| /* |
| * QEMU Sparc SLAVIO timer controller emulation |
| * |
| * Copyright (c) 2003-2005 Fabrice Bellard |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| #include "hw.h" |
| #include "sun4m.h" |
| #include "qemu-timer.h" |
| |
| //#define DEBUG_TIMER |
| |
| #ifdef DEBUG_TIMER |
| #define DPRINTF(fmt, args...) \ |
| do { printf("TIMER: " fmt , ##args); } while (0) |
| #else |
| #define DPRINTF(fmt, args...) |
| #endif |
| |
| /* |
| * Registers of hardware timer in sun4m. |
| * |
| * This is the timer/counter part of chip STP2001 (Slave I/O), also |
| * produced as NCR89C105. See |
| * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt |
| * |
| * The 31-bit counter is incremented every 500ns by bit 9. Bits 8..0 |
| * are zero. Bit 31 is 1 when count has been reached. |
| * |
| * Per-CPU timers interrupt local CPU, system timer uses normal |
| * interrupt routing. |
| * |
| */ |
| |
| #define MAX_CPUS 16 |
| |
| typedef struct SLAVIO_TIMERState { |
| qemu_irq irq; |
| ptimer_state *timer; |
| uint32_t count, counthigh, reached; |
| uint64_t limit; |
| // processor only |
| int running; |
| struct SLAVIO_TIMERState *master; |
| int slave_index; |
| // system only |
| struct SLAVIO_TIMERState *slave[MAX_CPUS]; |
| uint32_t slave_mode; |
| } SLAVIO_TIMERState; |
| |
| #define TIMER_MAXADDR 0x1f |
| #define SYS_TIMER_SIZE 0x14 |
| #define CPU_TIMER_SIZE 0x10 |
| |
| #define SYS_TIMER_OFFSET 0x10000ULL |
| #define CPU_TIMER_OFFSET(cpu) (0x1000ULL * cpu) |
| |
| #define TIMER_LIMIT 0 |
| #define TIMER_COUNTER 1 |
| #define TIMER_COUNTER_NORST 2 |
| #define TIMER_STATUS 3 |
| #define TIMER_MODE 4 |
| |
| #define TIMER_COUNT_MASK32 0xfffffe00 |
| #define TIMER_LIMIT_MASK32 0x7fffffff |
| #define TIMER_MAX_COUNT64 0x7ffffffffffffe00ULL |
| #define TIMER_MAX_COUNT32 0x7ffffe00ULL |
| #define TIMER_REACHED 0x80000000 |
| #define TIMER_PERIOD 500ULL // 500ns |
| #define LIMIT_TO_PERIODS(l) ((l) >> 9) |
| #define PERIODS_TO_LIMIT(l) ((l) << 9) |
| |
| static int slavio_timer_is_user(SLAVIO_TIMERState *s) |
| { |
| return s->master && (s->master->slave_mode & (1 << s->slave_index)); |
| } |
| |
| // Update count, set irq, update expire_time |
| // Convert from ptimer countdown units |
| static void slavio_timer_get_out(SLAVIO_TIMERState *s) |
| { |
| uint64_t count; |
| |
| count = s->limit - PERIODS_TO_LIMIT(ptimer_get_count(s->timer)); |
| DPRINTF("get_out: limit %" PRIx64 " count %x%08x\n", s->limit, |
| s->counthigh, s->count); |
| s->count = count & TIMER_COUNT_MASK32; |
| s->counthigh = count >> 32; |
| } |
| |
| // timer callback |
| static void slavio_timer_irq(void *opaque) |
| { |
| SLAVIO_TIMERState *s = opaque; |
| |
| slavio_timer_get_out(s); |
| DPRINTF("callback: count %x%08x\n", s->counthigh, s->count); |
| if (!slavio_timer_is_user(s)) { |
| s->reached = TIMER_REACHED; |
| qemu_irq_raise(s->irq); |
| } |
| } |
| |
| static uint32_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr) |
| { |
| SLAVIO_TIMERState *s = opaque; |
| uint32_t saddr, ret; |
| |
| saddr = (addr & TIMER_MAXADDR) >> 2; |
| switch (saddr) { |
| case TIMER_LIMIT: |
| // read limit (system counter mode) or read most signifying |
| // part of counter (user mode) |
| if (slavio_timer_is_user(s)) { |
| // read user timer MSW |
| slavio_timer_get_out(s); |
| ret = s->counthigh; |
| } else { |
| // read limit |
| // clear irq |
| qemu_irq_lower(s->irq); |
| s->reached = 0; |
| ret = s->limit & TIMER_LIMIT_MASK32; |
| } |
| break; |
| case TIMER_COUNTER: |
| // read counter and reached bit (system mode) or read lsbits |
| // of counter (user mode) |
| slavio_timer_get_out(s); |
| if (slavio_timer_is_user(s)) // read user timer LSW |
| ret = s->count & TIMER_COUNT_MASK32; |
| else // read limit |
| ret = (s->count & TIMER_MAX_COUNT32) | s->reached; |
| break; |
| case TIMER_STATUS: |
| // only available in processor counter/timer |
| // read start/stop status |
| ret = s->running; |
| break; |
| case TIMER_MODE: |
| // only available in system counter |
| // read user/system mode |
| ret = s->slave_mode; |
| break; |
| default: |
| DPRINTF("invalid read address " TARGET_FMT_plx "\n", addr); |
| ret = 0; |
| break; |
| } |
| DPRINTF("read " TARGET_FMT_plx " = %08x\n", addr, ret); |
| |
| return ret; |
| } |
| |
| static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr, |
| uint32_t val) |
| { |
| SLAVIO_TIMERState *s = opaque; |
| uint32_t saddr; |
| int reload = 0; |
| |
| DPRINTF("write " TARGET_FMT_plx " %08x\n", addr, val); |
| saddr = (addr & TIMER_MAXADDR) >> 2; |
| switch (saddr) { |
| case TIMER_LIMIT: |
| if (slavio_timer_is_user(s)) { |
| // set user counter MSW, reset counter |
| qemu_irq_lower(s->irq); |
| s->limit = TIMER_MAX_COUNT64; |
| DPRINTF("processor %d user timer reset\n", s->slave_index); |
| ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(s->limit), 1); |
| } else { |
| // set limit, reset counter |
| qemu_irq_lower(s->irq); |
| s->limit = val & TIMER_MAX_COUNT32; |
| if (!s->limit) |
| s->limit = TIMER_MAX_COUNT32; |
| ptimer_set_limit(s->timer, s->limit >> 9, 1); |
| } |
| break; |
| case TIMER_COUNTER: |
| if (slavio_timer_is_user(s)) { |
| // set user counter LSW, reset counter |
| qemu_irq_lower(s->irq); |
| s->limit = TIMER_MAX_COUNT64; |
| DPRINTF("processor %d user timer reset\n", s->slave_index); |
| ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(s->limit), 1); |
| } else |
| DPRINTF("not user timer\n"); |
| break; |
| case TIMER_COUNTER_NORST: |
| // set limit without resetting counter |
| s->limit = val & TIMER_MAX_COUNT32; |
| if (!s->limit) |
| s->limit = TIMER_MAX_COUNT32; |
| ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(s->limit), reload); |
| break; |
| case TIMER_STATUS: |
| if (slavio_timer_is_user(s)) { |
| // start/stop user counter |
| if ((val & 1) && !s->running) { |
| DPRINTF("processor %d user timer started\n", s->slave_index); |
| ptimer_run(s->timer, 0); |
| s->running = 1; |
| } else if (!(val & 1) && s->running) { |
| DPRINTF("processor %d user timer stopped\n", s->slave_index); |
| ptimer_stop(s->timer); |
| s->running = 0; |
| } |
| } |
| break; |
| case TIMER_MODE: |
| if (s->master == NULL) { |
| unsigned int i; |
| |
| for (i = 0; i < MAX_CPUS; i++) { |
| if (val & (1 << i)) { |
| qemu_irq_lower(s->slave[i]->irq); |
| s->slave[i]->limit = -1ULL; |
| } |
| if ((val & (1 << i)) != (s->slave_mode & (1 << i))) { |
| ptimer_stop(s->slave[i]->timer); |
| ptimer_set_limit(s->slave[i]->timer, |
| LIMIT_TO_PERIODS(s->slave[i]->limit), 1); |
| DPRINTF("processor %d timer changed\n", |
| s->slave[i]->slave_index); |
| ptimer_run(s->slave[i]->timer, 0); |
| } |
| } |
| s->slave_mode = val & ((1 << MAX_CPUS) - 1); |
| } else |
| DPRINTF("not system timer\n"); |
| break; |
| default: |
| DPRINTF("invalid write address " TARGET_FMT_plx "\n", addr); |
| break; |
| } |
| } |
| |
| static CPUReadMemoryFunc *slavio_timer_mem_read[3] = { |
| slavio_timer_mem_readl, |
| slavio_timer_mem_readl, |
| slavio_timer_mem_readl, |
| }; |
| |
| static CPUWriteMemoryFunc *slavio_timer_mem_write[3] = { |
| slavio_timer_mem_writel, |
| slavio_timer_mem_writel, |
| slavio_timer_mem_writel, |
| }; |
| |
| static void slavio_timer_save(QEMUFile *f, void *opaque) |
| { |
| SLAVIO_TIMERState *s = opaque; |
| |
| qemu_put_be64s(f, &s->limit); |
| qemu_put_be32s(f, &s->count); |
| qemu_put_be32s(f, &s->counthigh); |
| qemu_put_be32(f, 0); // Was irq |
| qemu_put_be32s(f, &s->reached); |
| qemu_put_be32s(f, &s->running); |
| qemu_put_be32s(f, 0); // Was mode |
| qemu_put_ptimer(f, s->timer); |
| } |
| |
| static int slavio_timer_load(QEMUFile *f, void *opaque, int version_id) |
| { |
| SLAVIO_TIMERState *s = opaque; |
| uint32_t tmp; |
| |
| if (version_id != 2) |
| return -EINVAL; |
| |
| qemu_get_be64s(f, &s->limit); |
| qemu_get_be32s(f, &s->count); |
| qemu_get_be32s(f, &s->counthigh); |
| qemu_get_be32s(f, &tmp); // Was irq |
| qemu_get_be32s(f, &s->reached); |
| qemu_get_be32s(f, &s->running); |
| qemu_get_be32s(f, &tmp); // Was mode |
| qemu_get_ptimer(f, s->timer); |
| |
| return 0; |
| } |
| |
| static void slavio_timer_reset(void *opaque) |
| { |
| SLAVIO_TIMERState *s = opaque; |
| |
| if (slavio_timer_is_user(s)) |
| s->limit = TIMER_MAX_COUNT64; |
| else |
| s->limit = TIMER_MAX_COUNT32; |
| s->count = 0; |
| s->reached = 0; |
| ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(s->limit), 1); |
| ptimer_run(s->timer, 0); |
| s->running = 1; |
| qemu_irq_lower(s->irq); |
| } |
| |
| static SLAVIO_TIMERState *slavio_timer_init(target_phys_addr_t addr, |
| qemu_irq irq, |
| SLAVIO_TIMERState *master, |
| int slave_index) |
| { |
| int slavio_timer_io_memory; |
| SLAVIO_TIMERState *s; |
| QEMUBH *bh; |
| |
| s = qemu_mallocz(sizeof(SLAVIO_TIMERState)); |
| if (!s) |
| return s; |
| s->irq = irq; |
| s->master = master; |
| s->slave_index = slave_index; |
| bh = qemu_bh_new(slavio_timer_irq, s); |
| s->timer = ptimer_init(bh); |
| ptimer_set_period(s->timer, TIMER_PERIOD); |
| |
| slavio_timer_io_memory = cpu_register_io_memory(0, slavio_timer_mem_read, |
| slavio_timer_mem_write, s); |
| if (master) |
| cpu_register_physical_memory(addr, CPU_TIMER_SIZE, |
| slavio_timer_io_memory); |
| else |
| cpu_register_physical_memory(addr, SYS_TIMER_SIZE, |
| slavio_timer_io_memory); |
| register_savevm("slavio_timer", addr, 2, slavio_timer_save, |
| slavio_timer_load, s); |
| qemu_register_reset(slavio_timer_reset, s); |
| slavio_timer_reset(s); |
| |
| return s; |
| } |
| |
| void slavio_timer_init_all(target_phys_addr_t base, qemu_irq master_irq, |
| qemu_irq *cpu_irqs) |
| { |
| SLAVIO_TIMERState *master; |
| unsigned int i; |
| |
| master = slavio_timer_init(base + SYS_TIMER_OFFSET, master_irq, NULL, 0); |
| |
| for (i = 0; i < MAX_CPUS; i++) { |
| master->slave[i] = slavio_timer_init(base + (target_phys_addr_t) |
| CPU_TIMER_OFFSET(i), |
| cpu_irqs[i], master, i); |
| } |
| } |