |
| trace_nvme_err_startfail_page_too_large( |
| NVME_CC_MPS(n->bar.cc), |
| NVME_CAP_MPSMAX(n->bar.cap)); |
| return -1; |
| } |
| if (unlikely(NVME_CC_IOCQES(n->bar.cc) < |
| NVME_CTRL_CQES_MIN(n->id_ctrl.cqes))) { |
| trace_nvme_err_startfail_cqent_too_small( |
| NVME_CC_IOCQES(n->bar.cc), |
| NVME_CTRL_CQES_MIN(n->bar.cap)); |
| return -1; |
| } |
| if (unlikely(NVME_CC_IOCQES(n->bar.cc) > |
| NVME_CTRL_CQES_MAX(n->id_ctrl.cqes))) { |
| trace_nvme_err_startfail_cqent_too_large( |
| NVME_CC_IOCQES(n->bar.cc), |
| NVME_CTRL_CQES_MAX(n->bar.cap)); |
| return -1; |
| } |
| if (unlikely(NVME_CC_IOSQES(n->bar.cc) < |
| NVME_CTRL_SQES_MIN(n->id_ctrl.sqes))) { |
| trace_nvme_err_startfail_sqent_too_small( |
| NVME_CC_IOSQES(n->bar.cc), |
| NVME_CTRL_SQES_MIN(n->bar.cap)); |
| return -1; |
| } |
| if (unlikely(NVME_CC_IOSQES(n->bar.cc) > |
| NVME_CTRL_SQES_MAX(n->id_ctrl.sqes))) { |
| trace_nvme_err_startfail_sqent_too_large( |
| NVME_CC_IOSQES(n->bar.cc), |
| NVME_CTRL_SQES_MAX(n->bar.cap)); |
| return -1; |
| } |
| if (unlikely(!NVME_AQA_ASQS(n->bar.aqa))) { |
| trace_nvme_err_startfail_asqent_sz_zero(); |
| return -1; |
| } |
| if (unlikely(!NVME_AQA_ACQS(n->bar.aqa))) { |
| trace_nvme_err_startfail_acqent_sz_zero(); |
| return -1; |
| } |
| |
| n->page_bits = page_bits; |
| n->page_size = page_size; |
| n->max_prp_ents = n->page_size / sizeof(uint64_t); |
| n->cqe_size = 1 << NVME_CC_IOCQES(n->bar.cc); |
| n->sqe_size = 1 << NVME_CC_IOSQES(n->bar.cc); |
| nvme_init_cq(&n->admin_cq, n, n->bar.acq, 0, 0, |
| NVME_AQA_ACQS(n->bar.aqa) + 1, 1); |
| nvme_init_sq(&n->admin_sq, n, n->bar.asq, 0, 0, |
| NVME_AQA_ASQS(n->bar.aqa) + 1); |
| |
| nvme_set_timestamp(n, 0ULL); |
| |
| return 0; |
| } |
| |
| static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data, |
| unsigned size) |
| { |
| if (unlikely(offset & (sizeof(uint32_t) - 1))) { |
| NVME_GUEST_ERR(nvme_ub_mmiowr_misaligned32, |
| "MMIO write not 32-bit aligned," |
| " offset=0x%"PRIx64"", offset); |
| /* should be ignored, fall through for now */ |
| } |
| |
| if (unlikely(size < sizeof(uint32_t))) { |
| NVME_GUEST_ERR(nvme_ub_mmiowr_toosmall, |
| "MMIO write smaller than 32-bits," |
| " offset=0x%"PRIx64", size=%u", |
| offset, size); |
| /* should be ignored, fall through for now */ |
| } |
| |
| switch (offset) { |
| case 0xc: /* INTMS */ |
| if (unlikely(msix_enabled(&(n->parent_obj)))) { |
| NVME_GUEST_ERR(nvme_ub_mmiowr_intmask_with_msix, |
| "undefined access to interrupt mask set" |
| " when MSI-X is enabled"); |
| /* should be ignored, fall through for now */ |
| } |
| n->bar.intms |= data & 0xffffffff; |
| n->bar.intmc = n->bar.intms; |
| trace_nvme_mmio_intm_set(data & 0xffffffff, |
| n->bar.intmc); |
| nvme_irq_check(n); |
| break; |
| case 0x10: /* INTMC */ |
| if (unlikely(msix_enabled(&(n->parent_obj)))) { |
| NVME_GUEST_ERR(nvme_ub_mmiowr_intmask_with_msix, |
| "undefined access to interrupt mask clr" |
| " when MSI-X is enabled"); |
| /* should be ignored, fall through for now */ |
| } |
| n->bar.intms &= ~(data & 0xffffffff); |
| n->bar.intmc = n->bar.intms; |
| trace_nvme_mmio_intm_clr(data & 0xffffffff, |
| n->bar.intmc); |
| nvme_irq_check(n); |
| break; |
| case 0x14: /* CC */ |
| trace_nvme_mmio_cfg(data & 0xffffffff); |
| /* Windows first sends data, then sends enable bit */ |
| if (!NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc) && |
| !NVME_CC_SHN(data) && !NVME_CC_SHN(n->bar.cc)) |
| { |
| n->bar.cc = data; |
| } |
| |
| if (NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc)) { |
| n->bar.cc = data; |
| if (unlikely(nvme_start_ctrl(n))) { |
| trace_nvme_err_startfail(); |
| n->bar.csts = NVME_CSTS_FAILED; |
| } else { |
| trace_nvme_mmio_start_success(); |
| n->bar.csts = NVME_CSTS_READY; |
| } |
| } else if (!NVME_CC_EN(data) && NVME_CC_EN(n->bar.cc)) { |
| trace_nvme_mmio_stopped(); |
| nvme_clear_ctrl(n); |
| n->bar.csts &= ~NVME_CSTS_READY; |
| } |
| if (NVME_CC_SHN(data) && !(NVME_CC_SHN(n->bar.cc))) { |
| trace_nvme_mmio_shutdown_set(); |
| nvme_clear_ctrl(n); |
| n->bar.cc = data; |
| n->bar.csts |= NVME_CSTS_SHST_COMPLETE; |
| } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(n->bar.cc)) { |
| trace_nvme_mmio_shutdown_cleared(); |
| n->bar.csts &= ~NVME_CSTS_SHST_COMPLETE; |
| n->bar.cc = data; |
| } |
| break; |
| case 0x1C: /* CSTS */ |
| if (data & (1 << 4)) { |
| NVME_GUEST_ERR(nvme_ub_mmiowr_ssreset_w1c_unsupported, |
| "attempted to W1C CSTS.NSSRO" |
| " but CAP.NSSRS is zero (not supported)"); |
| } else if (data != 0) { |
| NVME_GUEST_ERR(nvme_ub_mmiowr_ro_csts, |
| "attempted to set a read only bit" |
| " of controller status"); |
| } |
| break; |
| case 0x20: /* NSSR */ |
| if (data == 0x4E564D65) { |
| trace_nvme_ub_mmiowr_ssreset_unsupported(); |
| } else { |
| /* The spec says that writes of other values have no effect */ |
| return; |
| } |
| break; |
| case 0x24: /* AQA */ |
| n->bar.aqa = data & 0xffffffff; |
| trace_nvme_mmio_aqattr(data & 0xffffffff); |
| break; |
| case 0x28: /* ASQ */ |
| n->bar.asq = data; |
| trace_nvme_mmio_asqaddr(data); |
| break; |
| case 0x2c: /* ASQ hi */ |
| n->bar.asq |= data << 32; |
| trace_nvme_mmio_asqaddr_hi(data, n->bar.asq); |
| break; |
| case 0x30: /* ACQ */ |
| trace_nvme_mmio_acqaddr(data); |
| n->bar.acq = data; |
| break; |
| case 0x34: /* ACQ hi */ |
| n->bar.acq |= data << 32; |
| trace_nvme_mmio_acqaddr_hi(data, n->bar.acq); |
| break; |
| case 0x38: /* CMBLOC */ |
| NVME_GUEST_ERR(nvme_ub_mmiowr_cmbloc_reserved, |
| "invalid write to reserved CMBLOC" |
| " when CMBSZ is zero, ignored"); |
| return; |
| case 0x3C: /* CMBSZ */ |
| NVME_GUEST_ERR(nvme_ub_mmiowr_cmbsz_readonly, |
| "invalid write to read only CMBSZ, ignored"); |
| return; |
| case 0xE00: /* PMRCAP */ |
| NVME_GUEST_ERR(nvme_ub_mmiowr_pmrcap_readonly, |
| "invalid write to PMRCAP register, ignored"); |
| return; |
| case 0xE04: /* TODO PMRCTL */ |
| break; |
| case 0xE08: /* PMRSTS */ |
| NVME_GUEST_ERR(nvme_ub_mmiowr_pmrsts_readonly, |
| "invalid write to PMRSTS register, ignored"); |
| return; |
| case 0xE0C: /* PMREBS */ |
| NVME_GUEST_ERR(nvme_ub_mmiowr_pmrebs_readonly, |
| "invalid write to PMREBS register, ignored"); |
| return; |
| case 0xE10: /* PMRSWTP */ |
| NVME_GUEST_ERR(nvme_ub_mmiowr_pmrswtp_readonly, |
| "invalid write to PMRSWTP register, ignored"); |
| return; |
| case 0xE14: /* TODO PMRMSC */ |
| break; |
| default: |
| NVME_GUEST_ERR(nvme_ub_mmiowr_invalid, |
| "invalid MMIO write," |
| " offset=0x%"PRIx64", data=%"PRIx64"", |
| offset, data); |
| break; |
| } |
| } |
| |
| static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size) |
| { |
| NvmeCtrl *n = (NvmeCtrl *)opaque; |
| uint8_t *ptr = (uint8_t *)&n->bar; |
| uint64_t val = 0; |
| |
| if (unlikely(addr & (sizeof(uint32_t) - 1))) { |
| NVME_GUEST_ERR(nvme_ub_mmiord_misaligned32, |
| "MMIO read not 32-bit aligned," |
| " offset=0x%"PRIx64"", addr); |
| /* should RAZ, fall through for now */ |
| } else if (unlikely(size < sizeof(uint32_t))) { |
| NVME_GUEST_ERR(nvme_ub_mmiord_toosmall, |
| "MMIO read smaller than 32-bits," |
| " offset=0x%"PRIx64"", addr); |
| /* should RAZ, fall through for now */ |
| } |
| |
| if (addr < sizeof(n->bar)) { |
| /* |
| * When PMRWBM bit 1 is set then read from |
| * from PMRSTS should ensure prior writes |
| * made it to persistent media |
| */ |
| if (addr == 0xE08 && |
| (NVME_PMRCAP_PMRWBM(n->bar.pmrcap) & 0x02)) { |
| qemu_ram_writeback(n->pmrdev->mr.ram_block, |
| 0, n->pmrdev->size); |
| } |
| memcpy(&val, ptr + addr, size); |
| } else { |
| NVME_GUEST_ERR(nvme_ub_mmiord_invalid_ofs, |
| "MMIO read beyond last register," |
| " offset=0x%"PRIx64", returning 0", addr); |
| } |
| |
| return val; |
| } |
| |
| static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val) |
| { |
| uint32_t qid; |
| |
| if (unlikely(addr & ((1 << 2) - 1))) { |
| NVME_GUEST_ERR(nvme_ub_db_wr_misaligned, |
| "doorbell write not 32-bit aligned," |
| " offset=0x%"PRIx64", ignoring", addr); |
| return; |
| } |
| |
| if (((addr - 0x1000) >> 2) & 1) { |
| /* Completion queue doorbell write */ |
| |
| uint16_t new_head = val & 0xffff; |
| int start_sqs; |
| NvmeCQueue *cq; |
| |
| qid = (addr - (0x1000 + (1 << 2))) >> 3; |
| if (unlikely(nvme_check_cqid(n, qid))) { |
| NVME_GUEST_ERR(nvme_ub_db_wr_invalid_cq, |
| "completion queue doorbell write" |
| " for nonexistent queue," |
| " sqid=%"PRIu32", ignoring", qid); |
| return; |
| } |
| |
| cq = n->cq[qid]; |
| if (unlikely(new_head >= cq->size)) { |
| NVME_GUEST_ERR(nvme_ub_db_wr_invalid_cqhead, |
| "completion queue doorbell write value" |
| " beyond queue size, sqid=%"PRIu32"," |
| " new_head=%"PRIu16", ignoring", |
| qid, new_head); |
| return; |
| } |
| |
| start_sqs = nvme_cq_full(cq) ? 1 : 0; |
| cq->head = new_head; |
| if (start_sqs) { |
| NvmeSQueue *sq; |
| QTAILQ_FOREACH(sq, &cq->sq_list, entry) { |
| timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500); |
| } |
| timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500); |
| } |
| |
| if (cq->tail == cq->head) { |
| nvme_irq_deassert(n, cq); |
| } |
| } else { |
| /* Submission queue doorbell write */ |
| |
| uint16_t new_tail = val & 0xffff; |
| NvmeSQueue *sq; |
| |
| qid = (addr - 0x1000) >> 3; |
| if (unlikely(nvme_check_sqid(n, qid))) { |
| NVME_GUEST_ERR(nvme_ub_db_wr_invalid_sq, |
| "submission queue doorbell write" |
| " for nonexistent queue," |
| " sqid=%"PRIu32", ignoring", qid); |
| return; |
| } |
| |
| sq = n->sq[qid]; |
| if (unlikely(new_tail >= sq->size)) { |
| NVME_GUEST_ERR(nvme_ub_db_wr_invalid_sqtail, |
| "submission queue doorbell write value" |
| " beyond queue size, sqid=%"PRIu32"," |
| " new_tail=%"PRIu16", ignoring", |
| qid, new_tail); |
| return; |
| } |
| |
| sq->tail = new_tail; |
| timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500); |
| } |
| } |
| |
| static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data, |
| unsigned size) |
| { |
| NvmeCtrl *n = (NvmeCtrl *)opaque; |
| if (addr < sizeof(n->bar)) { |
| nvme_write_bar(n, addr, data, size); |
| } else if (addr >= 0x1000) { |
| nvme_process_db(n, addr, data); |
| } |
| } |
| |
| static const MemoryRegionOps nvme_mmio_ops = { |
| .read = nvme_mmio_read, |
| .write = nvme_mmio_write, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| .impl = { |
| .min_access_size = 2, |
| .max_access_size = 8, |
| }, |
| }; |
| |
| static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data, |
| unsigned size) |
| { |
| NvmeCtrl *n = (NvmeCtrl *)opaque; |
| stn_le_p(&n->cmbuf[addr], size, data); |
| } |
| |
| static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size) |
| { |
| NvmeCtrl *n = (NvmeCtrl *)opaque; |
| return ldn_le_p(&n->cmbuf[addr], size); |
| } |
| |
| static const MemoryRegionOps nvme_cmb_ops = { |
| .read = nvme_cmb_read, |
| .write = nvme_cmb_write, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| .impl = { |
| .min_access_size = 1, |
| .max_access_size = 8, |
| }, |
| }; |
| |
| static void nvme_realize(PCIDevice *pci_dev, Error **errp) |
| { |
| NvmeCtrl *n = NVME(pci_dev); |
| NvmeIdCtrl *id = &n->id_ctrl; |
| |
| int i; |
| int64_t bs_size; |
| uint8_t *pci_conf; |
| |
| if (!n->num_queues) { |
| error_setg(errp, "num_queues can't be zero"); |
| return; |
| } |
| |
| if (!n->conf.blk) { |
| error_setg(errp, "drive property not set"); |
| return; |
| } |
| |
| bs_size = blk_getlength(n->conf.blk); |
| if (bs_size < 0) { |
| error_setg(errp, "could not get backing file size"); |
| return; |
| } |
| |
| if (!n->serial) { |
| error_setg(errp, "serial property not set"); |
| return; |
| } |
| |
| if (!n->cmb_size_mb && n->pmrdev) { |
| if (host_memory_backend_is_mapped(n->pmrdev)) { |
| char *path = object_get_canonical_path_component(OBJECT(n->pmrdev)); |
| error_setg(errp, "can't use already busy memdev: %s", path); |
| g_free(path); |
| return; |
| } |
| |
| if (!is_power_of_2(n->pmrdev->size)) { |
| error_setg(errp, "pmr backend size needs to be power of 2 in size"); |
| return; |
| } |
| |
| host_memory_backend_set_mapped(n->pmrdev, true); |
| } |
| |
| blkconf_blocksizes(&n->conf); |
| if (!blkconf_apply_backend_options(&n->conf, blk_is_read_only(n->conf.blk), |
| false, errp)) { |
| return; |
| } |
| |
| pci_conf = pci_dev->config; |
| pci_conf[PCI_INTERRUPT_PIN] = 1; |
| pci_config_set_prog_interface(pci_dev->config, 0x2); |
| pci_config_set_class(pci_dev->config, PCI_CLASS_STORAGE_EXPRESS); |
| pcie_endpoint_cap_init(pci_dev, 0x80); |
| |
| n->num_namespaces = 1; |
| n->reg_size = pow2ceil(0x1004 + 2 * (n->num_queues + 1) * 4); |
| n->ns_size = bs_size / (uint64_t)n->num_namespaces; |
| |
| n->namespaces = g_new0(NvmeNamespace, n->num_namespaces); |
| n->sq = g_new0(NvmeSQueue *, n->num_queues); |
| n->cq = g_new0(NvmeCQueue *, n->num_queues); |
| |
| memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n, |
| "nvme", n->reg_size); |
| pci_register_bar(pci_dev, 0, |
| PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64, |
| &n->iomem); |
| msix_init_exclusive_bar(pci_dev, n->num_queues, 4, NULL); |
| |
| id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID)); |
| id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID)); |
| strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' '); |
| strpadcpy((char *)id->fr, sizeof(id->fr), "1.0", ' '); |
| strpadcpy((char *)id->sn, sizeof(id->sn), n->serial, ' '); |
| id->rab = 6; |
| id->ieee[0] = 0x00; |
| id->ieee[1] = 0x02; |
| id->ieee[2] = 0xb3; |
| id->oacs = cpu_to_le16(0); |
| id->frmw = 7 << 1; |
| id->lpa = 1 << 0; |
| id->sqes = (0x6 << 4) | 0x6; |
| id->cqes = (0x4 << 4) | 0x4; |
| id->nn = cpu_to_le32(n->num_namespaces); |
| id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROS | NVME_ONCS_TIMESTAMP); |
| id->psd[0].mp = cpu_to_le16(0x9c4); |
| id->psd[0].enlat = cpu_to_le32(0x10); |
| id->psd[0].exlat = cpu_to_le32(0x4); |
| if (blk_enable_write_cache(n->conf.blk)) { |
| id->vwc = 1; |
| } |
| |
| n->bar.cap = 0; |
| NVME_CAP_SET_MQES(n->bar.cap, 0x7ff); |
| NVME_CAP_SET_CQR(n->bar.cap, 1); |
| NVME_CAP_SET_TO(n->bar.cap, 0xf); |
| NVME_CAP_SET_CSS(n->bar.cap, 1); |
| NVME_CAP_SET_MPSMAX(n->bar.cap, 4); |
| |
| n->bar.vs = 0x00010200; |
| n->bar.intmc = n->bar.intms = 0; |
| |
| if (n->cmb_size_mb) { |
| |
| NVME_CMBLOC_SET_BIR(n->bar.cmbloc, 2); |
| NVME_CMBLOC_SET_OFST(n->bar.cmbloc, 0); |
| |
| NVME_CMBSZ_SET_SQS(n->bar.cmbsz, 1); |
| NVME_CMBSZ_SET_CQS(n->bar.cmbsz, 0); |
| NVME_CMBSZ_SET_LISTS(n->bar.cmbsz, 0); |
| NVME_CMBSZ_SET_RDS(n->bar.cmbsz, 1); |
| NVME_CMBSZ_SET_WDS(n->bar.cmbsz, 1); |
| NVME_CMBSZ_SET_SZU(n->bar.cmbsz, 2); /* MBs */ |
| NVME_CMBSZ_SET_SZ(n->bar.cmbsz, n->cmb_size_mb); |
| |
| n->cmbloc = n->bar.cmbloc; |
| n->cmbsz = n->bar.cmbsz; |
| |
| n->cmbuf = g_malloc0(NVME_CMBSZ_GETSIZE(n->bar.cmbsz)); |
| memory_region_init_io(&n->ctrl_mem, OBJECT(n), &nvme_cmb_ops, n, |
| "nvme-cmb", NVME_CMBSZ_GETSIZE(n->bar.cmbsz)); |
| pci_register_bar(pci_dev, NVME_CMBLOC_BIR(n->bar.cmbloc), |
| PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64 | |
| PCI_BASE_ADDRESS_MEM_PREFETCH, &n->ctrl_mem); |
| |
| } else if (n->pmrdev) { |
| /* Controller Capabilities register */ |
| NVME_CAP_SET_PMRS(n->bar.cap, 1); |
| |
| /* PMR Capabities register */ |
| n->bar.pmrcap = 0; |
| NVME_PMRCAP_SET_RDS(n->bar.pmrcap, 0); |
| NVME_PMRCAP_SET_WDS(n->bar.pmrcap, 0); |
| NVME_PMRCAP_SET_BIR(n->bar.pmrcap, 2); |
| NVME_PMRCAP_SET_PMRTU(n->bar.pmrcap, 0); |
| /* Turn on bit 1 support */ |
| NVME_PMRCAP_SET_PMRWBM(n->bar.pmrcap, 0x02); |
| NVME_PMRCAP_SET_PMRTO(n->bar.pmrcap, 0); |
| NVME_PMRCAP_SET_CMSS(n->bar.pmrcap, 0); |
| |
| /* PMR Control register */ |
| n->bar.pmrctl = 0; |
| NVME_PMRCTL_SET_EN(n->bar.pmrctl, 0); |
| |
| /* PMR Status register */ |
| n->bar.pmrsts = 0; |
| NVME_PMRSTS_SET_ERR(n->bar.pmrsts, 0); |
| NVME_PMRSTS_SET_NRDY(n->bar.pmrsts, 0); |
| NVME_PMRSTS_SET_HSTS(n->bar.pmrsts, 0); |
| NVME_PMRSTS_SET_CBAI(n->bar.pmrsts, 0); |
| |
| /* PMR Elasticity Buffer Size register */ |
| n->bar.pmrebs = 0; |
| NVME_PMREBS_SET_PMRSZU(n->bar.pmrebs, 0); |
| NVME_PMREBS_SET_RBB(n->bar.pmrebs, 0); |
| NVME_PMREBS_SET_PMRWBZ(n->bar.pmrebs, 0); |
| |
| /* PMR Sustained Write Throughput register */ |
| n->bar.pmrswtp = 0; |
| NVME_PMRSWTP_SET_PMRSWTU(n->bar.pmrswtp, 0); |
| NVME_PMRSWTP_SET_PMRSWTV(n->bar.pmrswtp, 0); |
| |
| /* PMR Memory Space Control register */ |
| n->bar.pmrmsc = 0; |
| NVME_PMRMSC_SET_CMSE(n->bar.pmrmsc, 0); |
| NVME_PMRMSC_SET_CBA(n->bar.pmrmsc, 0); |
| |
| pci_register_bar(pci_dev, NVME_PMRCAP_BIR(n->bar.pmrcap), |
| PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64 | |
| PCI_BASE_ADDRESS_MEM_PREFETCH, &n->pmrdev->mr); |
| } |
| |
| for (i = 0; i < n->num_namespaces; i++) { |
| NvmeNamespace *ns = &n->namespaces[i]; |
| NvmeIdNs *id_ns = &ns->id_ns; |
| id_ns->nsfeat = 0; |
| id_ns->nlbaf = 0; |
| id_ns->flbas = 0; |
| id_ns->mc = 0; |
| id_ns->dpc = 0; |
| id_ns->dps = 0; |
| id_ns->lbaf[0].ds = BDRV_SECTOR_BITS; |
| id_ns->ncap = id_ns->nuse = id_ns->nsze = |
| cpu_to_le64(n->ns_size >> |
| id_ns->lbaf[NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas)].ds); |
| } |
| } |
| |
| static void nvme_exit(PCIDevice *pci_dev) |
| { |
| NvmeCtrl *n = NVME(pci_dev); |
| |
| nvme_clear_ctrl(n); |
| g_free(n->namespaces); |
| g_free(n->cq); |
| g_free(n->sq); |
| |
| if (n->cmb_size_mb) { |
| g_free(n->cmbuf); |
| } |
| |
| if (n->pmrdev) { |
| host_memory_backend_set_mapped(n->pmrdev, false); |
| } |
| msix_uninit_exclusive_bar(pci_dev); |
| } |
| |
| static Property nvme_props[] = { |
| DEFINE_BLOCK_PROPERTIES(NvmeCtrl, conf), |
| DEFINE_PROP_LINK("pmrdev", NvmeCtrl, pmrdev, TYPE_MEMORY_BACKEND, |
| HostMemoryBackend *), |
| DEFINE_PROP_STRING("serial", NvmeCtrl, serial), |
| DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, cmb_size_mb, 0), |
| DEFINE_PROP_UINT32("num_queues", NvmeCtrl, num_queues, 64), |
| DEFINE_PROP_END_OF_LIST(), |
| }; |
| |
| static const VMStateDescription nvme_vmstate = { |
| .name = "nvme", |
| .unmigratable = 1, |
| }; |
| |
| static void nvme_class_init(ObjectClass *oc, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(oc); |
| PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc); |
| |
| pc->realize = nvme_realize; |
| pc->exit = nvme_exit; |
| pc->class_id = PCI_CLASS_STORAGE_EXPRESS; |
| pc->vendor_id = PCI_VENDOR_ID_INTEL; |
| pc->device_id = 0x5845; |
| pc->revision = 2; |
| |
| set_bit(DEVICE_CATEGORY_STORAGE, dc->categories); |
| dc->desc = "Non-Volatile Memory Express"; |
| device_class_set_props(dc, nvme_props); |
| dc->vmsd = &nvme_vmstate; |
| } |
| |
| static void nvme_instance_init(Object *obj) |
| { |
| NvmeCtrl *s = NVME(obj); |
| |
| device_add_bootindex_property(obj, &s->conf.bootindex, |
| "bootindex", "/namespace@1,0", |
| DEVICE(obj), &error_abort); |
| } |
| |
| static const TypeInfo nvme_info = { |
| .name = TYPE_NVME, |
| .parent = TYPE_PCI_DEVICE, |
| .instance_size = sizeof(NvmeCtrl), |
| .class_init = nvme_class_init, |
| .instance_init = nvme_instance_init, |
| .interfaces = (InterfaceInfo[]) { |
| { INTERFACE_PCIE_DEVICE }, |
| { } |
| }, |
| }; |
| |
| static void nvme_register_types(void) |
| { |
| type_register_static(&nvme_info); |
| } |
| |
| type_init(nvme_register_types) |