| /* |
| * QEMU e1000 emulation |
| * |
| * Software developer's manual: |
| * http://download.intel.com/design/network/manuals/8254x_GBe_SDM.pdf |
| * |
| * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc. |
| * Copyright (c) 2008 Qumranet |
| * Based on work done by: |
| * Copyright (c) 2007 Dan Aloni |
| * Copyright (c) 2004 Antony T Curtis |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| |
| #include "hw/hw.h" |
| #include "hw/pci/pci.h" |
| #include "net/net.h" |
| #include "net/checksum.h" |
| #include "hw/loader.h" |
| #include "sysemu/sysemu.h" |
| #include "sysemu/dma.h" |
| |
| #include "e1000_regs.h" |
| |
| #define E1000_DEBUG |
| |
| #ifdef E1000_DEBUG |
| enum { |
| DEBUG_GENERAL, DEBUG_IO, DEBUG_MMIO, DEBUG_INTERRUPT, |
| DEBUG_RX, DEBUG_TX, DEBUG_MDIC, DEBUG_EEPROM, |
| DEBUG_UNKNOWN, DEBUG_TXSUM, DEBUG_TXERR, DEBUG_RXERR, |
| DEBUG_RXFILTER, DEBUG_PHY, DEBUG_NOTYET, |
| }; |
| #define DBGBIT(x) (1<<DEBUG_##x) |
| static int debugflags = DBGBIT(TXERR) | DBGBIT(GENERAL); |
| |
| #define DBGOUT(what, fmt, ...) do { \ |
| if (debugflags & DBGBIT(what)) \ |
| fprintf(stderr, "e1000: " fmt, ## __VA_ARGS__); \ |
| } while (0) |
| #else |
| #define DBGOUT(what, fmt, ...) do {} while (0) |
| #endif |
| |
| #define IOPORT_SIZE 0x40 |
| #define PNPMMIO_SIZE 0x20000 |
| #define MIN_BUF_SIZE 60 /* Min. octets in an ethernet frame sans FCS */ |
| |
| /* this is the size past which hardware will drop packets when setting LPE=0 */ |
| #define MAXIMUM_ETHERNET_VLAN_SIZE 1522 |
| /* this is the size past which hardware will drop packets when setting LPE=1 */ |
| #define MAXIMUM_ETHERNET_LPE_SIZE 16384 |
| |
| /* |
| * HW models: |
| * E1000_DEV_ID_82540EM works with Windows and Linux |
| * E1000_DEV_ID_82573L OK with windoze and Linux 2.6.22, |
| * appears to perform better than 82540EM, but breaks with Linux 2.6.18 |
| * E1000_DEV_ID_82544GC_COPPER appears to work; not well tested |
| * Others never tested |
| */ |
| enum { E1000_DEVID = E1000_DEV_ID_82540EM }; |
| |
| /* |
| * May need to specify additional MAC-to-PHY entries -- |
| * Intel's Windows driver refuses to initialize unless they match |
| */ |
| enum { |
| PHY_ID2_INIT = E1000_DEVID == E1000_DEV_ID_82573L ? 0xcc2 : |
| E1000_DEVID == E1000_DEV_ID_82544GC_COPPER ? 0xc30 : |
| /* default to E1000_DEV_ID_82540EM */ 0xc20 |
| }; |
| |
| typedef struct E1000State_st { |
| /*< private >*/ |
| PCIDevice parent_obj; |
| /*< public >*/ |
| |
| NICState *nic; |
| NICConf conf; |
| MemoryRegion mmio; |
| MemoryRegion io; |
| |
| uint32_t mac_reg[0x8000]; |
| uint16_t phy_reg[0x20]; |
| uint16_t eeprom_data[64]; |
| |
| uint32_t rxbuf_size; |
| uint32_t rxbuf_min_shift; |
| struct e1000_tx { |
| unsigned char header[256]; |
| unsigned char vlan_header[4]; |
| /* Fields vlan and data must not be reordered or separated. */ |
| unsigned char vlan[4]; |
| unsigned char data[0x10000]; |
| uint16_t size; |
| unsigned char sum_needed; |
| unsigned char vlan_needed; |
| uint8_t ipcss; |
| uint8_t ipcso; |
| uint16_t ipcse; |
| uint8_t tucss; |
| uint8_t tucso; |
| uint16_t tucse; |
| uint8_t hdr_len; |
| uint16_t mss; |
| uint32_t paylen; |
| uint16_t tso_frames; |
| char tse; |
| int8_t ip; |
| int8_t tcp; |
| char cptse; // current packet tse bit |
| } tx; |
| |
| struct { |
| uint32_t val_in; // shifted in from guest driver |
| uint16_t bitnum_in; |
| uint16_t bitnum_out; |
| uint16_t reading; |
| uint32_t old_eecd; |
| } eecd_state; |
| |
| QEMUTimer *autoneg_timer; |
| |
| /* Compatibility flags for migration to/from qemu 1.3.0 and older */ |
| #define E1000_FLAG_AUTONEG_BIT 0 |
| #define E1000_FLAG_AUTONEG (1 << E1000_FLAG_AUTONEG_BIT) |
| uint32_t compat_flags; |
| } E1000State; |
| |
| #define TYPE_E1000 "e1000" |
| |
| #define E1000(obj) \ |
| OBJECT_CHECK(E1000State, (obj), TYPE_E1000) |
| |
| #define defreg(x) x = (E1000_##x>>2) |
| enum { |
| defreg(CTRL), defreg(EECD), defreg(EERD), defreg(GPRC), |
| defreg(GPTC), defreg(ICR), defreg(ICS), defreg(IMC), |
| defreg(IMS), defreg(LEDCTL), defreg(MANC), defreg(MDIC), |
| defreg(MPC), defreg(PBA), defreg(RCTL), defreg(RDBAH), |
| defreg(RDBAL), defreg(RDH), defreg(RDLEN), defreg(RDT), |
| defreg(STATUS), defreg(SWSM), defreg(TCTL), defreg(TDBAH), |
| defreg(TDBAL), defreg(TDH), defreg(TDLEN), defreg(TDT), |
| defreg(TORH), defreg(TORL), defreg(TOTH), defreg(TOTL), |
| defreg(TPR), defreg(TPT), defreg(TXDCTL), defreg(WUFC), |
| defreg(RA), defreg(MTA), defreg(CRCERRS),defreg(VFTA), |
| defreg(VET), |
| }; |
| |
| static void |
| e1000_link_down(E1000State *s) |
| { |
| s->mac_reg[STATUS] &= ~E1000_STATUS_LU; |
| s->phy_reg[PHY_STATUS] &= ~MII_SR_LINK_STATUS; |
| } |
| |
| static void |
| e1000_link_up(E1000State *s) |
| { |
| s->mac_reg[STATUS] |= E1000_STATUS_LU; |
| s->phy_reg[PHY_STATUS] |= MII_SR_LINK_STATUS; |
| } |
| |
| static void |
| set_phy_ctrl(E1000State *s, int index, uint16_t val) |
| { |
| /* |
| * QEMU 1.3 does not support link auto-negotiation emulation, so if we |
| * migrate during auto negotiation, after migration the link will be |
| * down. |
| */ |
| if (!(s->compat_flags & E1000_FLAG_AUTONEG)) { |
| return; |
| } |
| if ((val & MII_CR_AUTO_NEG_EN) && (val & MII_CR_RESTART_AUTO_NEG)) { |
| e1000_link_down(s); |
| s->phy_reg[PHY_STATUS] &= ~MII_SR_AUTONEG_COMPLETE; |
| DBGOUT(PHY, "Start link auto negotiation\n"); |
| qemu_mod_timer(s->autoneg_timer, qemu_get_clock_ms(vm_clock) + 500); |
| } |
| } |
| |
| static void |
| e1000_autoneg_timer(void *opaque) |
| { |
| E1000State *s = opaque; |
| if (!qemu_get_queue(s->nic)->link_down) { |
| e1000_link_up(s); |
| } |
| s->phy_reg[PHY_STATUS] |= MII_SR_AUTONEG_COMPLETE; |
| DBGOUT(PHY, "Auto negotiation is completed\n"); |
| } |
| |
| static void (*phyreg_writeops[])(E1000State *, int, uint16_t) = { |
| [PHY_CTRL] = set_phy_ctrl, |
| }; |
| |
| enum { NPHYWRITEOPS = ARRAY_SIZE(phyreg_writeops) }; |
| |
| enum { PHY_R = 1, PHY_W = 2, PHY_RW = PHY_R | PHY_W }; |
| static const char phy_regcap[0x20] = { |
| [PHY_STATUS] = PHY_R, [M88E1000_EXT_PHY_SPEC_CTRL] = PHY_RW, |
| [PHY_ID1] = PHY_R, [M88E1000_PHY_SPEC_CTRL] = PHY_RW, |
| [PHY_CTRL] = PHY_RW, [PHY_1000T_CTRL] = PHY_RW, |
| [PHY_LP_ABILITY] = PHY_R, [PHY_1000T_STATUS] = PHY_R, |
| [PHY_AUTONEG_ADV] = PHY_RW, [M88E1000_RX_ERR_CNTR] = PHY_R, |
| [PHY_ID2] = PHY_R, [M88E1000_PHY_SPEC_STATUS] = PHY_R |
| }; |
| |
| static const uint16_t phy_reg_init[] = { |
| [PHY_CTRL] = 0x1140, |
| [PHY_STATUS] = 0x794d, /* link initially up with not completed autoneg */ |
| [PHY_ID1] = 0x141, [PHY_ID2] = PHY_ID2_INIT, |
| [PHY_1000T_CTRL] = 0x0e00, [M88E1000_PHY_SPEC_CTRL] = 0x360, |
| [M88E1000_EXT_PHY_SPEC_CTRL] = 0x0d60, [PHY_AUTONEG_ADV] = 0xde1, |
| [PHY_LP_ABILITY] = 0x1e0, [PHY_1000T_STATUS] = 0x3c00, |
| [M88E1000_PHY_SPEC_STATUS] = 0xac00, |
| }; |
| |
| static const uint32_t mac_reg_init[] = { |
| [PBA] = 0x00100030, |
| [LEDCTL] = 0x602, |
| [CTRL] = E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN0 | |
| E1000_CTRL_SPD_1000 | E1000_CTRL_SLU, |
| [STATUS] = 0x80000000 | E1000_STATUS_GIO_MASTER_ENABLE | |
| E1000_STATUS_ASDV | E1000_STATUS_MTXCKOK | |
| E1000_STATUS_SPEED_1000 | E1000_STATUS_FD | |
| E1000_STATUS_LU, |
| [MANC] = E1000_MANC_EN_MNG2HOST | E1000_MANC_RCV_TCO_EN | |
| E1000_MANC_ARP_EN | E1000_MANC_0298_EN | |
| E1000_MANC_RMCP_EN, |
| }; |
| |
| static void |
| set_interrupt_cause(E1000State *s, int index, uint32_t val) |
| { |
| PCIDevice *d = PCI_DEVICE(s); |
| |
| if (val && (E1000_DEVID >= E1000_DEV_ID_82547EI_MOBILE)) { |
| /* Only for 8257x */ |
| val |= E1000_ICR_INT_ASSERTED; |
| } |
| s->mac_reg[ICR] = val; |
| |
| /* |
| * Make sure ICR and ICS registers have the same value. |
| * The spec says that the ICS register is write-only. However in practice, |
| * on real hardware ICS is readable, and for reads it has the same value as |
| * ICR (except that ICS does not have the clear on read behaviour of ICR). |
| * |
| * The VxWorks PRO/1000 driver uses this behaviour. |
| */ |
| s->mac_reg[ICS] = val; |
| |
| qemu_set_irq(d->irq[0], (s->mac_reg[IMS] & s->mac_reg[ICR]) != 0); |
| } |
| |
| static void |
| set_ics(E1000State *s, int index, uint32_t val) |
| { |
| DBGOUT(INTERRUPT, "set_ics %x, ICR %x, IMR %x\n", val, s->mac_reg[ICR], |
| s->mac_reg[IMS]); |
| set_interrupt_cause(s, 0, val | s->mac_reg[ICR]); |
| } |
| |
| static int |
| rxbufsize(uint32_t v) |
| { |
| v &= E1000_RCTL_BSEX | E1000_RCTL_SZ_16384 | E1000_RCTL_SZ_8192 | |
| E1000_RCTL_SZ_4096 | E1000_RCTL_SZ_2048 | E1000_RCTL_SZ_1024 | |
| E1000_RCTL_SZ_512 | E1000_RCTL_SZ_256; |
| switch (v) { |
| case E1000_RCTL_BSEX | E1000_RCTL_SZ_16384: |
| return 16384; |
| case E1000_RCTL_BSEX | E1000_RCTL_SZ_8192: |
| return 8192; |
| case E1000_RCTL_BSEX | E1000_RCTL_SZ_4096: |
| return 4096; |
| case E1000_RCTL_SZ_1024: |
| return 1024; |
| case E1000_RCTL_SZ_512: |
| return 512; |
| case E1000_RCTL_SZ_256: |
| return 256; |
| } |
| return 2048; |
| } |
| |
| static void e1000_reset(void *opaque) |
| { |
| E1000State *d = opaque; |
| uint8_t *macaddr = d->conf.macaddr.a; |
| int i; |
| |
| qemu_del_timer(d->autoneg_timer); |
| memset(d->phy_reg, 0, sizeof d->phy_reg); |
| memmove(d->phy_reg, phy_reg_init, sizeof phy_reg_init); |
| memset(d->mac_reg, 0, sizeof d->mac_reg); |
| memmove(d->mac_reg, mac_reg_init, sizeof mac_reg_init); |
| d->rxbuf_min_shift = 1; |
| memset(&d->tx, 0, sizeof d->tx); |
| |
| if (qemu_get_queue(d->nic)->link_down) { |
| e1000_link_down(d); |
| } |
| |
| /* Some guests expect pre-initialized RAH/RAL (AddrValid flag + MACaddr) */ |
| d->mac_reg[RA] = 0; |
| d->mac_reg[RA + 1] = E1000_RAH_AV; |
| for (i = 0; i < 4; i++) { |
| d->mac_reg[RA] |= macaddr[i] << (8 * i); |
| d->mac_reg[RA + 1] |= (i < 2) ? macaddr[i + 4] << (8 * i) : 0; |
| } |
| } |
| |
| static void |
| set_ctrl(E1000State *s, int index, uint32_t val) |
| { |
| /* RST is self clearing */ |
| s->mac_reg[CTRL] = val & ~E1000_CTRL_RST; |
| } |
| |
| static void |
| set_rx_control(E1000State *s, int index, uint32_t val) |
| { |
| s->mac_reg[RCTL] = val; |
| s->rxbuf_size = rxbufsize(val); |
| s->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1; |
| DBGOUT(RX, "RCTL: %d, mac_reg[RCTL] = 0x%x\n", s->mac_reg[RDT], |
| s->mac_reg[RCTL]); |
| qemu_flush_queued_packets(qemu_get_queue(s->nic)); |
| } |
| |
| static void |
| set_mdic(E1000State *s, int index, uint32_t val) |
| { |
| uint32_t data = val & E1000_MDIC_DATA_MASK; |
| uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT); |
| |
| if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) // phy # |
| val = s->mac_reg[MDIC] | E1000_MDIC_ERROR; |
| else if (val & E1000_MDIC_OP_READ) { |
| DBGOUT(MDIC, "MDIC read reg 0x%x\n", addr); |
| if (!(phy_regcap[addr] & PHY_R)) { |
| DBGOUT(MDIC, "MDIC read reg %x unhandled\n", addr); |
| val |= E1000_MDIC_ERROR; |
| } else |
| val = (val ^ data) | s->phy_reg[addr]; |
| } else if (val & E1000_MDIC_OP_WRITE) { |
| DBGOUT(MDIC, "MDIC write reg 0x%x, value 0x%x\n", addr, data); |
| if (!(phy_regcap[addr] & PHY_W)) { |
| DBGOUT(MDIC, "MDIC write reg %x unhandled\n", addr); |
| val |= E1000_MDIC_ERROR; |
| } else { |
| if (addr < NPHYWRITEOPS && phyreg_writeops[addr]) { |
| phyreg_writeops[addr](s, index, data); |
| } |
| s->phy_reg[addr] = data; |
| } |
| } |
| s->mac_reg[MDIC] = val | E1000_MDIC_READY; |
| |
| if (val & E1000_MDIC_INT_EN) { |
| set_ics(s, 0, E1000_ICR_MDAC); |
| } |
| } |
| |
| static uint32_t |
| get_eecd(E1000State *s, int index) |
| { |
| uint32_t ret = E1000_EECD_PRES|E1000_EECD_GNT | s->eecd_state.old_eecd; |
| |
| DBGOUT(EEPROM, "reading eeprom bit %d (reading %d)\n", |
| s->eecd_state.bitnum_out, s->eecd_state.reading); |
| if (!s->eecd_state.reading || |
| ((s->eeprom_data[(s->eecd_state.bitnum_out >> 4) & 0x3f] >> |
| ((s->eecd_state.bitnum_out & 0xf) ^ 0xf))) & 1) |
| ret |= E1000_EECD_DO; |
| return ret; |
| } |
| |
| static void |
| set_eecd(E1000State *s, int index, uint32_t val) |
| { |
| uint32_t oldval = s->eecd_state.old_eecd; |
| |
| s->eecd_state.old_eecd = val & (E1000_EECD_SK | E1000_EECD_CS | |
| E1000_EECD_DI|E1000_EECD_FWE_MASK|E1000_EECD_REQ); |
| if (!(E1000_EECD_CS & val)) // CS inactive; nothing to do |
| return; |
| if (E1000_EECD_CS & (val ^ oldval)) { // CS rise edge; reset state |
| s->eecd_state.val_in = 0; |
| s->eecd_state.bitnum_in = 0; |
| s->eecd_state.bitnum_out = 0; |
| s->eecd_state.reading = 0; |
| } |
| if (!(E1000_EECD_SK & (val ^ oldval))) // no clock edge |
| return; |
| if (!(E1000_EECD_SK & val)) { // falling edge |
| s->eecd_state.bitnum_out++; |
| return; |
| } |
| s->eecd_state.val_in <<= 1; |
| if (val & E1000_EECD_DI) |
| s->eecd_state.val_in |= 1; |
| if (++s->eecd_state.bitnum_in == 9 && !s->eecd_state.reading) { |
| s->eecd_state.bitnum_out = ((s->eecd_state.val_in & 0x3f)<<4)-1; |
| s->eecd_state.reading = (((s->eecd_state.val_in >> 6) & 7) == |
| EEPROM_READ_OPCODE_MICROWIRE); |
| } |
| DBGOUT(EEPROM, "eeprom bitnum in %d out %d, reading %d\n", |
| s->eecd_state.bitnum_in, s->eecd_state.bitnum_out, |
| s->eecd_state.reading); |
| } |
| |
| static uint32_t |
| flash_eerd_read(E1000State *s, int x) |
| { |
| unsigned int index, r = s->mac_reg[EERD] & ~E1000_EEPROM_RW_REG_START; |
| |
| if ((s->mac_reg[EERD] & E1000_EEPROM_RW_REG_START) == 0) |
| return (s->mac_reg[EERD]); |
| |
| if ((index = r >> E1000_EEPROM_RW_ADDR_SHIFT) > EEPROM_CHECKSUM_REG) |
| return (E1000_EEPROM_RW_REG_DONE | r); |
| |
| return ((s->eeprom_data[index] << E1000_EEPROM_RW_REG_DATA) | |
| E1000_EEPROM_RW_REG_DONE | r); |
| } |
| |
| static void |
| putsum(uint8_t *data, uint32_t n, uint32_t sloc, uint32_t css, uint32_t cse) |
| { |
| uint32_t sum; |
| |
| if (cse && cse < n) |
| n = cse + 1; |
| if (sloc < n-1) { |
| sum = net_checksum_add(n-css, data+css); |
| cpu_to_be16wu((uint16_t *)(data + sloc), |
| net_checksum_finish(sum)); |
| } |
| } |
| |
| static inline int |
| vlan_enabled(E1000State *s) |
| { |
| return ((s->mac_reg[CTRL] & E1000_CTRL_VME) != 0); |
| } |
| |
| static inline int |
| vlan_rx_filter_enabled(E1000State *s) |
| { |
| return ((s->mac_reg[RCTL] & E1000_RCTL_VFE) != 0); |
| } |
| |
| static inline int |
| is_vlan_packet(E1000State *s, const uint8_t *buf) |
| { |
| return (be16_to_cpup((uint16_t *)(buf + 12)) == |
| le16_to_cpup((uint16_t *)(s->mac_reg + VET))); |
| } |
| |
| static inline int |
| is_vlan_txd(uint32_t txd_lower) |
| { |
| return ((txd_lower & E1000_TXD_CMD_VLE) != 0); |
| } |
| |
| /* FCS aka Ethernet CRC-32. We don't get it from backends and can't |
| * fill it in, just pad descriptor length by 4 bytes unless guest |
| * told us to strip it off the packet. */ |
| static inline int |
| fcs_len(E1000State *s) |
| { |
| return (s->mac_reg[RCTL] & E1000_RCTL_SECRC) ? 0 : 4; |
| } |
| |
| static void |
| e1000_send_packet(E1000State *s, const uint8_t *buf, int size) |
| { |
| NetClientState *nc = qemu_get_queue(s->nic); |
| if (s->phy_reg[PHY_CTRL] & MII_CR_LOOPBACK) { |
| nc->info->receive(nc, buf, size); |
| } else { |
| qemu_send_packet(nc, buf, size); |
| } |
| } |
| |
| static void |
| xmit_seg(E1000State *s) |
| { |
| uint16_t len, *sp; |
| unsigned int frames = s->tx.tso_frames, css, sofar, n; |
| struct e1000_tx *tp = &s->tx; |
| |
| if (tp->tse && tp->cptse) { |
| css = tp->ipcss; |
| DBGOUT(TXSUM, "frames %d size %d ipcss %d\n", |
| frames, tp->size, css); |
| if (tp->ip) { // IPv4 |
| cpu_to_be16wu((uint16_t *)(tp->data+css+2), |
| tp->size - css); |
| cpu_to_be16wu((uint16_t *)(tp->data+css+4), |
| be16_to_cpup((uint16_t *)(tp->data+css+4))+frames); |
| } else // IPv6 |
| cpu_to_be16wu((uint16_t *)(tp->data+css+4), |
| tp->size - css); |
| css = tp->tucss; |
| len = tp->size - css; |
| DBGOUT(TXSUM, "tcp %d tucss %d len %d\n", tp->tcp, css, len); |
| if (tp->tcp) { |
| sofar = frames * tp->mss; |
| cpu_to_be32wu((uint32_t *)(tp->data+css+4), // seq |
| be32_to_cpupu((uint32_t *)(tp->data+css+4))+sofar); |
| if (tp->paylen - sofar > tp->mss) |
| tp->data[css + 13] &= ~9; // PSH, FIN |
| } else // UDP |
| cpu_to_be16wu((uint16_t *)(tp->data+css+4), len); |
| if (tp->sum_needed & E1000_TXD_POPTS_TXSM) { |
| unsigned int phsum; |
| // add pseudo-header length before checksum calculation |
| sp = (uint16_t *)(tp->data + tp->tucso); |
| phsum = be16_to_cpup(sp) + len; |
| phsum = (phsum >> 16) + (phsum & 0xffff); |
| cpu_to_be16wu(sp, phsum); |
| } |
| tp->tso_frames++; |
| } |
| |
| if (tp->sum_needed & E1000_TXD_POPTS_TXSM) |
| putsum(tp->data, tp->size, tp->tucso, tp->tucss, tp->tucse); |
| if (tp->sum_needed & E1000_TXD_POPTS_IXSM) |
| putsum(tp->data, tp->size, tp->ipcso, tp->ipcss, tp->ipcse); |
| if (tp->vlan_needed) { |
| memmove(tp->vlan, tp->data, 4); |
| memmove(tp->data, tp->data + 4, 8); |
| memcpy(tp->data + 8, tp->vlan_header, 4); |
| e1000_send_packet(s, tp->vlan, tp->size + 4); |
| } else |
| e1000_send_packet(s, tp->data, tp->size); |
| s->mac_reg[TPT]++; |
| s->mac_reg[GPTC]++; |
| n = s->mac_reg[TOTL]; |
| if ((s->mac_reg[TOTL] += s->tx.size) < n) |
| s->mac_reg[TOTH]++; |
| } |
| |
| static void |
| process_tx_desc(E1000State *s, struct e1000_tx_desc *dp) |
| { |
| PCIDevice *d = PCI_DEVICE(s); |
| uint32_t txd_lower = le32_to_cpu(dp->lower.data); |
| uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D); |
| unsigned int split_size = txd_lower & 0xffff, bytes, sz, op; |
| unsigned int msh = 0xfffff; |
| uint64_t addr; |
| struct e1000_context_desc *xp = (struct e1000_context_desc *)dp; |
| struct e1000_tx *tp = &s->tx; |
| |
| if (dtype == E1000_TXD_CMD_DEXT) { // context descriptor |
| op = le32_to_cpu(xp->cmd_and_length); |
| tp->ipcss = xp->lower_setup.ip_fields.ipcss; |
| tp->ipcso = xp->lower_setup.ip_fields.ipcso; |
| tp->ipcse = le16_to_cpu(xp->lower_setup.ip_fields.ipcse); |
| tp->tucss = xp->upper_setup.tcp_fields.tucss; |
| tp->tucso = xp->upper_setup.tcp_fields.tucso; |
| tp->tucse = le16_to_cpu(xp->upper_setup.tcp_fields.tucse); |
| tp->paylen = op & 0xfffff; |
| tp->hdr_len = xp->tcp_seg_setup.fields.hdr_len; |
| tp->mss = le16_to_cpu(xp->tcp_seg_setup.fields.mss); |
| tp->ip = (op & E1000_TXD_CMD_IP) ? 1 : 0; |
| tp->tcp = (op & E1000_TXD_CMD_TCP) ? 1 : 0; |
| tp->tse = (op & E1000_TXD_CMD_TSE) ? 1 : 0; |
| tp->tso_frames = 0; |
| if (tp->tucso == 0) { // this is probably wrong |
| DBGOUT(TXSUM, "TCP/UDP: cso 0!\n"); |
| tp->tucso = tp->tucss + (tp->tcp ? 16 : 6); |
| } |
| return; |
| } else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) { |
| // data descriptor |
| if (tp->size == 0) { |
| tp->sum_needed = le32_to_cpu(dp->upper.data) >> 8; |
| } |
| tp->cptse = ( txd_lower & E1000_TXD_CMD_TSE ) ? 1 : 0; |
| } else { |
| // legacy descriptor |
| tp->cptse = 0; |
| } |
| |
| if (vlan_enabled(s) && is_vlan_txd(txd_lower) && |
| (tp->cptse || txd_lower & E1000_TXD_CMD_EOP)) { |
| tp->vlan_needed = 1; |
| cpu_to_be16wu((uint16_t *)(tp->vlan_header), |
| le16_to_cpup((uint16_t *)(s->mac_reg + VET))); |
| cpu_to_be16wu((uint16_t *)(tp->vlan_header + 2), |
| le16_to_cpu(dp->upper.fields.special)); |
| } |
| |
| addr = le64_to_cpu(dp->buffer_addr); |
| if (tp->tse && tp->cptse) { |
| msh = tp->hdr_len + tp->mss; |
| do { |
| bytes = split_size; |
| if (tp->size + bytes > msh) |
| bytes = msh - tp->size; |
| |
| bytes = MIN(sizeof(tp->data) - tp->size, bytes); |
| pci_dma_read(d, addr, tp->data + tp->size, bytes); |
| sz = tp->size + bytes; |
| if (sz >= tp->hdr_len && tp->size < tp->hdr_len) { |
| memmove(tp->header, tp->data, tp->hdr_len); |
| } |
| tp->size = sz; |
| addr += bytes; |
| if (sz == msh) { |
| xmit_seg(s); |
| memmove(tp->data, tp->header, tp->hdr_len); |
| tp->size = tp->hdr_len; |
| } |
| } while (split_size -= bytes); |
| } else if (!tp->tse && tp->cptse) { |
| // context descriptor TSE is not set, while data descriptor TSE is set |
| DBGOUT(TXERR, "TCP segmentation error\n"); |
| } else { |
| split_size = MIN(sizeof(tp->data) - tp->size, split_size); |
| pci_dma_read(d, addr, tp->data + tp->size, split_size); |
| tp->size += split_size; |
| } |
| |
| if (!(txd_lower & E1000_TXD_CMD_EOP)) |
| return; |
| if (!(tp->tse && tp->cptse && tp->size < tp->hdr_len)) { |
| xmit_seg(s); |
| } |
| tp->tso_frames = 0; |
| tp->sum_needed = 0; |
| tp->vlan_needed = 0; |
| tp->size = 0; |
| tp->cptse = 0; |
| } |
| |
| static uint32_t |
| txdesc_writeback(E1000State *s, dma_addr_t base, struct e1000_tx_desc *dp) |
| { |
| PCIDevice *d = PCI_DEVICE(s); |
| uint32_t txd_upper, txd_lower = le32_to_cpu(dp->lower.data); |
| |
| if (!(txd_lower & (E1000_TXD_CMD_RS|E1000_TXD_CMD_RPS))) |
| return 0; |
| txd_upper = (le32_to_cpu(dp->upper.data) | E1000_TXD_STAT_DD) & |
| ~(E1000_TXD_STAT_EC | E1000_TXD_STAT_LC | E1000_TXD_STAT_TU); |
| dp->upper.data = cpu_to_le32(txd_upper); |
| pci_dma_write(d, base + ((char *)&dp->upper - (char *)dp), |
| &dp->upper, sizeof(dp->upper)); |
| return E1000_ICR_TXDW; |
| } |
| |
| static uint64_t tx_desc_base(E1000State *s) |
| { |
| uint64_t bah = s->mac_reg[TDBAH]; |
| uint64_t bal = s->mac_reg[TDBAL] & ~0xf; |
| |
| return (bah << 32) + bal; |
| } |
| |
| static void |
| start_xmit(E1000State *s) |
| { |
| PCIDevice *d = PCI_DEVICE(s); |
| dma_addr_t base; |
| struct e1000_tx_desc desc; |
| uint32_t tdh_start = s->mac_reg[TDH], cause = E1000_ICS_TXQE; |
| |
| if (!(s->mac_reg[TCTL] & E1000_TCTL_EN)) { |
| DBGOUT(TX, "tx disabled\n"); |
| return; |
| } |
| |
| while (s->mac_reg[TDH] != s->mac_reg[TDT]) { |
| base = tx_desc_base(s) + |
| sizeof(struct e1000_tx_desc) * s->mac_reg[TDH]; |
| pci_dma_read(d, base, &desc, sizeof(desc)); |
| |
| DBGOUT(TX, "index %d: %p : %x %x\n", s->mac_reg[TDH], |
| (void *)(intptr_t)desc.buffer_addr, desc.lower.data, |
| desc.upper.data); |
| |
| process_tx_desc(s, &desc); |
| cause |= txdesc_writeback(s, base, &desc); |
| |
| if (++s->mac_reg[TDH] * sizeof(desc) >= s->mac_reg[TDLEN]) |
| s->mac_reg[TDH] = 0; |
| /* |
| * the following could happen only if guest sw assigns |
| * bogus values to TDT/TDLEN. |
| * there's nothing too intelligent we could do about this. |
| */ |
| if (s->mac_reg[TDH] == tdh_start) { |
| DBGOUT(TXERR, "TDH wraparound @%x, TDT %x, TDLEN %x\n", |
| tdh_start, s->mac_reg[TDT], s->mac_reg[TDLEN]); |
| break; |
| } |
| } |
| set_ics(s, 0, cause); |
| } |
| |
| static int |
| receive_filter(E1000State *s, const uint8_t *buf, int size) |
| { |
| static const uint8_t bcast[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; |
| static const int mta_shift[] = {4, 3, 2, 0}; |
| uint32_t f, rctl = s->mac_reg[RCTL], ra[2], *rp; |
| |
| if (is_vlan_packet(s, buf) && vlan_rx_filter_enabled(s)) { |
| uint16_t vid = be16_to_cpup((uint16_t *)(buf + 14)); |
| uint32_t vfta = le32_to_cpup((uint32_t *)(s->mac_reg + VFTA) + |
| ((vid >> 5) & 0x7f)); |
| if ((vfta & (1 << (vid & 0x1f))) == 0) |
| return 0; |
| } |
| |
| if (rctl & E1000_RCTL_UPE) // promiscuous |
| return 1; |
| |
| if ((buf[0] & 1) && (rctl & E1000_RCTL_MPE)) // promiscuous mcast |
| return 1; |
| |
| if ((rctl & E1000_RCTL_BAM) && !memcmp(buf, bcast, sizeof bcast)) |
| return 1; |
| |
| for (rp = s->mac_reg + RA; rp < s->mac_reg + RA + 32; rp += 2) { |
| if (!(rp[1] & E1000_RAH_AV)) |
| continue; |
| ra[0] = cpu_to_le32(rp[0]); |
| ra[1] = cpu_to_le32(rp[1]); |
| if (!memcmp(buf, (uint8_t *)ra, 6)) { |
| DBGOUT(RXFILTER, |
| "unicast match[%d]: %02x:%02x:%02x:%02x:%02x:%02x\n", |
| (int)(rp - s->mac_reg - RA)/2, |
| buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]); |
| return 1; |
| } |
| } |
| DBGOUT(RXFILTER, "unicast mismatch: %02x:%02x:%02x:%02x:%02x:%02x\n", |
| buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]); |
| |
| f = mta_shift[(rctl >> E1000_RCTL_MO_SHIFT) & 3]; |
| f = (((buf[5] << 8) | buf[4]) >> f) & 0xfff; |
| if (s->mac_reg[MTA + (f >> 5)] & (1 << (f & 0x1f))) |
| return 1; |
| DBGOUT(RXFILTER, |
| "dropping, inexact filter mismatch: %02x:%02x:%02x:%02x:%02x:%02x MO %d MTA[%d] %x\n", |
| buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], |
| (rctl >> E1000_RCTL_MO_SHIFT) & 3, f >> 5, |
| s->mac_reg[MTA + (f >> 5)]); |
| |
| return 0; |
| } |
| |
| static void |
| e1000_set_link_status(NetClientState *nc) |
| { |
| E1000State *s = qemu_get_nic_opaque(nc); |
| uint32_t old_status = s->mac_reg[STATUS]; |
| |
| if (nc->link_down) { |
| e1000_link_down(s); |
| } else { |
| e1000_link_up(s); |
| } |
| |
| if (s->mac_reg[STATUS] != old_status) |
| set_ics(s, 0, E1000_ICR_LSC); |
| } |
| |
| static bool e1000_has_rxbufs(E1000State *s, size_t total_size) |
| { |
| int bufs; |
| /* Fast-path short packets */ |
| if (total_size <= s->rxbuf_size) { |
| return s->mac_reg[RDH] != s->mac_reg[RDT]; |
| } |
| if (s->mac_reg[RDH] < s->mac_reg[RDT]) { |
| bufs = s->mac_reg[RDT] - s->mac_reg[RDH]; |
| } else if (s->mac_reg[RDH] > s->mac_reg[RDT]) { |
| bufs = s->mac_reg[RDLEN] / sizeof(struct e1000_rx_desc) + |
| s->mac_reg[RDT] - s->mac_reg[RDH]; |
| } else { |
| return false; |
| } |
| return total_size <= bufs * s->rxbuf_size; |
| } |
| |
| static int |
| e1000_can_receive(NetClientState *nc) |
| { |
| E1000State *s = qemu_get_nic_opaque(nc); |
| |
| return (s->mac_reg[STATUS] & E1000_STATUS_LU) && |
| (s->mac_reg[RCTL] & E1000_RCTL_EN) && e1000_has_rxbufs(s, 1); |
| } |
| |
| static uint64_t rx_desc_base(E1000State *s) |
| { |
| uint64_t bah = s->mac_reg[RDBAH]; |
| uint64_t bal = s->mac_reg[RDBAL] & ~0xf; |
| |
| return (bah << 32) + bal; |
| } |
| |
| static ssize_t |
| e1000_receive(NetClientState *nc, const uint8_t *buf, size_t size) |
| { |
| E1000State *s = qemu_get_nic_opaque(nc); |
| PCIDevice *d = PCI_DEVICE(s); |
| struct e1000_rx_desc desc; |
| dma_addr_t base; |
| unsigned int n, rdt; |
| uint32_t rdh_start; |
| uint16_t vlan_special = 0; |
| uint8_t vlan_status = 0, vlan_offset = 0; |
| uint8_t min_buf[MIN_BUF_SIZE]; |
| size_t desc_offset; |
| size_t desc_size; |
| size_t total_size; |
| |
| if (!(s->mac_reg[STATUS] & E1000_STATUS_LU)) { |
| return -1; |
| } |
| |
| if (!(s->mac_reg[RCTL] & E1000_RCTL_EN)) { |
| return -1; |
| } |
| |
| /* Pad to minimum Ethernet frame length */ |
| if (size < sizeof(min_buf)) { |
| memcpy(min_buf, buf, size); |
| memset(&min_buf[size], 0, sizeof(min_buf) - size); |
| buf = min_buf; |
| size = sizeof(min_buf); |
| } |
| |
| /* Discard oversized packets if !LPE and !SBP. */ |
| if ((size > MAXIMUM_ETHERNET_LPE_SIZE || |
| (size > MAXIMUM_ETHERNET_VLAN_SIZE |
| && !(s->mac_reg[RCTL] & E1000_RCTL_LPE))) |
| && !(s->mac_reg[RCTL] & E1000_RCTL_SBP)) { |
| return size; |
| } |
| |
| if (!receive_filter(s, buf, size)) |
| return size; |
| |
| if (vlan_enabled(s) && is_vlan_packet(s, buf)) { |
| vlan_special = cpu_to_le16(be16_to_cpup((uint16_t *)(buf + 14))); |
| memmove((uint8_t *)buf + 4, buf, 12); |
| vlan_status = E1000_RXD_STAT_VP; |
| vlan_offset = 4; |
| size -= 4; |
| } |
| |
| rdh_start = s->mac_reg[RDH]; |
| desc_offset = 0; |
| total_size = size + fcs_len(s); |
| if (!e1000_has_rxbufs(s, total_size)) { |
| set_ics(s, 0, E1000_ICS_RXO); |
| return -1; |
| } |
| do { |
| desc_size = total_size - desc_offset; |
| if (desc_size > s->rxbuf_size) { |
| desc_size = s->rxbuf_size; |
| } |
| base = rx_desc_base(s) + sizeof(desc) * s->mac_reg[RDH]; |
| pci_dma_read(d, base, &desc, sizeof(desc)); |
| desc.special = vlan_special; |
| desc.status |= (vlan_status | E1000_RXD_STAT_DD); |
| if (desc.buffer_addr) { |
| if (desc_offset < size) { |
| size_t copy_size = size - desc_offset; |
| if (copy_size > s->rxbuf_size) { |
| copy_size = s->rxbuf_size; |
| } |
| pci_dma_write(d, le64_to_cpu(desc.buffer_addr), |
| buf + desc_offset + vlan_offset, copy_size); |
| } |
| desc_offset += desc_size; |
| desc.length = cpu_to_le16(desc_size); |
| if (desc_offset >= total_size) { |
| desc.status |= E1000_RXD_STAT_EOP | E1000_RXD_STAT_IXSM; |
| } else { |
| /* Guest zeroing out status is not a hardware requirement. |
| Clear EOP in case guest didn't do it. */ |
| desc.status &= ~E1000_RXD_STAT_EOP; |
| } |
| } else { // as per intel docs; skip descriptors with null buf addr |
| DBGOUT(RX, "Null RX descriptor!!\n"); |
| } |
| pci_dma_write(d, base, &desc, sizeof(desc)); |
| |
| if (++s->mac_reg[RDH] * sizeof(desc) >= s->mac_reg[RDLEN]) |
| s->mac_reg[RDH] = 0; |
| /* see comment in start_xmit; same here */ |
| if (s->mac_reg[RDH] == rdh_start) { |
| DBGOUT(RXERR, "RDH wraparound @%x, RDT %x, RDLEN %x\n", |
| rdh_start, s->mac_reg[RDT], s->mac_reg[RDLEN]); |
| set_ics(s, 0, E1000_ICS_RXO); |
| return -1; |
| } |
| } while (desc_offset < total_size); |
| |
| s->mac_reg[GPRC]++; |
| s->mac_reg[TPR]++; |
| /* TOR - Total Octets Received: |
| * This register includes bytes received in a packet from the <Destination |
| * Address> field through the <CRC> field, inclusively. |
| */ |
| n = s->mac_reg[TORL] + size + /* Always include FCS length. */ 4; |
| if (n < s->mac_reg[TORL]) |
| s->mac_reg[TORH]++; |
| s->mac_reg[TORL] = n; |
| |
| n = E1000_ICS_RXT0; |
| if ((rdt = s->mac_reg[RDT]) < s->mac_reg[RDH]) |
| rdt += s->mac_reg[RDLEN] / sizeof(desc); |
| if (((rdt - s->mac_reg[RDH]) * sizeof(desc)) <= s->mac_reg[RDLEN] >> |
| s->rxbuf_min_shift) |
| n |= E1000_ICS_RXDMT0; |
| |
| set_ics(s, 0, n); |
| |
| return size; |
| } |
| |
| static uint32_t |
| mac_readreg(E1000State *s, int index) |
| { |
| return s->mac_reg[index]; |
| } |
| |
| static uint32_t |
| mac_icr_read(E1000State *s, int index) |
| { |
| uint32_t ret = s->mac_reg[ICR]; |
| |
| DBGOUT(INTERRUPT, "ICR read: %x\n", ret); |
| set_interrupt_cause(s, 0, 0); |
| return ret; |
| } |
| |
| static uint32_t |
| mac_read_clr4(E1000State *s, int index) |
| { |
| uint32_t ret = s->mac_reg[index]; |
| |
| s->mac_reg[index] = 0; |
| return ret; |
| } |
| |
| static uint32_t |
| mac_read_clr8(E1000State *s, int index) |
| { |
| uint32_t ret = s->mac_reg[index]; |
| |
| s->mac_reg[index] = 0; |
| s->mac_reg[index-1] = 0; |
| return ret; |
| } |
| |
| static void |
| mac_writereg(E1000State *s, int index, uint32_t val) |
| { |
| s->mac_reg[index] = val; |
| } |
| |
| static void |
| set_rdt(E1000State *s, int index, uint32_t val) |
| { |
| s->mac_reg[index] = val & 0xffff; |
| if (e1000_has_rxbufs(s, 1)) { |
| qemu_flush_queued_packets(qemu_get_queue(s->nic)); |
| } |
| } |
| |
| static void |
| set_16bit(E1000State *s, int index, uint32_t val) |
| { |
| s->mac_reg[index] = val & 0xffff; |
| } |
| |
| static void |
| set_dlen(E1000State *s, int index, uint32_t val) |
| { |
| s->mac_reg[index] = val & 0xfff80; |
| } |
| |
| static void |
| set_tctl(E1000State *s, int index, uint32_t val) |
| { |
| s->mac_reg[index] = val; |
| s->mac_reg[TDT] &= 0xffff; |
| start_xmit(s); |
| } |
| |
| static void |
| set_icr(E1000State *s, int index, uint32_t val) |
| { |
| DBGOUT(INTERRUPT, "set_icr %x\n", val); |
| set_interrupt_cause(s, 0, s->mac_reg[ICR] & ~val); |
| } |
| |
| static void |
| set_imc(E1000State *s, int index, uint32_t val) |
| { |
| s->mac_reg[IMS] &= ~val; |
| set_ics(s, 0, 0); |
| } |
| |
| static void |
| set_ims(E1000State *s, int index, uint32_t val) |
| { |
| s->mac_reg[IMS] |= val; |
| set_ics(s, 0, 0); |
| } |
| |
| #define getreg(x) [x] = mac_readreg |
| static uint32_t (*macreg_readops[])(E1000State *, int) = { |
| getreg(PBA), getreg(RCTL), getreg(TDH), getreg(TXDCTL), |
| getreg(WUFC), getreg(TDT), getreg(CTRL), getreg(LEDCTL), |
| getreg(MANC), getreg(MDIC), getreg(SWSM), getreg(STATUS), |
| getreg(TORL), getreg(TOTL), getreg(IMS), getreg(TCTL), |
| getreg(RDH), getreg(RDT), getreg(VET), getreg(ICS), |
| getreg(TDBAL), getreg(TDBAH), getreg(RDBAH), getreg(RDBAL), |
| getreg(TDLEN), getreg(RDLEN), |
| |
| [TOTH] = mac_read_clr8, [TORH] = mac_read_clr8, [GPRC] = mac_read_clr4, |
| [GPTC] = mac_read_clr4, [TPR] = mac_read_clr4, [TPT] = mac_read_clr4, |
| [ICR] = mac_icr_read, [EECD] = get_eecd, [EERD] = flash_eerd_read, |
| [CRCERRS ... MPC] = &mac_readreg, |
| [RA ... RA+31] = &mac_readreg, |
| [MTA ... MTA+127] = &mac_readreg, |
| [VFTA ... VFTA+127] = &mac_readreg, |
| }; |
| enum { NREADOPS = ARRAY_SIZE(macreg_readops) }; |
| |
| #define putreg(x) [x] = mac_writereg |
| static void (*macreg_writeops[])(E1000State *, int, uint32_t) = { |
| putreg(PBA), putreg(EERD), putreg(SWSM), putreg(WUFC), |
| putreg(TDBAL), putreg(TDBAH), putreg(TXDCTL), putreg(RDBAH), |
| putreg(RDBAL), putreg(LEDCTL), putreg(VET), |
| [TDLEN] = set_dlen, [RDLEN] = set_dlen, [TCTL] = set_tctl, |
| [TDT] = set_tctl, [MDIC] = set_mdic, [ICS] = set_ics, |
| [TDH] = set_16bit, [RDH] = set_16bit, [RDT] = set_rdt, |
| [IMC] = set_imc, [IMS] = set_ims, [ICR] = set_icr, |
| [EECD] = set_eecd, [RCTL] = set_rx_control, [CTRL] = set_ctrl, |
| [RA ... RA+31] = &mac_writereg, |
| [MTA ... MTA+127] = &mac_writereg, |
| [VFTA ... VFTA+127] = &mac_writereg, |
| }; |
| |
| enum { NWRITEOPS = ARRAY_SIZE(macreg_writeops) }; |
| |
| static void |
| e1000_mmio_write(void *opaque, hwaddr addr, uint64_t val, |
| unsigned size) |
| { |
| E1000State *s = opaque; |
| unsigned int index = (addr & 0x1ffff) >> 2; |
| |
| if (index < NWRITEOPS && macreg_writeops[index]) { |
| macreg_writeops[index](s, index, val); |
| } else if (index < NREADOPS && macreg_readops[index]) { |
| DBGOUT(MMIO, "e1000_mmio_writel RO %x: 0x%04"PRIx64"\n", index<<2, val); |
| } else { |
| DBGOUT(UNKNOWN, "MMIO unknown write addr=0x%08x,val=0x%08"PRIx64"\n", |
| index<<2, val); |
| } |
| } |
| |
| static uint64_t |
| e1000_mmio_read(void *opaque, hwaddr addr, unsigned size) |
| { |
| E1000State *s = opaque; |
| unsigned int index = (addr & 0x1ffff) >> 2; |
| |
| if (index < NREADOPS && macreg_readops[index]) |
| { |
| return macreg_readops[index](s, index); |
| } |
| DBGOUT(UNKNOWN, "MMIO unknown read addr=0x%08x\n", index<<2); |
| return 0; |
| } |
| |
| static const MemoryRegionOps e1000_mmio_ops = { |
| .read = e1000_mmio_read, |
| .write = e1000_mmio_write, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| .impl = { |
| .min_access_size = 4, |
| .max_access_size = 4, |
| }, |
| }; |
| |
| static uint64_t e1000_io_read(void *opaque, hwaddr addr, |
| unsigned size) |
| { |
| E1000State *s = opaque; |
| |
| (void)s; |
| return 0; |
| } |
| |
| static void e1000_io_write(void *opaque, hwaddr addr, |
| uint64_t val, unsigned size) |
| { |
| E1000State *s = opaque; |
| |
| (void)s; |
| } |
| |
| static const MemoryRegionOps e1000_io_ops = { |
| .read = e1000_io_read, |
| .write = e1000_io_write, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| }; |
| |
| static bool is_version_1(void *opaque, int version_id) |
| { |
| return version_id == 1; |
| } |
| |
| static void e1000_pre_save(void *opaque) |
| { |
| E1000State *s = opaque; |
| NetClientState *nc = qemu_get_queue(s->nic); |
| |
| if (!(s->compat_flags & E1000_FLAG_AUTONEG)) { |
| return; |
| } |
| |
| /* |
| * If link is down and auto-negotiation is ongoing, complete |
| * auto-negotiation immediately. This allows is to look at |
| * MII_SR_AUTONEG_COMPLETE to infer link status on load. |
| */ |
| if (nc->link_down && |
| s->phy_reg[PHY_CTRL] & MII_CR_AUTO_NEG_EN && |
| s->phy_reg[PHY_CTRL] & MII_CR_RESTART_AUTO_NEG) { |
| s->phy_reg[PHY_STATUS] |= MII_SR_AUTONEG_COMPLETE; |
| } |
| } |
| |
| static int e1000_post_load(void *opaque, int version_id) |
| { |
| E1000State *s = opaque; |
| NetClientState *nc = qemu_get_queue(s->nic); |
| |
| /* nc.link_down can't be migrated, so infer link_down according |
| * to link status bit in mac_reg[STATUS]. |
| * Alternatively, restart link negotiation if it was in progress. */ |
| nc->link_down = (s->mac_reg[STATUS] & E1000_STATUS_LU) == 0; |
| |
| if (!(s->compat_flags & E1000_FLAG_AUTONEG)) { |
| return 0; |
| } |
| |
| if (s->phy_reg[PHY_CTRL] & MII_CR_AUTO_NEG_EN && |
| s->phy_reg[PHY_CTRL] & MII_CR_RESTART_AUTO_NEG && |
| !(s->phy_reg[PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) { |
| nc->link_down = false; |
| qemu_mod_timer(s->autoneg_timer, qemu_get_clock_ms(vm_clock) + 500); |
| } |
| |
| return 0; |
| } |
| |
| static const VMStateDescription vmstate_e1000 = { |
| .name = "e1000", |
| .version_id = 2, |
| .minimum_version_id = 1, |
| .minimum_version_id_old = 1, |
| .pre_save = e1000_pre_save, |
| .post_load = e1000_post_load, |
| .fields = (VMStateField []) { |
| VMSTATE_PCI_DEVICE(parent_obj, E1000State), |
| VMSTATE_UNUSED_TEST(is_version_1, 4), /* was instance id */ |
| VMSTATE_UNUSED(4), /* Was mmio_base. */ |
| VMSTATE_UINT32(rxbuf_size, E1000State), |
| VMSTATE_UINT32(rxbuf_min_shift, E1000State), |
| VMSTATE_UINT32(eecd_state.val_in, E1000State), |
| VMSTATE_UINT16(eecd_state.bitnum_in, E1000State), |
| VMSTATE_UINT16(eecd_state.bitnum_out, E1000State), |
| VMSTATE_UINT16(eecd_state.reading, E1000State), |
| VMSTATE_UINT32(eecd_state.old_eecd, E1000State), |
| VMSTATE_UINT8(tx.ipcss, E1000State), |
| VMSTATE_UINT8(tx.ipcso, E1000State), |
| VMSTATE_UINT16(tx.ipcse, E1000State), |
| VMSTATE_UINT8(tx.tucss, E1000State), |
| VMSTATE_UINT8(tx.tucso, E1000State), |
| VMSTATE_UINT16(tx.tucse, E1000State), |
| VMSTATE_UINT32(tx.paylen, E1000State), |
| VMSTATE_UINT8(tx.hdr_len, E1000State), |
| VMSTATE_UINT16(tx.mss, E1000State), |
| VMSTATE_UINT16(tx.size, E1000State), |
| VMSTATE_UINT16(tx.tso_frames, E1000State), |
| VMSTATE_UINT8(tx.sum_needed, E1000State), |
| VMSTATE_INT8(tx.ip, E1000State), |
| VMSTATE_INT8(tx.tcp, E1000State), |
| VMSTATE_BUFFER(tx.header, E1000State), |
| VMSTATE_BUFFER(tx.data, E1000State), |
| VMSTATE_UINT16_ARRAY(eeprom_data, E1000State, 64), |
| VMSTATE_UINT16_ARRAY(phy_reg, E1000State, 0x20), |
| VMSTATE_UINT32(mac_reg[CTRL], E1000State), |
| VMSTATE_UINT32(mac_reg[EECD], E1000State), |
| VMSTATE_UINT32(mac_reg[EERD], E1000State), |
| VMSTATE_UINT32(mac_reg[GPRC], E1000State), |
| VMSTATE_UINT32(mac_reg[GPTC], E1000State), |
| VMSTATE_UINT32(mac_reg[ICR], E1000State), |
| VMSTATE_UINT32(mac_reg[ICS], E1000State), |
| VMSTATE_UINT32(mac_reg[IMC], E1000State), |
| VMSTATE_UINT32(mac_reg[IMS], E1000State), |
| VMSTATE_UINT32(mac_reg[LEDCTL], E1000State), |
| VMSTATE_UINT32(mac_reg[MANC], E1000State), |
| VMSTATE_UINT32(mac_reg[MDIC], E1000State), |
| VMSTATE_UINT32(mac_reg[MPC], E1000State), |
| VMSTATE_UINT32(mac_reg[PBA], E1000State), |
| VMSTATE_UINT32(mac_reg[RCTL], E1000State), |
| VMSTATE_UINT32(mac_reg[RDBAH], E1000State), |
| VMSTATE_UINT32(mac_reg[RDBAL], E1000State), |
| VMSTATE_UINT32(mac_reg[RDH], E1000State), |
| VMSTATE_UINT32(mac_reg[RDLEN], E1000State), |
| VMSTATE_UINT32(mac_reg[RDT], E1000State), |
| VMSTATE_UINT32(mac_reg[STATUS], E1000State), |
| VMSTATE_UINT32(mac_reg[SWSM], E1000State), |
| VMSTATE_UINT32(mac_reg[TCTL], E1000State), |
| VMSTATE_UINT32(mac_reg[TDBAH], E1000State), |
| VMSTATE_UINT32(mac_reg[TDBAL], E1000State), |
| VMSTATE_UINT32(mac_reg[TDH], E1000State), |
| VMSTATE_UINT32(mac_reg[TDLEN], E1000State), |
| VMSTATE_UINT32(mac_reg[TDT], E1000State), |
| VMSTATE_UINT32(mac_reg[TORH], E1000State), |
| VMSTATE_UINT32(mac_reg[TORL], E1000State), |
| VMSTATE_UINT32(mac_reg[TOTH], E1000State), |
| VMSTATE_UINT32(mac_reg[TOTL], E1000State), |
| VMSTATE_UINT32(mac_reg[TPR], E1000State), |
| VMSTATE_UINT32(mac_reg[TPT], E1000State), |
| VMSTATE_UINT32(mac_reg[TXDCTL], E1000State), |
| VMSTATE_UINT32(mac_reg[WUFC], E1000State), |
| VMSTATE_UINT32(mac_reg[VET], E1000State), |
| VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, RA, 32), |
| VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, MTA, 128), |
| VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, VFTA, 128), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| static const uint16_t e1000_eeprom_template[64] = { |
| 0x0000, 0x0000, 0x0000, 0x0000, 0xffff, 0x0000, 0x0000, 0x0000, |
| 0x3000, 0x1000, 0x6403, E1000_DEVID, 0x8086, E1000_DEVID, 0x8086, 0x3040, |
| 0x0008, 0x2000, 0x7e14, 0x0048, 0x1000, 0x00d8, 0x0000, 0x2700, |
| 0x6cc9, 0x3150, 0x0722, 0x040b, 0x0984, 0x0000, 0xc000, 0x0706, |
| 0x1008, 0x0000, 0x0f04, 0x7fff, 0x4d01, 0xffff, 0xffff, 0xffff, |
| 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, |
| 0x0100, 0x4000, 0x121c, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, |
| 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0x0000, |
| }; |
| |
| /* PCI interface */ |
| |
| static void |
| e1000_mmio_setup(E1000State *d) |
| { |
| int i; |
| const uint32_t excluded_regs[] = { |
| E1000_MDIC, E1000_ICR, E1000_ICS, E1000_IMS, |
| E1000_IMC, E1000_TCTL, E1000_TDT, PNPMMIO_SIZE |
| }; |
| |
| memory_region_init_io(&d->mmio, OBJECT(d), &e1000_mmio_ops, d, |
| "e1000-mmio", PNPMMIO_SIZE); |
| memory_region_add_coalescing(&d->mmio, 0, excluded_regs[0]); |
| for (i = 0; excluded_regs[i] != PNPMMIO_SIZE; i++) |
| memory_region_add_coalescing(&d->mmio, excluded_regs[i] + 4, |
| excluded_regs[i+1] - excluded_regs[i] - 4); |
| memory_region_init_io(&d->io, OBJECT(d), &e1000_io_ops, d, "e1000-io", IOPORT_SIZE); |
| } |
| |
| static void |
| e1000_cleanup(NetClientState *nc) |
| { |
| E1000State *s = qemu_get_nic_opaque(nc); |
| |
| s->nic = NULL; |
| } |
| |
| static void |
| pci_e1000_uninit(PCIDevice *dev) |
| { |
| E1000State *d = E1000(dev); |
| |
| qemu_del_timer(d->autoneg_timer); |
| qemu_free_timer(d->autoneg_timer); |
| memory_region_destroy(&d->mmio); |
| memory_region_destroy(&d->io); |
| qemu_del_nic(d->nic); |
| } |
| |
| static NetClientInfo net_e1000_info = { |
| .type = NET_CLIENT_OPTIONS_KIND_NIC, |
| .size = sizeof(NICState), |
| .can_receive = e1000_can_receive, |
| .receive = e1000_receive, |
| .cleanup = e1000_cleanup, |
| .link_status_changed = e1000_set_link_status, |
| }; |
| |
| static int pci_e1000_init(PCIDevice *pci_dev) |
| { |
| DeviceState *dev = DEVICE(pci_dev); |
| E1000State *d = E1000(pci_dev); |
| uint8_t *pci_conf; |
| uint16_t checksum = 0; |
| int i; |
| uint8_t *macaddr; |
| |
| pci_conf = pci_dev->config; |
| |
| /* TODO: RST# value should be 0, PCI spec 6.2.4 */ |
| pci_conf[PCI_CACHE_LINE_SIZE] = 0x10; |
| |
| pci_conf[PCI_INTERRUPT_PIN] = 1; /* interrupt pin A */ |
| |
| e1000_mmio_setup(d); |
| |
| pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &d->mmio); |
| |
| pci_register_bar(pci_dev, 1, PCI_BASE_ADDRESS_SPACE_IO, &d->io); |
| |
| memmove(d->eeprom_data, e1000_eeprom_template, |
| sizeof e1000_eeprom_template); |
| qemu_macaddr_default_if_unset(&d->conf.macaddr); |
| macaddr = d->conf.macaddr.a; |
| for (i = 0; i < 3; i++) |
| d->eeprom_data[i] = (macaddr[2*i+1]<<8) | macaddr[2*i]; |
| for (i = 0; i < EEPROM_CHECKSUM_REG; i++) |
| checksum += d->eeprom_data[i]; |
| checksum = (uint16_t) EEPROM_SUM - checksum; |
| d->eeprom_data[EEPROM_CHECKSUM_REG] = checksum; |
| |
| d->nic = qemu_new_nic(&net_e1000_info, &d->conf, |
| object_get_typename(OBJECT(d)), dev->id, d); |
| |
| qemu_format_nic_info_str(qemu_get_queue(d->nic), macaddr); |
| |
| add_boot_device_path(d->conf.bootindex, dev, "/ethernet-phy@0"); |
| |
| d->autoneg_timer = qemu_new_timer_ms(vm_clock, e1000_autoneg_timer, d); |
| |
| return 0; |
| } |
| |
| static void qdev_e1000_reset(DeviceState *dev) |
| { |
| E1000State *d = E1000(dev); |
| e1000_reset(d); |
| } |
| |
| static Property e1000_properties[] = { |
| DEFINE_NIC_PROPERTIES(E1000State, conf), |
| DEFINE_PROP_BIT("autonegotiation", E1000State, |
| compat_flags, E1000_FLAG_AUTONEG_BIT, true), |
| DEFINE_PROP_END_OF_LIST(), |
| }; |
| |
| static void e1000_class_init(ObjectClass *klass, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); |
| |
| k->init = pci_e1000_init; |
| k->exit = pci_e1000_uninit; |
| k->romfile = "efi-e1000.rom"; |
| k->vendor_id = PCI_VENDOR_ID_INTEL; |
| k->device_id = E1000_DEVID; |
| k->revision = 0x03; |
| k->class_id = PCI_CLASS_NETWORK_ETHERNET; |
| dc->desc = "Intel Gigabit Ethernet"; |
| dc->reset = qdev_e1000_reset; |
| dc->vmsd = &vmstate_e1000; |
| dc->props = e1000_properties; |
| } |
| |
| static const TypeInfo e1000_info = { |
| .name = TYPE_E1000, |
| .parent = TYPE_PCI_DEVICE, |
| .instance_size = sizeof(E1000State), |
| .class_init = e1000_class_init, |
| }; |
| |
| static void e1000_register_types(void) |
| { |
| type_register_static(&e1000_info); |
| } |
| |
| type_init(e1000_register_types) |