blob: 9ffc7e01179a10b0af7c7610abf083bb4b1767dd [file] [log] [blame]
/*
* ASPEED AST2400 SMC Controller (SPI Flash Only)
*
* Copyright (C) 2016 IBM Corp.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "hw/sysbus.h"
#include "migration/vmstate.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "qemu/error-report.h"
#include "qapi/error.h"
#include "exec/address-spaces.h"
#include "hw/irq.h"
#include "hw/qdev-properties.h"
#include "hw/ssi/aspeed_smc.h"
/* CE Type Setting Register */
#define R_CONF (0x00 / 4)
#define CONF_LEGACY_DISABLE (1 << 31)
#define CONF_ENABLE_W4 20
#define CONF_ENABLE_W3 19
#define CONF_ENABLE_W2 18
#define CONF_ENABLE_W1 17
#define CONF_ENABLE_W0 16
#define CONF_FLASH_TYPE4 8
#define CONF_FLASH_TYPE3 6
#define CONF_FLASH_TYPE2 4
#define CONF_FLASH_TYPE1 2
#define CONF_FLASH_TYPE0 0
#define CONF_FLASH_TYPE_NOR 0x0
#define CONF_FLASH_TYPE_NAND 0x1
#define CONF_FLASH_TYPE_SPI 0x2
/* CE Control Register */
#define R_CE_CTRL (0x04 / 4)
#define CTRL_EXTENDED4 4 /* 32 bit addressing for SPI */
#define CTRL_EXTENDED3 3 /* 32 bit addressing for SPI */
#define CTRL_EXTENDED2 2 /* 32 bit addressing for SPI */
#define CTRL_EXTENDED1 1 /* 32 bit addressing for SPI */
#define CTRL_EXTENDED0 0 /* 32 bit addressing for SPI */
/* Interrupt Control and Status Register */
#define R_INTR_CTRL (0x08 / 4)
#define INTR_CTRL_DMA_STATUS (1 << 11)
#define INTR_CTRL_CMD_ABORT_STATUS (1 << 10)
#define INTR_CTRL_WRITE_PROTECT_STATUS (1 << 9)
#define INTR_CTRL_DMA_EN (1 << 3)
#define INTR_CTRL_CMD_ABORT_EN (1 << 2)
#define INTR_CTRL_WRITE_PROTECT_EN (1 << 1)
/* CEx Control Register */
#define R_CTRL0 (0x10 / 4)
#define CTRL_IO_DUAL_DATA (1 << 29)
#define CTRL_IO_DUAL_ADDR_DATA (1 << 28) /* Includes dummies */
#define CTRL_CMD_SHIFT 16
#define CTRL_CMD_MASK 0xff
#define CTRL_DUMMY_HIGH_SHIFT 14
#define CTRL_AST2400_SPI_4BYTE (1 << 13)
#define CE_CTRL_CLOCK_FREQ_SHIFT 8
#define CE_CTRL_CLOCK_FREQ_MASK 0xf
#define CE_CTRL_CLOCK_FREQ(div) \
(((div) & CE_CTRL_CLOCK_FREQ_MASK) << CE_CTRL_CLOCK_FREQ_SHIFT)
#define CTRL_DUMMY_LOW_SHIFT 6 /* 2 bits [7:6] */
#define CTRL_CE_STOP_ACTIVE (1 << 2)
#define CTRL_CMD_MODE_MASK 0x3
#define CTRL_READMODE 0x0
#define CTRL_FREADMODE 0x1
#define CTRL_WRITEMODE 0x2
#define CTRL_USERMODE 0x3
#define R_CTRL1 (0x14 / 4)
#define R_CTRL2 (0x18 / 4)
#define R_CTRL3 (0x1C / 4)
#define R_CTRL4 (0x20 / 4)
/* CEx Segment Address Register */
#define R_SEG_ADDR0 (0x30 / 4)
#define SEG_END_SHIFT 24 /* 8MB units */
#define SEG_END_MASK 0xff
#define SEG_START_SHIFT 16 /* address bit [A29-A23] */
#define SEG_START_MASK 0xff
#define R_SEG_ADDR1 (0x34 / 4)
#define R_SEG_ADDR2 (0x38 / 4)
#define R_SEG_ADDR3 (0x3C / 4)
#define R_SEG_ADDR4 (0x40 / 4)
/* Misc Control Register #1 */
#define R_MISC_CTRL1 (0x50 / 4)
/* SPI dummy cycle data */
#define R_DUMMY_DATA (0x54 / 4)
/* DMA Control/Status Register */
#define R_DMA_CTRL (0x80 / 4)
#define DMA_CTRL_DELAY_MASK 0xf
#define DMA_CTRL_DELAY_SHIFT 8
#define DMA_CTRL_FREQ_MASK 0xf
#define DMA_CTRL_FREQ_SHIFT 4
#define DMA_CTRL_CALIB (1 << 3)
#define DMA_CTRL_CKSUM (1 << 2)
#define DMA_CTRL_WRITE (1 << 1)
#define DMA_CTRL_ENABLE (1 << 0)
/* DMA Flash Side Address */
#define R_DMA_FLASH_ADDR (0x84 / 4)
/* DMA DRAM Side Address */
#define R_DMA_DRAM_ADDR (0x88 / 4)
/* DMA Length Register */
#define R_DMA_LEN (0x8C / 4)
/* Checksum Calculation Result */
#define R_DMA_CHECKSUM (0x90 / 4)
/* Misc Control Register #2 */
#define R_TIMINGS (0x94 / 4)
/* SPI controller registers and bits */
#define R_SPI_CONF (0x00 / 4)
#define SPI_CONF_ENABLE_W0 0
#define R_SPI_CTRL0 (0x4 / 4)
#define R_SPI_MISC_CTRL (0x10 / 4)
#define R_SPI_TIMINGS (0x14 / 4)
#define ASPEED_SMC_R_SPI_MAX (0x20 / 4)
#define ASPEED_SMC_R_SMC_MAX (0x20 / 4)
#define ASPEED_SOC_SMC_FLASH_BASE 0x10000000
#define ASPEED_SOC_FMC_FLASH_BASE 0x20000000
#define ASPEED_SOC_SPI_FLASH_BASE 0x30000000
#define ASPEED_SOC_SPI2_FLASH_BASE 0x38000000
/*
* DMA DRAM addresses should be 4 bytes aligned and the valid address
* range is 0x40000000 - 0x5FFFFFFF (AST2400)
* 0x80000000 - 0xBFFFFFFF (AST2500)
*
* DMA flash addresses should be 4 bytes aligned and the valid address
* range is 0x20000000 - 0x2FFFFFFF.
*
* DMA length is from 4 bytes to 32MB
* 0: 4 bytes
* 0x7FFFFF: 32M bytes
*/
#define DMA_DRAM_ADDR(s, val) ((s)->sdram_base | \
((val) & (s)->ctrl->dma_dram_mask))
#define DMA_FLASH_ADDR(s, val) ((s)->ctrl->flash_window_base | \
((val) & (s)->ctrl->dma_flash_mask))
#define DMA_LENGTH(val) ((val) & 0x01FFFFFC)
/* Flash opcodes. */
#define SPI_OP_READ 0x03 /* Read data bytes (low frequency) */
#define SNOOP_OFF 0xFF
#define SNOOP_START 0x0
/*
* Default segments mapping addresses and size for each slave per
* controller. These can be changed when board is initialized with the
* Segment Address Registers.
*/
static const AspeedSegments aspeed_segments_legacy[] = {
{ 0x10000000, 32 * 1024 * 1024 },
};
static const AspeedSegments aspeed_segments_fmc[] = {
{ 0x20000000, 64 * 1024 * 1024 }, /* start address is readonly */
{ 0x24000000, 32 * 1024 * 1024 },
{ 0x26000000, 32 * 1024 * 1024 },
{ 0x28000000, 32 * 1024 * 1024 },
{ 0x2A000000, 32 * 1024 * 1024 }
};
static const AspeedSegments aspeed_segments_spi[] = {
{ 0x30000000, 64 * 1024 * 1024 },
};
static const AspeedSegments aspeed_segments_ast2500_fmc[] = {
{ 0x20000000, 128 * 1024 * 1024 }, /* start address is readonly */
{ 0x28000000, 32 * 1024 * 1024 },
{ 0x2A000000, 32 * 1024 * 1024 },
};
static const AspeedSegments aspeed_segments_ast2500_spi1[] = {
{ 0x30000000, 32 * 1024 * 1024 }, /* start address is readonly */
{ 0x32000000, 96 * 1024 * 1024 }, /* end address is readonly */
};
static const AspeedSegments aspeed_segments_ast2500_spi2[] = {
{ 0x38000000, 32 * 1024 * 1024 }, /* start address is readonly */
{ 0x3A000000, 96 * 1024 * 1024 }, /* end address is readonly */
};
static const AspeedSMCController controllers[] = {
{
.name = "aspeed.smc-ast2400",
.r_conf = R_CONF,
.r_ce_ctrl = R_CE_CTRL,
.r_ctrl0 = R_CTRL0,
.r_timings = R_TIMINGS,
.conf_enable_w0 = CONF_ENABLE_W0,
.max_slaves = 5,
.segments = aspeed_segments_legacy,
.flash_window_base = ASPEED_SOC_SMC_FLASH_BASE,
.flash_window_size = 0x6000000,
.has_dma = false,
.nregs = ASPEED_SMC_R_SMC_MAX,
}, {
.name = "aspeed.fmc-ast2400",
.r_conf = R_CONF,
.r_ce_ctrl = R_CE_CTRL,
.r_ctrl0 = R_CTRL0,
.r_timings = R_TIMINGS,
.conf_enable_w0 = CONF_ENABLE_W0,
.max_slaves = 5,
.segments = aspeed_segments_fmc,
.flash_window_base = ASPEED_SOC_FMC_FLASH_BASE,
.flash_window_size = 0x10000000,
.has_dma = true,
.dma_flash_mask = 0x0FFFFFFC,
.dma_dram_mask = 0x1FFFFFFC,
.nregs = ASPEED_SMC_R_MAX,
}, {
.name = "aspeed.spi1-ast2400",
.r_conf = R_SPI_CONF,
.r_ce_ctrl = 0xff,
.r_ctrl0 = R_SPI_CTRL0,
.r_timings = R_SPI_TIMINGS,
.conf_enable_w0 = SPI_CONF_ENABLE_W0,
.max_slaves = 1,
.segments = aspeed_segments_spi,
.flash_window_base = ASPEED_SOC_SPI_FLASH_BASE,
.flash_window_size = 0x10000000,
.has_dma = false,
.nregs = ASPEED_SMC_R_SPI_MAX,
}, {
.name = "aspeed.fmc-ast2500",
.r_conf = R_CONF,
.r_ce_ctrl = R_CE_CTRL,
.r_ctrl0 = R_CTRL0,
.r_timings = R_TIMINGS,
.conf_enable_w0 = CONF_ENABLE_W0,
.max_slaves = 3,
.segments = aspeed_segments_ast2500_fmc,
.flash_window_base = ASPEED_SOC_FMC_FLASH_BASE,
.flash_window_size = 0x10000000,
.has_dma = true,
.dma_flash_mask = 0x0FFFFFFC,
.dma_dram_mask = 0x3FFFFFFC,
.nregs = ASPEED_SMC_R_MAX,
}, {
.name = "aspeed.spi1-ast2500",
.r_conf = R_CONF,
.r_ce_ctrl = R_CE_CTRL,
.r_ctrl0 = R_CTRL0,
.r_timings = R_TIMINGS,
.conf_enable_w0 = CONF_ENABLE_W0,
.max_slaves = 2,
.segments = aspeed_segments_ast2500_spi1,
.flash_window_base = ASPEED_SOC_SPI_FLASH_BASE,
.flash_window_size = 0x8000000,
.has_dma = false,
.nregs = ASPEED_SMC_R_MAX,
}, {
.name = "aspeed.spi2-ast2500",
.r_conf = R_CONF,
.r_ce_ctrl = R_CE_CTRL,
.r_ctrl0 = R_CTRL0,
.r_timings = R_TIMINGS,
.conf_enable_w0 = CONF_ENABLE_W0,
.max_slaves = 2,
.segments = aspeed_segments_ast2500_spi2,
.flash_window_base = ASPEED_SOC_SPI2_FLASH_BASE,
.flash_window_size = 0x8000000,
.has_dma = false,
.nregs = ASPEED_SMC_R_MAX,
},
};
/*
* The Segment Register uses a 8MB unit to encode the start address
* and the end address of the mapping window of a flash SPI slave :
*
* | byte 1 | byte 2 | byte 3 | byte 4 |
* +--------+--------+--------+--------+
* | end | start | 0 | 0 |
*
*/
static inline uint32_t aspeed_smc_segment_to_reg(const AspeedSegments *seg)
{
uint32_t reg = 0;
reg |= ((seg->addr >> 23) & SEG_START_MASK) << SEG_START_SHIFT;
reg |= (((seg->addr + seg->size) >> 23) & SEG_END_MASK) << SEG_END_SHIFT;
return reg;
}
static inline void aspeed_smc_reg_to_segment(uint32_t reg, AspeedSegments *seg)
{
seg->addr = ((reg >> SEG_START_SHIFT) & SEG_START_MASK) << 23;
seg->size = (((reg >> SEG_END_SHIFT) & SEG_END_MASK) << 23) - seg->addr;
}
static bool aspeed_smc_flash_overlap(const AspeedSMCState *s,
const AspeedSegments *new,
int cs)
{
AspeedSegments seg;
int i;
for (i = 0; i < s->ctrl->max_slaves; i++) {
if (i == cs) {
continue;
}
aspeed_smc_reg_to_segment(s->regs[R_SEG_ADDR0 + i], &seg);
if (new->addr + new->size > seg.addr &&
new->addr < seg.addr + seg.size) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: new segment CS%d [ 0x%"
HWADDR_PRIx" - 0x%"HWADDR_PRIx" ] overlaps with "
"CS%d [ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]\n",
s->ctrl->name, cs, new->addr, new->addr + new->size,
i, seg.addr, seg.addr + seg.size);
return true;
}
}
return false;
}
static void aspeed_smc_flash_set_segment(AspeedSMCState *s, int cs,
uint64_t new)
{
AspeedSMCFlash *fl = &s->flashes[cs];
AspeedSegments seg;
aspeed_smc_reg_to_segment(new, &seg);
/* The start address of CS0 is read-only */
if (cs == 0 && seg.addr != s->ctrl->flash_window_base) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Tried to change CS0 start address to 0x%"
HWADDR_PRIx "\n", s->ctrl->name, seg.addr);
seg.addr = s->ctrl->flash_window_base;
new = aspeed_smc_segment_to_reg(&seg);
}
/*
* The end address of the AST2500 spi controllers is also
* read-only.
*/
if ((s->ctrl->segments == aspeed_segments_ast2500_spi1 ||
s->ctrl->segments == aspeed_segments_ast2500_spi2) &&
cs == s->ctrl->max_slaves &&
seg.addr + seg.size != s->ctrl->segments[cs].addr +
s->ctrl->segments[cs].size) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Tried to change CS%d end address to 0x%"
HWADDR_PRIx "\n", s->ctrl->name, cs, seg.addr + seg.size);
seg.size = s->ctrl->segments[cs].addr + s->ctrl->segments[cs].size -
seg.addr;
new = aspeed_smc_segment_to_reg(&seg);
}
/* Keep the segment in the overall flash window */
if (seg.addr + seg.size <= s->ctrl->flash_window_base ||
seg.addr > s->ctrl->flash_window_base + s->ctrl->flash_window_size) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: new segment for CS%d is invalid : "
"[ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]\n",
s->ctrl->name, cs, seg.addr, seg.addr + seg.size);
return;
}
/* Check start address vs. alignment */
if (seg.size && !QEMU_IS_ALIGNED(seg.addr, seg.size)) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: new segment for CS%d is not "
"aligned : [ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]\n",
s->ctrl->name, cs, seg.addr, seg.addr + seg.size);
}
/* And segments should not overlap (in the specs) */
aspeed_smc_flash_overlap(s, &seg, cs);
/* All should be fine now to move the region */
memory_region_transaction_begin();
memory_region_set_size(&fl->mmio, seg.size);
memory_region_set_address(&fl->mmio, seg.addr - s->ctrl->flash_window_base);
memory_region_set_enabled(&fl->mmio, true);
memory_region_transaction_commit();
s->regs[R_SEG_ADDR0 + cs] = new;
}
static uint64_t aspeed_smc_flash_default_read(void *opaque, hwaddr addr,
unsigned size)
{
qemu_log_mask(LOG_GUEST_ERROR, "%s: To 0x%" HWADDR_PRIx " of size %u"
PRIx64 "\n", __func__, addr, size);
return 0;
}
static void aspeed_smc_flash_default_write(void *opaque, hwaddr addr,
uint64_t data, unsigned size)
{
qemu_log_mask(LOG_GUEST_ERROR, "%s: To 0x%" HWADDR_PRIx " of size %u: 0x%"
PRIx64 "\n", __func__, addr, size, data);
}
static const MemoryRegionOps aspeed_smc_flash_default_ops = {
.read = aspeed_smc_flash_default_read,
.write = aspeed_smc_flash_default_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.valid = {
.min_access_size = 1,
.max_access_size = 4,
},
};
static inline int aspeed_smc_flash_mode(const AspeedSMCFlash *fl)
{
const AspeedSMCState *s = fl->controller;
return s->regs[s->r_ctrl0 + fl->id] & CTRL_CMD_MODE_MASK;
}
static inline bool aspeed_smc_is_writable(const AspeedSMCFlash *fl)
{
const AspeedSMCState *s = fl->controller;
return s->regs[s->r_conf] & (1 << (s->conf_enable_w0 + fl->id));
}
static inline int aspeed_smc_flash_cmd(const AspeedSMCFlash *fl)
{
const AspeedSMCState *s = fl->controller;
int cmd = (s->regs[s->r_ctrl0 + fl->id] >> CTRL_CMD_SHIFT) & CTRL_CMD_MASK;
/* In read mode, the default SPI command is READ (0x3). In other
* modes, the command should necessarily be defined */
if (aspeed_smc_flash_mode(fl) == CTRL_READMODE) {
cmd = SPI_OP_READ;
}
if (!cmd) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: no command defined for mode %d\n",
__func__, aspeed_smc_flash_mode(fl));
}
return cmd;
}
static inline int aspeed_smc_flash_is_4byte(const AspeedSMCFlash *fl)
{
const AspeedSMCState *s = fl->controller;
if (s->ctrl->segments == aspeed_segments_spi) {
return s->regs[s->r_ctrl0] & CTRL_AST2400_SPI_4BYTE;
} else {
return s->regs[s->r_ce_ctrl] & (1 << (CTRL_EXTENDED0 + fl->id));
}
}
static inline bool aspeed_smc_is_ce_stop_active(const AspeedSMCFlash *fl)
{
const AspeedSMCState *s = fl->controller;
return s->regs[s->r_ctrl0 + fl->id] & CTRL_CE_STOP_ACTIVE;
}
static void aspeed_smc_flash_select(AspeedSMCFlash *fl)
{
AspeedSMCState *s = fl->controller;
s->regs[s->r_ctrl0 + fl->id] &= ~CTRL_CE_STOP_ACTIVE;
qemu_set_irq(s->cs_lines[fl->id], aspeed_smc_is_ce_stop_active(fl));
}
static void aspeed_smc_flash_unselect(AspeedSMCFlash *fl)
{
AspeedSMCState *s = fl->controller;
s->regs[s->r_ctrl0 + fl->id] |= CTRL_CE_STOP_ACTIVE;
qemu_set_irq(s->cs_lines[fl->id], aspeed_smc_is_ce_stop_active(fl));
}
static uint32_t aspeed_smc_check_segment_addr(const AspeedSMCFlash *fl,
uint32_t addr)
{
const AspeedSMCState *s = fl->controller;
AspeedSegments seg;
aspeed_smc_reg_to_segment(s->regs[R_SEG_ADDR0 + fl->id], &seg);
if ((addr % seg.size) != addr) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: invalid address 0x%08x for CS%d segment : "
"[ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]\n",
s->ctrl->name, addr, fl->id, seg.addr,
seg.addr + seg.size);
addr %= seg.size;
}
return addr;
}
static int aspeed_smc_flash_dummies(const AspeedSMCFlash *fl)
{
const AspeedSMCState *s = fl->controller;
uint32_t r_ctrl0 = s->regs[s->r_ctrl0 + fl->id];
uint32_t dummy_high = (r_ctrl0 >> CTRL_DUMMY_HIGH_SHIFT) & 0x1;
uint32_t dummy_low = (r_ctrl0 >> CTRL_DUMMY_LOW_SHIFT) & 0x3;
uint32_t dummies = ((dummy_high << 2) | dummy_low) * 8;
if (r_ctrl0 & CTRL_IO_DUAL_ADDR_DATA) {
dummies /= 2;
}
return dummies;
}
static void aspeed_smc_flash_setup(AspeedSMCFlash *fl, uint32_t addr)
{
const AspeedSMCState *s = fl->controller;
uint8_t cmd = aspeed_smc_flash_cmd(fl);
int i;
/* Flash access can not exceed CS segment */
addr = aspeed_smc_check_segment_addr(fl, addr);
ssi_transfer(s->spi, cmd);
if (aspeed_smc_flash_is_4byte(fl)) {
ssi_transfer(s->spi, (addr >> 24) & 0xff);
}
ssi_transfer(s->spi, (addr >> 16) & 0xff);
ssi_transfer(s->spi, (addr >> 8) & 0xff);
ssi_transfer(s->spi, (addr & 0xff));
/*
* Use fake transfers to model dummy bytes. The value should
* be configured to some non-zero value in fast read mode and
* zero in read mode. But, as the HW allows inconsistent
* settings, let's check for fast read mode.
*/
if (aspeed_smc_flash_mode(fl) == CTRL_FREADMODE) {
for (i = 0; i < aspeed_smc_flash_dummies(fl); i++) {
ssi_transfer(fl->controller->spi, s->regs[R_DUMMY_DATA] & 0xff);
}
}
}
static uint64_t aspeed_smc_flash_read(void *opaque, hwaddr addr, unsigned size)
{
AspeedSMCFlash *fl = opaque;
AspeedSMCState *s = fl->controller;
uint64_t ret = 0;
int i;
switch (aspeed_smc_flash_mode(fl)) {
case CTRL_USERMODE:
for (i = 0; i < size; i++) {
ret |= ssi_transfer(s->spi, 0x0) << (8 * i);
}
break;
case CTRL_READMODE:
case CTRL_FREADMODE:
aspeed_smc_flash_select(fl);
aspeed_smc_flash_setup(fl, addr);
for (i = 0; i < size; i++) {
ret |= ssi_transfer(s->spi, 0x0) << (8 * i);
}
aspeed_smc_flash_unselect(fl);
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid flash mode %d\n",
__func__, aspeed_smc_flash_mode(fl));
}
return ret;
}
/*
* TODO (clg@kaod.org): stolen from xilinx_spips.c. Should move to a
* common include header.
*/
typedef enum {
READ = 0x3, READ_4 = 0x13,
FAST_READ = 0xb, FAST_READ_4 = 0x0c,
DOR = 0x3b, DOR_4 = 0x3c,
QOR = 0x6b, QOR_4 = 0x6c,
DIOR = 0xbb, DIOR_4 = 0xbc,
QIOR = 0xeb, QIOR_4 = 0xec,
PP = 0x2, PP_4 = 0x12,
DPP = 0xa2,
QPP = 0x32, QPP_4 = 0x34,
} FlashCMD;
static int aspeed_smc_num_dummies(uint8_t command)
{
switch (command) { /* check for dummies */
case READ: /* no dummy bytes/cycles */
case PP:
case DPP:
case QPP:
case READ_4:
case PP_4:
case QPP_4:
return 0;
case FAST_READ:
case DOR:
case QOR:
case DOR_4:
case QOR_4:
return 1;
case DIOR:
case FAST_READ_4:
case DIOR_4:
return 2;
case QIOR:
case QIOR_4:
return 4;
default:
return -1;
}
}
static bool aspeed_smc_do_snoop(AspeedSMCFlash *fl, uint64_t data,
unsigned size)
{
AspeedSMCState *s = fl->controller;
uint8_t addr_width = aspeed_smc_flash_is_4byte(fl) ? 4 : 3;
if (s->snoop_index == SNOOP_OFF) {
return false; /* Do nothing */
} else if (s->snoop_index == SNOOP_START) {
uint8_t cmd = data & 0xff;
int ndummies = aspeed_smc_num_dummies(cmd);
/*
* No dummy cycles are expected with the current command. Turn
* off snooping and let the transfer proceed normally.
*/
if (ndummies <= 0) {
s->snoop_index = SNOOP_OFF;
return false;
}
s->snoop_dummies = ndummies * 8;
} else if (s->snoop_index >= addr_width + 1) {
/* The SPI transfer has reached the dummy cycles sequence */
for (; s->snoop_dummies; s->snoop_dummies--) {
ssi_transfer(s->spi, s->regs[R_DUMMY_DATA] & 0xff);
}
/* If no more dummy cycles are expected, turn off snooping */
if (!s->snoop_dummies) {
s->snoop_index = SNOOP_OFF;
} else {
s->snoop_index += size;
}
/*
* Dummy cycles have been faked already. Ignore the current
* SPI transfer
*/
return true;
}
s->snoop_index += size;
return false;
}
static void aspeed_smc_flash_write(void *opaque, hwaddr addr, uint64_t data,
unsigned size)
{
AspeedSMCFlash *fl = opaque;
AspeedSMCState *s = fl->controller;
int i;
if (!aspeed_smc_is_writable(fl)) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: flash is not writable at 0x%"
HWADDR_PRIx "\n", __func__, addr);
return;
}
switch (aspeed_smc_flash_mode(fl)) {
case CTRL_USERMODE:
if (aspeed_smc_do_snoop(fl, data, size)) {
break;
}
for (i = 0; i < size; i++) {
ssi_transfer(s->spi, (data >> (8 * i)) & 0xff);
}
break;
case CTRL_WRITEMODE:
aspeed_smc_flash_select(fl);
aspeed_smc_flash_setup(fl, addr);
for (i = 0; i < size; i++) {
ssi_transfer(s->spi, (data >> (8 * i)) & 0xff);
}
aspeed_smc_flash_unselect(fl);
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid flash mode %d\n",
__func__, aspeed_smc_flash_mode(fl));
}
}
static const MemoryRegionOps aspeed_smc_flash_ops = {
.read = aspeed_smc_flash_read,
.write = aspeed_smc_flash_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.valid = {
.min_access_size = 1,
.max_access_size = 4,
},
};
static void aspeed_smc_flash_update_cs(AspeedSMCFlash *fl)
{
AspeedSMCState *s = fl->controller;
s->snoop_index = aspeed_smc_is_ce_stop_active(fl) ? SNOOP_OFF : SNOOP_START;
qemu_set_irq(s->cs_lines[fl->id], aspeed_smc_is_ce_stop_active(fl));
}
static void aspeed_smc_reset(DeviceState *d)
{
AspeedSMCState *s = ASPEED_SMC(d);
int i;
memset(s->regs, 0, sizeof s->regs);
/* Unselect all slaves */
for (i = 0; i < s->num_cs; ++i) {
s->regs[s->r_ctrl0 + i] |= CTRL_CE_STOP_ACTIVE;
qemu_set_irq(s->cs_lines[i], true);
}
/* setup default segment register values for all */
for (i = 0; i < s->ctrl->max_slaves; ++i) {
s->regs[R_SEG_ADDR0 + i] =
aspeed_smc_segment_to_reg(&s->ctrl->segments[i]);
}
/* HW strapping flash type for FMC controllers */
if (s->ctrl->segments == aspeed_segments_ast2500_fmc) {
/* flash type is fixed to SPI for CE0 and CE1 */
s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0);
s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE1);
}
/* HW strapping for AST2400 FMC controllers (SCU70). Let's use the
* configuration of the palmetto-bmc machine */
if (s->ctrl->segments == aspeed_segments_fmc) {
s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0);
}
s->snoop_index = SNOOP_OFF;
s->snoop_dummies = 0;
}
static uint64_t aspeed_smc_read(void *opaque, hwaddr addr, unsigned int size)
{
AspeedSMCState *s = ASPEED_SMC(opaque);
addr >>= 2;
if (addr == s->r_conf ||
addr == s->r_timings ||
addr == s->r_ce_ctrl ||
addr == R_INTR_CTRL ||
addr == R_DUMMY_DATA ||
(s->ctrl->has_dma && addr == R_DMA_CTRL) ||
(s->ctrl->has_dma && addr == R_DMA_FLASH_ADDR) ||
(s->ctrl->has_dma && addr == R_DMA_DRAM_ADDR) ||
(s->ctrl->has_dma && addr == R_DMA_LEN) ||
(s->ctrl->has_dma && addr == R_DMA_CHECKSUM) ||
(addr >= R_SEG_ADDR0 && addr < R_SEG_ADDR0 + s->ctrl->max_slaves) ||
(addr >= s->r_ctrl0 && addr < s->r_ctrl0 + s->ctrl->max_slaves)) {
return s->regs[addr];
} else {
qemu_log_mask(LOG_UNIMP, "%s: not implemented: 0x%" HWADDR_PRIx "\n",
__func__, addr);
return -1;
}
}
static uint8_t aspeed_smc_hclk_divisor(uint8_t hclk_mask)
{
/* HCLK/1 .. HCLK/16 */
const uint8_t hclk_divisors[] = {
15, 7, 14, 6, 13, 5, 12, 4, 11, 3, 10, 2, 9, 1, 8, 0
};
int i;
for (i = 0; i < ARRAY_SIZE(hclk_divisors); i++) {
if (hclk_mask == hclk_divisors[i]) {
return i + 1;
}
}
qemu_log_mask(LOG_GUEST_ERROR, "invalid HCLK mask %x", hclk_mask);
return 0;
}
/*
* When doing calibration, the SPI clock rate in the CE0 Control
* Register and the read delay cycles in the Read Timing Compensation
* Register are set using bit[11:4] of the DMA Control Register.
*/
static void aspeed_smc_dma_calibration(AspeedSMCState *s)
{
uint8_t delay =
(s->regs[R_DMA_CTRL] >> DMA_CTRL_DELAY_SHIFT) & DMA_CTRL_DELAY_MASK;
uint8_t hclk_mask =
(s->regs[R_DMA_CTRL] >> DMA_CTRL_FREQ_SHIFT) & DMA_CTRL_FREQ_MASK;
uint8_t hclk_div = aspeed_smc_hclk_divisor(hclk_mask);
uint32_t hclk_shift = (hclk_div - 1) << 2;
uint8_t cs;
/*
* The Read Timing Compensation Register values apply to all CS on
* the SPI bus and only HCLK/1 - HCLK/5 can have tunable delays
*/
if (hclk_div && hclk_div < 6) {
s->regs[s->r_timings] &= ~(0xf << hclk_shift);
s->regs[s->r_timings] |= delay << hclk_shift;
}
/*
* TODO: compute the CS from the DMA address and the segment
* registers. This is not really a problem for now because the
* Timing Register values apply to all CS and software uses CS0 to
* do calibration.
*/
cs = 0;
s->regs[s->r_ctrl0 + cs] &=
~(CE_CTRL_CLOCK_FREQ_MASK << CE_CTRL_CLOCK_FREQ_SHIFT);
s->regs[s->r_ctrl0 + cs] |= CE_CTRL_CLOCK_FREQ(hclk_div);
}
/*
* Emulate read errors in the DMA Checksum Register for high
* frequencies and optimistic settings of the Read Timing Compensation
* Register. This will help in tuning the SPI timing calibration
* algorithm.
*/
static bool aspeed_smc_inject_read_failure(AspeedSMCState *s)
{
uint8_t delay =
(s->regs[R_DMA_CTRL] >> DMA_CTRL_DELAY_SHIFT) & DMA_CTRL_DELAY_MASK;
uint8_t hclk_mask =
(s->regs[R_DMA_CTRL] >> DMA_CTRL_FREQ_SHIFT) & DMA_CTRL_FREQ_MASK;
/*
* Typical values of a palmetto-bmc machine.
*/
switch (aspeed_smc_hclk_divisor(hclk_mask)) {
case 4 ... 16:
return false;
case 3: /* at least one HCLK cycle delay */
return (delay & 0x7) < 1;
case 2: /* at least two HCLK cycle delay */
return (delay & 0x7) < 2;
case 1: /* (> 100MHz) is above the max freq of the controller */
return true;
default:
g_assert_not_reached();
}
}
/*
* Accumulate the result of the reads to provide a checksum that will
* be used to validate the read timing settings.
*/
static void aspeed_smc_dma_checksum(AspeedSMCState *s)
{
MemTxResult result;
uint32_t data;
if (s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: invalid direction for DMA checksum\n", __func__);
return;
}
if (s->regs[R_DMA_CTRL] & DMA_CTRL_CALIB) {
aspeed_smc_dma_calibration(s);
}
while (s->regs[R_DMA_LEN]) {
data = address_space_ldl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
MEMTXATTRS_UNSPECIFIED, &result);
if (result != MEMTX_OK) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: Flash read failed @%08x\n",
__func__, s->regs[R_DMA_FLASH_ADDR]);
return;
}
/*
* When the DMA is on-going, the DMA registers are updated
* with the current working addresses and length.
*/
s->regs[R_DMA_CHECKSUM] += data;
s->regs[R_DMA_FLASH_ADDR] += 4;
s->regs[R_DMA_LEN] -= 4;
}
if (s->inject_failure && aspeed_smc_inject_read_failure(s)) {
s->regs[R_DMA_CHECKSUM] = 0xbadc0de;
}
}
static void aspeed_smc_dma_rw(AspeedSMCState *s)
{
MemTxResult result;
uint32_t data;
while (s->regs[R_DMA_LEN]) {
if (s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE) {
data = address_space_ldl_le(&s->dram_as, s->regs[R_DMA_DRAM_ADDR],
MEMTXATTRS_UNSPECIFIED, &result);
if (result != MEMTX_OK) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: DRAM read failed @%08x\n",
__func__, s->regs[R_DMA_DRAM_ADDR]);
return;
}
address_space_stl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
data, MEMTXATTRS_UNSPECIFIED, &result);
if (result != MEMTX_OK) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: Flash write failed @%08x\n",
__func__, s->regs[R_DMA_FLASH_ADDR]);
return;
}
} else {
data = address_space_ldl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
MEMTXATTRS_UNSPECIFIED, &result);
if (result != MEMTX_OK) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: Flash read failed @%08x\n",
__func__, s->regs[R_DMA_FLASH_ADDR]);
return;
}
address_space_stl_le(&s->dram_as, s->regs[R_DMA_DRAM_ADDR],
data, MEMTXATTRS_UNSPECIFIED, &result);
if (result != MEMTX_OK) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: DRAM write failed @%08x\n",
__func__, s->regs[R_DMA_DRAM_ADDR]);
return;
}
}
/*
* When the DMA is on-going, the DMA registers are updated
* with the current working addresses and length.
*/
s->regs[R_DMA_FLASH_ADDR] += 4;
s->regs[R_DMA_DRAM_ADDR] += 4;
s->regs[R_DMA_LEN] -= 4;
s->regs[R_DMA_CHECKSUM] += data;
}
}
static void aspeed_smc_dma_stop(AspeedSMCState *s)
{
/*
* When the DMA is disabled, INTR_CTRL_DMA_STATUS=0 means the
* engine is idle
*/
s->regs[R_INTR_CTRL] &= ~INTR_CTRL_DMA_STATUS;
s->regs[R_DMA_CHECKSUM] = 0;
/*
* Lower the DMA irq in any case. The IRQ control register could
* have been cleared before disabling the DMA.
*/
qemu_irq_lower(s->irq);
}
/*
* When INTR_CTRL_DMA_STATUS=1, the DMA has completed and a new DMA
* can start even if the result of the previous was not collected.
*/
static bool aspeed_smc_dma_in_progress(AspeedSMCState *s)
{
return s->regs[R_DMA_CTRL] & DMA_CTRL_ENABLE &&
!(s->regs[R_INTR_CTRL] & INTR_CTRL_DMA_STATUS);
}
static void aspeed_smc_dma_done(AspeedSMCState *s)
{
s->regs[R_INTR_CTRL] |= INTR_CTRL_DMA_STATUS;
if (s->regs[R_INTR_CTRL] & INTR_CTRL_DMA_EN) {
qemu_irq_raise(s->irq);
}
}
static void aspeed_smc_dma_ctrl(AspeedSMCState *s, uint64_t dma_ctrl)
{
if (!(dma_ctrl & DMA_CTRL_ENABLE)) {
s->regs[R_DMA_CTRL] = dma_ctrl;
aspeed_smc_dma_stop(s);
return;
}
if (aspeed_smc_dma_in_progress(s)) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: DMA in progress\n", __func__);
return;
}
s->regs[R_DMA_CTRL] = dma_ctrl;
if (s->regs[R_DMA_CTRL] & DMA_CTRL_CKSUM) {
aspeed_smc_dma_checksum(s);
} else {
aspeed_smc_dma_rw(s);
}
aspeed_smc_dma_done(s);
}
static void aspeed_smc_write(void *opaque, hwaddr addr, uint64_t data,
unsigned int size)
{
AspeedSMCState *s = ASPEED_SMC(opaque);
uint32_t value = data;
addr >>= 2;
if (addr == s->r_conf ||
addr == s->r_timings ||
addr == s->r_ce_ctrl) {
s->regs[addr] = value;
} else if (addr >= s->r_ctrl0 && addr < s->r_ctrl0 + s->num_cs) {
int cs = addr - s->r_ctrl0;
s->regs[addr] = value;
aspeed_smc_flash_update_cs(&s->flashes[cs]);
} else if (addr >= R_SEG_ADDR0 &&
addr < R_SEG_ADDR0 + s->ctrl->max_slaves) {
int cs = addr - R_SEG_ADDR0;
if (value != s->regs[R_SEG_ADDR0 + cs]) {
aspeed_smc_flash_set_segment(s, cs, value);
}
} else if (addr == R_DUMMY_DATA) {
s->regs[addr] = value & 0xff;
} else if (addr == R_INTR_CTRL) {
s->regs[addr] = value;
} else if (s->ctrl->has_dma && addr == R_DMA_CTRL) {
aspeed_smc_dma_ctrl(s, value);
} else if (s->ctrl->has_dma && addr == R_DMA_DRAM_ADDR) {
s->regs[addr] = DMA_DRAM_ADDR(s, value);
} else if (s->ctrl->has_dma && addr == R_DMA_FLASH_ADDR) {
s->regs[addr] = DMA_FLASH_ADDR(s, value);
} else if (s->ctrl->has_dma && addr == R_DMA_LEN) {
s->regs[addr] = DMA_LENGTH(value);
} else {
qemu_log_mask(LOG_UNIMP, "%s: not implemented: 0x%" HWADDR_PRIx "\n",
__func__, addr);
return;
}
}
static const MemoryRegionOps aspeed_smc_ops = {
.read = aspeed_smc_read,
.write = aspeed_smc_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.valid.unaligned = true,
};
/*
* Initialize the custom address spaces for DMAs
*/
static void aspeed_smc_dma_setup(AspeedSMCState *s, Error **errp)
{
char *name;
if (!s->dram_mr) {
error_setg(errp, TYPE_ASPEED_SMC ": 'dram' link not set");
return;
}
name = g_strdup_printf("%s-dma-flash", s->ctrl->name);
address_space_init(&s->flash_as, &s->mmio_flash, name);
g_free(name);
name = g_strdup_printf("%s-dma-dram", s->ctrl->name);
address_space_init(&s->dram_as, s->dram_mr, name);
g_free(name);
}
static void aspeed_smc_realize(DeviceState *dev, Error **errp)
{
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
AspeedSMCState *s = ASPEED_SMC(dev);
AspeedSMCClass *mc = ASPEED_SMC_GET_CLASS(s);
int i;
char name[32];
hwaddr offset = 0;
s->ctrl = mc->ctrl;
/* keep a copy under AspeedSMCState to speed up accesses */
s->r_conf = s->ctrl->r_conf;
s->r_ce_ctrl = s->ctrl->r_ce_ctrl;
s->r_ctrl0 = s->ctrl->r_ctrl0;
s->r_timings = s->ctrl->r_timings;
s->conf_enable_w0 = s->ctrl->conf_enable_w0;
/* Enforce some real HW limits */
if (s->num_cs > s->ctrl->max_slaves) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: num_cs cannot exceed: %d\n",
__func__, s->ctrl->max_slaves);
s->num_cs = s->ctrl->max_slaves;
}
/* DMA irq. Keep it first for the initialization in the SoC */
sysbus_init_irq(sbd, &s->irq);
s->spi = ssi_create_bus(dev, "spi");
/* Setup cs_lines for slaves */
s->cs_lines = g_new0(qemu_irq, s->num_cs);
ssi_auto_connect_slaves(dev, s->cs_lines, s->spi);
for (i = 0; i < s->num_cs; ++i) {
sysbus_init_irq(sbd, &s->cs_lines[i]);
}
/* The memory region for the controller registers */
memory_region_init_io(&s->mmio, OBJECT(s), &aspeed_smc_ops, s,
s->ctrl->name, s->ctrl->nregs * 4);
sysbus_init_mmio(sbd, &s->mmio);
/*
* The container memory region representing the address space
* window in which the flash modules are mapped. The size and
* address depends on the SoC model and controller type.
*/
snprintf(name, sizeof(name), "%s.flash", s->ctrl->name);
memory_region_init_io(&s->mmio_flash, OBJECT(s),
&aspeed_smc_flash_default_ops, s, name,
s->ctrl->flash_window_size);
sysbus_init_mmio(sbd, &s->mmio_flash);
s->flashes = g_new0(AspeedSMCFlash, s->ctrl->max_slaves);
/*
* Let's create a sub memory region for each possible slave. All
* have a configurable memory segment in the overall flash mapping
* window of the controller but, there is not necessarily a flash
* module behind to handle the memory accesses. This depends on
* the board configuration.
*/
for (i = 0; i < s->ctrl->max_slaves; ++i) {
AspeedSMCFlash *fl = &s->flashes[i];
snprintf(name, sizeof(name), "%s.%d", s->ctrl->name, i);
fl->id = i;
fl->controller = s;
fl->size = s->ctrl->segments[i].size;
memory_region_init_io(&fl->mmio, OBJECT(s), &aspeed_smc_flash_ops,
fl, name, fl->size);
memory_region_add_subregion(&s->mmio_flash, offset, &fl->mmio);
offset += fl->size;
}
/* DMA support */
if (s->ctrl->has_dma) {
aspeed_smc_dma_setup(s, errp);
}
}
static const VMStateDescription vmstate_aspeed_smc = {
.name = "aspeed.smc",
.version_id = 2,
.minimum_version_id = 2,
.fields = (VMStateField[]) {
VMSTATE_UINT32_ARRAY(regs, AspeedSMCState, ASPEED_SMC_R_MAX),
VMSTATE_UINT8(snoop_index, AspeedSMCState),
VMSTATE_UINT8(snoop_dummies, AspeedSMCState),
VMSTATE_END_OF_LIST()
}
};
static Property aspeed_smc_properties[] = {
DEFINE_PROP_UINT32("num-cs", AspeedSMCState, num_cs, 1),
DEFINE_PROP_BOOL("inject-failure", AspeedSMCState, inject_failure, false),
DEFINE_PROP_UINT64("sdram-base", AspeedSMCState, sdram_base, 0),
DEFINE_PROP_LINK("dram", AspeedSMCState, dram_mr,
TYPE_MEMORY_REGION, MemoryRegion *),
DEFINE_PROP_END_OF_LIST(),
};
static void aspeed_smc_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
AspeedSMCClass *mc = ASPEED_SMC_CLASS(klass);
dc->realize = aspeed_smc_realize;
dc->reset = aspeed_smc_reset;
dc->props = aspeed_smc_properties;
dc->vmsd = &vmstate_aspeed_smc;
mc->ctrl = data;
}
static const TypeInfo aspeed_smc_info = {
.name = TYPE_ASPEED_SMC,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(AspeedSMCState),
.class_size = sizeof(AspeedSMCClass),
.abstract = true,
};
static void aspeed_smc_register_types(void)
{
int i;
type_register_static(&aspeed_smc_info);
for (i = 0; i < ARRAY_SIZE(controllers); ++i) {
TypeInfo ti = {
.name = controllers[i].name,
.parent = TYPE_ASPEED_SMC,
.class_init = aspeed_smc_class_init,
.class_data = (void *)&controllers[i],
};
type_register(&ti);
}
}
type_init(aspeed_smc_register_types)