| /* |
| * gdb server stub |
| * |
| * This implements a subset of the remote protocol as described in: |
| * |
| * https://sourceware.org/gdb/onlinedocs/gdb/Remote-Protocol.html |
| * |
| * Copyright (c) 2003-2005 Fabrice Bellard |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| * |
| * SPDX-License-Identifier: LGPL-2.0+ |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu-common.h" |
| #include "qapi/error.h" |
| #include "qemu/error-report.h" |
| #include "qemu/ctype.h" |
| #include "qemu/cutils.h" |
| #include "qemu/module.h" |
| #include "trace-root.h" |
| #ifdef CONFIG_USER_ONLY |
| #include "qemu.h" |
| #else |
| #include "monitor/monitor.h" |
| #include "chardev/char.h" |
| #include "chardev/char-fe.h" |
| #include "sysemu/sysemu.h" |
| #include "exec/gdbstub.h" |
| #include "hw/cpu/cluster.h" |
| #include "hw/boards.h" |
| #endif |
| |
| #define MAX_PACKET_LENGTH 4096 |
| |
| #include "qemu/sockets.h" |
| #include "sysemu/hw_accel.h" |
| #include "sysemu/kvm.h" |
| #include "sysemu/runstate.h" |
| #include "hw/semihosting/semihost.h" |
| #include "exec/exec-all.h" |
| |
| #ifdef CONFIG_USER_ONLY |
| #define GDB_ATTACHED "0" |
| #else |
| #define GDB_ATTACHED "1" |
| #endif |
| |
| #ifndef CONFIG_USER_ONLY |
| static int phy_memory_mode; |
| #endif |
| |
| static inline int target_memory_rw_debug(CPUState *cpu, target_ulong addr, |
| uint8_t *buf, int len, bool is_write) |
| { |
| CPUClass *cc; |
| |
| #ifndef CONFIG_USER_ONLY |
| if (phy_memory_mode) { |
| if (is_write) { |
| cpu_physical_memory_write(addr, buf, len); |
| } else { |
| cpu_physical_memory_read(addr, buf, len); |
| } |
| return 0; |
| } |
| #endif |
| |
| cc = CPU_GET_CLASS(cpu); |
| if (cc->memory_rw_debug) { |
| return cc->memory_rw_debug(cpu, addr, buf, len, is_write); |
| } |
| return cpu_memory_rw_debug(cpu, addr, buf, len, is_write); |
| } |
| |
| /* Return the GDB index for a given vCPU state. |
| * |
| * For user mode this is simply the thread id. In system mode GDB |
| * numbers CPUs from 1 as 0 is reserved as an "any cpu" index. |
| */ |
| static inline int cpu_gdb_index(CPUState *cpu) |
| { |
| #if defined(CONFIG_USER_ONLY) |
| TaskState *ts = (TaskState *) cpu->opaque; |
| return ts->ts_tid; |
| #else |
| return cpu->cpu_index + 1; |
| #endif |
| } |
| |
| enum { |
| GDB_SIGNAL_0 = 0, |
| GDB_SIGNAL_INT = 2, |
| GDB_SIGNAL_QUIT = 3, |
| GDB_SIGNAL_TRAP = 5, |
| GDB_SIGNAL_ABRT = 6, |
| GDB_SIGNAL_ALRM = 14, |
| GDB_SIGNAL_IO = 23, |
| GDB_SIGNAL_XCPU = 24, |
| GDB_SIGNAL_UNKNOWN = 143 |
| }; |
| |
| #ifdef CONFIG_USER_ONLY |
| |
| /* Map target signal numbers to GDB protocol signal numbers and vice |
| * versa. For user emulation's currently supported systems, we can |
| * assume most signals are defined. |
| */ |
| |
| static int gdb_signal_table[] = { |
| 0, |
| TARGET_SIGHUP, |
| TARGET_SIGINT, |
| TARGET_SIGQUIT, |
| TARGET_SIGILL, |
| TARGET_SIGTRAP, |
| TARGET_SIGABRT, |
| -1, /* SIGEMT */ |
| TARGET_SIGFPE, |
| TARGET_SIGKILL, |
| TARGET_SIGBUS, |
| TARGET_SIGSEGV, |
| TARGET_SIGSYS, |
| TARGET_SIGPIPE, |
| TARGET_SIGALRM, |
| TARGET_SIGTERM, |
| TARGET_SIGURG, |
| TARGET_SIGSTOP, |
| TARGET_SIGTSTP, |
| TARGET_SIGCONT, |
| TARGET_SIGCHLD, |
| TARGET_SIGTTIN, |
| TARGET_SIGTTOU, |
| TARGET_SIGIO, |
| TARGET_SIGXCPU, |
| TARGET_SIGXFSZ, |
| TARGET_SIGVTALRM, |
| TARGET_SIGPROF, |
| TARGET_SIGWINCH, |
| -1, /* SIGLOST */ |
| TARGET_SIGUSR1, |
| TARGET_SIGUSR2, |
| #ifdef TARGET_SIGPWR |
| TARGET_SIGPWR, |
| #else |
| -1, |
| #endif |
| -1, /* SIGPOLL */ |
| -1, |
| -1, |
| -1, |
| -1, |
| -1, |
| -1, |
| -1, |
| -1, |
| -1, |
| -1, |
| -1, |
| #ifdef __SIGRTMIN |
| __SIGRTMIN + 1, |
| __SIGRTMIN + 2, |
| __SIGRTMIN + 3, |
| __SIGRTMIN + 4, |
| __SIGRTMIN + 5, |
| __SIGRTMIN + 6, |
| __SIGRTMIN + 7, |
| __SIGRTMIN + 8, |
| __SIGRTMIN + 9, |
| __SIGRTMIN + 10, |
| __SIGRTMIN + 11, |
| __SIGRTMIN + 12, |
| __SIGRTMIN + 13, |
| __SIGRTMIN + 14, |
| __SIGRTMIN + 15, |
| __SIGRTMIN + 16, |
| __SIGRTMIN + 17, |
| __SIGRTMIN + 18, |
| __SIGRTMIN + 19, |
| __SIGRTMIN + 20, |
| __SIGRTMIN + 21, |
| __SIGRTMIN + 22, |
| __SIGRTMIN + 23, |
| __SIGRTMIN + 24, |
| __SIGRTMIN + 25, |
| __SIGRTMIN + 26, |
| __SIGRTMIN + 27, |
| __SIGRTMIN + 28, |
| __SIGRTMIN + 29, |
| __SIGRTMIN + 30, |
| __SIGRTMIN + 31, |
| -1, /* SIGCANCEL */ |
| __SIGRTMIN, |
| __SIGRTMIN + 32, |
| __SIGRTMIN + 33, |
| __SIGRTMIN + 34, |
| __SIGRTMIN + 35, |
| __SIGRTMIN + 36, |
| __SIGRTMIN + 37, |
| __SIGRTMIN + 38, |
| __SIGRTMIN + 39, |
| __SIGRTMIN + 40, |
| __SIGRTMIN + 41, |
| __SIGRTMIN + 42, |
| __SIGRTMIN + 43, |
| __SIGRTMIN + 44, |
| __SIGRTMIN + 45, |
| __SIGRTMIN + 46, |
| __SIGRTMIN + 47, |
| __SIGRTMIN + 48, |
| __SIGRTMIN + 49, |
| __SIGRTMIN + 50, |
| __SIGRTMIN + 51, |
| __SIGRTMIN + 52, |
| __SIGRTMIN + 53, |
| __SIGRTMIN + 54, |
| __SIGRTMIN + 55, |
| __SIGRTMIN + 56, |
| __SIGRTMIN + 57, |
| __SIGRTMIN + 58, |
| __SIGRTMIN + 59, |
| __SIGRTMIN + 60, |
| __SIGRTMIN + 61, |
| __SIGRTMIN + 62, |
| __SIGRTMIN + 63, |
| __SIGRTMIN + 64, |
| __SIGRTMIN + 65, |
| __SIGRTMIN + 66, |
| __SIGRTMIN + 67, |
| __SIGRTMIN + 68, |
| __SIGRTMIN + 69, |
| __SIGRTMIN + 70, |
| __SIGRTMIN + 71, |
| __SIGRTMIN + 72, |
| __SIGRTMIN + 73, |
| __SIGRTMIN + 74, |
| __SIGRTMIN + 75, |
| __SIGRTMIN + 76, |
| __SIGRTMIN + 77, |
| __SIGRTMIN + 78, |
| __SIGRTMIN + 79, |
| __SIGRTMIN + 80, |
| __SIGRTMIN + 81, |
| __SIGRTMIN + 82, |
| __SIGRTMIN + 83, |
| __SIGRTMIN + 84, |
| __SIGRTMIN + 85, |
| __SIGRTMIN + 86, |
| __SIGRTMIN + 87, |
| __SIGRTMIN + 88, |
| __SIGRTMIN + 89, |
| __SIGRTMIN + 90, |
| __SIGRTMIN + 91, |
| __SIGRTMIN + 92, |
| __SIGRTMIN + 93, |
| __SIGRTMIN + 94, |
| __SIGRTMIN + 95, |
| -1, /* SIGINFO */ |
| -1, /* UNKNOWN */ |
| -1, /* DEFAULT */ |
| -1, |
| -1, |
| -1, |
| -1, |
| -1, |
| -1 |
| #endif |
| }; |
| #else |
| /* In system mode we only need SIGINT and SIGTRAP; other signals |
| are not yet supported. */ |
| |
| enum { |
| TARGET_SIGINT = 2, |
| TARGET_SIGTRAP = 5 |
| }; |
| |
| static int gdb_signal_table[] = { |
| -1, |
| -1, |
| TARGET_SIGINT, |
| -1, |
| -1, |
| TARGET_SIGTRAP |
| }; |
| #endif |
| |
| #ifdef CONFIG_USER_ONLY |
| static int target_signal_to_gdb (int sig) |
| { |
| int i; |
| for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++) |
| if (gdb_signal_table[i] == sig) |
| return i; |
| return GDB_SIGNAL_UNKNOWN; |
| } |
| #endif |
| |
| static int gdb_signal_to_target (int sig) |
| { |
| if (sig < ARRAY_SIZE (gdb_signal_table)) |
| return gdb_signal_table[sig]; |
| else |
| return -1; |
| } |
| |
| typedef struct GDBRegisterState { |
| int base_reg; |
| int num_regs; |
| gdb_get_reg_cb get_reg; |
| gdb_set_reg_cb set_reg; |
| const char *xml; |
| struct GDBRegisterState *next; |
| } GDBRegisterState; |
| |
| typedef struct GDBProcess { |
| uint32_t pid; |
| bool attached; |
| |
| char target_xml[1024]; |
| } GDBProcess; |
| |
| enum RSState { |
| RS_INACTIVE, |
| RS_IDLE, |
| RS_GETLINE, |
| RS_GETLINE_ESC, |
| RS_GETLINE_RLE, |
| RS_CHKSUM1, |
| RS_CHKSUM2, |
| }; |
| typedef struct GDBState { |
| bool init; /* have we been initialised? */ |
| CPUState *c_cpu; /* current CPU for step/continue ops */ |
| CPUState *g_cpu; /* current CPU for other ops */ |
| CPUState *query_cpu; /* for q{f|s}ThreadInfo */ |
| enum RSState state; /* parsing state */ |
| char line_buf[MAX_PACKET_LENGTH]; |
| int line_buf_index; |
| int line_sum; /* running checksum */ |
| int line_csum; /* checksum at the end of the packet */ |
| GByteArray *last_packet; |
| int signal; |
| #ifdef CONFIG_USER_ONLY |
| int fd; |
| int running_state; |
| #else |
| CharBackend chr; |
| Chardev *mon_chr; |
| #endif |
| bool multiprocess; |
| GDBProcess *processes; |
| int process_num; |
| char syscall_buf[256]; |
| gdb_syscall_complete_cb current_syscall_cb; |
| GString *str_buf; |
| GByteArray *mem_buf; |
| } GDBState; |
| |
| /* By default use no IRQs and no timers while single stepping so as to |
| * make single stepping like an ICE HW step. |
| */ |
| static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER; |
| |
| static GDBState gdbserver_state; |
| |
| static void init_gdbserver_state(void) |
| { |
| g_assert(!gdbserver_state.init); |
| memset(&gdbserver_state, 0, sizeof(GDBState)); |
| gdbserver_state.init = true; |
| gdbserver_state.str_buf = g_string_new(NULL); |
| gdbserver_state.mem_buf = g_byte_array_sized_new(MAX_PACKET_LENGTH); |
| gdbserver_state.last_packet = g_byte_array_sized_new(MAX_PACKET_LENGTH + 4); |
| } |
| |
| #ifndef CONFIG_USER_ONLY |
| static void reset_gdbserver_state(void) |
| { |
| g_free(gdbserver_state.processes); |
| gdbserver_state.processes = NULL; |
| gdbserver_state.process_num = 0; |
| } |
| #endif |
| |
| bool gdb_has_xml; |
| |
| #ifdef CONFIG_USER_ONLY |
| /* XXX: This is not thread safe. Do we care? */ |
| static int gdbserver_fd = -1; |
| |
| static int get_char(void) |
| { |
| uint8_t ch; |
| int ret; |
| |
| for(;;) { |
| ret = qemu_recv(gdbserver_state.fd, &ch, 1, 0); |
| if (ret < 0) { |
| if (errno == ECONNRESET) |
| gdbserver_state.fd = -1; |
| if (errno != EINTR) |
| return -1; |
| } else if (ret == 0) { |
| close(gdbserver_state.fd); |
| gdbserver_state.fd = -1; |
| return -1; |
| } else { |
| break; |
| } |
| } |
| return ch; |
| } |
| #endif |
| |
| static enum { |
| GDB_SYS_UNKNOWN, |
| GDB_SYS_ENABLED, |
| GDB_SYS_DISABLED, |
| } gdb_syscall_mode; |
| |
| /* Decide if either remote gdb syscalls or native file IO should be used. */ |
| int use_gdb_syscalls(void) |
| { |
| SemihostingTarget target = semihosting_get_target(); |
| if (target == SEMIHOSTING_TARGET_NATIVE) { |
| /* -semihosting-config target=native */ |
| return false; |
| } else if (target == SEMIHOSTING_TARGET_GDB) { |
| /* -semihosting-config target=gdb */ |
| return true; |
| } |
| |
| /* -semihosting-config target=auto */ |
| /* On the first call check if gdb is connected and remember. */ |
| if (gdb_syscall_mode == GDB_SYS_UNKNOWN) { |
| gdb_syscall_mode = gdbserver_state.init ? |
| GDB_SYS_ENABLED : GDB_SYS_DISABLED; |
| } |
| return gdb_syscall_mode == GDB_SYS_ENABLED; |
| } |
| |
| /* Resume execution. */ |
| static inline void gdb_continue(void) |
| { |
| |
| #ifdef CONFIG_USER_ONLY |
| gdbserver_state.running_state = 1; |
| trace_gdbstub_op_continue(); |
| #else |
| if (!runstate_needs_reset()) { |
| trace_gdbstub_op_continue(); |
| vm_start(); |
| } |
| #endif |
| } |
| |
| /* |
| * Resume execution, per CPU actions. For user-mode emulation it's |
| * equivalent to gdb_continue. |
| */ |
| static int gdb_continue_partial(char *newstates) |
| { |
| CPUState *cpu; |
| int res = 0; |
| #ifdef CONFIG_USER_ONLY |
| /* |
| * This is not exactly accurate, but it's an improvement compared to the |
| * previous situation, where only one CPU would be single-stepped. |
| */ |
| CPU_FOREACH(cpu) { |
| if (newstates[cpu->cpu_index] == 's') { |
| trace_gdbstub_op_stepping(cpu->cpu_index); |
| cpu_single_step(cpu, sstep_flags); |
| } |
| } |
| gdbserver_state.running_state = 1; |
| #else |
| int flag = 0; |
| |
| if (!runstate_needs_reset()) { |
| if (vm_prepare_start()) { |
| return 0; |
| } |
| |
| CPU_FOREACH(cpu) { |
| switch (newstates[cpu->cpu_index]) { |
| case 0: |
| case 1: |
| break; /* nothing to do here */ |
| case 's': |
| trace_gdbstub_op_stepping(cpu->cpu_index); |
| cpu_single_step(cpu, sstep_flags); |
| cpu_resume(cpu); |
| flag = 1; |
| break; |
| case 'c': |
| trace_gdbstub_op_continue_cpu(cpu->cpu_index); |
| cpu_resume(cpu); |
| flag = 1; |
| break; |
| default: |
| res = -1; |
| break; |
| } |
| } |
| } |
| if (flag) { |
| qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true); |
| } |
| #endif |
| return res; |
| } |
| |
| static void put_buffer(const uint8_t *buf, int len) |
| { |
| #ifdef CONFIG_USER_ONLY |
| int ret; |
| |
| while (len > 0) { |
| ret = send(gdbserver_state.fd, buf, len, 0); |
| if (ret < 0) { |
| if (errno != EINTR) |
| return; |
| } else { |
| buf += ret; |
| len -= ret; |
| } |
| } |
| #else |
| /* XXX this blocks entire thread. Rewrite to use |
| * qemu_chr_fe_write and background I/O callbacks */ |
| qemu_chr_fe_write_all(&gdbserver_state.chr, buf, len); |
| #endif |
| } |
| |
| static inline int fromhex(int v) |
| { |
| if (v >= '0' && v <= '9') |
| return v - '0'; |
| else if (v >= 'A' && v <= 'F') |
| return v - 'A' + 10; |
| else if (v >= 'a' && v <= 'f') |
| return v - 'a' + 10; |
| else |
| return 0; |
| } |
| |
| static inline int tohex(int v) |
| { |
| if (v < 10) |
| return v + '0'; |
| else |
| return v - 10 + 'a'; |
| } |
| |
| /* writes 2*len+1 bytes in buf */ |
| static void memtohex(GString *buf, const uint8_t *mem, int len) |
| { |
| int i, c; |
| for(i = 0; i < len; i++) { |
| c = mem[i]; |
| g_string_append_c(buf, tohex(c >> 4)); |
| g_string_append_c(buf, tohex(c & 0xf)); |
| } |
| g_string_append_c(buf, '\0'); |
| } |
| |
| static void hextomem(GByteArray *mem, const char *buf, int len) |
| { |
| int i; |
| |
| for(i = 0; i < len; i++) { |
| guint8 byte = fromhex(buf[0]) << 4 | fromhex(buf[1]); |
| g_byte_array_append(mem, &byte, 1); |
| buf += 2; |
| } |
| } |
| |
| static void hexdump(const char *buf, int len, |
| void (*trace_fn)(size_t ofs, char const *text)) |
| { |
| char line_buffer[3 * 16 + 4 + 16 + 1]; |
| |
| size_t i; |
| for (i = 0; i < len || (i & 0xF); ++i) { |
| size_t byte_ofs = i & 15; |
| |
| if (byte_ofs == 0) { |
| memset(line_buffer, ' ', 3 * 16 + 4 + 16); |
| line_buffer[3 * 16 + 4 + 16] = 0; |
| } |
| |
| size_t col_group = (i >> 2) & 3; |
| size_t hex_col = byte_ofs * 3 + col_group; |
| size_t txt_col = 3 * 16 + 4 + byte_ofs; |
| |
| if (i < len) { |
| char value = buf[i]; |
| |
| line_buffer[hex_col + 0] = tohex((value >> 4) & 0xF); |
| line_buffer[hex_col + 1] = tohex((value >> 0) & 0xF); |
| line_buffer[txt_col + 0] = (value >= ' ' && value < 127) |
| ? value |
| : '.'; |
| } |
| |
| if (byte_ofs == 0xF) |
| trace_fn(i & -16, line_buffer); |
| } |
| } |
| |
| /* return -1 if error, 0 if OK */ |
| static int put_packet_binary(const char *buf, int len, bool dump) |
| { |
| int csum, i; |
| uint8_t footer[3]; |
| |
| if (dump && trace_event_get_state_backends(TRACE_GDBSTUB_IO_BINARYREPLY)) { |
| hexdump(buf, len, trace_gdbstub_io_binaryreply); |
| } |
| |
| for(;;) { |
| g_byte_array_set_size(gdbserver_state.last_packet, 0); |
| g_byte_array_append(gdbserver_state.last_packet, |
| (const uint8_t *) "$", 1); |
| g_byte_array_append(gdbserver_state.last_packet, |
| (const uint8_t *) buf, len); |
| csum = 0; |
| for(i = 0; i < len; i++) { |
| csum += buf[i]; |
| } |
| footer[0] = '#'; |
| footer[1] = tohex((csum >> 4) & 0xf); |
| footer[2] = tohex((csum) & 0xf); |
| g_byte_array_append(gdbserver_state.last_packet, footer, 3); |
| |
| put_buffer(gdbserver_state.last_packet->data, |
| gdbserver_state.last_packet->len); |
| |
| #ifdef CONFIG_USER_ONLY |
| i = get_char(); |
| if (i < 0) |
| return -1; |
| if (i == '+') |
| break; |
| #else |
| break; |
| #endif |
| } |
| return 0; |
| } |
| |
| /* return -1 if error, 0 if OK */ |
| static int put_packet(const char *buf) |
| { |
| trace_gdbstub_io_reply(buf); |
| |
| return put_packet_binary(buf, strlen(buf), false); |
| } |
| |
| static void put_strbuf(void) |
| { |
| put_packet(gdbserver_state.str_buf->str); |
| } |
| |
| /* Encode data using the encoding for 'x' packets. */ |
| static void memtox(GString *buf, const char *mem, int len) |
| { |
| char c; |
| |
| while (len--) { |
| c = *(mem++); |
| switch (c) { |
| case '#': case '$': case '*': case '}': |
| g_string_append_c(buf, '}'); |
| g_string_append_c(buf, c ^ 0x20); |
| break; |
| default: |
| g_string_append_c(buf, c); |
| break; |
| } |
| } |
| } |
| |
| static uint32_t gdb_get_cpu_pid(CPUState *cpu) |
| { |
| /* TODO: In user mode, we should use the task state PID */ |
| if (cpu->cluster_index == UNASSIGNED_CLUSTER_INDEX) { |
| /* Return the default process' PID */ |
| int index = gdbserver_state.process_num - 1; |
| return gdbserver_state.processes[index].pid; |
| } |
| return cpu->cluster_index + 1; |
| } |
| |
| static GDBProcess *gdb_get_process(uint32_t pid) |
| { |
| int i; |
| |
| if (!pid) { |
| /* 0 means any process, we take the first one */ |
| return &gdbserver_state.processes[0]; |
| } |
| |
| for (i = 0; i < gdbserver_state.process_num; i++) { |
| if (gdbserver_state.processes[i].pid == pid) { |
| return &gdbserver_state.processes[i]; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| static GDBProcess *gdb_get_cpu_process(CPUState *cpu) |
| { |
| return gdb_get_process(gdb_get_cpu_pid(cpu)); |
| } |
| |
| static CPUState *find_cpu(uint32_t thread_id) |
| { |
| CPUState *cpu; |
| |
| CPU_FOREACH(cpu) { |
| if (cpu_gdb_index(cpu) == thread_id) { |
| return cpu; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| static CPUState *get_first_cpu_in_process(GDBProcess *process) |
| { |
| CPUState *cpu; |
| |
| CPU_FOREACH(cpu) { |
| if (gdb_get_cpu_pid(cpu) == process->pid) { |
| return cpu; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| static CPUState *gdb_next_cpu_in_process(CPUState *cpu) |
| { |
| uint32_t pid = gdb_get_cpu_pid(cpu); |
| cpu = CPU_NEXT(cpu); |
| |
| while (cpu) { |
| if (gdb_get_cpu_pid(cpu) == pid) { |
| break; |
| } |
| |
| cpu = CPU_NEXT(cpu); |
| } |
| |
| return cpu; |
| } |
| |
| /* Return the cpu following @cpu, while ignoring unattached processes. */ |
| static CPUState *gdb_next_attached_cpu(CPUState *cpu) |
| { |
| cpu = CPU_NEXT(cpu); |
| |
| while (cpu) { |
| if (gdb_get_cpu_process(cpu)->attached) { |
| break; |
| } |
| |
| cpu = CPU_NEXT(cpu); |
| } |
| |
| return cpu; |
| } |
| |
| /* Return the first attached cpu */ |
| static CPUState *gdb_first_attached_cpu(void) |
| { |
| CPUState *cpu = first_cpu; |
| GDBProcess *process = gdb_get_cpu_process(cpu); |
| |
| if (!process->attached) { |
| return gdb_next_attached_cpu(cpu); |
| } |
| |
| return cpu; |
| } |
| |
| static CPUState *gdb_get_cpu(uint32_t pid, uint32_t tid) |
| { |
| GDBProcess *process; |
| CPUState *cpu; |
| |
| if (!pid && !tid) { |
| /* 0 means any process/thread, we take the first attached one */ |
| return gdb_first_attached_cpu(); |
| } else if (pid && !tid) { |
| /* any thread in a specific process */ |
| process = gdb_get_process(pid); |
| |
| if (process == NULL) { |
| return NULL; |
| } |
| |
| if (!process->attached) { |
| return NULL; |
| } |
| |
| return get_first_cpu_in_process(process); |
| } else { |
| /* a specific thread */ |
| cpu = find_cpu(tid); |
| |
| if (cpu == NULL) { |
| return NULL; |
| } |
| |
| process = gdb_get_cpu_process(cpu); |
| |
| if (pid && process->pid != pid) { |
| return NULL; |
| } |
| |
| if (!process->attached) { |
| return NULL; |
| } |
| |
| return cpu; |
| } |
| } |
| |
| static const char *get_feature_xml(const char *p, const char **newp, |
| GDBProcess *process) |
| { |
| size_t len; |
| int i; |
| const char *name; |
| CPUState *cpu = get_first_cpu_in_process(process); |
| CPUClass *cc = CPU_GET_CLASS(cpu); |
| |
| len = 0; |
| while (p[len] && p[len] != ':') |
| len++; |
| *newp = p + len; |
| |
| name = NULL; |
| if (strncmp(p, "target.xml", len) == 0) { |
| char *buf = process->target_xml; |
| const size_t buf_sz = sizeof(process->target_xml); |
| |
| /* Generate the XML description for this CPU. */ |
| if (!buf[0]) { |
| GDBRegisterState *r; |
| |
| pstrcat(buf, buf_sz, |
| "<?xml version=\"1.0\"?>" |
| "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">" |
| "<target>"); |
| if (cc->gdb_arch_name) { |
| gchar *arch = cc->gdb_arch_name(cpu); |
| pstrcat(buf, buf_sz, "<architecture>"); |
| pstrcat(buf, buf_sz, arch); |
| pstrcat(buf, buf_sz, "</architecture>"); |
| g_free(arch); |
| } |
| pstrcat(buf, buf_sz, "<xi:include href=\""); |
| pstrcat(buf, buf_sz, cc->gdb_core_xml_file); |
| pstrcat(buf, buf_sz, "\"/>"); |
| for (r = cpu->gdb_regs; r; r = r->next) { |
| pstrcat(buf, buf_sz, "<xi:include href=\""); |
| pstrcat(buf, buf_sz, r->xml); |
| pstrcat(buf, buf_sz, "\"/>"); |
| } |
| pstrcat(buf, buf_sz, "</target>"); |
| } |
| return buf; |
| } |
| if (cc->gdb_get_dynamic_xml) { |
| char *xmlname = g_strndup(p, len); |
| const char *xml = cc->gdb_get_dynamic_xml(cpu, xmlname); |
| |
| g_free(xmlname); |
| if (xml) { |
| return xml; |
| } |
| } |
| for (i = 0; ; i++) { |
| name = xml_builtin[i][0]; |
| if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len)) |
| break; |
| } |
| return name ? xml_builtin[i][1] : NULL; |
| } |
| |
| static int gdb_read_register(CPUState *cpu, GByteArray *buf, int reg) |
| { |
| CPUClass *cc = CPU_GET_CLASS(cpu); |
| CPUArchState *env = cpu->env_ptr; |
| GDBRegisterState *r; |
| |
| if (reg < cc->gdb_num_core_regs) { |
| return cc->gdb_read_register(cpu, buf, reg); |
| } |
| |
| for (r = cpu->gdb_regs; r; r = r->next) { |
| if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) { |
| return r->get_reg(env, buf, reg - r->base_reg); |
| } |
| } |
| return 0; |
| } |
| |
| static int gdb_write_register(CPUState *cpu, uint8_t *mem_buf, int reg) |
| { |
| CPUClass *cc = CPU_GET_CLASS(cpu); |
| CPUArchState *env = cpu->env_ptr; |
| GDBRegisterState *r; |
| |
| if (reg < cc->gdb_num_core_regs) { |
| return cc->gdb_write_register(cpu, mem_buf, reg); |
| } |
| |
| for (r = cpu->gdb_regs; r; r = r->next) { |
| if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) { |
| return r->set_reg(env, mem_buf, reg - r->base_reg); |
| } |
| } |
| return 0; |
| } |
| |
| /* Register a supplemental set of CPU registers. If g_pos is nonzero it |
| specifies the first register number and these registers are included in |
| a standard "g" packet. Direction is relative to gdb, i.e. get_reg is |
| gdb reading a CPU register, and set_reg is gdb modifying a CPU register. |
| */ |
| |
| void gdb_register_coprocessor(CPUState *cpu, |
| gdb_get_reg_cb get_reg, gdb_set_reg_cb set_reg, |
| int num_regs, const char *xml, int g_pos) |
| { |
| GDBRegisterState *s; |
| GDBRegisterState **p; |
| |
| p = &cpu->gdb_regs; |
| while (*p) { |
| /* Check for duplicates. */ |
| if (strcmp((*p)->xml, xml) == 0) |
| return; |
| p = &(*p)->next; |
| } |
| |
| s = g_new0(GDBRegisterState, 1); |
| s->base_reg = cpu->gdb_num_regs; |
| s->num_regs = num_regs; |
| s->get_reg = get_reg; |
| s->set_reg = set_reg; |
| s->xml = xml; |
| |
| /* Add to end of list. */ |
| cpu->gdb_num_regs += num_regs; |
| *p = s; |
| if (g_pos) { |
| if (g_pos != s->base_reg) { |
| error_report("Error: Bad gdb register numbering for '%s', " |
| "expected %d got %d", xml, g_pos, s->base_reg); |
| } else { |
| cpu->gdb_num_g_regs = cpu->gdb_num_regs; |
| } |
| } |
| } |
| |
| #ifndef CONFIG_USER_ONLY |
| /* Translate GDB watchpoint type to a flags value for cpu_watchpoint_* */ |
| static inline int xlat_gdb_type(CPUState *cpu, int gdbtype) |
| { |
| static const int xlat[] = { |
| [GDB_WATCHPOINT_WRITE] = BP_GDB | BP_MEM_WRITE, |
| [GDB_WATCHPOINT_READ] = BP_GDB | BP_MEM_READ, |
| [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS, |
| }; |
| |
| CPUClass *cc = CPU_GET_CLASS(cpu); |
| int cputype = xlat[gdbtype]; |
| |
| if (cc->gdb_stop_before_watchpoint) { |
| cputype |= BP_STOP_BEFORE_ACCESS; |
| } |
| return cputype; |
| } |
| #endif |
| |
| static int gdb_breakpoint_insert(int type, target_ulong addr, target_ulong len) |
| { |
| CPUState *cpu; |
| int err = 0; |
| |
| if (kvm_enabled()) { |
| return kvm_insert_breakpoint(gdbserver_state.c_cpu, addr, len, type); |
| } |
| |
| switch (type) { |
| case GDB_BREAKPOINT_SW: |
| case GDB_BREAKPOINT_HW: |
| CPU_FOREACH(cpu) { |
| err = cpu_breakpoint_insert(cpu, addr, BP_GDB, NULL); |
| if (err) { |
| break; |
| } |
| } |
| return err; |
| #ifndef CONFIG_USER_ONLY |
| case GDB_WATCHPOINT_WRITE: |
| case GDB_WATCHPOINT_READ: |
| case GDB_WATCHPOINT_ACCESS: |
| CPU_FOREACH(cpu) { |
| err = cpu_watchpoint_insert(cpu, addr, len, |
| xlat_gdb_type(cpu, type), NULL); |
| if (err) { |
| break; |
| } |
| } |
| return err; |
| #endif |
| default: |
| return -ENOSYS; |
| } |
| } |
| |
| static int gdb_breakpoint_remove(int type, target_ulong addr, target_ulong len) |
| { |
| CPUState *cpu; |
| int err = 0; |
| |
| if (kvm_enabled()) { |
| return kvm_remove_breakpoint(gdbserver_state.c_cpu, addr, len, type); |
| } |
| |
| switch (type) { |
| case GDB_BREAKPOINT_SW: |
| case GDB_BREAKPOINT_HW: |
| CPU_FOREACH(cpu) { |
| err = cpu_breakpoint_remove(cpu, addr, BP_GDB); |
| if (err) { |
| break; |
| } |
| } |
| return err; |
| #ifndef CONFIG_USER_ONLY |
| case GDB_WATCHPOINT_WRITE: |
| case GDB_WATCHPOINT_READ: |
| case GDB_WATCHPOINT_ACCESS: |
| CPU_FOREACH(cpu) { |
| err = cpu_watchpoint_remove(cpu, addr, len, |
| xlat_gdb_type(cpu, type)); |
| if (err) |
| break; |
| } |
| return err; |
| #endif |
| default: |
| return -ENOSYS; |
| } |
| } |
| |
| static inline void gdb_cpu_breakpoint_remove_all(CPUState *cpu) |
| { |
| cpu_breakpoint_remove_all(cpu, BP_GDB); |
| #ifndef CONFIG_USER_ONLY |
| cpu_watchpoint_remove_all(cpu, BP_GDB); |
| #endif |
| } |
| |
| static void gdb_process_breakpoint_remove_all(GDBProcess *p) |
| { |
| CPUState *cpu = get_first_cpu_in_process(p); |
| |
| while (cpu) { |
| gdb_cpu_breakpoint_remove_all(cpu); |
| cpu = gdb_next_cpu_in_process(cpu); |
| } |
| } |
| |
| static void gdb_breakpoint_remove_all(void) |
| { |
| CPUState *cpu; |
| |
| if (kvm_enabled()) { |
| kvm_remove_all_breakpoints(gdbserver_state.c_cpu); |
| return; |
| } |
| |
| CPU_FOREACH(cpu) { |
| gdb_cpu_breakpoint_remove_all(cpu); |
| } |
| } |
| |
| static void gdb_set_cpu_pc(target_ulong pc) |
| { |
| CPUState *cpu = gdbserver_state.c_cpu; |
| |
| cpu_synchronize_state(cpu); |
| cpu_set_pc(cpu, pc); |
| } |
| |
| static void gdb_append_thread_id(CPUState *cpu, GString *buf) |
| { |
| if (gdbserver_state.multiprocess) { |
| g_string_append_printf(buf, "p%02x.%02x", |
| gdb_get_cpu_pid(cpu), cpu_gdb_index(cpu)); |
| } else { |
| g_string_append_printf(buf, "%02x", cpu_gdb_index(cpu)); |
| } |
| } |
| |
| typedef enum GDBThreadIdKind { |
| GDB_ONE_THREAD = 0, |
| GDB_ALL_THREADS, /* One process, all threads */ |
| GDB_ALL_PROCESSES, |
| GDB_READ_THREAD_ERR |
| } GDBThreadIdKind; |
| |
| static GDBThreadIdKind read_thread_id(const char *buf, const char **end_buf, |
| uint32_t *pid, uint32_t *tid) |
| { |
| unsigned long p, t; |
| int ret; |
| |
| if (*buf == 'p') { |
| buf++; |
| ret = qemu_strtoul(buf, &buf, 16, &p); |
| |
| if (ret) { |
| return GDB_READ_THREAD_ERR; |
| } |
| |
| /* Skip '.' */ |
| buf++; |
| } else { |
| p = 1; |
| } |
| |
| ret = qemu_strtoul(buf, &buf, 16, &t); |
| |
| if (ret) { |
| return GDB_READ_THREAD_ERR; |
| } |
| |
| *end_buf = buf; |
| |
| if (p == -1) { |
| return GDB_ALL_PROCESSES; |
| } |
| |
| if (pid) { |
| *pid = p; |
| } |
| |
| if (t == -1) { |
| return GDB_ALL_THREADS; |
| } |
| |
| if (tid) { |
| *tid = t; |
| } |
| |
| return GDB_ONE_THREAD; |
| } |
| |
| /** |
| * gdb_handle_vcont - Parses and handles a vCont packet. |
| * returns -ENOTSUP if a command is unsupported, -EINVAL or -ERANGE if there is |
| * a format error, 0 on success. |
| */ |
| static int gdb_handle_vcont(const char *p) |
| { |
| int res, signal = 0; |
| char cur_action; |
| char *newstates; |
| unsigned long tmp; |
| uint32_t pid, tid; |
| GDBProcess *process; |
| CPUState *cpu; |
| GDBThreadIdKind kind; |
| #ifdef CONFIG_USER_ONLY |
| int max_cpus = 1; /* global variable max_cpus exists only in system mode */ |
| |
| CPU_FOREACH(cpu) { |
| max_cpus = max_cpus <= cpu->cpu_index ? cpu->cpu_index + 1 : max_cpus; |
| } |
| #else |
| MachineState *ms = MACHINE(qdev_get_machine()); |
| unsigned int max_cpus = ms->smp.max_cpus; |
| #endif |
| /* uninitialised CPUs stay 0 */ |
| newstates = g_new0(char, max_cpus); |
| |
| /* mark valid CPUs with 1 */ |
| CPU_FOREACH(cpu) { |
| newstates[cpu->cpu_index] = 1; |
| } |
| |
| /* |
| * res keeps track of what error we are returning, with -ENOTSUP meaning |
| * that the command is unknown or unsupported, thus returning an empty |
| * packet, while -EINVAL and -ERANGE cause an E22 packet, due to invalid, |
| * or incorrect parameters passed. |
| */ |
| res = 0; |
| while (*p) { |
| if (*p++ != ';') { |
| res = -ENOTSUP; |
| goto out; |
| } |
| |
| cur_action = *p++; |
| if (cur_action == 'C' || cur_action == 'S') { |
| cur_action = qemu_tolower(cur_action); |
| res = qemu_strtoul(p + 1, &p, 16, &tmp); |
| if (res) { |
| goto out; |
| } |
| signal = gdb_signal_to_target(tmp); |
| } else if (cur_action != 'c' && cur_action != 's') { |
| /* unknown/invalid/unsupported command */ |
| res = -ENOTSUP; |
| goto out; |
| } |
| |
| if (*p == '\0' || *p == ';') { |
| /* |
| * No thread specifier, action is on "all threads". The |
| * specification is unclear regarding the process to act on. We |
| * choose all processes. |
| */ |
| kind = GDB_ALL_PROCESSES; |
| } else if (*p++ == ':') { |
| kind = read_thread_id(p, &p, &pid, &tid); |
| } else { |
| res = -ENOTSUP; |
| goto out; |
| } |
| |
| switch (kind) { |
| case GDB_READ_THREAD_ERR: |
| res = -EINVAL; |
| goto out; |
| |
| case GDB_ALL_PROCESSES: |
| cpu = gdb_first_attached_cpu(); |
| while (cpu) { |
| if (newstates[cpu->cpu_index] == 1) { |
| newstates[cpu->cpu_index] = cur_action; |
| } |
| |
| cpu = gdb_next_attached_cpu(cpu); |
| } |
| break; |
| |
| case GDB_ALL_THREADS: |
| process = gdb_get_process(pid); |
| |
| if (!process->attached) { |
| res = -EINVAL; |
| goto out; |
| } |
| |
| cpu = get_first_cpu_in_process(process); |
| while (cpu) { |
| if (newstates[cpu->cpu_index] == 1) { |
| newstates[cpu->cpu_index] = cur_action; |
| } |
| |
| cpu = gdb_next_cpu_in_process(cpu); |
| } |
| break; |
| |
| case GDB_ONE_THREAD: |
| cpu = gdb_get_cpu(pid, tid); |
| |
| /* invalid CPU/thread specified */ |
| if (!cpu) { |
| res = -EINVAL; |
| goto out; |
| } |
| |
| /* only use if no previous match occourred */ |
| if (newstates[cpu->cpu_index] == 1) { |
| newstates[cpu->cpu_index] = cur_action; |
| } |
| break; |
| } |
| } |
| gdbserver_state.signal = signal; |
| gdb_continue_partial(newstates); |
| |
| out: |
| g_free(newstates); |
| |
| return res; |
| } |
| |
| typedef union GdbCmdVariant { |
| const char *data; |
| uint8_t opcode; |
| unsigned long val_ul; |
| unsigned long long val_ull; |
| struct { |
| GDBThreadIdKind kind; |
| uint32_t pid; |
| uint32_t tid; |
| } thread_id; |
| } GdbCmdVariant; |
| |
| static const char *cmd_next_param(const char *param, const char delimiter) |
| { |
| static const char all_delimiters[] = ",;:="; |
| char curr_delimiters[2] = {0}; |
| const char *delimiters; |
| |
| if (delimiter == '?') { |
| delimiters = all_delimiters; |
| } else if (delimiter == '0') { |
| return strchr(param, '\0'); |
| } else if (delimiter == '.' && *param) { |
| return param + 1; |
| } else { |
| curr_delimiters[0] = delimiter; |
| delimiters = curr_delimiters; |
| } |
| |
| param += strcspn(param, delimiters); |
| if (*param) { |
| param++; |
| } |
| return param; |
| } |
| |
| static int cmd_parse_params(const char *data, const char *schema, |
| GdbCmdVariant *params, int *num_params) |
| { |
| int curr_param; |
| const char *curr_schema, *curr_data; |
| |
| *num_params = 0; |
| |
| if (!schema) { |
| return 0; |
| } |
| |
| curr_schema = schema; |
| curr_param = 0; |
| curr_data = data; |
| while (curr_schema[0] && curr_schema[1] && *curr_data) { |
| switch (curr_schema[0]) { |
| case 'l': |
| if (qemu_strtoul(curr_data, &curr_data, 16, |
| ¶ms[curr_param].val_ul)) { |
| return -EINVAL; |
| } |
| curr_param++; |
| curr_data = cmd_next_param(curr_data, curr_schema[1]); |
| break; |
| case 'L': |
| if (qemu_strtou64(curr_data, &curr_data, 16, |
| (uint64_t *)¶ms[curr_param].val_ull)) { |
| return -EINVAL; |
| } |
| curr_param++; |
| curr_data = cmd_next_param(curr_data, curr_schema[1]); |
| break; |
| case 's': |
| params[curr_param].data = curr_data; |
| curr_param++; |
| curr_data = cmd_next_param(curr_data, curr_schema[1]); |
| break; |
| case 'o': |
| params[curr_param].opcode = *(uint8_t *)curr_data; |
| curr_param++; |
| curr_data = cmd_next_param(curr_data, curr_schema[1]); |
| break; |
| case 't': |
| params[curr_param].thread_id.kind = |
| read_thread_id(curr_data, &curr_data, |
| ¶ms[curr_param].thread_id.pid, |
| ¶ms[curr_param].thread_id.tid); |
| curr_param++; |
| curr_data = cmd_next_param(curr_data, curr_schema[1]); |
| break; |
| case '?': |
| curr_data = cmd_next_param(curr_data, curr_schema[1]); |
| break; |
| default: |
| return -EINVAL; |
| } |
| curr_schema += 2; |
| } |
| |
| *num_params = curr_param; |
| return 0; |
| } |
| |
| typedef struct GdbCmdContext { |
| GdbCmdVariant *params; |
| int num_params; |
| } GdbCmdContext; |
| |
| typedef void (*GdbCmdHandler)(GdbCmdContext *gdb_ctx, void *user_ctx); |
| |
| /* |
| * cmd_startswith -> cmd is compared using startswith |
| * |
| * |
| * schema definitions: |
| * Each schema parameter entry consists of 2 chars, |
| * the first char represents the parameter type handling |
| * the second char represents the delimiter for the next parameter |
| * |
| * Currently supported schema types: |
| * 'l' -> unsigned long (stored in .val_ul) |
| * 'L' -> unsigned long long (stored in .val_ull) |
| * 's' -> string (stored in .data) |
| * 'o' -> single char (stored in .opcode) |
| * 't' -> thread id (stored in .thread_id) |
| * '?' -> skip according to delimiter |
| * |
| * Currently supported delimiters: |
| * '?' -> Stop at any delimiter (",;:=\0") |
| * '0' -> Stop at "\0" |
| * '.' -> Skip 1 char unless reached "\0" |
| * Any other value is treated as the delimiter value itself |
| */ |
| typedef struct GdbCmdParseEntry { |
| GdbCmdHandler handler; |
| const char *cmd; |
| bool cmd_startswith; |
| const char *schema; |
| } GdbCmdParseEntry; |
| |
| static inline int startswith(const char *string, const char *pattern) |
| { |
| return !strncmp(string, pattern, strlen(pattern)); |
| } |
| |
| static int process_string_cmd(void *user_ctx, const char *data, |
| const GdbCmdParseEntry *cmds, int num_cmds) |
| { |
| int i, schema_len, max_num_params = 0; |
| GdbCmdContext gdb_ctx; |
| |
| if (!cmds) { |
| return -1; |
| } |
| |
| for (i = 0; i < num_cmds; i++) { |
| const GdbCmdParseEntry *cmd = &cmds[i]; |
| g_assert(cmd->handler && cmd->cmd); |
| |
| if ((cmd->cmd_startswith && !startswith(data, cmd->cmd)) || |
| (!cmd->cmd_startswith && strcmp(cmd->cmd, data))) { |
| continue; |
| } |
| |
| if (cmd->schema) { |
| schema_len = strlen(cmd->schema); |
| if (schema_len % 2) { |
| return -2; |
| } |
| |
| max_num_params = schema_len / 2; |
| } |
| |
| gdb_ctx.params = |
| (GdbCmdVariant *)alloca(sizeof(*gdb_ctx.params) * max_num_params); |
| memset(gdb_ctx.params, 0, sizeof(*gdb_ctx.params) * max_num_params); |
| |
| if (cmd_parse_params(&data[strlen(cmd->cmd)], cmd->schema, |
| gdb_ctx.params, &gdb_ctx.num_params)) { |
| return -1; |
| } |
| |
| cmd->handler(&gdb_ctx, user_ctx); |
| return 0; |
| } |
| |
| return -1; |
| } |
| |
| static void run_cmd_parser(const char *data, const GdbCmdParseEntry *cmd) |
| { |
| if (!data) { |
| return; |
| } |
| |
| g_string_set_size(gdbserver_state.str_buf, 0); |
| g_byte_array_set_size(gdbserver_state.mem_buf, 0); |
| |
| /* In case there was an error during the command parsing we must |
| * send a NULL packet to indicate the command is not supported */ |
| if (process_string_cmd(NULL, data, cmd, 1)) { |
| put_packet(""); |
| } |
| } |
| |
| static void handle_detach(GdbCmdContext *gdb_ctx, void *user_ctx) |
| { |
| GDBProcess *process; |
| uint32_t pid = 1; |
| |
| if (gdbserver_state.multiprocess) { |
| if (!gdb_ctx->num_params) { |
| put_packet("E22"); |
| return; |
| } |
| |
| pid = gdb_ctx->params[0].val_ul; |
| } |
| |
| process = gdb_get_process(pid); |
| gdb_process_breakpoint_remove_all(process); |
| process->attached = false; |
| |
| if (pid == gdb_get_cpu_pid(gdbserver_state.c_cpu)) { |
| gdbserver_state.c_cpu = gdb_first_attached_cpu(); |
| } |
| |
| if (pid == gdb_get_cpu_pid(gdbserver_state.g_cpu)) { |
| gdbserver_state.g_cpu = gdb_first_attached_cpu(); |
| } |
| |
| if (!gdbserver_state.c_cpu) { |
| /* No more process attached */ |
| gdb_syscall_mode = GDB_SYS_DISABLED; |
| gdb_continue(); |
| } |
| put_packet("OK"); |
| } |
| |
| static void handle_thread_alive(GdbCmdContext *gdb_ctx, void *user_ctx) |
| { |
| CPUState *cpu; |
| |
| if (!gdb_ctx->num_params) { |
| put_packet("E22"); |
| return; |
| } |
| |
| if (gdb_ctx->params[0].thread_id.kind == GDB_READ_THREAD_ERR) { |
| put_packet("E22"); |
| return; |
| } |
| |
| cpu = gdb_get_cpu(gdb_ctx->params[0].thread_id.pid, |
| gdb_ctx->params[0].thread_id.tid); |
| if (!cpu) { |
| put_packet("E22"); |
| return; |
| } |
| |
| put_packet("OK"); |
| } |
| |
| static void handle_continue(GdbCmdContext *gdb_ctx, void *user_ctx) |
| { |
| if (gdb_ctx->num_params) { |
| gdb_set_cpu_pc(gdb_ctx->params[0].val_ull); |
| } |
| |
| gdbserver_state.signal = 0; |
| gdb_continue(); |
| } |
| |
| static void handle_cont_with_sig(GdbCmdContext *gdb_ctx, void *user_ctx) |
| { |
| unsigned long signal = 0; |
| |
| /* |
| * Note: C sig;[addr] is currently unsupported and we simply |
| * omit the addr parameter |
| */ |
| if (gdb_ctx->num_params) { |
| signal = gdb_ctx->params[0].val_ul; |
| } |
| |
| gdbserver_state.signal = gdb_signal_to_target(signal); |
| if (gdbserver_state.signal == -1) { |
| gdbserver_state.signal = 0; |
| } |
| gdb_continue(); |
| } |
| |
| static void handle_set_thread(GdbCmdContext *gdb_ctx, void *user_ctx) |
| { |
| CPUState *cpu; |
| |
| if (gdb_ctx->num_params != 2) { |
| put_packet("E22"); |
| return; |
| } |
| |
| if (gdb_ctx->params[1].thread_id.kind == GDB_READ_THREAD_ERR) { |
| put_packet("E22"); |
| return; |
| } |
| |
| if (gdb_ctx->params[1].thread_id.kind != GDB_ONE_THREAD) { |
| put_packet("OK"); |
| return; |
| } |
| |
| cpu = gdb_get_cpu(gdb_ctx->params[1].thread_id.pid, |
| gdb_ctx->params[1].thread_id.tid); |
| if (!cpu) { |
| put_packet("E22"); |
| return; |
| } |
| |
| /* |
| * Note: This command is deprecated and modern gdb's will be using the |
| * vCont command instead. |
| */ |
| switch (gdb_ctx->params[0].opcode) { |
| case 'c': |
| gdbserver_state.c_cpu = cpu; |
| put_packet("OK"); |
| break; |
| case 'g': |
| gdbserver_state.g_cpu = cpu; |
| put_packet("OK"); |
| break; |
| default: |
| put_packet("E22"); |
| break; |
| } |
| } |
| |
| static void handle_insert_bp(GdbCmdContext *gdb_ctx, void *user_ctx) |
| { |
| int res; |
| |
| if (gdb_ctx->num_params != 3) { |
| put_packet("E22"); |
| return; |
| } |
| |
| res = gdb_breakpoint_insert(gdb_ctx->params[0].val_ul, |
| gdb_ctx->params[1].val_ull, |
| gdb_ctx->params[2].val_ull); |
| if (res >= 0) { |
| put_packet("OK"); |
| return; |
| } else if (res == -ENOSYS) { |
| put_packet(""); |
| return; |
| } |
| |
| put_packet("E22"); |
| } |
| |
| static void handle_remove_bp(GdbCmdContext *gdb_ctx, void *user_ctx) |
| { |
| int res; |
| |
| if (gdb_ctx->num_params != 3) { |
| put_packet("E22"); |
| return; |
| } |
| |
| res = gdb_breakpoint_remove(gdb_ctx->params[0].val_ul, |
| gdb_ctx->params[1].val_ull, |
| gdb_ctx->params[2].val_ull); |
| if (res >= 0) { |
| put_packet("OK"); |
| return; |
| } else if (res == -ENOSYS) { |
| put_packet(""); |
| return; |
| } |
| |
| put_packet("E22"); |
| } |
| |
| /* |
| * handle_set/get_reg |
| * |
| * Older gdb are really dumb, and don't use 'G/g' if 'P/p' is available. |
| * This works, but can be very slow. Anything new enough to understand |
| * XML also knows how to use this properly. However to use this we |
| * need to define a local XML file as well as be talking to a |
| * reasonably modern gdb. Responding with an empty packet will cause |
| * the remote gdb to fallback to older methods. |
| */ |
| |
| static void handle_set_reg(GdbCmdContext *gdb_ctx, void *user_ctx) |
| { |
| int reg_size; |
| |
| if (!gdb_has_xml) { |
| put_packet(""); |
| return; |
| } |
| |
| if (gdb_ctx->num_params != 2) { |
| put_packet("E22"); |
| return; |
| } |
| |
| reg_size = strlen(gdb_ctx->params[1].data) / 2; |
| hextomem(gdbserver_state.mem_buf, gdb_ctx->params[1].data, reg_size); |
| gdb_write_register(gdbserver_state.g_cpu, gdbserver_state.mem_buf->data, |
| gdb_ctx->params[0].val_ull); |
| put_packet("OK"); |
| } |
| |
| static void handle_get_reg(GdbCmdContext *gdb_ctx, void *user_ctx) |
| { |
| int reg_size; |
| |
| if (!gdb_has_xml) { |
| put_packet(""); |
| return; |
| } |
| |
| if (!gdb_ctx->num_params) { |
| put_packet("E14"); |
| return; |
| } |
| |
| reg_size = gdb_read_register(gdbserver_state.g_cpu, |
| gdbserver_state.mem_buf, |
| gdb_ctx->params[0].val_ull); |
| if (!reg_size) { |
| put_packet("E14"); |
| return; |
| } else { |
| g_byte_array_set_size(gdbserver_state.mem_buf, reg_size); |
| } |
| |
| memtohex(gdbserver_state.str_buf, gdbserver_state.mem_buf->data, reg_size); |
| put_strbuf(); |
| } |
| |
| static void handle_write_mem(GdbCmdContext *gdb_ctx, void *user_ctx) |
| { |
| if (gdb_ctx->num_params != 3) { |
| put_packet("E22"); |
| return; |
| } |
| |
| /* hextomem() reads 2*len bytes */ |
| if (gdb_ctx->params[1].val_ull > strlen(gdb_ctx->params[2].data) / 2) { |
| put_packet("E22"); |
| return; |
| } |
| |
| hextomem(gdbserver_state.mem_buf, gdb_ctx->params[2].data, |
| gdb_ctx->params[1].val_ull); |
| if (target_memory_rw_debug(gdbserver_state.g_cpu, gdb_ctx->params[0].val_ull, |
| gdbserver_state.mem_buf->data, |
| gdbserver_state.mem_buf->len, true)) { |
| put_packet("E14"); |
| return; |
| } |
| |
| put_packet("OK"); |
| } |
| |
| static void handle_read_mem(GdbCmdContext *gdb_ctx, void *user_ctx) |
| { |
| if (gdb_ctx->num_params != 2) { |
| put_packet("E22"); |
| return; |
| } |
| |
| /* memtohex() doubles the required space */ |
| if (gdb_ctx->params[1].val_ull > MAX_PACKET_LENGTH / 2) { |
| put_packet("E22"); |
| return; |
| } |
| |
| g_byte_array_set_size(gdbserver_state.mem_buf, gdb_ctx->params[1].val_ull); |
| |
| if (target_memory_rw_debug(gdbserver_state.g_cpu, gdb_ctx->params[0].val_ull, |
| gdbserver_state.mem_buf->data, |
| gdbserver_state.mem_buf->len, false)) { |
| put_packet("E14"); |
| return; |
| } |
| |
| memtohex(gdbserver_state.str_buf, gdbserver_state.mem_buf->data, |
| gdbserver_state.mem_buf->len); |
| put_strbuf(); |
| } |
| |
| static void handle_write_all_regs(GdbCmdContext *gdb_ctx, void *user_ctx) |
| { |
| target_ulong addr, len; |
| uint8_t *registers; |
| int reg_size; |
| |
| if (!gdb_ctx->num_params) { |
| return; |
| } |
| |
| cpu_synchronize_state(gdbserver_state.g_cpu); |
| len = strlen(gdb_ctx->params[0].data) / 2; |
| hextomem(gdbserver_state.mem_buf, gdb_ctx->params[0].data, len); |
| registers = gdbserver_state.mem_buf->data; |
| for (addr = 0; addr < gdbserver_state.g_cpu->gdb_num_g_regs && len > 0; |
| addr++) { |
| reg_size = gdb_write_register(gdbserver_state.g_cpu, registers, addr); |
| len -= reg_size; |
| registers += reg_size; |
| } |
| put_packet("OK"); |
| } |
| |
| static void handle_read_all_regs(GdbCmdContext *gdb_ctx, void *user_ctx) |
| { |
| target_ulong addr, len; |
| |
| cpu_synchronize_state(gdbserver_state.g_cpu); |
| g_byte_array_set_size(gdbserver_state.mem_buf, 0); |
| len = 0; |
| for (addr = 0; addr < gdbserver_state.g_cpu->gdb_num_g_regs; addr++) { |
| len += gdb_read_register(gdbserver_state.g_cpu, |
| gdbserver_state.mem_buf, |
| addr); |
| } |
| g_assert(len == gdbserver_state.mem_buf->len); |
| |
| memtohex(gdbserver_state.str_buf, gdbserver_state.mem_buf->data, len); |
| put_strbuf(); |
| } |
| |
| static void handle_file_io(GdbCmdContext *gdb_ctx, void *user_ctx) |
| { |
| if (gdb_ctx->num_params >= 1 && gdbserver_state.current_syscall_cb) { |
| target_ulong ret, err; |
| |
| ret = (target_ulong)gdb_ctx->params[0].val_ull; |
| if (gdb_ctx->num_params >= 2) { |
| err = (target_ulong)gdb_ctx->params[1].val_ull; |
| } else { |
| err = 0; |
| } |
| gdbserver_state.current_syscall_cb(gdbserver_state.c_cpu, ret, err); |
| gdbserver_state.current_syscall_cb = NULL; |
| } |
| |
| if (gdb_ctx->num_params >= 3 && gdb_ctx->params[2].opcode == (uint8_t)'C') { |
| put_packet("T02"); |
| return; |
| } |
| |
| gdb_continue(); |
| } |
| |
| static void handle_step(GdbCmdContext *gdb_ctx, void *user_ctx) |
| { |
| if (gdb_ctx->num_params) { |
| gdb_set_cpu_pc((target_ulong)gdb_ctx->params[0].val_ull); |
| } |
| |
| cpu_single_step(gdbserver_state.c_cpu, sstep_flags); |
| gdb_continue(); |
| } |
| |
| static void handle_v_cont_query(GdbCmdContext *gdb_ctx, void *user_ctx) |
| { |
| put_packet("vCont;c;C;s;S"); |
| } |
| |
| static void handle_v_cont(GdbCmdContext *gdb_ctx, void *user_ctx) |
| { |
| int res; |
| |
| if (!gdb_ctx->num_params) { |
| return; |
| } |
| |
| res = gdb_handle_vcont(gdb_ctx->params[0].data); |
| if ((res == -EINVAL) || (res == -ERANGE)) { |
| put_packet("E22"); |
| } else if (res) { |
| put_packet(""); |
| } |
| } |
| |
| static void handle_v_attach(GdbCmdContext *gdb_ctx, void *user_ctx) |
| { |
| GDBProcess *process; |
| CPUState *cpu; |
| |
| g_string_assign(gdbserver_state.str_buf, "E22"); |
| if (!gdb_ctx->num_params) { |
| goto cleanup; |
| } |
| |
| process = gdb_get_process(gdb_ctx->params[0].val_ul); |
| if (!process) { |
| goto cleanup; |
| } |
| |
| cpu = get_first_cpu_in_process(process); |
| if (!cpu) { |
| goto cleanup; |
| } |
| |
| process->attached = true; |
| gdbserver_state.g_cpu = cpu; |
| gdbserver_state.c_cpu = cpu; |
| |
| g_string_printf(gdbserver_state.str_buf, "T%02xthread:", GDB_SIGNAL_TRAP); |
| gdb_append_thread_id(cpu, gdbserver_state.str_buf); |
| g_string_append_c(gdbserver_state.str_buf, ';'); |
| cleanup: |
| put_strbuf(); |
| } |
| |
| static void handle_v_kill(GdbCmdContext *gdb_ctx, void *user_ctx) |
| { |
| /* Kill the target */ |
| put_packet("OK"); |
| error_report("QEMU: Terminated via GDBstub"); |
| exit(0); |
| } |
| |
| static GdbCmdParseEntry gdb_v_commands_table[] = { |
| /* Order is important if has same prefix */ |
| { |
| .handler = handle_v_cont_query, |
| .cmd = "Cont?", |
| .cmd_startswith = 1 |
| }, |
| { |
| .handler = handle_v_cont, |
| .cmd = "Cont", |
| .cmd_startswith = 1, |
| .schema = "s0" |
| }, |
| { |
| .handler = handle_v_attach, |
| .cmd = "Attach;", |
| .cmd_startswith = 1, |
| .schema = "l0" |
| }, |
| { |
| .handler = handle_v_kill, |
| .cmd = "Kill;", |
| .cmd_startswith = 1 |
| }, |
| }; |
| |
| static void handle_v_commands(GdbCmdContext *gdb_ctx, void *user_ctx) |
| { |
| if (!gdb_ctx->num_params) { |
| return; |
| } |
| |
| if (process_string_cmd(NULL, gdb_ctx->params[0].data, |
| gdb_v_commands_table, |
| ARRAY_SIZE(gdb_v_commands_table))) { |
| put_packet(""); |
| } |
| } |
| |
| static void handle_query_qemu_sstepbits(GdbCmdContext *gdb_ctx, void *user_ctx) |
| { |
| g_string_printf(gdbserver_state.str_buf, "ENABLE=%x,NOIRQ=%x,NOTIMER=%x", |
| SSTEP_ENABLE, SSTEP_NOIRQ, SSTEP_NOTIMER); |
| put_strbuf(); |
| } |
| |
| static void handle_set_qemu_sstep(GdbCmdContext *gdb_ctx, void *user_ctx) |
| { |
| if (!gdb_ctx->num_params) { |
| return; |
| } |
| |
| sstep_flags = gdb_ctx->params[0].val_ul; |
| put_packet("OK"); |
| } |
| |
| static void handle_query_qemu_sstep(GdbCmdContext *gdb_ctx, void *user_ctx) |
| { |
| g_string_printf(gdbserver_state.str_buf, "0x%x", sstep_flags); |
| put_strbuf(); |
| } |
| |
| static void handle_query_curr_tid(GdbCmdContext *gdb_ctx, void *user_ctx) |
| { |
| CPUState *cpu; |
| GDBProcess *process; |
| |
| /* |
| * "Current thread" remains vague in the spec, so always return |
| * the first thread of the current process (gdb returns the |
| * first thread). |
| */ |
| process = gdb_get_cpu_process(gdbserver_state.g_cpu); |
| cpu = get_first_cpu_in_process(process); |
| g_string_assign(gdbserver_state.str_buf, "QC"); |
| gdb_append_thread_id(cpu, gdbserver_state.str_buf); |
| put_strbuf(); |
| } |
| |
| static void handle_query_threads(GdbCmdContext *gdb_ctx, void *user_ctx) |
| { |
| if (!gdbserver_state.query_cpu) { |
| put_packet("l"); |
| return; |
| } |
| |
| g_string_assign(gdbserver_state.str_buf, "m"); |
| gdb_append_thread_id(gdbserver_state.query_cpu, gdbserver_state.str_buf); |
| put_strbuf(); |
| gdbserver_state.query_cpu = gdb_next_attached_cpu(gdbserver_state.query_cpu); |
| } |
| |
| static void handle_query_first_threads(GdbCmdContext *gdb_ctx, void *user_ctx) |
| { |
| gdbserver_state.query_cpu = gdb_first_attached_cpu(); |
| handle_query_threads(gdb_ctx, user_ctx); |
| } |
| |
| static void handle_query_thread_extra(GdbCmdContext *gdb_ctx, void *user_ctx) |
| { |
| g_autoptr(GString) rs = g_string_new(NULL); |
| CPUState *cpu; |
| |
| if (!gdb_ctx->num_params || |
| gdb_ctx->params[0].thread_id.kind == GDB_READ_THREAD_ERR) { |
| put_packet("E22"); |
| return; |
| } |
| |
| cpu = gdb_get_cpu(gdb_ctx->params[0].thread_id.pid, |
| gdb_ctx->params[0].thread_id.tid); |
| if (!cpu) { |
| return; |
| } |
| |
| cpu_synchronize_state(cpu); |
| |
| if (gdbserver_state.multiprocess && (gdbserver_state.process_num > 1)) { |
| /* Print the CPU model and name in multiprocess mode */ |
| ObjectClass *oc = object_get_class(OBJECT(cpu)); |
| const char *cpu_model = object_class_get_name(oc); |
| g_autofree char *cpu_name = |
| object_get_canonical_path_component(OBJECT(cpu)); |
| g_string_printf(rs, "%s %s [%s]", cpu_model, cpu_name, |
| cpu->halted ? "halted " : "running"); |
| } else { |
| g_string_printf(rs, "CPU#%d [%s]", cpu->cpu_index, |
| cpu->halted ? "halted " : "running"); |
| } |
| trace_gdbstub_op_extra_info(rs->str); |
| memtohex(gdbserver_state.str_buf, (uint8_t *)rs->str, rs->len); |
| put_strbuf(); |
| } |
| |
| #ifdef CONFIG_USER_ONLY |
| static void handle_query_offsets(GdbCmdContext *gdb_ctx, void *user_ctx) |
| { |
| TaskState *ts; |
| |
| ts = gdbserver_state.c_cpu->opaque; |
| g_string_printf(gdbserver_state.str_buf, |
| "Text=" TARGET_ABI_FMT_lx |
| ";Data=" TARGET_ABI_FMT_lx |
| ";Bss=" TARGET_ABI_FMT_lx, |
| ts->info->code_offset, |
| ts->info->data_offset, |
| ts->info->data_offset); |
| put_strbuf(); |
| } |
| #else |
| static void handle_query_rcmd(GdbCmdContext *gdb_ctx, void *user_ctx) |
| { |
| const guint8 zero = 0; |
| int len; |
| |
| if (!gdb_ctx->num_params) { |
| put_packet("E22"); |
| return; |
| } |
| |
| len = strlen(gdb_ctx->params[0].data); |
| if (len % 2) { |
| put_packet("E01"); |
| return; |
| } |
| |
| g_assert(gdbserver_state.mem_buf->len == 0); |
| len = len / 2; |
| hextomem(gdbserver_state.mem_buf, gdb_ctx->params[0].data, len); |
| g_byte_array_append(gdbserver_state.mem_buf, &zero, 1); |
| qemu_chr_be_write(gdbserver_state.mon_chr, gdbserver_state.mem_buf->data, |
| gdbserver_state.mem_buf->len); |
| put_packet("OK"); |
| } |
| #endif |
| |
| static void handle_query_supported(GdbCmdContext *gdb_ctx, void *user_ctx) |
| { |
| CPUClass *cc; |
| |
| g_string_printf(gdbserver_state.str_buf, "PacketSize=%x", MAX_PACKET_LENGTH); |
| cc = CPU_GET_CLASS(first_cpu); |
| if (cc->gdb_core_xml_file) { |
| g_string_append(gdbserver_state.str_buf, ";qXfer:features:read+"); |
| } |
| |
| if (gdb_ctx->num_params && |
| strstr(gdb_ctx->params[0].data, "multiprocess+")) { |
| gdbserver_state.multiprocess = true; |
| } |
| |
| g_string_append(gdbserver_state.str_buf, ";vContSupported+;multiprocess+"); |
| put_strbuf(); |
| } |
| |
| static void handle_query_xfer_features(GdbCmdContext *gdb_ctx, void *user_ctx) |
| { |
| GDBProcess *process; |
| CPUClass *cc; |
| unsigned long len, total_len, addr; |
| const char *xml; |
| const char *p; |
| |
| if (gdb_ctx->num_params < 3) { |
| put_packet("E22"); |
| return; |
| } |
| |
| process = gdb_get_cpu_process(gdbserver_state.g_cpu); |
| cc = CPU_GET_CLASS(gdbserver_state.g_cpu); |
| if (!cc->gdb_core_xml_file) { |
| put_packet(""); |
| return; |
| } |
| |
| gdb_has_xml = true; |
| p = gdb_ctx->params[0].data; |
| xml = get_feature_xml(p, &p, process); |
| if (!xml) { |
| put_packet("E00"); |
| return; |
| } |
| |
| addr = gdb_ctx->params[1].val_ul; |
| len = gdb_ctx->params[2].val_ul; |
| total_len = strlen(xml); |
| if (addr > total_len) { |
| put_packet("E00"); |
| return; |
| } |
| |
| if (len > (MAX_PACKET_LENGTH - 5) / 2) { |
| len = (MAX_PACKET_LENGTH - 5) / 2; |
| } |
| |
| if (len < total_len - addr) { |
| g_string_assign(gdbserver_state.str_buf, "m"); |
| memtox(gdbserver_state.str_buf, xml + addr, len); |
| } else { |
| g_string_assign(gdbserver_state.str_buf, "l"); |
| memtox(gdbserver_state.str_buf, xml + addr, total_len - addr); |
| } |
| |
| put_packet_binary(gdbserver_state.str_buf->str, |
| gdbserver_state.str_buf->len, true); |
| } |
| |
| static void handle_query_attached(GdbCmdContext *gdb_ctx, void *user_ctx) |
| { |
| put_packet(GDB_ATTACHED); |
| } |
| |
| static void handle_query_qemu_supported(GdbCmdContext *gdb_ctx, void *user_ctx) |
| { |
| g_string_printf(gdbserver_state.str_buf, "sstepbits;sstep"); |
| #ifndef CONFIG_USER_ONLY |
| g_string_append(gdbserver_state.str_buf, ";PhyMemMode"); |
| #endif |
| put_strbuf(); |
| } |
| |
| #ifndef CONFIG_USER_ONLY |
| static void handle_query_qemu_phy_mem_mode(GdbCmdContext *gdb_ctx, |
| void *user_ctx) |
| { |
| g_string_printf(gdbserver_state.str_buf, "%d", phy_memory_mode); |
| put_strbuf(); |
| } |
| |
| static void handle_set_qemu_phy_mem_mode(GdbCmdContext *gdb_ctx, void *user_ctx) |
| { |
| if (!gdb_ctx->num_params) { |
| put_packet("E22"); |
| return; |
| } |
| |
| if (!gdb_ctx->params[0].val_ul) { |
| phy_memory_mode = 0; |
| } else { |
| phy_memory_mode = 1; |
| } |
| put_packet("OK"); |
| } |
| #endif |
| |
| static GdbCmdParseEntry gdb_gen_query_set_common_table[] = { |
| /* Order is important if has same prefix */ |
| { |
| .handler = handle_query_qemu_sstepbits, |
| .cmd = "qemu.sstepbits", |
| }, |
| { |
| .handler = handle_query_qemu_sstep, |
| .cmd = "qemu.sstep", |
| }, |
| { |
| .handler = handle_set_qemu_sstep, |
| .cmd = "qemu.sstep=", |
| .cmd_startswith = 1, |
| .schema = "l0" |
| }, |
| }; |
| |
| static GdbCmdParseEntry gdb_gen_query_table[] = { |
| { |
| .handler = handle_query_curr_tid, |
| .cmd = "C", |
| }, |
| { |
| .handler = handle_query_threads, |
| .cmd = "sThreadInfo", |
| }, |
| { |
| .handler = handle_query_first_threads, |
| .cmd = "fThreadInfo", |
| }, |
| { |
| .handler = handle_query_thread_extra, |
| .cmd = "ThreadExtraInfo,", |
| .cmd_startswith = 1, |
| .schema = "t0" |
| }, |
| #ifdef CONFIG_USER_ONLY |
| { |
| .handler = handle_query_offsets, |
| .cmd = "Offsets", |
| }, |
| #else |
| { |
| .handler = handle_query_rcmd, |
| .cmd = "Rcmd,", |
| .cmd_startswith = 1, |
| .schema = "s0" |
| }, |
| #endif |
| { |
| .handler = handle_query_supported, |
| .cmd = "Supported:", |
| .cmd_startswith = 1, |
| .schema = "s0" |
| }, |
| { |
| .handler = handle_query_supported, |
| .cmd = "Supported", |
| .schema = "s0" |
| }, |
| { |
| .handler = handle_query_xfer_features, |
| .cmd = "Xfer:features:read:", |
| .cmd_startswith = 1, |
| .schema = "s:l,l0" |
| }, |
| { |
| .handler = handle_query_attached, |
| .cmd = "Attached:", |
| .cmd_startswith = 1 |
| }, |
| { |
| .handler = handle_query_attached, |
| .cmd = "Attached", |
| }, |
| { |
| .handler = handle_query_qemu_supported, |
| .cmd = "qemu.Supported", |
| }, |
| #ifndef CONFIG_USER_ONLY |
| { |
| .handler = handle_query_qemu_phy_mem_mode, |
| .cmd = "qemu.PhyMemMode", |
| }, |
| #endif |
| }; |
| |
| static GdbCmdParseEntry gdb_gen_set_table[] = { |
| /* Order is important if has same prefix */ |
| { |
| .handler = handle_set_qemu_sstep, |
| .cmd = "qemu.sstep:", |
| .cmd_startswith = 1, |
| .schema = "l0" |
| }, |
| #ifndef CONFIG_USER_ONLY |
| { |
| .handler = handle_set_qemu_phy_mem_mode, |
| .cmd = "qemu.PhyMemMode:", |
| .cmd_startswith = 1, |
| .schema = "l0" |
| }, |
| #endif |
| }; |
| |
| static void handle_gen_query(GdbCmdContext *gdb_ctx, void *user_ctx) |
| { |
| if (!gdb_ctx->num_params) { |
| return; |
| } |
| |
| if (!process_string_cmd(NULL, gdb_ctx->params[0].data, |
| gdb_gen_query_set_common_table, |
| ARRAY_SIZE(gdb_gen_query_set_common_table))) { |
| return; |
| } |
| |
| if (process_string_cmd(NULL, gdb_ctx->params[0].data, |
| gdb_gen_query_table, |
| ARRAY_SIZE(gdb_gen_query_table))) { |
| put_packet(""); |
| } |
| } |
| |
| static void handle_gen_set(GdbCmdContext *gdb_ctx, void *user_ctx) |
| { |
| if (!gdb_ctx->num_params) { |
| return; |
| } |
| |
| if (!process_string_cmd(NULL, gdb_ctx->params[0].data, |
| gdb_gen_query_set_common_table, |
| ARRAY_SIZE(gdb_gen_query_set_common_table))) { |
| return; |
| } |
| |
| if (process_string_cmd(NULL, gdb_ctx->params[0].data, |
| gdb_gen_set_table, |
| ARRAY_SIZE(gdb_gen_set_table))) { |
| put_packet(""); |
| } |
| } |
| |
| static void handle_target_halt(GdbCmdContext *gdb_ctx, void *user_ctx) |
| { |
| g_string_printf(gdbserver_state.str_buf, "T%02xthread:", GDB_SIGNAL_TRAP); |
| gdb_append_thread_id(gdbserver_state.c_cpu, gdbserver_state.str_buf); |
| g_string_append_c(gdbserver_state.str_buf, ';'); |
| put_strbuf(); |
| /* |
| * Remove all the breakpoints when this query is issued, |
| * because gdb is doing an initial connect and the state |
| * should be cleaned up. |
| */ |
| gdb_breakpoint_remove_all(); |
| } |
| |
| static int gdb_handle_packet(const char *line_buf) |
| { |
| const GdbCmdParseEntry *cmd_parser = NULL; |
| |
| trace_gdbstub_io_command(line_buf); |
| |
| switch (line_buf[0]) { |
| case '!': |
| put_packet("OK"); |
| break; |
| case '?': |
| { |
| static const GdbCmdParseEntry target_halted_cmd_desc = { |
| .handler = handle_target_halt, |
| .cmd = "?", |
| .cmd_startswith = 1 |
| }; |
| cmd_parser = &target_halted_cmd_desc; |
| } |
| break; |
| case 'c': |
| { |
| static const GdbCmdParseEntry continue_cmd_desc = { |
| .handler = handle_continue, |
| .cmd = "c", |
| .cmd_startswith = 1, |
| .schema = "L0" |
| }; |
| cmd_parser = &continue_cmd_desc; |
| } |
| break; |
| case 'C': |
| { |
| static const GdbCmdParseEntry cont_with_sig_cmd_desc = { |
| .handler = handle_cont_with_sig, |
| .cmd = "C", |
| .cmd_startswith = 1, |
| .schema = "l0" |
| }; |
| cmd_parser = &cont_with_sig_cmd_desc; |
| } |
| break; |
| case 'v': |
| { |
| static const GdbCmdParseEntry v_cmd_desc = { |
| .handler = handle_v_commands, |
| .cmd = "v", |
| .cmd_startswith = 1, |
| .schema = "s0" |
| }; |
| cmd_parser = &v_cmd_desc; |
| } |
| break; |
| case 'k': |
| /* Kill the target */ |
| error_report("QEMU: Terminated via GDBstub"); |
| exit(0); |
| case 'D': |
| { |
| static const GdbCmdParseEntry detach_cmd_desc = { |
| .handler = handle_detach, |
| .cmd = "D", |
| .cmd_startswith = 1, |
| .schema = "?.l0" |
| }; |
| cmd_parser = &detach_cmd_desc; |
| } |
| break; |
| case 's': |
| { |
| static const GdbCmdParseEntry step_cmd_desc = { |
| .handler = handle_step, |
| .cmd = "s", |
| .cmd_startswith = 1, |
| .schema = "L0" |
| }; |
| cmd_parser = &step_cmd_desc; |
| } |
| break; |
| case 'F': |
| { |
| static const GdbCmdParseEntry file_io_cmd_desc = { |
| .handler = handle_file_io, |
| .cmd = "F", |
| .cmd_startswith = 1, |
| .schema = "L,L,o0" |
| }; |
| cmd_parser = &file_io_cmd_desc; |
| } |
| break; |
| case 'g': |
| { |
| static const GdbCmdParseEntry read_all_regs_cmd_desc = { |
| .handler = handle_read_all_regs, |
| .cmd = "g", |
| .cmd_startswith = 1 |
| }; |
| cmd_parser = &read_all_regs_cmd_desc; |
| } |
| break; |
| case 'G': |
| { |
| static const GdbCmdParseEntry write_all_regs_cmd_desc = { |
| .handler = handle_write_all_regs, |
| .cmd = "G", |
| .cmd_startswith = 1, |
| .schema = "s0" |
| }; |
| cmd_parser = &write_all_regs_cmd_desc; |
| } |
| break; |
| case 'm': |
| { |
| static const GdbCmdParseEntry read_mem_cmd_desc = { |
| .handler = handle_read_mem, |
| .cmd = "m", |
| .cmd_startswith = 1, |
| .schema = "L,L0" |
| }; |
| cmd_parser = &read_mem_cmd_desc; |
| } |
| break; |
| case 'M': |
| { |
| static const GdbCmdParseEntry write_mem_cmd_desc = { |
| .handler = handle_write_mem, |
| .cmd = "M", |
| .cmd_startswith = 1, |
| .schema = "L,L:s0" |
| }; |
| cmd_parser = &write_mem_cmd_desc; |
| } |
| break; |
| case 'p': |
| { |
| static const GdbCmdParseEntry get_reg_cmd_desc = { |
| .handler = handle_get_reg, |
| .cmd = "p", |
| .cmd_startswith = 1, |
| .schema = "L0" |
| }; |
| cmd_parser = &get_reg_cmd_desc; |
| } |
| break; |
| case 'P': |
| { |
| static const GdbCmdParseEntry set_reg_cmd_desc = { |
| .handler = handle_set_reg, |
| .cmd = "P", |
| .cmd_startswith = 1, |
| .schema = "L?s0" |
| }; |
| cmd_parser = &set_reg_cmd_desc; |
| } |
| break; |
| case 'Z': |
| { |
| static const GdbCmdParseEntry insert_bp_cmd_desc = { |
| .handler = handle_insert_bp, |
| .cmd = "Z", |
| .cmd_startswith = 1, |
| .schema = "l?L?L0" |
| }; |
| cmd_parser = &insert_bp_cmd_desc; |
| } |
| break; |
| case 'z': |
| { |
| static const GdbCmdParseEntry remove_bp_cmd_desc = { |
| .handler = handle_remove_bp, |
| .cmd = "z", |
| .cmd_startswith = 1, |
| .schema = "l?L?L0" |
| }; |
| cmd_parser = &remove_bp_cmd_desc; |
| } |
| break; |
| case 'H': |
| { |
| static const GdbCmdParseEntry set_thread_cmd_desc = { |
| .handler = handle_set_thread, |
| .cmd = "H", |
| .cmd_startswith = 1, |
| .schema = "o.t0" |
| }; |
| cmd_parser = &set_thread_cmd_desc; |
| } |
| break; |
| case 'T': |
| { |
| static const GdbCmdParseEntry thread_alive_cmd_desc = { |
| .handler = handle_thread_alive, |
| .cmd = "T", |
| .cmd_startswith = 1, |
| .schema = "t0" |
| }; |
| cmd_parser = &thread_alive_cmd_desc; |
| } |
| break; |
| case 'q': |
| { |
| static const GdbCmdParseEntry gen_query_cmd_desc = { |
| .handler = handle_gen_query, |
| .cmd = "q", |
| .cmd_startswith = 1, |
| .schema = "s0" |
| }; |
| cmd_parser = &gen_query_cmd_desc; |
| } |
| break; |
| case 'Q': |
| { |
| static const GdbCmdParseEntry gen_set_cmd_desc = { |
| .handler = handle_gen_set, |
| .cmd = "Q", |
| .cmd_startswith = 1, |
| .schema = "s0" |
| }; |
| cmd_parser = &gen_set_cmd_desc; |
| } |
| break; |
| default: |
| /* put empty packet */ |
| put_packet(""); |
| break; |
| } |
| |
| if (cmd_parser) { |
| run_cmd_parser(line_buf, cmd_parser); |
| } |
| |
| return RS_IDLE; |
| } |
| |
| void gdb_set_stop_cpu(CPUState *cpu) |
| { |
| GDBProcess *p = gdb_get_cpu_process(cpu); |
| |
| if (!p->attached) { |
| /* |
| * Having a stop CPU corresponding to a process that is not attached |
| * confuses GDB. So we ignore the request. |
| */ |
| return; |
| } |
| |
| gdbserver_state.c_cpu = cpu; |
| gdbserver_state.g_cpu = cpu; |
| } |
| |
| #ifndef CONFIG_USER_ONLY |
| static void gdb_vm_state_change(void *opaque, int running, RunState state) |
| { |
| CPUState *cpu = gdbserver_state.c_cpu; |
| g_autoptr(GString) buf = g_string_new(NULL); |
| g_autoptr(GString) tid = g_string_new(NULL); |
| const char *type; |
| int ret; |
| |
| if (running || gdbserver_state.state == RS_INACTIVE) { |
| return; |
| } |
| /* Is there a GDB syscall waiting to be sent? */ |
| if (gdbserver_state.current_syscall_cb) { |
| put_packet(gdbserver_state.syscall_buf); |
| return; |
| } |
| |
| if (cpu == NULL) { |
| /* No process attached */ |
| return; |
| } |
| |
| gdb_append_thread_id(cpu, tid); |
| |
| switch (state) { |
| case RUN_STATE_DEBUG: |
| if (cpu->watchpoint_hit) { |
| switch (cpu->watchpoint_hit->flags & BP_MEM_ACCESS) { |
| case BP_MEM_READ: |
| type = "r"; |
| break; |
| case BP_MEM_ACCESS: |
| type = "a"; |
| break; |
| default: |
| type = ""; |
| break; |
| } |
| trace_gdbstub_hit_watchpoint(type, cpu_gdb_index(cpu), |
| (target_ulong)cpu->watchpoint_hit->vaddr); |
| g_string_printf(buf, "T%02xthread:%s;%swatch:" TARGET_FMT_lx ";", |
| GDB_SIGNAL_TRAP, tid->str, type, |
| (target_ulong)cpu->watchpoint_hit->vaddr); |
| cpu->watchpoint_hit = NULL; |
| goto send_packet; |
| } else { |
| trace_gdbstub_hit_break(); |
| } |
| tb_flush(cpu); |
| ret = GDB_SIGNAL_TRAP; |
| break; |
| case RUN_STATE_PAUSED: |
| trace_gdbstub_hit_paused(); |
| ret = GDB_SIGNAL_INT; |
| break; |
| case RUN_STATE_SHUTDOWN: |
| trace_gdbstub_hit_shutdown(); |
| ret = GDB_SIGNAL_QUIT; |
| break; |
| case RUN_STATE_IO_ERROR: |
| trace_gdbstub_hit_io_error(); |
| ret = GDB_SIGNAL_IO; |
| break; |
| case RUN_STATE_WATCHDOG: |
| trace_gdbstub_hit_watchdog(); |
| ret = GDB_SIGNAL_ALRM; |
| break; |
| case RUN_STATE_INTERNAL_ERROR: |
| trace_gdbstub_hit_internal_error(); |
| ret = GDB_SIGNAL_ABRT; |
| break; |
| case RUN_STATE_SAVE_VM: |
| case RUN_STATE_RESTORE_VM: |
| return; |
| case RUN_STATE_FINISH_MIGRATE: |
| ret = GDB_SIGNAL_XCPU; |
| break; |
| default: |
| trace_gdbstub_hit_unknown(state); |
| ret = GDB_SIGNAL_UNKNOWN; |
| break; |
| } |
| gdb_set_stop_cpu(cpu); |
| g_string_printf(buf, "T%02xthread:%s;", ret, tid->str); |
| |
| send_packet: |
| put_packet(buf->str); |
| |
| /* disable single step if it was enabled */ |
| cpu_single_step(cpu, 0); |
| } |
| #endif |
| |
| /* Send a gdb syscall request. |
| This accepts limited printf-style format specifiers, specifically: |
| %x - target_ulong argument printed in hex. |
| %lx - 64-bit argument printed in hex. |
| %s - string pointer (target_ulong) and length (int) pair. */ |
| void gdb_do_syscallv(gdb_syscall_complete_cb cb, const char *fmt, va_list va) |
| { |
| char *p; |
| char *p_end; |
| target_ulong addr; |
| uint64_t i64; |
| |
| if (!gdbserver_state.init) { |
| return; |
| } |
| |
| gdbserver_state.current_syscall_cb = cb; |
| #ifndef CONFIG_USER_ONLY |
| vm_stop(RUN_STATE_DEBUG); |
| #endif |
| p = &gdbserver_state.syscall_buf[0]; |
| p_end = &gdbserver_state.syscall_buf[sizeof(gdbserver_state.syscall_buf)]; |
| *(p++) = 'F'; |
| while (*fmt) { |
| if (*fmt == '%') { |
| fmt++; |
| switch (*fmt++) { |
| case 'x': |
| addr = va_arg(va, target_ulong); |
| p += snprintf(p, p_end - p, TARGET_FMT_lx, addr); |
| break; |
| case 'l': |
| if (*(fmt++) != 'x') |
| goto bad_format; |
| i64 = va_arg(va, uint64_t); |
| p += snprintf(p, p_end - p, "%" PRIx64, i64); |
| break; |
| case 's': |
| addr = va_arg(va, target_ulong); |
| p += snprintf(p, p_end - p, TARGET_FMT_lx "/%x", |
| addr, va_arg(va, int)); |
| break; |
| default: |
| bad_format: |
| error_report("gdbstub: Bad syscall format string '%s'", |
| fmt - 1); |
| break; |
| } |
| } else { |
| *(p++) = *(fmt++); |
| } |
| } |
| *p = 0; |
| #ifdef CONFIG_USER_ONLY |
| put_packet(gdbserver_state.syscall_buf); |
| /* Return control to gdb for it to process the syscall request. |
| * Since the protocol requires that gdb hands control back to us |
| * using a "here are the results" F packet, we don't need to check |
| * gdb_handlesig's return value (which is the signal to deliver if |
| * execution was resumed via a continue packet). |
| */ |
| gdb_handlesig(gdbserver_state.c_cpu, 0); |
| #else |
| /* In this case wait to send the syscall packet until notification that |
| the CPU has stopped. This must be done because if the packet is sent |
| now the reply from the syscall request could be received while the CPU |
| is still in the running state, which can cause packets to be dropped |
| and state transition 'T' packets to be sent while the syscall is still |
| being processed. */ |
| qemu_cpu_kick(gdbserver_state.c_cpu); |
| #endif |
| } |
| |
| void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...) |
| { |
| va_list va; |
| |
| va_start(va, fmt); |
| gdb_do_syscallv(cb, fmt, va); |
| va_end(va); |
| } |
| |
| static void gdb_read_byte(uint8_t ch) |
| { |
| uint8_t reply; |
| |
| #ifndef CONFIG_USER_ONLY |
| if (gdbserver_state.last_packet->len) { |
| /* Waiting for a response to the last packet. If we see the start |
| of a new command then abandon the previous response. */ |
| if (ch == '-') { |
| trace_gdbstub_err_got_nack(); |
| put_buffer(gdbserver_state.last_packet->data, |
| gdbserver_state.last_packet->len); |
| } else if (ch == '+') { |
| trace_gdbstub_io_got_ack(); |
| } else { |
| trace_gdbstub_io_got_unexpected(ch); |
| } |
| |
| if (ch == '+' || ch == '$') { |
| g_byte_array_set_size(gdbserver_state.last_packet, 0); |
| } |
| if (ch != '$') |
| return; |
| } |
| if (runstate_is_running()) { |
| /* when the CPU is running, we cannot do anything except stop |
| it when receiving a char */ |
| vm_stop(RUN_STATE_PAUSED); |
| } else |
| #endif |
| { |
| switch(gdbserver_state.state) { |
| case RS_IDLE: |
| if (ch == '$') { |
| /* start of command packet */ |
| gdbserver_state.line_buf_index = 0; |
| gdbserver_state.line_sum = 0; |
| gdbserver_state.state = RS_GETLINE; |
| } else { |
| trace_gdbstub_err_garbage(ch); |
| } |
| break; |
| case RS_GETLINE: |
| if (ch == '}') { |
| /* start escape sequence */ |
| gdbserver_state.state = RS_GETLINE_ESC; |
| gdbserver_state.line_sum += ch; |
| } else if (ch == '*') { |
| /* start run length encoding sequence */ |
| gdbserver_state.state = RS_GETLINE_RLE; |
| gdbserver_state.line_sum += ch; |
| } else if (ch == '#') { |
| /* end of command, start of checksum*/ |
| gdbserver_state.state = RS_CHKSUM1; |
| } else if (gdbserver_state.line_buf_index >= sizeof(gdbserver_state.line_buf) - 1) { |
| trace_gdbstub_err_overrun(); |
| gdbserver_state.state = RS_IDLE; |
| } else { |
| /* unescaped command character */ |
| gdbserver_state.line_buf[gdbserver_state.line_buf_index++] = ch; |
| gdbserver_state.line_sum += ch; |
| } |
| break; |
| case RS_GETLINE_ESC: |
| if (ch == '#') { |
| /* unexpected end of command in escape sequence */ |
| gdbserver_state.state = RS_CHKSUM1; |
| } else if (gdbserver_state.line_buf_index >= sizeof(gdbserver_state.line_buf) - 1) { |
| /* command buffer overrun */ |
| trace_gdbstub_err_overrun(); |
| gdbserver_state.state = RS_IDLE; |
| } else { |
| /* parse escaped character and leave escape state */ |
| gdbserver_state.line_buf[gdbserver_state.line_buf_index++] = ch ^ 0x20; |
| gdbserver_state.line_sum += ch; |
| gdbserver_state.state = RS_GETLINE; |
| } |
| break; |
| case RS_GETLINE_RLE: |
| /* |
| * Run-length encoding is explained in "Debugging with GDB / |
| * Appendix E GDB Remote Serial Protocol / Overview". |
| */ |
| if (ch < ' ' || ch == '#' || ch == '$' || ch > 126) { |
| /* invalid RLE count encoding */ |
| trace_gdbstub_err_invalid_repeat(ch); |
| gdbserver_state.state = RS_GETLINE; |
| } else { |
| /* decode repeat length */ |
| int repeat = ch - ' ' + 3; |
| if (gdbserver_state.line_buf_index + repeat >= sizeof(gdbserver_state.line_buf) - 1) { |
| /* that many repeats would overrun the command buffer */ |
| trace_gdbstub_err_overrun(); |
| gdbserver_state.state = RS_IDLE; |
| } else if (gdbserver_state.line_buf_index < 1) { |
| /* got a repeat but we have nothing to repeat */ |
| trace_gdbstub_err_invalid_rle(); |
| gdbserver_state.state = RS_GETLINE; |
| } else { |
| /* repeat the last character */ |
| memset(gdbserver_state.line_buf + gdbserver_state.line_buf_index, |
| gdbserver_state.line_buf[gdbserver_state.line_buf_index - 1], repeat); |
| gdbserver_state.line_buf_index += repeat; |
| gdbserver_state.line_sum += ch; |
| gdbserver_state.state = RS_GETLINE; |
| } |
| } |
| break; |
| case RS_CHKSUM1: |
| /* get high hex digit of checksum */ |
| if (!isxdigit(ch)) { |
| trace_gdbstub_err_checksum_invalid(ch); |
| gdbserver_state.state = RS_GETLINE; |
| break; |
| } |
| gdbserver_state.line_buf[gdbserver_state.line_buf_index] = '\0'; |
| gdbserver_state.line_csum = fromhex(ch) << 4; |
| gdbserver_state.state = RS_CHKSUM2; |
| break; |
| case RS_CHKSUM2: |
| /* get low hex digit of checksum */ |
| if (!isxdigit(ch)) { |
| trace_gdbstub_err_checksum_invalid(ch); |
| gdbserver_state.state = RS_GETLINE; |
| break; |
| } |
| gdbserver_state.line_csum |= fromhex(ch); |
| |
| if (gdbserver_state.line_csum != (gdbserver_state.line_sum & 0xff)) { |
| trace_gdbstub_err_checksum_incorrect(gdbserver_state.line_sum, gdbserver_state.line_csum); |
| /* send NAK reply */ |
| reply = '-'; |
| put_buffer(&reply, 1); |
| gdbserver_state.state = RS_IDLE; |
| } else { |
| /* send ACK reply */ |
| reply = '+'; |
| put_buffer(&reply, 1); |
| gdbserver_state.state = gdb_handle_packet(gdbserver_state.line_buf); |
| } |
| break; |
| default: |
| abort(); |
| } |
| } |
| } |
| |
| /* Tell the remote gdb that the process has exited. */ |
| void gdb_exit(CPUArchState *env, int code) |
| { |
| char buf[4]; |
| |
| if (!gdbserver_state.init) { |
| return; |
| } |
| #ifdef CONFIG_USER_ONLY |
| if (gdbserver_fd < 0 || gdbserver_state.fd < 0) { |
| return; |
| } |
| #endif |
| |
| trace_gdbstub_op_exiting((uint8_t)code); |
| |
| snprintf(buf, sizeof(buf), "W%02x", (uint8_t)code); |
| put_packet(buf); |
| |
| #ifndef CONFIG_USER_ONLY |
| qemu_chr_fe_deinit(&gdbserver_state.chr, true); |
| #endif |
| } |
| |
| /* |
| * Create the process that will contain all the "orphan" CPUs (that are not |
| * part of a CPU cluster). Note that if this process contains no CPUs, it won't |
| * be attachable and thus will be invisible to the user. |
| */ |
| static void create_default_process(GDBState *s) |
| { |
| GDBProcess *process; |
| int max_pid = 0; |
| |
| if (gdbserver_state.process_num) { |
| max_pid = s->processes[s->process_num - 1].pid; |
| } |
| |
| s->processes = g_renew(GDBProcess, s->processes, ++s->process_num); |
| process = &s->processes[s->process_num - 1]; |
| |
| /* We need an available PID slot for this process */ |
| assert(max_pid < UINT32_MAX); |
| |
| process->pid = max_pid + 1; |
| process->attached = false; |
| process->target_xml[0] = '\0'; |
| } |
| |
| #ifdef CONFIG_USER_ONLY |
| int |
| gdb_handlesig(CPUState *cpu, int sig) |
| { |
| char buf[256]; |
| int n; |
| |
| if (gdbserver_fd < 0 || gdbserver_state.fd < 0) { |
| return sig; |
| } |
| |
| /* disable single step if it was enabled */ |
| cpu_single_step(cpu, 0); |
| tb_flush(cpu); |
| |
| if (sig != 0) { |
| snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb(sig)); |
| put_packet(buf); |
| } |
| /* put_packet() might have detected that the peer terminated the |
| connection. */ |
| if (gdbserver_state.fd < 0) { |
| return sig; |
| } |
| |
| sig = 0; |
| gdbserver_state.state = RS_IDLE; |
| gdbserver_state.running_state = 0; |
| while (gdbserver_state.running_state == 0) { |
| n = read(gdbserver_state.fd, buf, 256); |
| if (n > 0) { |
| int i; |
| |
| for (i = 0; i < n; i++) { |
| gdb_read_byte(buf[i]); |
| } |
| } else { |
| /* XXX: Connection closed. Should probably wait for another |
| connection before continuing. */ |
| if (n == 0) { |
| close(gdbserver_state.fd); |
| } |
| gdbserver_state.fd = -1; |
| return sig; |
| } |
| } |
| sig = gdbserver_state.signal; |
| gdbserver_state.signal = 0; |
| return sig; |
| } |
| |
| /* Tell the remote gdb that the process has exited due to SIG. */ |
| void gdb_signalled(CPUArchState *env, int sig) |
| { |
| char buf[4]; |
| |
| if (gdbserver_fd < 0 || gdbserver_state.fd < 0) { |
| return; |
| } |
| |
| snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb(sig)); |
| put_packet(buf); |
| } |
| |
| static bool gdb_accept(void) |
| { |
| struct sockaddr_in sockaddr; |
| socklen_t len; |
| int fd; |
| |
| for(;;) { |
| len = sizeof(sockaddr); |
| fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len); |
| if (fd < 0 && errno != EINTR) { |
| perror("accept"); |
| return false; |
| } else if (fd >= 0) { |
| qemu_set_cloexec(fd); |
| break; |
| } |
| } |
| |
| /* set short latency */ |
| if (socket_set_nodelay(fd)) { |
| perror("setsockopt"); |
| close(fd); |
| return false; |
| } |
| |
| init_gdbserver_state(); |
| create_default_process(&gdbserver_state); |
| gdbserver_state.processes[0].attached = true; |
| gdbserver_state.c_cpu = gdb_first_attached_cpu(); |
| gdbserver_state.g_cpu = gdbserver_state.c_cpu; |
| gdbserver_state.fd = fd; |
| gdb_has_xml = false; |
| return true; |
| } |
| |
| static int gdbserver_open(int port) |
| { |
| struct sockaddr_in sockaddr; |
| int fd, ret; |
| |
| fd = socket(PF_INET, SOCK_STREAM, 0); |
| if (fd < 0) { |
| perror("socket"); |
| return -1; |
| } |
| qemu_set_cloexec(fd); |
| |
| socket_set_fast_reuse(fd); |
| |
| sockaddr.sin_family = AF_INET; |
| sockaddr.sin_port = htons(port); |
| sockaddr.sin_addr.s_addr = 0; |
| ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr)); |
| if (ret < 0) { |
| perror("bind"); |
| close(fd); |
| return -1; |
| } |
| ret = listen(fd, 1); |
| if (ret < 0) { |
| perror("listen"); |
| close(fd); |
| return -1; |
| } |
| return fd; |
| } |
| |
| int gdbserver_start(int port) |
| { |
| gdbserver_fd = gdbserver_open(port); |
| if (gdbserver_fd < 0) |
| return -1; |
| /* accept connections */ |
| if (!gdb_accept()) { |
| close(gdbserver_fd); |
| gdbserver_fd = -1; |
| return -1; |
| } |
| return 0; |
| } |
| |
| /* Disable gdb stub for child processes. */ |
| void gdbserver_fork(CPUState *cpu) |
| { |
| if (gdbserver_fd < 0 || gdbserver_state.fd < 0) { |
| return; |
| } |
| close(gdbserver_state.fd); |
| gdbserver_state.fd = -1; |
| cpu_breakpoint_remove_all(cpu, BP_GDB); |
| cpu_watchpoint_remove_all(cpu, BP_GDB); |
| } |
| #else |
| static int gdb_chr_can_receive(void *opaque) |
| { |
| /* We can handle an arbitrarily large amount of data. |
| Pick the maximum packet size, which is as good as anything. */ |
| return MAX_PACKET_LENGTH; |
| } |
| |
| static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size) |
| { |
| int i; |
| |
| for (i = 0; i < size; i++) { |
| gdb_read_byte(buf[i]); |
| } |
| } |
| |
| static void gdb_chr_event(void *opaque, QEMUChrEvent event) |
| { |
| int i; |
| GDBState *s = (GDBState *) opaque; |
| |
| switch (event) { |
| case CHR_EVENT_OPENED: |
| /* Start with first process attached, others detached */ |
| for (i = 0; i < s->process_num; i++) { |
| s->processes[i].attached = !i; |
| } |
| |
| s->c_cpu = gdb_first_attached_cpu(); |
| s->g_cpu = s->c_cpu; |
| |
| vm_stop(RUN_STATE_PAUSED); |
| gdb_has_xml = false; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| static int gdb_monitor_write(Chardev *chr, const uint8_t *buf, int len) |
| { |
| g_autoptr(GString) hex_buf = g_string_new("O"); |
| memtohex(hex_buf, buf, len); |
| put_packet(hex_buf->str); |
| return len; |
| } |
| |
| #ifndef _WIN32 |
| static void gdb_sigterm_handler(int signal) |
| { |
| if (runstate_is_running()) { |
| vm_stop(RUN_STATE_PAUSED); |
| } |
| } |
| #endif |
| |
| static void gdb_monitor_open(Chardev *chr, ChardevBackend *backend, |
| bool *be_opened, Error **errp) |
| { |
| *be_opened = false; |
| } |
| |
| static void char_gdb_class_init(ObjectClass *oc, void *data) |
| { |
| ChardevClass *cc = CHARDEV_CLASS(oc); |
| |
| cc->internal = true; |
| cc->open = gdb_monitor_open; |
| cc->chr_write = gdb_monitor_write; |
| } |
| |
| #define TYPE_CHARDEV_GDB "chardev-gdb" |
| |
| static const TypeInfo char_gdb_type_info = { |
| .name = TYPE_CHARDEV_GDB, |
| .parent = TYPE_CHARDEV, |
| .class_init = char_gdb_class_init, |
| }; |
| |
| static int find_cpu_clusters(Object *child, void *opaque) |
| { |
| if (object_dynamic_cast(child, TYPE_CPU_CLUSTER)) { |
| GDBState *s = (GDBState *) opaque; |
| CPUClusterState *cluster = CPU_CLUSTER(child); |
| GDBProcess *process; |
| |
| s->processes = g_renew(GDBProcess, s->processes, ++s->process_num); |
| |
| process = &s->processes[s->process_num - 1]; |
| |
| /* |
| * GDB process IDs -1 and 0 are reserved. To avoid subtle errors at |
| * runtime, we enforce here that the machine does not use a cluster ID |
| * that would lead to PID 0. |
| */ |
| assert(cluster->cluster_id != UINT32_MAX); |
| process->pid = cluster->cluster_id + 1; |
| process->attached = false; |
| process->target_xml[0] = '\0'; |
| |
| return 0; |
| } |
| |
| return object_child_foreach(child, find_cpu_clusters, opaque); |
| } |
| |
| static int pid_order(const void *a, const void *b) |
| { |
| GDBProcess *pa = (GDBProcess *) a; |
| GDBProcess *pb = (GDBProcess *) b; |
| |
| if (pa->pid < pb->pid) { |
| return -1; |
| } else if (pa->pid > pb->pid) { |
| return 1; |
| } else { |
| return 0; |
| } |
| } |
| |
| static void create_processes(GDBState *s) |
| { |
| object_child_foreach(object_get_root(), find_cpu_clusters, s); |
| |
| if (gdbserver_state.processes) { |
| /* Sort by PID */ |
| qsort(gdbserver_state.processes, gdbserver_state.process_num, sizeof(gdbserver_state.processes[0]), pid_order); |
| } |
| |
| create_default_process(s); |
| } |
| |
| int gdbserver_start(const char *device) |
| { |
| trace_gdbstub_op_start(device); |
| |
| char gdbstub_device_name[128]; |
| Chardev *chr = NULL; |
| Chardev *mon_chr; |
| |
| if (!first_cpu) { |
| error_report("gdbstub: meaningless to attach gdb to a " |
| "machine without any CPU."); |
| return -1; |
| } |
| |
| if (!device) |
| return -1; |
| if (strcmp(device, "none") != 0) { |
| if (strstart(device, "tcp:", NULL)) { |
| /* enforce required TCP attributes */ |
| snprintf(gdbstub_device_name, sizeof(gdbstub_device_name), |
| "%s,nowait,nodelay,server", device); |
| device = gdbstub_device_name; |
| } |
| #ifndef _WIN32 |
| else if (strcmp(device, "stdio") == 0) { |
| struct sigaction act; |
| |
| memset(&act, 0, sizeof(act)); |
| act.sa_handler = gdb_sigterm_handler; |
| sigaction(SIGINT, &act, NULL); |
| } |
| #endif |
| /* |
| * FIXME: it's a bit weird to allow using a mux chardev here |
| * and implicitly setup a monitor. We may want to break this. |
| */ |
| chr = qemu_chr_new_noreplay("gdb", device, true, NULL); |
| if (!chr) |
| return -1; |
| } |
| |
| if (!gdbserver_state.init) { |
| init_gdbserver_state(); |
| |
| qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL); |
| |
| /* Initialize a monitor terminal for gdb */ |
| mon_chr = qemu_chardev_new(NULL, TYPE_CHARDEV_GDB, |
| NULL, NULL, &error_abort); |
| monitor_init_hmp(mon_chr, false, &error_abort); |
| } else { |
| qemu_chr_fe_deinit(&gdbserver_state.chr, true); |
| mon_chr = gdbserver_state.mon_chr; |
| reset_gdbserver_state(); |
| } |
| |
| create_processes(&gdbserver_state); |
| |
| if (chr) { |
| qemu_chr_fe_init(&gdbserver_state.chr, chr, &error_abort); |
| qemu_chr_fe_set_handlers(&gdbserver_state.chr, gdb_chr_can_receive, |
| gdb_chr_receive, gdb_chr_event, |
| NULL, &gdbserver_state, NULL, true); |
| } |
| gdbserver_state.state = chr ? RS_IDLE : RS_INACTIVE; |
| gdbserver_state.mon_chr = mon_chr; |
| gdbserver_state.current_syscall_cb = NULL; |
| |
| return 0; |
| } |
| |
| void gdbserver_cleanup(void) |
| { |
| if (gdbserver_state.init) { |
| put_packet("W00"); |
| } |
| } |
| |
| static void register_types(void) |
| { |
| type_register_static(&char_gdb_type_info); |
| } |
| |
| type_init(register_types); |
| #endif |