| /* |
| * JSON lexer |
| * |
| * Copyright IBM, Corp. 2009 |
| * |
| * Authors: |
| * Anthony Liguori <aliguori@us.ibm.com> |
| * |
| * This work is licensed under the terms of the GNU LGPL, version 2.1 or later. |
| * See the COPYING.LIB file in the top-level directory. |
| * |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "json-parser-int.h" |
| |
| #define MAX_TOKEN_SIZE (64ULL << 20) |
| |
| /* |
| * From RFC 8259 "The JavaScript Object Notation (JSON) Data |
| * Interchange Format", with [comments in brackets]: |
| * |
| * The set of tokens includes six structural characters, strings, |
| * numbers, and three literal names. |
| * |
| * These are the six structural characters: |
| * |
| * begin-array = ws %x5B ws ; [ left square bracket |
| * begin-object = ws %x7B ws ; { left curly bracket |
| * end-array = ws %x5D ws ; ] right square bracket |
| * end-object = ws %x7D ws ; } right curly bracket |
| * name-separator = ws %x3A ws ; : colon |
| * value-separator = ws %x2C ws ; , comma |
| * |
| * Insignificant whitespace is allowed before or after any of the six |
| * structural characters. |
| * [This lexer accepts it before or after any token, which is actually |
| * the same, as the grammar always has structural characters between |
| * other tokens.] |
| * |
| * ws = *( |
| * %x20 / ; Space |
| * %x09 / ; Horizontal tab |
| * %x0A / ; Line feed or New line |
| * %x0D ) ; Carriage return |
| * |
| * [...] three literal names: |
| * false null true |
| * [This lexer accepts [a-z]+, and leaves rejecting unknown literal |
| * names to the parser.] |
| * |
| * [Numbers:] |
| * |
| * number = [ minus ] int [ frac ] [ exp ] |
| * decimal-point = %x2E ; . |
| * digit1-9 = %x31-39 ; 1-9 |
| * e = %x65 / %x45 ; e E |
| * exp = e [ minus / plus ] 1*DIGIT |
| * frac = decimal-point 1*DIGIT |
| * int = zero / ( digit1-9 *DIGIT ) |
| * minus = %x2D ; - |
| * plus = %x2B ; + |
| * zero = %x30 ; 0 |
| * |
| * [Strings:] |
| * string = quotation-mark *char quotation-mark |
| * |
| * char = unescaped / |
| * escape ( |
| * %x22 / ; " quotation mark U+0022 |
| * %x5C / ; \ reverse solidus U+005C |
| * %x2F / ; / solidus U+002F |
| * %x62 / ; b backspace U+0008 |
| * %x66 / ; f form feed U+000C |
| * %x6E / ; n line feed U+000A |
| * %x72 / ; r carriage return U+000D |
| * %x74 / ; t tab U+0009 |
| * %x75 4HEXDIG ) ; uXXXX U+XXXX |
| * escape = %x5C ; \ |
| * quotation-mark = %x22 ; " |
| * unescaped = %x20-21 / %x23-5B / %x5D-10FFFF |
| * [This lexer accepts any non-control character after escape, and |
| * leaves rejecting invalid ones to the parser.] |
| * |
| * |
| * Extensions over RFC 8259: |
| * - Extra escape sequence in strings: |
| * 0x27 (apostrophe) is recognized after escape, too |
| * - Single-quoted strings: |
| * Like double-quoted strings, except they're delimited by %x27 |
| * (apostrophe) instead of %x22 (quotation mark), and can't contain |
| * unescaped apostrophe, but can contain unescaped quotation mark. |
| * - Interpolation, if enabled: |
| * The lexer accepts %[A-Za-z0-9]*, and leaves rejecting invalid |
| * ones to the parser. |
| * |
| * Note: |
| * - Input must be encoded in modified UTF-8. |
| * - Decoding and validating is left to the parser. |
| */ |
| |
| enum json_lexer_state { |
| IN_ERROR = 0, /* must really be 0, see json_lexer[] */ |
| IN_DQ_STRING_ESCAPE, |
| IN_DQ_STRING, |
| IN_SQ_STRING_ESCAPE, |
| IN_SQ_STRING, |
| IN_ZERO, |
| IN_EXP_DIGITS, |
| IN_EXP_SIGN, |
| IN_EXP_E, |
| IN_MANTISSA, |
| IN_MANTISSA_DIGITS, |
| IN_DIGITS, |
| IN_SIGN, |
| IN_KEYWORD, |
| IN_INTERP, |
| IN_WHITESPACE, |
| IN_START, |
| IN_START_INTERP, /* must be IN_START + 1 */ |
| }; |
| |
| QEMU_BUILD_BUG_ON((int)JSON_MIN <= (int)IN_START_INTERP); |
| QEMU_BUILD_BUG_ON(IN_START_INTERP != IN_START + 1); |
| |
| #define TERMINAL(state) [0 ... 0x7F] = (state) |
| |
| /* Return whether TERMINAL is a terminal state and the transition to it |
| from OLD_STATE required lookahead. This happens whenever the table |
| below uses the TERMINAL macro. */ |
| #define TERMINAL_NEEDED_LOOKAHEAD(old_state, terminal) \ |
| (terminal != IN_ERROR && json_lexer[(old_state)][0] == (terminal)) |
| |
| static const uint8_t json_lexer[][256] = { |
| /* Relies on default initialization to IN_ERROR! */ |
| |
| /* double quote string */ |
| [IN_DQ_STRING_ESCAPE] = { |
| [0x20 ... 0xFD] = IN_DQ_STRING, |
| }, |
| [IN_DQ_STRING] = { |
| [0x20 ... 0xFD] = IN_DQ_STRING, |
| ['\\'] = IN_DQ_STRING_ESCAPE, |
| ['"'] = JSON_STRING, |
| }, |
| |
| /* single quote string */ |
| [IN_SQ_STRING_ESCAPE] = { |
| [0x20 ... 0xFD] = IN_SQ_STRING, |
| }, |
| [IN_SQ_STRING] = { |
| [0x20 ... 0xFD] = IN_SQ_STRING, |
| ['\\'] = IN_SQ_STRING_ESCAPE, |
| ['\''] = JSON_STRING, |
| }, |
| |
| /* Zero */ |
| [IN_ZERO] = { |
| TERMINAL(JSON_INTEGER), |
| ['0' ... '9'] = IN_ERROR, |
| ['.'] = IN_MANTISSA, |
| }, |
| |
| /* Float */ |
| [IN_EXP_DIGITS] = { |
| TERMINAL(JSON_FLOAT), |
| ['0' ... '9'] = IN_EXP_DIGITS, |
| }, |
| |
| [IN_EXP_SIGN] = { |
| ['0' ... '9'] = IN_EXP_DIGITS, |
| }, |
| |
| [IN_EXP_E] = { |
| ['-'] = IN_EXP_SIGN, |
| ['+'] = IN_EXP_SIGN, |
| ['0' ... '9'] = IN_EXP_DIGITS, |
| }, |
| |
| [IN_MANTISSA_DIGITS] = { |
| TERMINAL(JSON_FLOAT), |
| ['0' ... '9'] = IN_MANTISSA_DIGITS, |
| ['e'] = IN_EXP_E, |
| ['E'] = IN_EXP_E, |
| }, |
| |
| [IN_MANTISSA] = { |
| ['0' ... '9'] = IN_MANTISSA_DIGITS, |
| }, |
| |
| /* Number */ |
| [IN_DIGITS] = { |
| TERMINAL(JSON_INTEGER), |
| ['0' ... '9'] = IN_DIGITS, |
| ['e'] = IN_EXP_E, |
| ['E'] = IN_EXP_E, |
| ['.'] = IN_MANTISSA, |
| }, |
| |
| [IN_SIGN] = { |
| ['0'] = IN_ZERO, |
| ['1' ... '9'] = IN_DIGITS, |
| }, |
| |
| /* keywords */ |
| [IN_KEYWORD] = { |
| TERMINAL(JSON_KEYWORD), |
| ['a' ... 'z'] = IN_KEYWORD, |
| }, |
| |
| /* whitespace */ |
| [IN_WHITESPACE] = { |
| TERMINAL(JSON_SKIP), |
| [' '] = IN_WHITESPACE, |
| ['\t'] = IN_WHITESPACE, |
| ['\r'] = IN_WHITESPACE, |
| ['\n'] = IN_WHITESPACE, |
| }, |
| |
| /* interpolation */ |
| [IN_INTERP] = { |
| TERMINAL(JSON_INTERP), |
| ['A' ... 'Z'] = IN_INTERP, |
| ['a' ... 'z'] = IN_INTERP, |
| ['0' ... '9'] = IN_INTERP, |
| }, |
| |
| /* |
| * Two start states: |
| * - IN_START recognizes JSON tokens with our string extensions |
| * - IN_START_INTERP additionally recognizes interpolation. |
| */ |
| [IN_START ... IN_START_INTERP] = { |
| ['"'] = IN_DQ_STRING, |
| ['\''] = IN_SQ_STRING, |
| ['0'] = IN_ZERO, |
| ['1' ... '9'] = IN_DIGITS, |
| ['-'] = IN_SIGN, |
| ['{'] = JSON_LCURLY, |
| ['}'] = JSON_RCURLY, |
| ['['] = JSON_LSQUARE, |
| [']'] = JSON_RSQUARE, |
| [','] = JSON_COMMA, |
| [':'] = JSON_COLON, |
| ['a' ... 'z'] = IN_KEYWORD, |
| [' '] = IN_WHITESPACE, |
| ['\t'] = IN_WHITESPACE, |
| ['\r'] = IN_WHITESPACE, |
| ['\n'] = IN_WHITESPACE, |
| }, |
| [IN_START_INTERP]['%'] = IN_INTERP, |
| }; |
| |
| void json_lexer_init(JSONLexer *lexer, bool enable_interpolation) |
| { |
| lexer->start_state = lexer->state = enable_interpolation |
| ? IN_START_INTERP : IN_START; |
| lexer->token = g_string_sized_new(3); |
| lexer->x = lexer->y = 0; |
| } |
| |
| static void json_lexer_feed_char(JSONLexer *lexer, char ch, bool flush) |
| { |
| int char_consumed, new_state; |
| |
| lexer->x++; |
| if (ch == '\n') { |
| lexer->x = 0; |
| lexer->y++; |
| } |
| |
| do { |
| assert(lexer->state <= ARRAY_SIZE(json_lexer)); |
| new_state = json_lexer[lexer->state][(uint8_t)ch]; |
| char_consumed = !TERMINAL_NEEDED_LOOKAHEAD(lexer->state, new_state); |
| if (char_consumed && !flush) { |
| g_string_append_c(lexer->token, ch); |
| } |
| |
| switch (new_state) { |
| case JSON_LCURLY: |
| case JSON_RCURLY: |
| case JSON_LSQUARE: |
| case JSON_RSQUARE: |
| case JSON_COLON: |
| case JSON_COMMA: |
| case JSON_INTERP: |
| case JSON_INTEGER: |
| case JSON_FLOAT: |
| case JSON_KEYWORD: |
| case JSON_STRING: |
| json_message_process_token(lexer, lexer->token, new_state, |
| lexer->x, lexer->y); |
| /* fall through */ |
| case JSON_SKIP: |
| g_string_truncate(lexer->token, 0); |
| new_state = lexer->start_state; |
| break; |
| case IN_ERROR: |
| /* XXX: To avoid having previous bad input leaving the parser in an |
| * unresponsive state where we consume unpredictable amounts of |
| * subsequent "good" input, percolate this error state up to the |
| * parser by emitting a JSON_ERROR token, then reset lexer state. |
| * |
| * Also note that this handling is required for reliable channel |
| * negotiation between QMP and the guest agent, since chr(0xFF) |
| * is placed at the beginning of certain events to ensure proper |
| * delivery when the channel is in an unknown state. chr(0xFF) is |
| * never a valid ASCII/UTF-8 sequence, so this should reliably |
| * induce an error/flush state. |
| */ |
| json_message_process_token(lexer, lexer->token, JSON_ERROR, |
| lexer->x, lexer->y); |
| g_string_truncate(lexer->token, 0); |
| lexer->state = lexer->start_state; |
| return; |
| default: |
| break; |
| } |
| lexer->state = new_state; |
| } while (!char_consumed && !flush); |
| |
| /* Do not let a single token grow to an arbitrarily large size, |
| * this is a security consideration. |
| */ |
| if (lexer->token->len > MAX_TOKEN_SIZE) { |
| json_message_process_token(lexer, lexer->token, lexer->state, |
| lexer->x, lexer->y); |
| g_string_truncate(lexer->token, 0); |
| lexer->state = lexer->start_state; |
| } |
| } |
| |
| void json_lexer_feed(JSONLexer *lexer, const char *buffer, size_t size) |
| { |
| size_t i; |
| |
| for (i = 0; i < size; i++) { |
| json_lexer_feed_char(lexer, buffer[i], false); |
| } |
| } |
| |
| void json_lexer_flush(JSONLexer *lexer) |
| { |
| if (lexer->state != lexer->start_state) { |
| json_lexer_feed_char(lexer, 0, true); |
| } |
| json_message_process_token(lexer, lexer->token, JSON_END_OF_INPUT, |
| lexer->x, lexer->y); |
| } |
| |
| void json_lexer_destroy(JSONLexer *lexer) |
| { |
| g_string_free(lexer->token, true); |
| } |