| /* |
| * QEMU KVM support |
| * |
| * Copyright IBM, Corp. 2008 |
| * Red Hat, Inc. 2008 |
| * |
| * Authors: |
| * Anthony Liguori <aliguori@us.ibm.com> |
| * Glauber Costa <gcosta@redhat.com> |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2 or later. |
| * See the COPYING file in the top-level directory. |
| * |
| */ |
| |
| #include "qemu/osdep.h" |
| #include <sys/ioctl.h> |
| #include <poll.h> |
| |
| #include <linux/kvm.h> |
| |
| #include "qemu/atomic.h" |
| #include "qemu/option.h" |
| #include "qemu/config-file.h" |
| #include "qemu/error-report.h" |
| #include "qapi/error.h" |
| #include "hw/pci/msi.h" |
| #include "hw/pci/msix.h" |
| #include "hw/s390x/adapter.h" |
| #include "exec/gdbstub.h" |
| #include "sysemu/kvm_int.h" |
| #include "sysemu/runstate.h" |
| #include "sysemu/cpus.h" |
| #include "sysemu/accel-blocker.h" |
| #include "qemu/bswap.h" |
| #include "exec/memory.h" |
| #include "exec/ram_addr.h" |
| #include "qemu/event_notifier.h" |
| #include "qemu/main-loop.h" |
| #include "trace.h" |
| #include "hw/irq.h" |
| #include "qapi/visitor.h" |
| #include "qapi/qapi-types-common.h" |
| #include "qapi/qapi-visit-common.h" |
| #include "sysemu/reset.h" |
| #include "qemu/guest-random.h" |
| #include "sysemu/hw_accel.h" |
| #include "kvm-cpus.h" |
| #include "sysemu/dirtylimit.h" |
| #include "qemu/range.h" |
| |
| #include "hw/boards.h" |
| #include "sysemu/stats.h" |
| |
| /* This check must be after config-host.h is included */ |
| #ifdef CONFIG_EVENTFD |
| #include <sys/eventfd.h> |
| #endif |
| |
| /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We |
| * need to use the real host PAGE_SIZE, as that's what KVM will use. |
| */ |
| #ifdef PAGE_SIZE |
| #undef PAGE_SIZE |
| #endif |
| #define PAGE_SIZE qemu_real_host_page_size() |
| |
| #ifndef KVM_GUESTDBG_BLOCKIRQ |
| #define KVM_GUESTDBG_BLOCKIRQ 0 |
| #endif |
| |
| //#define DEBUG_KVM |
| |
| #ifdef DEBUG_KVM |
| #define DPRINTF(fmt, ...) \ |
| do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) |
| #else |
| #define DPRINTF(fmt, ...) \ |
| do { } while (0) |
| #endif |
| |
| struct KVMParkedVcpu { |
| unsigned long vcpu_id; |
| int kvm_fd; |
| QLIST_ENTRY(KVMParkedVcpu) node; |
| }; |
| |
| KVMState *kvm_state; |
| bool kvm_kernel_irqchip; |
| bool kvm_split_irqchip; |
| bool kvm_async_interrupts_allowed; |
| bool kvm_halt_in_kernel_allowed; |
| bool kvm_eventfds_allowed; |
| bool kvm_irqfds_allowed; |
| bool kvm_resamplefds_allowed; |
| bool kvm_msi_via_irqfd_allowed; |
| bool kvm_gsi_routing_allowed; |
| bool kvm_gsi_direct_mapping; |
| bool kvm_allowed; |
| bool kvm_readonly_mem_allowed; |
| bool kvm_vm_attributes_allowed; |
| bool kvm_direct_msi_allowed; |
| bool kvm_ioeventfd_any_length_allowed; |
| bool kvm_msi_use_devid; |
| bool kvm_has_guest_debug; |
| static int kvm_sstep_flags; |
| static bool kvm_immediate_exit; |
| static hwaddr kvm_max_slot_size = ~0; |
| |
| static const KVMCapabilityInfo kvm_required_capabilites[] = { |
| KVM_CAP_INFO(USER_MEMORY), |
| KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), |
| KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), |
| KVM_CAP_LAST_INFO |
| }; |
| |
| static NotifierList kvm_irqchip_change_notifiers = |
| NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers); |
| |
| struct KVMResampleFd { |
| int gsi; |
| EventNotifier *resample_event; |
| QLIST_ENTRY(KVMResampleFd) node; |
| }; |
| typedef struct KVMResampleFd KVMResampleFd; |
| |
| /* |
| * Only used with split irqchip where we need to do the resample fd |
| * kick for the kernel from userspace. |
| */ |
| static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list = |
| QLIST_HEAD_INITIALIZER(kvm_resample_fd_list); |
| |
| static QemuMutex kml_slots_lock; |
| |
| #define kvm_slots_lock() qemu_mutex_lock(&kml_slots_lock) |
| #define kvm_slots_unlock() qemu_mutex_unlock(&kml_slots_lock) |
| |
| static void kvm_slot_init_dirty_bitmap(KVMSlot *mem); |
| |
| static inline void kvm_resample_fd_remove(int gsi) |
| { |
| KVMResampleFd *rfd; |
| |
| QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { |
| if (rfd->gsi == gsi) { |
| QLIST_REMOVE(rfd, node); |
| g_free(rfd); |
| break; |
| } |
| } |
| } |
| |
| static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event) |
| { |
| KVMResampleFd *rfd = g_new0(KVMResampleFd, 1); |
| |
| rfd->gsi = gsi; |
| rfd->resample_event = event; |
| |
| QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node); |
| } |
| |
| void kvm_resample_fd_notify(int gsi) |
| { |
| KVMResampleFd *rfd; |
| |
| QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { |
| if (rfd->gsi == gsi) { |
| event_notifier_set(rfd->resample_event); |
| trace_kvm_resample_fd_notify(gsi); |
| return; |
| } |
| } |
| } |
| |
| int kvm_get_max_memslots(void) |
| { |
| KVMState *s = KVM_STATE(current_accel()); |
| |
| return s->nr_slots; |
| } |
| |
| /* Called with KVMMemoryListener.slots_lock held */ |
| static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) |
| { |
| KVMState *s = kvm_state; |
| int i; |
| |
| for (i = 0; i < s->nr_slots; i++) { |
| if (kml->slots[i].memory_size == 0) { |
| return &kml->slots[i]; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| bool kvm_has_free_slot(MachineState *ms) |
| { |
| KVMState *s = KVM_STATE(ms->accelerator); |
| bool result; |
| KVMMemoryListener *kml = &s->memory_listener; |
| |
| kvm_slots_lock(); |
| result = !!kvm_get_free_slot(kml); |
| kvm_slots_unlock(); |
| |
| return result; |
| } |
| |
| /* Called with KVMMemoryListener.slots_lock held */ |
| static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) |
| { |
| KVMSlot *slot = kvm_get_free_slot(kml); |
| |
| if (slot) { |
| return slot; |
| } |
| |
| fprintf(stderr, "%s: no free slot available\n", __func__); |
| abort(); |
| } |
| |
| static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, |
| hwaddr start_addr, |
| hwaddr size) |
| { |
| KVMState *s = kvm_state; |
| int i; |
| |
| for (i = 0; i < s->nr_slots; i++) { |
| KVMSlot *mem = &kml->slots[i]; |
| |
| if (start_addr == mem->start_addr && size == mem->memory_size) { |
| return mem; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| /* |
| * Calculate and align the start address and the size of the section. |
| * Return the size. If the size is 0, the aligned section is empty. |
| */ |
| static hwaddr kvm_align_section(MemoryRegionSection *section, |
| hwaddr *start) |
| { |
| hwaddr size = int128_get64(section->size); |
| hwaddr delta, aligned; |
| |
| /* kvm works in page size chunks, but the function may be called |
| with sub-page size and unaligned start address. Pad the start |
| address to next and truncate size to previous page boundary. */ |
| aligned = ROUND_UP(section->offset_within_address_space, |
| qemu_real_host_page_size()); |
| delta = aligned - section->offset_within_address_space; |
| *start = aligned; |
| if (delta > size) { |
| return 0; |
| } |
| |
| return (size - delta) & qemu_real_host_page_mask(); |
| } |
| |
| int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, |
| hwaddr *phys_addr) |
| { |
| KVMMemoryListener *kml = &s->memory_listener; |
| int i, ret = 0; |
| |
| kvm_slots_lock(); |
| for (i = 0; i < s->nr_slots; i++) { |
| KVMSlot *mem = &kml->slots[i]; |
| |
| if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { |
| *phys_addr = mem->start_addr + (ram - mem->ram); |
| ret = 1; |
| break; |
| } |
| } |
| kvm_slots_unlock(); |
| |
| return ret; |
| } |
| |
| static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) |
| { |
| KVMState *s = kvm_state; |
| struct kvm_userspace_memory_region mem; |
| int ret; |
| |
| mem.slot = slot->slot | (kml->as_id << 16); |
| mem.guest_phys_addr = slot->start_addr; |
| mem.userspace_addr = (unsigned long)slot->ram; |
| mem.flags = slot->flags; |
| |
| if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { |
| /* Set the slot size to 0 before setting the slot to the desired |
| * value. This is needed based on KVM commit 75d61fbc. */ |
| mem.memory_size = 0; |
| ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); |
| if (ret < 0) { |
| goto err; |
| } |
| } |
| mem.memory_size = slot->memory_size; |
| ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); |
| slot->old_flags = mem.flags; |
| err: |
| trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr, |
| mem.memory_size, mem.userspace_addr, ret); |
| if (ret < 0) { |
| error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d," |
| " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s", |
| __func__, mem.slot, slot->start_addr, |
| (uint64_t)mem.memory_size, strerror(errno)); |
| } |
| return ret; |
| } |
| |
| static int do_kvm_destroy_vcpu(CPUState *cpu) |
| { |
| KVMState *s = kvm_state; |
| long mmap_size; |
| struct KVMParkedVcpu *vcpu = NULL; |
| int ret = 0; |
| |
| DPRINTF("kvm_destroy_vcpu\n"); |
| |
| ret = kvm_arch_destroy_vcpu(cpu); |
| if (ret < 0) { |
| goto err; |
| } |
| |
| mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); |
| if (mmap_size < 0) { |
| ret = mmap_size; |
| DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); |
| goto err; |
| } |
| |
| ret = munmap(cpu->kvm_run, mmap_size); |
| if (ret < 0) { |
| goto err; |
| } |
| |
| if (cpu->kvm_dirty_gfns) { |
| ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes); |
| if (ret < 0) { |
| goto err; |
| } |
| } |
| |
| vcpu = g_malloc0(sizeof(*vcpu)); |
| vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); |
| vcpu->kvm_fd = cpu->kvm_fd; |
| QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); |
| err: |
| return ret; |
| } |
| |
| void kvm_destroy_vcpu(CPUState *cpu) |
| { |
| if (do_kvm_destroy_vcpu(cpu) < 0) { |
| error_report("kvm_destroy_vcpu failed"); |
| exit(EXIT_FAILURE); |
| } |
| } |
| |
| static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id) |
| { |
| struct KVMParkedVcpu *cpu; |
| |
| QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { |
| if (cpu->vcpu_id == vcpu_id) { |
| int kvm_fd; |
| |
| QLIST_REMOVE(cpu, node); |
| kvm_fd = cpu->kvm_fd; |
| g_free(cpu); |
| return kvm_fd; |
| } |
| } |
| |
| return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id); |
| } |
| |
| int kvm_init_vcpu(CPUState *cpu, Error **errp) |
| { |
| KVMState *s = kvm_state; |
| long mmap_size; |
| int ret; |
| |
| trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); |
| |
| ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu)); |
| if (ret < 0) { |
| error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)", |
| kvm_arch_vcpu_id(cpu)); |
| goto err; |
| } |
| |
| cpu->kvm_fd = ret; |
| cpu->kvm_state = s; |
| cpu->vcpu_dirty = true; |
| cpu->dirty_pages = 0; |
| cpu->throttle_us_per_full = 0; |
| |
| mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); |
| if (mmap_size < 0) { |
| ret = mmap_size; |
| error_setg_errno(errp, -mmap_size, |
| "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed"); |
| goto err; |
| } |
| |
| cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, |
| cpu->kvm_fd, 0); |
| if (cpu->kvm_run == MAP_FAILED) { |
| ret = -errno; |
| error_setg_errno(errp, ret, |
| "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)", |
| kvm_arch_vcpu_id(cpu)); |
| goto err; |
| } |
| |
| if (s->coalesced_mmio && !s->coalesced_mmio_ring) { |
| s->coalesced_mmio_ring = |
| (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; |
| } |
| |
| if (s->kvm_dirty_ring_size) { |
| /* Use MAP_SHARED to share pages with the kernel */ |
| cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes, |
| PROT_READ | PROT_WRITE, MAP_SHARED, |
| cpu->kvm_fd, |
| PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET); |
| if (cpu->kvm_dirty_gfns == MAP_FAILED) { |
| ret = -errno; |
| DPRINTF("mmap'ing vcpu dirty gfns failed: %d\n", ret); |
| goto err; |
| } |
| } |
| |
| ret = kvm_arch_init_vcpu(cpu); |
| if (ret < 0) { |
| error_setg_errno(errp, -ret, |
| "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)", |
| kvm_arch_vcpu_id(cpu)); |
| } |
| cpu->kvm_vcpu_stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL); |
| |
| err: |
| return ret; |
| } |
| |
| /* |
| * dirty pages logging control |
| */ |
| |
| static int kvm_mem_flags(MemoryRegion *mr) |
| { |
| bool readonly = mr->readonly || memory_region_is_romd(mr); |
| int flags = 0; |
| |
| if (memory_region_get_dirty_log_mask(mr) != 0) { |
| flags |= KVM_MEM_LOG_DIRTY_PAGES; |
| } |
| if (readonly && kvm_readonly_mem_allowed) { |
| flags |= KVM_MEM_READONLY; |
| } |
| return flags; |
| } |
| |
| /* Called with KVMMemoryListener.slots_lock held */ |
| static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, |
| MemoryRegion *mr) |
| { |
| mem->flags = kvm_mem_flags(mr); |
| |
| /* If nothing changed effectively, no need to issue ioctl */ |
| if (mem->flags == mem->old_flags) { |
| return 0; |
| } |
| |
| kvm_slot_init_dirty_bitmap(mem); |
| return kvm_set_user_memory_region(kml, mem, false); |
| } |
| |
| static int kvm_section_update_flags(KVMMemoryListener *kml, |
| MemoryRegionSection *section) |
| { |
| hwaddr start_addr, size, slot_size; |
| KVMSlot *mem; |
| int ret = 0; |
| |
| size = kvm_align_section(section, &start_addr); |
| if (!size) { |
| return 0; |
| } |
| |
| kvm_slots_lock(); |
| |
| while (size && !ret) { |
| slot_size = MIN(kvm_max_slot_size, size); |
| mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); |
| if (!mem) { |
| /* We don't have a slot if we want to trap every access. */ |
| goto out; |
| } |
| |
| ret = kvm_slot_update_flags(kml, mem, section->mr); |
| start_addr += slot_size; |
| size -= slot_size; |
| } |
| |
| out: |
| kvm_slots_unlock(); |
| return ret; |
| } |
| |
| static void kvm_log_start(MemoryListener *listener, |
| MemoryRegionSection *section, |
| int old, int new) |
| { |
| KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); |
| int r; |
| |
| if (old != 0) { |
| return; |
| } |
| |
| r = kvm_section_update_flags(kml, section); |
| if (r < 0) { |
| abort(); |
| } |
| } |
| |
| static void kvm_log_stop(MemoryListener *listener, |
| MemoryRegionSection *section, |
| int old, int new) |
| { |
| KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); |
| int r; |
| |
| if (new != 0) { |
| return; |
| } |
| |
| r = kvm_section_update_flags(kml, section); |
| if (r < 0) { |
| abort(); |
| } |
| } |
| |
| /* get kvm's dirty pages bitmap and update qemu's */ |
| static void kvm_slot_sync_dirty_pages(KVMSlot *slot) |
| { |
| ram_addr_t start = slot->ram_start_offset; |
| ram_addr_t pages = slot->memory_size / qemu_real_host_page_size(); |
| |
| cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages); |
| } |
| |
| static void kvm_slot_reset_dirty_pages(KVMSlot *slot) |
| { |
| memset(slot->dirty_bmap, 0, slot->dirty_bmap_size); |
| } |
| |
| #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) |
| |
| /* Allocate the dirty bitmap for a slot */ |
| static void kvm_slot_init_dirty_bitmap(KVMSlot *mem) |
| { |
| if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) { |
| return; |
| } |
| |
| /* |
| * XXX bad kernel interface alert |
| * For dirty bitmap, kernel allocates array of size aligned to |
| * bits-per-long. But for case when the kernel is 64bits and |
| * the userspace is 32bits, userspace can't align to the same |
| * bits-per-long, since sizeof(long) is different between kernel |
| * and user space. This way, userspace will provide buffer which |
| * may be 4 bytes less than the kernel will use, resulting in |
| * userspace memory corruption (which is not detectable by valgrind |
| * too, in most cases). |
| * So for now, let's align to 64 instead of HOST_LONG_BITS here, in |
| * a hope that sizeof(long) won't become >8 any time soon. |
| * |
| * Note: the granule of kvm dirty log is qemu_real_host_page_size. |
| * And mem->memory_size is aligned to it (otherwise this mem can't |
| * be registered to KVM). |
| */ |
| hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(), |
| /*HOST_LONG_BITS*/ 64) / 8; |
| mem->dirty_bmap = g_malloc0(bitmap_size); |
| mem->dirty_bmap_size = bitmap_size; |
| } |
| |
| /* |
| * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if |
| * succeeded, false otherwise |
| */ |
| static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot) |
| { |
| struct kvm_dirty_log d = {}; |
| int ret; |
| |
| d.dirty_bitmap = slot->dirty_bmap; |
| d.slot = slot->slot | (slot->as_id << 16); |
| ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d); |
| |
| if (ret == -ENOENT) { |
| /* kernel does not have dirty bitmap in this slot */ |
| ret = 0; |
| } |
| if (ret) { |
| error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d", |
| __func__, ret); |
| } |
| return ret == 0; |
| } |
| |
| /* Should be with all slots_lock held for the address spaces. */ |
| static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id, |
| uint32_t slot_id, uint64_t offset) |
| { |
| KVMMemoryListener *kml; |
| KVMSlot *mem; |
| |
| if (as_id >= s->nr_as) { |
| return; |
| } |
| |
| kml = s->as[as_id].ml; |
| mem = &kml->slots[slot_id]; |
| |
| if (!mem->memory_size || offset >= |
| (mem->memory_size / qemu_real_host_page_size())) { |
| return; |
| } |
| |
| set_bit(offset, mem->dirty_bmap); |
| } |
| |
| static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn) |
| { |
| /* |
| * Read the flags before the value. Pairs with barrier in |
| * KVM's kvm_dirty_ring_push() function. |
| */ |
| return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY; |
| } |
| |
| static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn) |
| { |
| /* |
| * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS |
| * sees the full content of the ring: |
| * |
| * CPU0 CPU1 CPU2 |
| * ------------------------------------------------------------------------------ |
| * fill gfn0 |
| * store-rel flags for gfn0 |
| * load-acq flags for gfn0 |
| * store-rel RESET for gfn0 |
| * ioctl(RESET_RINGS) |
| * load-acq flags for gfn0 |
| * check if flags have RESET |
| * |
| * The synchronization goes from CPU2 to CPU0 to CPU1. |
| */ |
| qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET); |
| } |
| |
| /* |
| * Should be with all slots_lock held for the address spaces. It returns the |
| * dirty page we've collected on this dirty ring. |
| */ |
| static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu) |
| { |
| struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur; |
| uint32_t ring_size = s->kvm_dirty_ring_size; |
| uint32_t count = 0, fetch = cpu->kvm_fetch_index; |
| |
| /* |
| * It's possible that we race with vcpu creation code where the vcpu is |
| * put onto the vcpus list but not yet initialized the dirty ring |
| * structures. If so, skip it. |
| */ |
| if (!cpu->created) { |
| return 0; |
| } |
| |
| assert(dirty_gfns && ring_size); |
| trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index); |
| |
| while (true) { |
| cur = &dirty_gfns[fetch % ring_size]; |
| if (!dirty_gfn_is_dirtied(cur)) { |
| break; |
| } |
| kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff, |
| cur->offset); |
| dirty_gfn_set_collected(cur); |
| trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset); |
| fetch++; |
| count++; |
| } |
| cpu->kvm_fetch_index = fetch; |
| cpu->dirty_pages += count; |
| |
| return count; |
| } |
| |
| /* Must be with slots_lock held */ |
| static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu) |
| { |
| int ret; |
| uint64_t total = 0; |
| int64_t stamp; |
| |
| stamp = get_clock(); |
| |
| if (cpu) { |
| total = kvm_dirty_ring_reap_one(s, cpu); |
| } else { |
| CPU_FOREACH(cpu) { |
| total += kvm_dirty_ring_reap_one(s, cpu); |
| } |
| } |
| |
| if (total) { |
| ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS); |
| assert(ret == total); |
| } |
| |
| stamp = get_clock() - stamp; |
| |
| if (total) { |
| trace_kvm_dirty_ring_reap(total, stamp / 1000); |
| } |
| |
| return total; |
| } |
| |
| /* |
| * Currently for simplicity, we must hold BQL before calling this. We can |
| * consider to drop the BQL if we're clear with all the race conditions. |
| */ |
| static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu) |
| { |
| uint64_t total; |
| |
| /* |
| * We need to lock all kvm slots for all address spaces here, |
| * because: |
| * |
| * (1) We need to mark dirty for dirty bitmaps in multiple slots |
| * and for tons of pages, so it's better to take the lock here |
| * once rather than once per page. And more importantly, |
| * |
| * (2) We must _NOT_ publish dirty bits to the other threads |
| * (e.g., the migration thread) via the kvm memory slot dirty |
| * bitmaps before correctly re-protect those dirtied pages. |
| * Otherwise we can have potential risk of data corruption if |
| * the page data is read in the other thread before we do |
| * reset below. |
| */ |
| kvm_slots_lock(); |
| total = kvm_dirty_ring_reap_locked(s, cpu); |
| kvm_slots_unlock(); |
| |
| return total; |
| } |
| |
| static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg) |
| { |
| /* No need to do anything */ |
| } |
| |
| /* |
| * Kick all vcpus out in a synchronized way. When returned, we |
| * guarantee that every vcpu has been kicked and at least returned to |
| * userspace once. |
| */ |
| static void kvm_cpu_synchronize_kick_all(void) |
| { |
| CPUState *cpu; |
| |
| CPU_FOREACH(cpu) { |
| run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL); |
| } |
| } |
| |
| /* |
| * Flush all the existing dirty pages to the KVM slot buffers. When |
| * this call returns, we guarantee that all the touched dirty pages |
| * before calling this function have been put into the per-kvmslot |
| * dirty bitmap. |
| * |
| * This function must be called with BQL held. |
| */ |
| static void kvm_dirty_ring_flush(void) |
| { |
| trace_kvm_dirty_ring_flush(0); |
| /* |
| * The function needs to be serialized. Since this function |
| * should always be with BQL held, serialization is guaranteed. |
| * However, let's be sure of it. |
| */ |
| assert(qemu_mutex_iothread_locked()); |
| /* |
| * First make sure to flush the hardware buffers by kicking all |
| * vcpus out in a synchronous way. |
| */ |
| kvm_cpu_synchronize_kick_all(); |
| kvm_dirty_ring_reap(kvm_state, NULL); |
| trace_kvm_dirty_ring_flush(1); |
| } |
| |
| /** |
| * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space |
| * |
| * This function will first try to fetch dirty bitmap from the kernel, |
| * and then updates qemu's dirty bitmap. |
| * |
| * NOTE: caller must be with kml->slots_lock held. |
| * |
| * @kml: the KVM memory listener object |
| * @section: the memory section to sync the dirty bitmap with |
| */ |
| static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, |
| MemoryRegionSection *section) |
| { |
| KVMState *s = kvm_state; |
| KVMSlot *mem; |
| hwaddr start_addr, size; |
| hwaddr slot_size; |
| |
| size = kvm_align_section(section, &start_addr); |
| while (size) { |
| slot_size = MIN(kvm_max_slot_size, size); |
| mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); |
| if (!mem) { |
| /* We don't have a slot if we want to trap every access. */ |
| return; |
| } |
| if (kvm_slot_get_dirty_log(s, mem)) { |
| kvm_slot_sync_dirty_pages(mem); |
| } |
| start_addr += slot_size; |
| size -= slot_size; |
| } |
| } |
| |
| /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */ |
| #define KVM_CLEAR_LOG_SHIFT 6 |
| #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT) |
| #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN) |
| |
| static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start, |
| uint64_t size) |
| { |
| KVMState *s = kvm_state; |
| uint64_t end, bmap_start, start_delta, bmap_npages; |
| struct kvm_clear_dirty_log d; |
| unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size(); |
| int ret; |
| |
| /* |
| * We need to extend either the start or the size or both to |
| * satisfy the KVM interface requirement. Firstly, do the start |
| * page alignment on 64 host pages |
| */ |
| bmap_start = start & KVM_CLEAR_LOG_MASK; |
| start_delta = start - bmap_start; |
| bmap_start /= psize; |
| |
| /* |
| * The kernel interface has restriction on the size too, that either: |
| * |
| * (1) the size is 64 host pages aligned (just like the start), or |
| * (2) the size fills up until the end of the KVM memslot. |
| */ |
| bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN) |
| << KVM_CLEAR_LOG_SHIFT; |
| end = mem->memory_size / psize; |
| if (bmap_npages > end - bmap_start) { |
| bmap_npages = end - bmap_start; |
| } |
| start_delta /= psize; |
| |
| /* |
| * Prepare the bitmap to clear dirty bits. Here we must guarantee |
| * that we won't clear any unknown dirty bits otherwise we might |
| * accidentally clear some set bits which are not yet synced from |
| * the kernel into QEMU's bitmap, then we'll lose track of the |
| * guest modifications upon those pages (which can directly lead |
| * to guest data loss or panic after migration). |
| * |
| * Layout of the KVMSlot.dirty_bmap: |
| * |
| * |<-------- bmap_npages -----------..>| |
| * [1] |
| * start_delta size |
| * |----------------|-------------|------------------|------------| |
| * ^ ^ ^ ^ |
| * | | | | |
| * start bmap_start (start) end |
| * of memslot of memslot |
| * |
| * [1] bmap_npages can be aligned to either 64 pages or the end of slot |
| */ |
| |
| assert(bmap_start % BITS_PER_LONG == 0); |
| /* We should never do log_clear before log_sync */ |
| assert(mem->dirty_bmap); |
| if (start_delta || bmap_npages - size / psize) { |
| /* Slow path - we need to manipulate a temp bitmap */ |
| bmap_clear = bitmap_new(bmap_npages); |
| bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap, |
| bmap_start, start_delta + size / psize); |
| /* |
| * We need to fill the holes at start because that was not |
| * specified by the caller and we extended the bitmap only for |
| * 64 pages alignment |
| */ |
| bitmap_clear(bmap_clear, 0, start_delta); |
| d.dirty_bitmap = bmap_clear; |
| } else { |
| /* |
| * Fast path - both start and size align well with BITS_PER_LONG |
| * (or the end of memory slot) |
| */ |
| d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start); |
| } |
| |
| d.first_page = bmap_start; |
| /* It should never overflow. If it happens, say something */ |
| assert(bmap_npages <= UINT32_MAX); |
| d.num_pages = bmap_npages; |
| d.slot = mem->slot | (as_id << 16); |
| |
| ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d); |
| if (ret < 0 && ret != -ENOENT) { |
| error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, " |
| "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d", |
| __func__, d.slot, (uint64_t)d.first_page, |
| (uint32_t)d.num_pages, ret); |
| } else { |
| ret = 0; |
| trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages); |
| } |
| |
| /* |
| * After we have updated the remote dirty bitmap, we update the |
| * cached bitmap as well for the memslot, then if another user |
| * clears the same region we know we shouldn't clear it again on |
| * the remote otherwise it's data loss as well. |
| */ |
| bitmap_clear(mem->dirty_bmap, bmap_start + start_delta, |
| size / psize); |
| /* This handles the NULL case well */ |
| g_free(bmap_clear); |
| return ret; |
| } |
| |
| |
| /** |
| * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range |
| * |
| * NOTE: this will be a no-op if we haven't enabled manual dirty log |
| * protection in the host kernel because in that case this operation |
| * will be done within log_sync(). |
| * |
| * @kml: the kvm memory listener |
| * @section: the memory range to clear dirty bitmap |
| */ |
| static int kvm_physical_log_clear(KVMMemoryListener *kml, |
| MemoryRegionSection *section) |
| { |
| KVMState *s = kvm_state; |
| uint64_t start, size, offset, count; |
| KVMSlot *mem; |
| int ret = 0, i; |
| |
| if (!s->manual_dirty_log_protect) { |
| /* No need to do explicit clear */ |
| return ret; |
| } |
| |
| start = section->offset_within_address_space; |
| size = int128_get64(section->size); |
| |
| if (!size) { |
| /* Nothing more we can do... */ |
| return ret; |
| } |
| |
| kvm_slots_lock(); |
| |
| for (i = 0; i < s->nr_slots; i++) { |
| mem = &kml->slots[i]; |
| /* Discard slots that are empty or do not overlap the section */ |
| if (!mem->memory_size || |
| mem->start_addr > start + size - 1 || |
| start > mem->start_addr + mem->memory_size - 1) { |
| continue; |
| } |
| |
| if (start >= mem->start_addr) { |
| /* The slot starts before section or is aligned to it. */ |
| offset = start - mem->start_addr; |
| count = MIN(mem->memory_size - offset, size); |
| } else { |
| /* The slot starts after section. */ |
| offset = 0; |
| count = MIN(mem->memory_size, size - (mem->start_addr - start)); |
| } |
| ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count); |
| if (ret < 0) { |
| break; |
| } |
| } |
| |
| kvm_slots_unlock(); |
| |
| return ret; |
| } |
| |
| static void kvm_coalesce_mmio_region(MemoryListener *listener, |
| MemoryRegionSection *secion, |
| hwaddr start, hwaddr size) |
| { |
| KVMState *s = kvm_state; |
| |
| if (s->coalesced_mmio) { |
| struct kvm_coalesced_mmio_zone zone; |
| |
| zone.addr = start; |
| zone.size = size; |
| zone.pad = 0; |
| |
| (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); |
| } |
| } |
| |
| static void kvm_uncoalesce_mmio_region(MemoryListener *listener, |
| MemoryRegionSection *secion, |
| hwaddr start, hwaddr size) |
| { |
| KVMState *s = kvm_state; |
| |
| if (s->coalesced_mmio) { |
| struct kvm_coalesced_mmio_zone zone; |
| |
| zone.addr = start; |
| zone.size = size; |
| zone.pad = 0; |
| |
| (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); |
| } |
| } |
| |
| static void kvm_coalesce_pio_add(MemoryListener *listener, |
| MemoryRegionSection *section, |
| hwaddr start, hwaddr size) |
| { |
| KVMState *s = kvm_state; |
| |
| if (s->coalesced_pio) { |
| struct kvm_coalesced_mmio_zone zone; |
| |
| zone.addr = start; |
| zone.size = size; |
| zone.pio = 1; |
| |
| (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); |
| } |
| } |
| |
| static void kvm_coalesce_pio_del(MemoryListener *listener, |
| MemoryRegionSection *section, |
| hwaddr start, hwaddr size) |
| { |
| KVMState *s = kvm_state; |
| |
| if (s->coalesced_pio) { |
| struct kvm_coalesced_mmio_zone zone; |
| |
| zone.addr = start; |
| zone.size = size; |
| zone.pio = 1; |
| |
| (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); |
| } |
| } |
| |
| static MemoryListener kvm_coalesced_pio_listener = { |
| .name = "kvm-coalesced-pio", |
| .coalesced_io_add = kvm_coalesce_pio_add, |
| .coalesced_io_del = kvm_coalesce_pio_del, |
| .priority = MEMORY_LISTENER_PRIORITY_MIN, |
| }; |
| |
| int kvm_check_extension(KVMState *s, unsigned int extension) |
| { |
| int ret; |
| |
| ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); |
| if (ret < 0) { |
| ret = 0; |
| } |
| |
| return ret; |
| } |
| |
| int kvm_vm_check_extension(KVMState *s, unsigned int extension) |
| { |
| int ret; |
| |
| ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); |
| if (ret < 0) { |
| /* VM wide version not implemented, use global one instead */ |
| ret = kvm_check_extension(s, extension); |
| } |
| |
| return ret; |
| } |
| |
| typedef struct HWPoisonPage { |
| ram_addr_t ram_addr; |
| QLIST_ENTRY(HWPoisonPage) list; |
| } HWPoisonPage; |
| |
| static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = |
| QLIST_HEAD_INITIALIZER(hwpoison_page_list); |
| |
| static void kvm_unpoison_all(void *param) |
| { |
| HWPoisonPage *page, *next_page; |
| |
| QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { |
| QLIST_REMOVE(page, list); |
| qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); |
| g_free(page); |
| } |
| } |
| |
| void kvm_hwpoison_page_add(ram_addr_t ram_addr) |
| { |
| HWPoisonPage *page; |
| |
| QLIST_FOREACH(page, &hwpoison_page_list, list) { |
| if (page->ram_addr == ram_addr) { |
| return; |
| } |
| } |
| page = g_new(HWPoisonPage, 1); |
| page->ram_addr = ram_addr; |
| QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); |
| } |
| |
| static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) |
| { |
| #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN |
| /* The kernel expects ioeventfd values in HOST_BIG_ENDIAN |
| * endianness, but the memory core hands them in target endianness. |
| * For example, PPC is always treated as big-endian even if running |
| * on KVM and on PPC64LE. Correct here. |
| */ |
| switch (size) { |
| case 2: |
| val = bswap16(val); |
| break; |
| case 4: |
| val = bswap32(val); |
| break; |
| } |
| #endif |
| return val; |
| } |
| |
| static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, |
| bool assign, uint32_t size, bool datamatch) |
| { |
| int ret; |
| struct kvm_ioeventfd iofd = { |
| .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, |
| .addr = addr, |
| .len = size, |
| .flags = 0, |
| .fd = fd, |
| }; |
| |
| trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, |
| datamatch); |
| if (!kvm_enabled()) { |
| return -ENOSYS; |
| } |
| |
| if (datamatch) { |
| iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; |
| } |
| if (!assign) { |
| iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; |
| } |
| |
| ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); |
| |
| if (ret < 0) { |
| return -errno; |
| } |
| |
| return 0; |
| } |
| |
| static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, |
| bool assign, uint32_t size, bool datamatch) |
| { |
| struct kvm_ioeventfd kick = { |
| .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, |
| .addr = addr, |
| .flags = KVM_IOEVENTFD_FLAG_PIO, |
| .len = size, |
| .fd = fd, |
| }; |
| int r; |
| trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); |
| if (!kvm_enabled()) { |
| return -ENOSYS; |
| } |
| if (datamatch) { |
| kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; |
| } |
| if (!assign) { |
| kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; |
| } |
| r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); |
| if (r < 0) { |
| return r; |
| } |
| return 0; |
| } |
| |
| |
| static int kvm_check_many_ioeventfds(void) |
| { |
| /* Userspace can use ioeventfd for io notification. This requires a host |
| * that supports eventfd(2) and an I/O thread; since eventfd does not |
| * support SIGIO it cannot interrupt the vcpu. |
| * |
| * Older kernels have a 6 device limit on the KVM io bus. Find out so we |
| * can avoid creating too many ioeventfds. |
| */ |
| #if defined(CONFIG_EVENTFD) |
| int ioeventfds[7]; |
| int i, ret = 0; |
| for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { |
| ioeventfds[i] = eventfd(0, EFD_CLOEXEC); |
| if (ioeventfds[i] < 0) { |
| break; |
| } |
| ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); |
| if (ret < 0) { |
| close(ioeventfds[i]); |
| break; |
| } |
| } |
| |
| /* Decide whether many devices are supported or not */ |
| ret = i == ARRAY_SIZE(ioeventfds); |
| |
| while (i-- > 0) { |
| kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); |
| close(ioeventfds[i]); |
| } |
| return ret; |
| #else |
| return 0; |
| #endif |
| } |
| |
| static const KVMCapabilityInfo * |
| kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) |
| { |
| while (list->name) { |
| if (!kvm_check_extension(s, list->value)) { |
| return list; |
| } |
| list++; |
| } |
| return NULL; |
| } |
| |
| void kvm_set_max_memslot_size(hwaddr max_slot_size) |
| { |
| g_assert( |
| ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size |
| ); |
| kvm_max_slot_size = max_slot_size; |
| } |
| |
| /* Called with KVMMemoryListener.slots_lock held */ |
| static void kvm_set_phys_mem(KVMMemoryListener *kml, |
| MemoryRegionSection *section, bool add) |
| { |
| KVMSlot *mem; |
| int err; |
| MemoryRegion *mr = section->mr; |
| bool writable = !mr->readonly && !mr->rom_device; |
| hwaddr start_addr, size, slot_size, mr_offset; |
| ram_addr_t ram_start_offset; |
| void *ram; |
| |
| if (!memory_region_is_ram(mr)) { |
| if (writable || !kvm_readonly_mem_allowed) { |
| return; |
| } else if (!mr->romd_mode) { |
| /* If the memory device is not in romd_mode, then we actually want |
| * to remove the kvm memory slot so all accesses will trap. */ |
| add = false; |
| } |
| } |
| |
| size = kvm_align_section(section, &start_addr); |
| if (!size) { |
| return; |
| } |
| |
| /* The offset of the kvmslot within the memory region */ |
| mr_offset = section->offset_within_region + start_addr - |
| section->offset_within_address_space; |
| |
| /* use aligned delta to align the ram address and offset */ |
| ram = memory_region_get_ram_ptr(mr) + mr_offset; |
| ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset; |
| |
| if (!add) { |
| do { |
| slot_size = MIN(kvm_max_slot_size, size); |
| mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); |
| if (!mem) { |
| return; |
| } |
| if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { |
| /* |
| * NOTE: We should be aware of the fact that here we're only |
| * doing a best effort to sync dirty bits. No matter whether |
| * we're using dirty log or dirty ring, we ignored two facts: |
| * |
| * (1) dirty bits can reside in hardware buffers (PML) |
| * |
| * (2) after we collected dirty bits here, pages can be dirtied |
| * again before we do the final KVM_SET_USER_MEMORY_REGION to |
| * remove the slot. |
| * |
| * Not easy. Let's cross the fingers until it's fixed. |
| */ |
| if (kvm_state->kvm_dirty_ring_size) { |
| kvm_dirty_ring_reap_locked(kvm_state, NULL); |
| if (kvm_state->kvm_dirty_ring_with_bitmap) { |
| kvm_slot_sync_dirty_pages(mem); |
| kvm_slot_get_dirty_log(kvm_state, mem); |
| } |
| } else { |
| kvm_slot_get_dirty_log(kvm_state, mem); |
| } |
| kvm_slot_sync_dirty_pages(mem); |
| } |
| |
| /* unregister the slot */ |
| g_free(mem->dirty_bmap); |
| mem->dirty_bmap = NULL; |
| mem->memory_size = 0; |
| mem->flags = 0; |
| err = kvm_set_user_memory_region(kml, mem, false); |
| if (err) { |
| fprintf(stderr, "%s: error unregistering slot: %s\n", |
| __func__, strerror(-err)); |
| abort(); |
| } |
| start_addr += slot_size; |
| size -= slot_size; |
| } while (size); |
| return; |
| } |
| |
| /* register the new slot */ |
| do { |
| slot_size = MIN(kvm_max_slot_size, size); |
| mem = kvm_alloc_slot(kml); |
| mem->as_id = kml->as_id; |
| mem->memory_size = slot_size; |
| mem->start_addr = start_addr; |
| mem->ram_start_offset = ram_start_offset; |
| mem->ram = ram; |
| mem->flags = kvm_mem_flags(mr); |
| kvm_slot_init_dirty_bitmap(mem); |
| err = kvm_set_user_memory_region(kml, mem, true); |
| if (err) { |
| fprintf(stderr, "%s: error registering slot: %s\n", __func__, |
| strerror(-err)); |
| abort(); |
| } |
| start_addr += slot_size; |
| ram_start_offset += slot_size; |
| ram += slot_size; |
| size -= slot_size; |
| } while (size); |
| } |
| |
| static void *kvm_dirty_ring_reaper_thread(void *data) |
| { |
| KVMState *s = data; |
| struct KVMDirtyRingReaper *r = &s->reaper; |
| |
| rcu_register_thread(); |
| |
| trace_kvm_dirty_ring_reaper("init"); |
| |
| while (true) { |
| r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT; |
| trace_kvm_dirty_ring_reaper("wait"); |
| /* |
| * TODO: provide a smarter timeout rather than a constant? |
| */ |
| sleep(1); |
| |
| /* keep sleeping so that dirtylimit not be interfered by reaper */ |
| if (dirtylimit_in_service()) { |
| continue; |
| } |
| |
| trace_kvm_dirty_ring_reaper("wakeup"); |
| r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING; |
| |
| qemu_mutex_lock_iothread(); |
| kvm_dirty_ring_reap(s, NULL); |
| qemu_mutex_unlock_iothread(); |
| |
| r->reaper_iteration++; |
| } |
| |
| trace_kvm_dirty_ring_reaper("exit"); |
| |
| rcu_unregister_thread(); |
| |
| return NULL; |
| } |
| |
| static void kvm_dirty_ring_reaper_init(KVMState *s) |
| { |
| struct KVMDirtyRingReaper *r = &s->reaper; |
| |
| qemu_thread_create(&r->reaper_thr, "kvm-reaper", |
| kvm_dirty_ring_reaper_thread, |
| s, QEMU_THREAD_JOINABLE); |
| } |
| |
| static int kvm_dirty_ring_init(KVMState *s) |
| { |
| uint32_t ring_size = s->kvm_dirty_ring_size; |
| uint64_t ring_bytes = ring_size * sizeof(struct kvm_dirty_gfn); |
| unsigned int capability = KVM_CAP_DIRTY_LOG_RING; |
| int ret; |
| |
| s->kvm_dirty_ring_size = 0; |
| s->kvm_dirty_ring_bytes = 0; |
| |
| /* Bail if the dirty ring size isn't specified */ |
| if (!ring_size) { |
| return 0; |
| } |
| |
| /* |
| * Read the max supported pages. Fall back to dirty logging mode |
| * if the dirty ring isn't supported. |
| */ |
| ret = kvm_vm_check_extension(s, capability); |
| if (ret <= 0) { |
| capability = KVM_CAP_DIRTY_LOG_RING_ACQ_REL; |
| ret = kvm_vm_check_extension(s, capability); |
| } |
| |
| if (ret <= 0) { |
| warn_report("KVM dirty ring not available, using bitmap method"); |
| return 0; |
| } |
| |
| if (ring_bytes > ret) { |
| error_report("KVM dirty ring size %" PRIu32 " too big " |
| "(maximum is %ld). Please use a smaller value.", |
| ring_size, (long)ret / sizeof(struct kvm_dirty_gfn)); |
| return -EINVAL; |
| } |
| |
| ret = kvm_vm_enable_cap(s, capability, 0, ring_bytes); |
| if (ret) { |
| error_report("Enabling of KVM dirty ring failed: %s. " |
| "Suggested minimum value is 1024.", strerror(-ret)); |
| return -EIO; |
| } |
| |
| /* Enable the backup bitmap if it is supported */ |
| ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP); |
| if (ret > 0) { |
| ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP, 0); |
| if (ret) { |
| error_report("Enabling of KVM dirty ring's backup bitmap failed: " |
| "%s. ", strerror(-ret)); |
| return -EIO; |
| } |
| |
| s->kvm_dirty_ring_with_bitmap = true; |
| } |
| |
| s->kvm_dirty_ring_size = ring_size; |
| s->kvm_dirty_ring_bytes = ring_bytes; |
| |
| return 0; |
| } |
| |
| static void kvm_region_add(MemoryListener *listener, |
| MemoryRegionSection *section) |
| { |
| KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); |
| KVMMemoryUpdate *update; |
| |
| update = g_new0(KVMMemoryUpdate, 1); |
| update->section = *section; |
| |
| QSIMPLEQ_INSERT_TAIL(&kml->transaction_add, update, next); |
| } |
| |
| static void kvm_region_del(MemoryListener *listener, |
| MemoryRegionSection *section) |
| { |
| KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); |
| KVMMemoryUpdate *update; |
| |
| update = g_new0(KVMMemoryUpdate, 1); |
| update->section = *section; |
| |
| QSIMPLEQ_INSERT_TAIL(&kml->transaction_del, update, next); |
| } |
| |
| static void kvm_region_commit(MemoryListener *listener) |
| { |
| KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, |
| listener); |
| KVMMemoryUpdate *u1, *u2; |
| bool need_inhibit = false; |
| |
| if (QSIMPLEQ_EMPTY(&kml->transaction_add) && |
| QSIMPLEQ_EMPTY(&kml->transaction_del)) { |
| return; |
| } |
| |
| /* |
| * We have to be careful when regions to add overlap with ranges to remove. |
| * We have to simulate atomic KVM memslot updates by making sure no ioctl() |
| * is currently active. |
| * |
| * The lists are order by addresses, so it's easy to find overlaps. |
| */ |
| u1 = QSIMPLEQ_FIRST(&kml->transaction_del); |
| u2 = QSIMPLEQ_FIRST(&kml->transaction_add); |
| while (u1 && u2) { |
| Range r1, r2; |
| |
| range_init_nofail(&r1, u1->section.offset_within_address_space, |
| int128_get64(u1->section.size)); |
| range_init_nofail(&r2, u2->section.offset_within_address_space, |
| int128_get64(u2->section.size)); |
| |
| if (range_overlaps_range(&r1, &r2)) { |
| need_inhibit = true; |
| break; |
| } |
| if (range_lob(&r1) < range_lob(&r2)) { |
| u1 = QSIMPLEQ_NEXT(u1, next); |
| } else { |
| u2 = QSIMPLEQ_NEXT(u2, next); |
| } |
| } |
| |
| kvm_slots_lock(); |
| if (need_inhibit) { |
| accel_ioctl_inhibit_begin(); |
| } |
| |
| /* Remove all memslots before adding the new ones. */ |
| while (!QSIMPLEQ_EMPTY(&kml->transaction_del)) { |
| u1 = QSIMPLEQ_FIRST(&kml->transaction_del); |
| QSIMPLEQ_REMOVE_HEAD(&kml->transaction_del, next); |
| |
| kvm_set_phys_mem(kml, &u1->section, false); |
| memory_region_unref(u1->section.mr); |
| |
| g_free(u1); |
| } |
| while (!QSIMPLEQ_EMPTY(&kml->transaction_add)) { |
| u1 = QSIMPLEQ_FIRST(&kml->transaction_add); |
| QSIMPLEQ_REMOVE_HEAD(&kml->transaction_add, next); |
| |
| memory_region_ref(u1->section.mr); |
| kvm_set_phys_mem(kml, &u1->section, true); |
| |
| g_free(u1); |
| } |
| |
| if (need_inhibit) { |
| accel_ioctl_inhibit_end(); |
| } |
| kvm_slots_unlock(); |
| } |
| |
| static void kvm_log_sync(MemoryListener *listener, |
| MemoryRegionSection *section) |
| { |
| KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); |
| |
| kvm_slots_lock(); |
| kvm_physical_sync_dirty_bitmap(kml, section); |
| kvm_slots_unlock(); |
| } |
| |
| static void kvm_log_sync_global(MemoryListener *l, bool last_stage) |
| { |
| KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener); |
| KVMState *s = kvm_state; |
| KVMSlot *mem; |
| int i; |
| |
| /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */ |
| kvm_dirty_ring_flush(); |
| |
| /* |
| * TODO: make this faster when nr_slots is big while there are |
| * only a few used slots (small VMs). |
| */ |
| kvm_slots_lock(); |
| for (i = 0; i < s->nr_slots; i++) { |
| mem = &kml->slots[i]; |
| if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { |
| kvm_slot_sync_dirty_pages(mem); |
| |
| if (s->kvm_dirty_ring_with_bitmap && last_stage && |
| kvm_slot_get_dirty_log(s, mem)) { |
| kvm_slot_sync_dirty_pages(mem); |
| } |
| |
| /* |
| * This is not needed by KVM_GET_DIRTY_LOG because the |
| * ioctl will unconditionally overwrite the whole region. |
| * However kvm dirty ring has no such side effect. |
| */ |
| kvm_slot_reset_dirty_pages(mem); |
| } |
| } |
| kvm_slots_unlock(); |
| } |
| |
| static void kvm_log_clear(MemoryListener *listener, |
| MemoryRegionSection *section) |
| { |
| KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); |
| int r; |
| |
| r = kvm_physical_log_clear(kml, section); |
| if (r < 0) { |
| error_report_once("%s: kvm log clear failed: mr=%s " |
| "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__, |
| section->mr->name, section->offset_within_region, |
| int128_get64(section->size)); |
| abort(); |
| } |
| } |
| |
| static void kvm_mem_ioeventfd_add(MemoryListener *listener, |
| MemoryRegionSection *section, |
| bool match_data, uint64_t data, |
| EventNotifier *e) |
| { |
| int fd = event_notifier_get_fd(e); |
| int r; |
| |
| r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, |
| data, true, int128_get64(section->size), |
| match_data); |
| if (r < 0) { |
| fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", |
| __func__, strerror(-r), -r); |
| abort(); |
| } |
| } |
| |
| static void kvm_mem_ioeventfd_del(MemoryListener *listener, |
| MemoryRegionSection *section, |
| bool match_data, uint64_t data, |
| EventNotifier *e) |
| { |
| int fd = event_notifier_get_fd(e); |
| int r; |
| |
| r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, |
| data, false, int128_get64(section->size), |
| match_data); |
| if (r < 0) { |
| fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", |
| __func__, strerror(-r), -r); |
| abort(); |
| } |
| } |
| |
| static void kvm_io_ioeventfd_add(MemoryListener *listener, |
| MemoryRegionSection *section, |
| bool match_data, uint64_t data, |
| EventNotifier *e) |
| { |
| int fd = event_notifier_get_fd(e); |
| int r; |
| |
| r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, |
| data, true, int128_get64(section->size), |
| match_data); |
| if (r < 0) { |
| fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", |
| __func__, strerror(-r), -r); |
| abort(); |
| } |
| } |
| |
| static void kvm_io_ioeventfd_del(MemoryListener *listener, |
| MemoryRegionSection *section, |
| bool match_data, uint64_t data, |
| EventNotifier *e) |
| |
| { |
| int fd = event_notifier_get_fd(e); |
| int r; |
| |
| r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, |
| data, false, int128_get64(section->size), |
| match_data); |
| if (r < 0) { |
| fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", |
| __func__, strerror(-r), -r); |
| abort(); |
| } |
| } |
| |
| void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, |
| AddressSpace *as, int as_id, const char *name) |
| { |
| int i; |
| |
| kml->slots = g_new0(KVMSlot, s->nr_slots); |
| kml->as_id = as_id; |
| |
| for (i = 0; i < s->nr_slots; i++) { |
| kml->slots[i].slot = i; |
| } |
| |
| QSIMPLEQ_INIT(&kml->transaction_add); |
| QSIMPLEQ_INIT(&kml->transaction_del); |
| |
| kml->listener.region_add = kvm_region_add; |
| kml->listener.region_del = kvm_region_del; |
| kml->listener.commit = kvm_region_commit; |
| kml->listener.log_start = kvm_log_start; |
| kml->listener.log_stop = kvm_log_stop; |
| kml->listener.priority = MEMORY_LISTENER_PRIORITY_ACCEL; |
| kml->listener.name = name; |
| |
| if (s->kvm_dirty_ring_size) { |
| kml->listener.log_sync_global = kvm_log_sync_global; |
| } else { |
| kml->listener.log_sync = kvm_log_sync; |
| kml->listener.log_clear = kvm_log_clear; |
| } |
| |
| memory_listener_register(&kml->listener, as); |
| |
| for (i = 0; i < s->nr_as; ++i) { |
| if (!s->as[i].as) { |
| s->as[i].as = as; |
| s->as[i].ml = kml; |
| break; |
| } |
| } |
| } |
| |
| static MemoryListener kvm_io_listener = { |
| .name = "kvm-io", |
| .eventfd_add = kvm_io_ioeventfd_add, |
| .eventfd_del = kvm_io_ioeventfd_del, |
| .priority = MEMORY_LISTENER_PRIORITY_DEV_BACKEND, |
| }; |
| |
| int kvm_set_irq(KVMState *s, int irq, int level) |
| { |
| struct kvm_irq_level event; |
| int ret; |
| |
| assert(kvm_async_interrupts_enabled()); |
| |
| event.level = level; |
| event.irq = irq; |
| ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); |
| if (ret < 0) { |
| perror("kvm_set_irq"); |
| abort(); |
| } |
| |
| return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; |
| } |
| |
| #ifdef KVM_CAP_IRQ_ROUTING |
| typedef struct KVMMSIRoute { |
| struct kvm_irq_routing_entry kroute; |
| QTAILQ_ENTRY(KVMMSIRoute) entry; |
| } KVMMSIRoute; |
| |
| static void set_gsi(KVMState *s, unsigned int gsi) |
| { |
| set_bit(gsi, s->used_gsi_bitmap); |
| } |
| |
| static void clear_gsi(KVMState *s, unsigned int gsi) |
| { |
| clear_bit(gsi, s->used_gsi_bitmap); |
| } |
| |
| void kvm_init_irq_routing(KVMState *s) |
| { |
| int gsi_count, i; |
| |
| gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; |
| if (gsi_count > 0) { |
| /* Round up so we can search ints using ffs */ |
| s->used_gsi_bitmap = bitmap_new(gsi_count); |
| s->gsi_count = gsi_count; |
| } |
| |
| s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); |
| s->nr_allocated_irq_routes = 0; |
| |
| if (!kvm_direct_msi_allowed) { |
| for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { |
| QTAILQ_INIT(&s->msi_hashtab[i]); |
| } |
| } |
| |
| kvm_arch_init_irq_routing(s); |
| } |
| |
| void kvm_irqchip_commit_routes(KVMState *s) |
| { |
| int ret; |
| |
| if (kvm_gsi_direct_mapping()) { |
| return; |
| } |
| |
| if (!kvm_gsi_routing_enabled()) { |
| return; |
| } |
| |
| s->irq_routes->flags = 0; |
| trace_kvm_irqchip_commit_routes(); |
| ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); |
| assert(ret == 0); |
| } |
| |
| static void kvm_add_routing_entry(KVMState *s, |
| struct kvm_irq_routing_entry *entry) |
| { |
| struct kvm_irq_routing_entry *new; |
| int n, size; |
| |
| if (s->irq_routes->nr == s->nr_allocated_irq_routes) { |
| n = s->nr_allocated_irq_routes * 2; |
| if (n < 64) { |
| n = 64; |
| } |
| size = sizeof(struct kvm_irq_routing); |
| size += n * sizeof(*new); |
| s->irq_routes = g_realloc(s->irq_routes, size); |
| s->nr_allocated_irq_routes = n; |
| } |
| n = s->irq_routes->nr++; |
| new = &s->irq_routes->entries[n]; |
| |
| *new = *entry; |
| |
| set_gsi(s, entry->gsi); |
| } |
| |
| static int kvm_update_routing_entry(KVMState *s, |
| struct kvm_irq_routing_entry *new_entry) |
| { |
| struct kvm_irq_routing_entry *entry; |
| int n; |
| |
| for (n = 0; n < s->irq_routes->nr; n++) { |
| entry = &s->irq_routes->entries[n]; |
| if (entry->gsi != new_entry->gsi) { |
| continue; |
| } |
| |
| if(!memcmp(entry, new_entry, sizeof *entry)) { |
| return 0; |
| } |
| |
| *entry = *new_entry; |
| |
| return 0; |
| } |
| |
| return -ESRCH; |
| } |
| |
| void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) |
| { |
| struct kvm_irq_routing_entry e = {}; |
| |
| assert(pin < s->gsi_count); |
| |
| e.gsi = irq; |
| e.type = KVM_IRQ_ROUTING_IRQCHIP; |
| e.flags = 0; |
| e.u.irqchip.irqchip = irqchip; |
| e.u.irqchip.pin = pin; |
| kvm_add_routing_entry(s, &e); |
| } |
| |
| void kvm_irqchip_release_virq(KVMState *s, int virq) |
| { |
| struct kvm_irq_routing_entry *e; |
| int i; |
| |
| if (kvm_gsi_direct_mapping()) { |
| return; |
| } |
| |
| for (i = 0; i < s->irq_routes->nr; i++) { |
| e = &s->irq_routes->entries[i]; |
| if (e->gsi == virq) { |
| s->irq_routes->nr--; |
| *e = s->irq_routes->entries[s->irq_routes->nr]; |
| } |
| } |
| clear_gsi(s, virq); |
| kvm_arch_release_virq_post(virq); |
| trace_kvm_irqchip_release_virq(virq); |
| } |
| |
| void kvm_irqchip_add_change_notifier(Notifier *n) |
| { |
| notifier_list_add(&kvm_irqchip_change_notifiers, n); |
| } |
| |
| void kvm_irqchip_remove_change_notifier(Notifier *n) |
| { |
| notifier_remove(n); |
| } |
| |
| void kvm_irqchip_change_notify(void) |
| { |
| notifier_list_notify(&kvm_irqchip_change_notifiers, NULL); |
| } |
| |
| static unsigned int kvm_hash_msi(uint32_t data) |
| { |
| /* This is optimized for IA32 MSI layout. However, no other arch shall |
| * repeat the mistake of not providing a direct MSI injection API. */ |
| return data & 0xff; |
| } |
| |
| static void kvm_flush_dynamic_msi_routes(KVMState *s) |
| { |
| KVMMSIRoute *route, *next; |
| unsigned int hash; |
| |
| for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { |
| QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { |
| kvm_irqchip_release_virq(s, route->kroute.gsi); |
| QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); |
| g_free(route); |
| } |
| } |
| } |
| |
| static int kvm_irqchip_get_virq(KVMState *s) |
| { |
| int next_virq; |
| |
| /* |
| * PIC and IOAPIC share the first 16 GSI numbers, thus the available |
| * GSI numbers are more than the number of IRQ route. Allocating a GSI |
| * number can succeed even though a new route entry cannot be added. |
| * When this happens, flush dynamic MSI entries to free IRQ route entries. |
| */ |
| if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) { |
| kvm_flush_dynamic_msi_routes(s); |
| } |
| |
| /* Return the lowest unused GSI in the bitmap */ |
| next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); |
| if (next_virq >= s->gsi_count) { |
| return -ENOSPC; |
| } else { |
| return next_virq; |
| } |
| } |
| |
| static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) |
| { |
| unsigned int hash = kvm_hash_msi(msg.data); |
| KVMMSIRoute *route; |
| |
| QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { |
| if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && |
| route->kroute.u.msi.address_hi == (msg.address >> 32) && |
| route->kroute.u.msi.data == le32_to_cpu(msg.data)) { |
| return route; |
| } |
| } |
| return NULL; |
| } |
| |
| int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) |
| { |
| struct kvm_msi msi; |
| KVMMSIRoute *route; |
| |
| if (kvm_direct_msi_allowed) { |
| msi.address_lo = (uint32_t)msg.address; |
| msi.address_hi = msg.address >> 32; |
| msi.data = le32_to_cpu(msg.data); |
| msi.flags = 0; |
| memset(msi.pad, 0, sizeof(msi.pad)); |
| |
| return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); |
| } |
| |
| route = kvm_lookup_msi_route(s, msg); |
| if (!route) { |
| int virq; |
| |
| virq = kvm_irqchip_get_virq(s); |
| if (virq < 0) { |
| return virq; |
| } |
| |
| route = g_new0(KVMMSIRoute, 1); |
| route->kroute.gsi = virq; |
| route->kroute.type = KVM_IRQ_ROUTING_MSI; |
| route->kroute.flags = 0; |
| route->kroute.u.msi.address_lo = (uint32_t)msg.address; |
| route->kroute.u.msi.address_hi = msg.address >> 32; |
| route->kroute.u.msi.data = le32_to_cpu(msg.data); |
| |
| kvm_add_routing_entry(s, &route->kroute); |
| kvm_irqchip_commit_routes(s); |
| |
| QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, |
| entry); |
| } |
| |
| assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); |
| |
| return kvm_set_irq(s, route->kroute.gsi, 1); |
| } |
| |
| int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) |
| { |
| struct kvm_irq_routing_entry kroute = {}; |
| int virq; |
| KVMState *s = c->s; |
| MSIMessage msg = {0, 0}; |
| |
| if (pci_available && dev) { |
| msg = pci_get_msi_message(dev, vector); |
| } |
| |
| if (kvm_gsi_direct_mapping()) { |
| return kvm_arch_msi_data_to_gsi(msg.data); |
| } |
| |
| if (!kvm_gsi_routing_enabled()) { |
| return -ENOSYS; |
| } |
| |
| virq = kvm_irqchip_get_virq(s); |
| if (virq < 0) { |
| return virq; |
| } |
| |
| kroute.gsi = virq; |
| kroute.type = KVM_IRQ_ROUTING_MSI; |
| kroute.flags = 0; |
| kroute.u.msi.address_lo = (uint32_t)msg.address; |
| kroute.u.msi.address_hi = msg.address >> 32; |
| kroute.u.msi.data = le32_to_cpu(msg.data); |
| if (pci_available && kvm_msi_devid_required()) { |
| kroute.flags = KVM_MSI_VALID_DEVID; |
| kroute.u.msi.devid = pci_requester_id(dev); |
| } |
| if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { |
| kvm_irqchip_release_virq(s, virq); |
| return -EINVAL; |
| } |
| |
| trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", |
| vector, virq); |
| |
| kvm_add_routing_entry(s, &kroute); |
| kvm_arch_add_msi_route_post(&kroute, vector, dev); |
| c->changes++; |
| |
| return virq; |
| } |
| |
| int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, |
| PCIDevice *dev) |
| { |
| struct kvm_irq_routing_entry kroute = {}; |
| |
| if (kvm_gsi_direct_mapping()) { |
| return 0; |
| } |
| |
| if (!kvm_irqchip_in_kernel()) { |
| return -ENOSYS; |
| } |
| |
| kroute.gsi = virq; |
| kroute.type = KVM_IRQ_ROUTING_MSI; |
| kroute.flags = 0; |
| kroute.u.msi.address_lo = (uint32_t)msg.address; |
| kroute.u.msi.address_hi = msg.address >> 32; |
| kroute.u.msi.data = le32_to_cpu(msg.data); |
| if (pci_available && kvm_msi_devid_required()) { |
| kroute.flags = KVM_MSI_VALID_DEVID; |
| kroute.u.msi.devid = pci_requester_id(dev); |
| } |
| if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { |
| return -EINVAL; |
| } |
| |
| trace_kvm_irqchip_update_msi_route(virq); |
| |
| return kvm_update_routing_entry(s, &kroute); |
| } |
| |
| static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, |
| EventNotifier *resample, int virq, |
| bool assign) |
| { |
| int fd = event_notifier_get_fd(event); |
| int rfd = resample ? event_notifier_get_fd(resample) : -1; |
| |
| struct kvm_irqfd irqfd = { |
| .fd = fd, |
| .gsi = virq, |
| .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, |
| }; |
| |
| if (rfd != -1) { |
| assert(assign); |
| if (kvm_irqchip_is_split()) { |
| /* |
| * When the slow irqchip (e.g. IOAPIC) is in the |
| * userspace, KVM kernel resamplefd will not work because |
| * the EOI of the interrupt will be delivered to userspace |
| * instead, so the KVM kernel resamplefd kick will be |
| * skipped. The userspace here mimics what the kernel |
| * provides with resamplefd, remember the resamplefd and |
| * kick it when we receive EOI of this IRQ. |
| * |
| * This is hackery because IOAPIC is mostly bypassed |
| * (except EOI broadcasts) when irqfd is used. However |
| * this can bring much performance back for split irqchip |
| * with INTx IRQs (for VFIO, this gives 93% perf of the |
| * full fast path, which is 46% perf boost comparing to |
| * the INTx slow path). |
| */ |
| kvm_resample_fd_insert(virq, resample); |
| } else { |
| irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; |
| irqfd.resamplefd = rfd; |
| } |
| } else if (!assign) { |
| if (kvm_irqchip_is_split()) { |
| kvm_resample_fd_remove(virq); |
| } |
| } |
| |
| if (!kvm_irqfds_enabled()) { |
| return -ENOSYS; |
| } |
| |
| return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); |
| } |
| |
| int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) |
| { |
| struct kvm_irq_routing_entry kroute = {}; |
| int virq; |
| |
| if (!kvm_gsi_routing_enabled()) { |
| return -ENOSYS; |
| } |
| |
| virq = kvm_irqchip_get_virq(s); |
| if (virq < 0) { |
| return virq; |
| } |
| |
| kroute.gsi = virq; |
| kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; |
| kroute.flags = 0; |
| kroute.u.adapter.summary_addr = adapter->summary_addr; |
| kroute.u.adapter.ind_addr = adapter->ind_addr; |
| kroute.u.adapter.summary_offset = adapter->summary_offset; |
| kroute.u.adapter.ind_offset = adapter->ind_offset; |
| kroute.u.adapter.adapter_id = adapter->adapter_id; |
| |
| kvm_add_routing_entry(s, &kroute); |
| |
| return virq; |
| } |
| |
| int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) |
| { |
| struct kvm_irq_routing_entry kroute = {}; |
| int virq; |
| |
| if (!kvm_gsi_routing_enabled()) { |
| return -ENOSYS; |
| } |
| if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) { |
| return -ENOSYS; |
| } |
| virq = kvm_irqchip_get_virq(s); |
| if (virq < 0) { |
| return virq; |
| } |
| |
| kroute.gsi = virq; |
| kroute.type = KVM_IRQ_ROUTING_HV_SINT; |
| kroute.flags = 0; |
| kroute.u.hv_sint.vcpu = vcpu; |
| kroute.u.hv_sint.sint = sint; |
| |
| kvm_add_routing_entry(s, &kroute); |
| kvm_irqchip_commit_routes(s); |
| |
| return virq; |
| } |
| |
| #else /* !KVM_CAP_IRQ_ROUTING */ |
| |
| void kvm_init_irq_routing(KVMState *s) |
| { |
| } |
| |
| void kvm_irqchip_release_virq(KVMState *s, int virq) |
| { |
| } |
| |
| int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) |
| { |
| abort(); |
| } |
| |
| int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) |
| { |
| return -ENOSYS; |
| } |
| |
| int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) |
| { |
| return -ENOSYS; |
| } |
| |
| int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) |
| { |
| return -ENOSYS; |
| } |
| |
| static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, |
| EventNotifier *resample, int virq, |
| bool assign) |
| { |
| abort(); |
| } |
| |
| int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) |
| { |
| return -ENOSYS; |
| } |
| #endif /* !KVM_CAP_IRQ_ROUTING */ |
| |
| int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, |
| EventNotifier *rn, int virq) |
| { |
| return kvm_irqchip_assign_irqfd(s, n, rn, virq, true); |
| } |
| |
| int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, |
| int virq) |
| { |
| return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false); |
| } |
| |
| int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, |
| EventNotifier *rn, qemu_irq irq) |
| { |
| gpointer key, gsi; |
| gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); |
| |
| if (!found) { |
| return -ENXIO; |
| } |
| return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); |
| } |
| |
| int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, |
| qemu_irq irq) |
| { |
| gpointer key, gsi; |
| gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); |
| |
| if (!found) { |
| return -ENXIO; |
| } |
| return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); |
| } |
| |
| void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) |
| { |
| g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); |
| } |
| |
| static void kvm_irqchip_create(KVMState *s) |
| { |
| int ret; |
| |
| assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO); |
| if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { |
| ; |
| } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { |
| ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); |
| if (ret < 0) { |
| fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); |
| exit(1); |
| } |
| } else { |
| return; |
| } |
| |
| /* First probe and see if there's a arch-specific hook to create the |
| * in-kernel irqchip for us */ |
| ret = kvm_arch_irqchip_create(s); |
| if (ret == 0) { |
| if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) { |
| error_report("Split IRQ chip mode not supported."); |
| exit(1); |
| } else { |
| ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); |
| } |
| } |
| if (ret < 0) { |
| fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); |
| exit(1); |
| } |
| |
| kvm_kernel_irqchip = true; |
| /* If we have an in-kernel IRQ chip then we must have asynchronous |
| * interrupt delivery (though the reverse is not necessarily true) |
| */ |
| kvm_async_interrupts_allowed = true; |
| kvm_halt_in_kernel_allowed = true; |
| |
| kvm_init_irq_routing(s); |
| |
| s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); |
| } |
| |
| /* Find number of supported CPUs using the recommended |
| * procedure from the kernel API documentation to cope with |
| * older kernels that may be missing capabilities. |
| */ |
| static int kvm_recommended_vcpus(KVMState *s) |
| { |
| int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); |
| return (ret) ? ret : 4; |
| } |
| |
| static int kvm_max_vcpus(KVMState *s) |
| { |
| int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); |
| return (ret) ? ret : kvm_recommended_vcpus(s); |
| } |
| |
| static int kvm_max_vcpu_id(KVMState *s) |
| { |
| int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); |
| return (ret) ? ret : kvm_max_vcpus(s); |
| } |
| |
| bool kvm_vcpu_id_is_valid(int vcpu_id) |
| { |
| KVMState *s = KVM_STATE(current_accel()); |
| return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); |
| } |
| |
| bool kvm_dirty_ring_enabled(void) |
| { |
| return kvm_state->kvm_dirty_ring_size ? true : false; |
| } |
| |
| static void query_stats_cb(StatsResultList **result, StatsTarget target, |
| strList *names, strList *targets, Error **errp); |
| static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp); |
| |
| uint32_t kvm_dirty_ring_size(void) |
| { |
| return kvm_state->kvm_dirty_ring_size; |
| } |
| |
| static int kvm_init(MachineState *ms) |
| { |
| MachineClass *mc = MACHINE_GET_CLASS(ms); |
| static const char upgrade_note[] = |
| "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" |
| "(see http://sourceforge.net/projects/kvm).\n"; |
| const struct { |
| const char *name; |
| int num; |
| } num_cpus[] = { |
| { "SMP", ms->smp.cpus }, |
| { "hotpluggable", ms->smp.max_cpus }, |
| { /* end of list */ } |
| }, *nc = num_cpus; |
| int soft_vcpus_limit, hard_vcpus_limit; |
| KVMState *s; |
| const KVMCapabilityInfo *missing_cap; |
| int ret; |
| int type; |
| uint64_t dirty_log_manual_caps; |
| |
| qemu_mutex_init(&kml_slots_lock); |
| |
| s = KVM_STATE(ms->accelerator); |
| |
| /* |
| * On systems where the kernel can support different base page |
| * sizes, host page size may be different from TARGET_PAGE_SIZE, |
| * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum |
| * page size for the system though. |
| */ |
| assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size()); |
| |
| s->sigmask_len = 8; |
| accel_blocker_init(); |
| |
| #ifdef KVM_CAP_SET_GUEST_DEBUG |
| QTAILQ_INIT(&s->kvm_sw_breakpoints); |
| #endif |
| QLIST_INIT(&s->kvm_parked_vcpus); |
| s->fd = qemu_open_old("/dev/kvm", O_RDWR); |
| if (s->fd == -1) { |
| fprintf(stderr, "Could not access KVM kernel module: %m\n"); |
| ret = -errno; |
| goto err; |
| } |
| |
| ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); |
| if (ret < KVM_API_VERSION) { |
| if (ret >= 0) { |
| ret = -EINVAL; |
| } |
| fprintf(stderr, "kvm version too old\n"); |
| goto err; |
| } |
| |
| if (ret > KVM_API_VERSION) { |
| ret = -EINVAL; |
| fprintf(stderr, "kvm version not supported\n"); |
| goto err; |
| } |
| |
| kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); |
| s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); |
| |
| /* If unspecified, use the default value */ |
| if (!s->nr_slots) { |
| s->nr_slots = 32; |
| } |
| |
| s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE); |
| if (s->nr_as <= 1) { |
| s->nr_as = 1; |
| } |
| s->as = g_new0(struct KVMAs, s->nr_as); |
| |
| if (object_property_find(OBJECT(current_machine), "kvm-type")) { |
| g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine), |
| "kvm-type", |
| &error_abort); |
| type = mc->kvm_type(ms, kvm_type); |
| } else if (mc->kvm_type) { |
| type = mc->kvm_type(ms, NULL); |
| } else { |
| type = kvm_arch_get_default_type(ms); |
| } |
| |
| if (type < 0) { |
| ret = -EINVAL; |
| goto err; |
| } |
| |
| do { |
| ret = kvm_ioctl(s, KVM_CREATE_VM, type); |
| } while (ret == -EINTR); |
| |
| if (ret < 0) { |
| fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, |
| strerror(-ret)); |
| |
| #ifdef TARGET_S390X |
| if (ret == -EINVAL) { |
| fprintf(stderr, |
| "Host kernel setup problem detected. Please verify:\n"); |
| fprintf(stderr, "- for kernels supporting the switch_amode or" |
| " user_mode parameters, whether\n"); |
| fprintf(stderr, |
| " user space is running in primary address space\n"); |
| fprintf(stderr, |
| "- for kernels supporting the vm.allocate_pgste sysctl, " |
| "whether it is enabled\n"); |
| } |
| #elif defined(TARGET_PPC) |
| if (ret == -EINVAL) { |
| fprintf(stderr, |
| "PPC KVM module is not loaded. Try modprobe kvm_%s.\n", |
| (type == 2) ? "pr" : "hv"); |
| } |
| #endif |
| goto err; |
| } |
| |
| s->vmfd = ret; |
| |
| /* check the vcpu limits */ |
| soft_vcpus_limit = kvm_recommended_vcpus(s); |
| hard_vcpus_limit = kvm_max_vcpus(s); |
| |
| while (nc->name) { |
| if (nc->num > soft_vcpus_limit) { |
| warn_report("Number of %s cpus requested (%d) exceeds " |
| "the recommended cpus supported by KVM (%d)", |
| nc->name, nc->num, soft_vcpus_limit); |
| |
| if (nc->num > hard_vcpus_limit) { |
| fprintf(stderr, "Number of %s cpus requested (%d) exceeds " |
| "the maximum cpus supported by KVM (%d)\n", |
| nc->name, nc->num, hard_vcpus_limit); |
| exit(1); |
| } |
| } |
| nc++; |
| } |
| |
| missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); |
| if (!missing_cap) { |
| missing_cap = |
| kvm_check_extension_list(s, kvm_arch_required_capabilities); |
| } |
| if (missing_cap) { |
| ret = -EINVAL; |
| fprintf(stderr, "kvm does not support %s\n%s", |
| missing_cap->name, upgrade_note); |
| goto err; |
| } |
| |
| s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); |
| s->coalesced_pio = s->coalesced_mmio && |
| kvm_check_extension(s, KVM_CAP_COALESCED_PIO); |
| |
| /* |
| * Enable KVM dirty ring if supported, otherwise fall back to |
| * dirty logging mode |
| */ |
| ret = kvm_dirty_ring_init(s); |
| if (ret < 0) { |
| goto err; |
| } |
| |
| /* |
| * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is |
| * enabled. More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no |
| * page is wr-protected initially, which is against how kvm dirty ring is |
| * usage - kvm dirty ring requires all pages are wr-protected at the very |
| * beginning. Enabling this feature for dirty ring causes data corruption. |
| * |
| * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log, |
| * we may expect a higher stall time when starting the migration. In the |
| * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too: |
| * instead of clearing dirty bit, it can be a way to explicitly wr-protect |
| * guest pages. |
| */ |
| if (!s->kvm_dirty_ring_size) { |
| dirty_log_manual_caps = |
| kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); |
| dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | |
| KVM_DIRTY_LOG_INITIALLY_SET); |
| s->manual_dirty_log_protect = dirty_log_manual_caps; |
| if (dirty_log_manual_caps) { |
| ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, |
| dirty_log_manual_caps); |
| if (ret) { |
| warn_report("Trying to enable capability %"PRIu64" of " |
| "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. " |
| "Falling back to the legacy mode. ", |
| dirty_log_manual_caps); |
| s->manual_dirty_log_protect = 0; |
| } |
| } |
| } |
| |
| #ifdef KVM_CAP_VCPU_EVENTS |
| s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); |
| #endif |
| |
| s->robust_singlestep = |
| kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); |
| |
| #ifdef KVM_CAP_DEBUGREGS |
| s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); |
| #endif |
| |
| s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE); |
| |
| #ifdef KVM_CAP_IRQ_ROUTING |
| kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); |
| #endif |
| |
| s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); |
| |
| s->irq_set_ioctl = KVM_IRQ_LINE; |
| if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { |
| s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; |
| } |
| |
| kvm_readonly_mem_allowed = |
| (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); |
| |
| kvm_eventfds_allowed = |
| (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0); |
| |
| kvm_irqfds_allowed = |
| (kvm_check_extension(s, KVM_CAP_IRQFD) > 0); |
| |
| kvm_resamplefds_allowed = |
| (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); |
| |
| kvm_vm_attributes_allowed = |
| (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); |
| |
| kvm_ioeventfd_any_length_allowed = |
| (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0); |
| |
| #ifdef KVM_CAP_SET_GUEST_DEBUG |
| kvm_has_guest_debug = |
| (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0); |
| #endif |
| |
| kvm_sstep_flags = 0; |
| if (kvm_has_guest_debug) { |
| kvm_sstep_flags = SSTEP_ENABLE; |
| |
| #if defined KVM_CAP_SET_GUEST_DEBUG2 |
| int guest_debug_flags = |
| kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2); |
| |
| if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) { |
| kvm_sstep_flags |= SSTEP_NOIRQ; |
| } |
| #endif |
| } |
| |
| kvm_state = s; |
| |
| ret = kvm_arch_init(ms, s); |
| if (ret < 0) { |
| goto err; |
| } |
| |
| if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) { |
| s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; |
| } |
| |
| qemu_register_reset(kvm_unpoison_all, NULL); |
| |
| if (s->kernel_irqchip_allowed) { |
| kvm_irqchip_create(s); |
| } |
| |
| if (kvm_eventfds_allowed) { |
| s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; |
| s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; |
| } |
| s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; |
| s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; |
| |
| kvm_memory_listener_register(s, &s->memory_listener, |
| &address_space_memory, 0, "kvm-memory"); |
| if (kvm_eventfds_allowed) { |
| memory_listener_register(&kvm_io_listener, |
| &address_space_io); |
| } |
| memory_listener_register(&kvm_coalesced_pio_listener, |
| &address_space_io); |
| |
| s->many_ioeventfds = kvm_check_many_ioeventfds(); |
| |
| s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); |
| if (!s->sync_mmu) { |
| ret = ram_block_discard_disable(true); |
| assert(!ret); |
| } |
| |
| if (s->kvm_dirty_ring_size) { |
| kvm_dirty_ring_reaper_init(s); |
| } |
| |
| if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) { |
| add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb, |
| query_stats_schemas_cb); |
| } |
| |
| return 0; |
| |
| err: |
| assert(ret < 0); |
| if (s->vmfd >= 0) { |
| close(s->vmfd); |
| } |
| if (s->fd != -1) { |
| close(s->fd); |
| } |
| g_free(s->as); |
| g_free(s->memory_listener.slots); |
| |
| return ret; |
| } |
| |
| void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) |
| { |
| s->sigmask_len = sigmask_len; |
| } |
| |
| static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, |
| int size, uint32_t count) |
| { |
| int i; |
| uint8_t *ptr = data; |
| |
| for (i = 0; i < count; i++) { |
| address_space_rw(&address_space_io, port, attrs, |
| ptr, size, |
| direction == KVM_EXIT_IO_OUT); |
| ptr += size; |
| } |
| } |
| |
| static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) |
| { |
| fprintf(stderr, "KVM internal error. Suberror: %d\n", |
| run->internal.suberror); |
| |
| if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { |
| int i; |
| |
| for (i = 0; i < run->internal.ndata; ++i) { |
| fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n", |
| i, (uint64_t)run->internal.data[i]); |
| } |
| } |
| if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { |
| fprintf(stderr, "emulation failure\n"); |
| if (!kvm_arch_stop_on_emulation_error(cpu)) { |
| cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); |
| return EXCP_INTERRUPT; |
| } |
| } |
| /* FIXME: Should trigger a qmp message to let management know |
| * something went wrong. |
| */ |
| return -1; |
| } |
| |
| void kvm_flush_coalesced_mmio_buffer(void) |
| { |
| KVMState *s = kvm_state; |
| |
| if (!s || s->coalesced_flush_in_progress) { |
| return; |
| } |
| |
| s->coalesced_flush_in_progress = true; |
| |
| if (s->coalesced_mmio_ring) { |
| struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; |
| while (ring->first != ring->last) { |
| struct kvm_coalesced_mmio *ent; |
| |
| ent = &ring->coalesced_mmio[ring->first]; |
| |
| if (ent->pio == 1) { |
| address_space_write(&address_space_io, ent->phys_addr, |
| MEMTXATTRS_UNSPECIFIED, ent->data, |
| ent->len); |
| } else { |
| cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); |
| } |
| smp_wmb(); |
| ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; |
| } |
| } |
| |
| s->coalesced_flush_in_progress = false; |
| } |
| |
| bool kvm_cpu_check_are_resettable(void) |
| { |
| return kvm_arch_cpu_check_are_resettable(); |
| } |
| |
| static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) |
| { |
| if (!cpu->vcpu_dirty) { |
| kvm_arch_get_registers(cpu); |
| cpu->vcpu_dirty = true; |
| } |
| } |
| |
| void kvm_cpu_synchronize_state(CPUState *cpu) |
| { |
| if (!cpu->vcpu_dirty) { |
| run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); |
| } |
| } |
| |
| static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) |
| { |
| kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); |
| cpu->vcpu_dirty = false; |
| } |
| |
| void kvm_cpu_synchronize_post_reset(CPUState *cpu) |
| { |
| run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); |
| } |
| |
| static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) |
| { |
| kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); |
| cpu->vcpu_dirty = false; |
| } |
| |
| void kvm_cpu_synchronize_post_init(CPUState *cpu) |
| { |
| run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); |
| } |
| |
| static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) |
| { |
| cpu->vcpu_dirty = true; |
| } |
| |
| void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) |
| { |
| run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); |
| } |
| |
| #ifdef KVM_HAVE_MCE_INJECTION |
| static __thread void *pending_sigbus_addr; |
| static __thread int pending_sigbus_code; |
| static __thread bool have_sigbus_pending; |
| #endif |
| |
| static void kvm_cpu_kick(CPUState *cpu) |
| { |
| qatomic_set(&cpu->kvm_run->immediate_exit, 1); |
| } |
| |
| static void kvm_cpu_kick_self(void) |
| { |
| if (kvm_immediate_exit) { |
| kvm_cpu_kick(current_cpu); |
| } else { |
| qemu_cpu_kick_self(); |
| } |
| } |
| |
| static void kvm_eat_signals(CPUState *cpu) |
| { |
| struct timespec ts = { 0, 0 }; |
| siginfo_t siginfo; |
| sigset_t waitset; |
| sigset_t chkset; |
| int r; |
| |
| if (kvm_immediate_exit) { |
| qatomic_set(&cpu->kvm_run->immediate_exit, 0); |
| /* Write kvm_run->immediate_exit before the cpu->exit_request |
| * write in kvm_cpu_exec. |
| */ |
| smp_wmb(); |
| return; |
| } |
| |
| sigemptyset(&waitset); |
| sigaddset(&waitset, SIG_IPI); |
| |
| do { |
| r = sigtimedwait(&waitset, &siginfo, &ts); |
| if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { |
| perror("sigtimedwait"); |
| exit(1); |
| } |
| |
| r = sigpending(&chkset); |
| if (r == -1) { |
| perror("sigpending"); |
| exit(1); |
| } |
| } while (sigismember(&chkset, SIG_IPI)); |
| } |
| |
| int kvm_cpu_exec(CPUState *cpu) |
| { |
| struct kvm_run *run = cpu->kvm_run; |
| int ret, run_ret; |
| |
| DPRINTF("kvm_cpu_exec()\n"); |
| |
| if (kvm_arch_process_async_events(cpu)) { |
| qatomic_set(&cpu->exit_request, 0); |
| return EXCP_HLT; |
| } |
| |
| qemu_mutex_unlock_iothread(); |
| cpu_exec_start(cpu); |
| |
| do { |
| MemTxAttrs attrs; |
| |
| if (cpu->vcpu_dirty) { |
| kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); |
| cpu->vcpu_dirty = false; |
| } |
| |
| kvm_arch_pre_run(cpu, run); |
| if (qatomic_read(&cpu->exit_request)) { |
| DPRINTF("interrupt exit requested\n"); |
| /* |
| * KVM requires us to reenter the kernel after IO exits to complete |
| * instruction emulation. This self-signal will ensure that we |
| * leave ASAP again. |
| */ |
| kvm_cpu_kick_self(); |
| } |
| |
| /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. |
| * Matching barrier in kvm_eat_signals. |
| */ |
| smp_rmb(); |
| |
| run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); |
| |
| attrs = kvm_arch_post_run(cpu, run); |
| |
| #ifdef KVM_HAVE_MCE_INJECTION |
| if (unlikely(have_sigbus_pending)) { |
| qemu_mutex_lock_iothread(); |
| kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, |
| pending_sigbus_addr); |
| have_sigbus_pending = false; |
| qemu_mutex_unlock_iothread(); |
| } |
| #endif |
| |
| if (run_ret < 0) { |
| if (run_ret == -EINTR || run_ret == -EAGAIN) { |
| DPRINTF("io window exit\n"); |
| kvm_eat_signals(cpu); |
| ret = EXCP_INTERRUPT; |
| break; |
| } |
| fprintf(stderr, "error: kvm run failed %s\n", |
| strerror(-run_ret)); |
| #ifdef TARGET_PPC |
| if (run_ret == -EBUSY) { |
| fprintf(stderr, |
| "This is probably because your SMT is enabled.\n" |
| "VCPU can only run on primary threads with all " |
| "secondary threads offline.\n"); |
| } |
| #endif |
| ret = -1; |
| break; |
| } |
| |
| trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); |
| switch (run->exit_reason) { |
| case KVM_EXIT_IO: |
| DPRINTF("handle_io\n"); |
| /* Called outside BQL */ |
| kvm_handle_io(run->io.port, attrs, |
| (uint8_t *)run + run->io.data_offset, |
| run->io.direction, |
| run->io.size, |
| run->io.count); |
| ret = 0; |
| break; |
| case KVM_EXIT_MMIO: |
| DPRINTF("handle_mmio\n"); |
| /* Called outside BQL */ |
| address_space_rw(&address_space_memory, |
| run->mmio.phys_addr, attrs, |
| run->mmio.data, |
| run->mmio.len, |
| run->mmio.is_write); |
| ret = 0; |
| break; |
| case KVM_EXIT_IRQ_WINDOW_OPEN: |
| DPRINTF("irq_window_open\n"); |
| ret = EXCP_INTERRUPT; |
| break; |
| case KVM_EXIT_SHUTDOWN: |
| DPRINTF("shutdown\n"); |
| qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); |
| ret = EXCP_INTERRUPT; |
| break; |
| case KVM_EXIT_UNKNOWN: |
| fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", |
| (uint64_t)run->hw.hardware_exit_reason); |
| ret = -1; |
| break; |
| case KVM_EXIT_INTERNAL_ERROR: |
| ret = kvm_handle_internal_error(cpu, run); |
| break; |
| case KVM_EXIT_DIRTY_RING_FULL: |
| /* |
| * We shouldn't continue if the dirty ring of this vcpu is |
| * still full. Got kicked by KVM_RESET_DIRTY_RINGS. |
| */ |
| trace_kvm_dirty_ring_full(cpu->cpu_index); |
| qemu_mutex_lock_iothread(); |
| /* |
| * We throttle vCPU by making it sleep once it exit from kernel |
| * due to dirty ring full. In the dirtylimit scenario, reaping |
| * all vCPUs after a single vCPU dirty ring get full result in |
| * the miss of sleep, so just reap the ring-fulled vCPU. |
| */ |
| if (dirtylimit_in_service()) { |
| kvm_dirty_ring_reap(kvm_state, cpu); |
| } else { |
| kvm_dirty_ring_reap(kvm_state, NULL); |
| } |
| qemu_mutex_unlock_iothread(); |
| dirtylimit_vcpu_execute(cpu); |
| ret = 0; |
| break; |
| case KVM_EXIT_SYSTEM_EVENT: |
| switch (run->system_event.type) { |
| case KVM_SYSTEM_EVENT_SHUTDOWN: |
| qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); |
| ret = EXCP_INTERRUPT; |
| break; |
| case KVM_SYSTEM_EVENT_RESET: |
| qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); |
| ret = EXCP_INTERRUPT; |
| break; |
| case KVM_SYSTEM_EVENT_CRASH: |
| kvm_cpu_synchronize_state(cpu); |
| qemu_mutex_lock_iothread(); |
| qemu_system_guest_panicked(cpu_get_crash_info(cpu)); |
| qemu_mutex_unlock_iothread(); |
| ret = 0; |
| break; |
| default: |
| DPRINTF("kvm_arch_handle_exit\n"); |
| ret = kvm_arch_handle_exit(cpu, run); |
| break; |
| } |
| break; |
| default: |
| DPRINTF("kvm_arch_handle_exit\n"); |
| ret = kvm_arch_handle_exit(cpu, run); |
| break; |
| } |
| } while (ret == 0); |
| |
| cpu_exec_end(cpu); |
| qemu_mutex_lock_iothread(); |
| |
| if (ret < 0) { |
| cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); |
| vm_stop(RUN_STATE_INTERNAL_ERROR); |
| } |
| |
| qatomic_set(&cpu->exit_request, 0); |
| return ret; |
| } |
| |
| int kvm_ioctl(KVMState *s, int type, ...) |
| { |
| int ret; |
| void *arg; |
| va_list ap; |
| |
| va_start(ap, type); |
| arg = va_arg(ap, void *); |
| va_end(ap); |
| |
| trace_kvm_ioctl(type, arg); |
| ret = ioctl(s->fd, type, arg); |
| if (ret == -1) { |
| ret = -errno; |
| } |
| return ret; |
| } |
| |
| int kvm_vm_ioctl(KVMState *s, int type, ...) |
| { |
| int ret; |
| void *arg; |
| va_list ap; |
| |
| va_start(ap, type); |
| arg = va_arg(ap, void *); |
| va_end(ap); |
| |
| trace_kvm_vm_ioctl(type, arg); |
| accel_ioctl_begin(); |
| ret = ioctl(s->vmfd, type, arg); |
| accel_ioctl_end(); |
| if (ret == -1) { |
| ret = -errno; |
| } |
| return ret; |
| } |
| |
| int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) |
| { |
| int ret; |
| void *arg; |
| va_list ap; |
| |
| va_start(ap, type); |
| arg = va_arg(ap, void *); |
| va_end(ap); |
| |
| trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); |
| accel_cpu_ioctl_begin(cpu); |
| ret = ioctl(cpu->kvm_fd, type, arg); |
| accel_cpu_ioctl_end(cpu); |
| if (ret == -1) { |
| ret = -errno; |
| } |
| return ret; |
| } |
| |
| int kvm_device_ioctl(int fd, int type, ...) |
| { |
| int ret; |
| void *arg; |
| va_list ap; |
| |
| va_start(ap, type); |
| arg = va_arg(ap, void *); |
| va_end(ap); |
| |
| trace_kvm_device_ioctl(fd, type, arg); |
| accel_ioctl_begin(); |
| ret = ioctl(fd, type, arg); |
| accel_ioctl_end(); |
| if (ret == -1) { |
| ret = -errno; |
| } |
| return ret; |
| } |
| |
| int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) |
| { |
| int ret; |
| struct kvm_device_attr attribute = { |
| .group = group, |
| .attr = attr, |
| }; |
| |
| if (!kvm_vm_attributes_allowed) { |
| return 0; |
| } |
| |
| ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); |
| /* kvm returns 0 on success for HAS_DEVICE_ATTR */ |
| return ret ? 0 : 1; |
| } |
| |
| int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) |
| { |
| struct kvm_device_attr attribute = { |
| .group = group, |
| .attr = attr, |
| .flags = 0, |
| }; |
| |
| return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; |
| } |
| |
| int kvm_device_access(int fd, int group, uint64_t attr, |
| void *val, bool write, Error **errp) |
| { |
| struct kvm_device_attr kvmattr; |
| int err; |
| |
| kvmattr.flags = 0; |
| kvmattr.group = group; |
| kvmattr.attr = attr; |
| kvmattr.addr = (uintptr_t)val; |
| |
| err = kvm_device_ioctl(fd, |
| write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, |
| &kvmattr); |
| if (err < 0) { |
| error_setg_errno(errp, -err, |
| "KVM_%s_DEVICE_ATTR failed: Group %d " |
| "attr 0x%016" PRIx64, |
| write ? "SET" : "GET", group, attr); |
| } |
| return err; |
| } |
| |
| bool kvm_has_sync_mmu(void) |
| { |
| return kvm_state->sync_mmu; |
| } |
| |
| int kvm_has_vcpu_events(void) |
| { |
| return kvm_state->vcpu_events; |
| } |
| |
| int kvm_has_robust_singlestep(void) |
| { |
| return kvm_state->robust_singlestep; |
| } |
| |
| int kvm_has_debugregs(void) |
| { |
| return kvm_state->debugregs; |
| } |
| |
| int kvm_max_nested_state_length(void) |
| { |
| return kvm_state->max_nested_state_len; |
| } |
| |
| int kvm_has_many_ioeventfds(void) |
| { |
| if (!kvm_enabled()) { |
| return 0; |
| } |
| return kvm_state->many_ioeventfds; |
| } |
| |
| int kvm_has_gsi_routing(void) |
| { |
| #ifdef KVM_CAP_IRQ_ROUTING |
| return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); |
| #else |
| return false; |
| #endif |
| } |
| |
| int kvm_has_intx_set_mask(void) |
| { |
| return kvm_state->intx_set_mask; |
| } |
| |
| bool kvm_arm_supports_user_irq(void) |
| { |
| return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); |
| } |
| |
| #ifdef KVM_CAP_SET_GUEST_DEBUG |
| struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, vaddr pc) |
| { |
| struct kvm_sw_breakpoint *bp; |
| |
| QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { |
| if (bp->pc == pc) { |
| return bp; |
| } |
| } |
| return NULL; |
| } |
| |
| int kvm_sw_breakpoints_active(CPUState *cpu) |
| { |
| return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); |
| } |
| |
| struct kvm_set_guest_debug_data { |
| struct kvm_guest_debug dbg; |
| int err; |
| }; |
| |
| static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) |
| { |
| struct kvm_set_guest_debug_data *dbg_data = |
| (struct kvm_set_guest_debug_data *) data.host_ptr; |
| |
| dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, |
| &dbg_data->dbg); |
| } |
| |
| int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) |
| { |
| struct kvm_set_guest_debug_data data; |
| |
| data.dbg.control = reinject_trap; |
| |
| if (cpu->singlestep_enabled) { |
| data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; |
| |
| if (cpu->singlestep_enabled & SSTEP_NOIRQ) { |
| data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ; |
| } |
| } |
| kvm_arch_update_guest_debug(cpu, &data.dbg); |
| |
| run_on_cpu(cpu, kvm_invoke_set_guest_debug, |
| RUN_ON_CPU_HOST_PTR(&data)); |
| return data.err; |
| } |
| |
| bool kvm_supports_guest_debug(void) |
| { |
| /* probed during kvm_init() */ |
| return kvm_has_guest_debug; |
| } |
| |
| int kvm_insert_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) |
| { |
| struct kvm_sw_breakpoint *bp; |
| int err; |
| |
| if (type == GDB_BREAKPOINT_SW) { |
| bp = kvm_find_sw_breakpoint(cpu, addr); |
| if (bp) { |
| bp->use_count++; |
| return 0; |
| } |
| |
| bp = g_new(struct kvm_sw_breakpoint, 1); |
| bp->pc = addr; |
| bp->use_count = 1; |
| err = kvm_arch_insert_sw_breakpoint(cpu, bp); |
| if (err) { |
| g_free(bp); |
| return err; |
| } |
| |
| QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); |
| } else { |
| err = kvm_arch_insert_hw_breakpoint(addr, len, type); |
| if (err) { |
| return err; |
| } |
| } |
| |
| CPU_FOREACH(cpu) { |
| err = kvm_update_guest_debug(cpu, 0); |
| if (err) { |
| return err; |
| } |
| } |
| return 0; |
| } |
| |
| int kvm_remove_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) |
| { |
| struct kvm_sw_breakpoint *bp; |
| int err; |
| |
| if (type == GDB_BREAKPOINT_SW) { |
| bp = kvm_find_sw_breakpoint(cpu, addr); |
| if (!bp) { |
| return -ENOENT; |
| } |
| |
| if (bp->use_count > 1) { |
| bp->use_count--; |
| return 0; |
| } |
| |
| err = kvm_arch_remove_sw_breakpoint(cpu, bp); |
| if (err) { |
| return err; |
| } |
| |
| QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); |
| g_free(bp); |
| } else { |
| err = kvm_arch_remove_hw_breakpoint(addr, len, type); |
| if (err) { |
| return err; |
| } |
| } |
| |
| CPU_FOREACH(cpu) { |
| err = kvm_update_guest_debug(cpu, 0); |
| if (err) { |
| return err; |
| } |
| } |
| return 0; |
| } |
| |
| void kvm_remove_all_breakpoints(CPUState *cpu) |
| { |
| struct kvm_sw_breakpoint *bp, *next; |
| KVMState *s = cpu->kvm_state; |
| CPUState *tmpcpu; |
| |
| QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { |
| if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { |
| /* Try harder to find a CPU that currently sees the breakpoint. */ |
| CPU_FOREACH(tmpcpu) { |
| if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { |
| break; |
| } |
| } |
| } |
| QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); |
| g_free(bp); |
| } |
| kvm_arch_remove_all_hw_breakpoints(); |
| |
| CPU_FOREACH(cpu) { |
| kvm_update_guest_debug(cpu, 0); |
| } |
| } |
| |
| #endif /* !KVM_CAP_SET_GUEST_DEBUG */ |
| |
| static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) |
| { |
| KVMState *s = kvm_state; |
| struct kvm_signal_mask *sigmask; |
| int r; |
| |
| sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); |
| |
| sigmask->len = s->sigmask_len; |
| memcpy(sigmask->sigset, sigset, sizeof(*sigset)); |
| r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); |
| g_free(sigmask); |
| |
| return r; |
| } |
| |
| static void kvm_ipi_signal(int sig) |
| { |
| if (current_cpu) { |
| assert(kvm_immediate_exit); |
| kvm_cpu_kick(current_cpu); |
| } |
| } |
| |
| void kvm_init_cpu_signals(CPUState *cpu) |
| { |
| int r; |
| sigset_t set; |
| struct sigaction sigact; |
| |
| memset(&sigact, 0, sizeof(sigact)); |
| sigact.sa_handler = kvm_ipi_signal; |
| sigaction(SIG_IPI, &sigact, NULL); |
| |
| pthread_sigmask(SIG_BLOCK, NULL, &set); |
| #if defined KVM_HAVE_MCE_INJECTION |
| sigdelset(&set, SIGBUS); |
| pthread_sigmask(SIG_SETMASK, &set, NULL); |
| #endif |
| sigdelset(&set, SIG_IPI); |
| if (kvm_immediate_exit) { |
| r = pthread_sigmask(SIG_SETMASK, &set, NULL); |
| } else { |
| r = kvm_set_signal_mask(cpu, &set); |
| } |
| if (r) { |
| fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); |
| exit(1); |
| } |
| } |
| |
| /* Called asynchronously in VCPU thread. */ |
| int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) |
| { |
| #ifdef KVM_HAVE_MCE_INJECTION |
| if (have_sigbus_pending) { |
| return 1; |
| } |
| have_sigbus_pending = true; |
| pending_sigbus_addr = addr; |
| pending_sigbus_code = code; |
| qatomic_set(&cpu->exit_request, 1); |
| return 0; |
| #else |
| return 1; |
| #endif |
| } |
| |
| /* Called synchronously (via signalfd) in main thread. */ |
| int kvm_on_sigbus(int code, void *addr) |
| { |
| #ifdef KVM_HAVE_MCE_INJECTION |
| /* Action required MCE kills the process if SIGBUS is blocked. Because |
| * that's what happens in the I/O thread, where we handle MCE via signalfd, |
| * we can only get action optional here. |
| */ |
| assert(code != BUS_MCEERR_AR); |
| kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); |
| return 0; |
| #else |
| return 1; |
| #endif |
| } |
| |
| int kvm_create_device(KVMState *s, uint64_t type, bool test) |
| { |
| int ret; |
| struct kvm_create_device create_dev; |
| |
| create_dev.type = type; |
| create_dev.fd = -1; |
| create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; |
| |
| if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { |
| return -ENOTSUP; |
| } |
| |
| ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); |
| if (ret) { |
| return ret; |
| } |
| |
| return test ? 0 : create_dev.fd; |
| } |
| |
| bool kvm_device_supported(int vmfd, uint64_t type) |
| { |
| struct kvm_create_device create_dev = { |
| .type = type, |
| .fd = -1, |
| .flags = KVM_CREATE_DEVICE_TEST, |
| }; |
| |
| if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { |
| return false; |
| } |
| |
| return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); |
| } |
| |
| int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) |
| { |
| struct kvm_one_reg reg; |
| int r; |
| |
| reg.id = id; |
| reg.addr = (uintptr_t) source; |
| r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); |
| if (r) { |
| trace_kvm_failed_reg_set(id, strerror(-r)); |
| } |
| return r; |
| } |
| |
| int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) |
| { |
| struct kvm_one_reg reg; |
| int r; |
| |
| reg.id = id; |
| reg.addr = (uintptr_t) target; |
| r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); |
| if (r) { |
| trace_kvm_failed_reg_get(id, strerror(-r)); |
| } |
| return r; |
| } |
| |
| static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as, |
| hwaddr start_addr, hwaddr size) |
| { |
| KVMState *kvm = KVM_STATE(ms->accelerator); |
| int i; |
| |
| for (i = 0; i < kvm->nr_as; ++i) { |
| if (kvm->as[i].as == as && kvm->as[i].ml) { |
| size = MIN(kvm_max_slot_size, size); |
| return NULL != kvm_lookup_matching_slot(kvm->as[i].ml, |
| start_addr, size); |
| } |
| } |
| |
| return false; |
| } |
| |
| static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v, |
| const char *name, void *opaque, |
| Error **errp) |
| { |
| KVMState *s = KVM_STATE(obj); |
| int64_t value = s->kvm_shadow_mem; |
| |
| visit_type_int(v, name, &value, errp); |
| } |
| |
| static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v, |
| const char *name, void *opaque, |
| Error **errp) |
| { |
| KVMState *s = KVM_STATE(obj); |
| int64_t value; |
| |
| if (s->fd != -1) { |
| error_setg(errp, "Cannot set properties after the accelerator has been initialized"); |
| return; |
| } |
| |
| if (!visit_type_int(v, name, &value, errp)) { |
| return; |
| } |
| |
| s->kvm_shadow_mem = value; |
| } |
| |
| static void kvm_set_kernel_irqchip(Object *obj, Visitor *v, |
| const char *name, void *opaque, |
| Error **errp) |
| { |
| KVMState *s = KVM_STATE(obj); |
| OnOffSplit mode; |
| |
| if (s->fd != -1) { |
| error_setg(errp, "Cannot set properties after the accelerator has been initialized"); |
| return; |
| } |
| |
| if (!visit_type_OnOffSplit(v, name, &mode, errp)) { |
| return; |
| } |
| switch (mode) { |
| case ON_OFF_SPLIT_ON: |
| s->kernel_irqchip_allowed = true; |
| s->kernel_irqchip_required = true; |
| s->kernel_irqchip_split = ON_OFF_AUTO_OFF; |
| break; |
| case ON_OFF_SPLIT_OFF: |
| s->kernel_irqchip_allowed = false; |
| s->kernel_irqchip_required = false; |
| s->kernel_irqchip_split = ON_OFF_AUTO_OFF; |
| break; |
| case ON_OFF_SPLIT_SPLIT: |
| s->kernel_irqchip_allowed = true; |
| s->kernel_irqchip_required = true; |
| s->kernel_irqchip_split = ON_OFF_AUTO_ON; |
| break; |
| default: |
| /* The value was checked in visit_type_OnOffSplit() above. If |
| * we get here, then something is wrong in QEMU. |
| */ |
| abort(); |
| } |
| } |
| |
| bool kvm_kernel_irqchip_allowed(void) |
| { |
| return kvm_state->kernel_irqchip_allowed; |
| } |
| |
| bool kvm_kernel_irqchip_required(void) |
| { |
| return kvm_state->kernel_irqchip_required; |
| } |
| |
| bool kvm_kernel_irqchip_split(void) |
| { |
| return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON; |
| } |
| |
| static void kvm_get_dirty_ring_size(Object *obj, Visitor *v, |
| const char *name, void *opaque, |
| Error **errp) |
| { |
| KVMState *s = KVM_STATE(obj); |
| uint32_t value = s->kvm_dirty_ring_size; |
| |
| visit_type_uint32(v, name, &value, errp); |
| } |
| |
| static void kvm_set_dirty_ring_size(Object *obj, Visitor *v, |
| const char *name, void *opaque, |
| Error **errp) |
| { |
| KVMState *s = KVM_STATE(obj); |
| uint32_t value; |
| |
| if (s->fd != -1) { |
| error_setg(errp, "Cannot set properties after the accelerator has been initialized"); |
| return; |
| } |
| |
| if (!visit_type_uint32(v, name, &value, errp)) { |
| return; |
| } |
| if (value & (value - 1)) { |
| error_setg(errp, "dirty-ring-size must be a power of two."); |
| return; |
| } |
| |
| s->kvm_dirty_ring_size = value; |
| } |
| |
| static void kvm_accel_instance_init(Object *obj) |
| { |
| KVMState *s = KVM_STATE(obj); |
| |
| s->fd = -1; |
| s->vmfd = -1; |
| s->kvm_shadow_mem = -1; |
| s->kernel_irqchip_allowed = true; |
| s->kernel_irqchip_split = ON_OFF_AUTO_AUTO; |
| /* KVM dirty ring is by default off */ |
| s->kvm_dirty_ring_size = 0; |
| s->kvm_dirty_ring_with_bitmap = false; |
| s->kvm_eager_split_size = 0; |
| s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN; |
| s->notify_window = 0; |
| s->xen_version = 0; |
| s->xen_gnttab_max_frames = 64; |
| s->xen_evtchn_max_pirq = 256; |
| } |
| |
| /** |
| * kvm_gdbstub_sstep_flags(): |
| * |
| * Returns: SSTEP_* flags that KVM supports for guest debug. The |
| * support is probed during kvm_init() |
| */ |
| static int kvm_gdbstub_sstep_flags(void) |
| { |
| return kvm_sstep_flags; |
| } |
| |
| static void kvm_accel_class_init(ObjectClass *oc, void *data) |
| { |
| AccelClass *ac = ACCEL_CLASS(oc); |
| ac->name = "KVM"; |
| ac->init_machine = kvm_init; |
| ac->has_memory = kvm_accel_has_memory; |
| ac->allowed = &kvm_allowed; |
| ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags; |
| |
| object_class_property_add(oc, "kernel-irqchip", "on|off|split", |
| NULL, kvm_set_kernel_irqchip, |
| NULL, NULL); |
| object_class_property_set_description(oc, "kernel-irqchip", |
| "Configure KVM in-kernel irqchip"); |
| |
| object_class_property_add(oc, "kvm-shadow-mem", "int", |
| kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem, |
| NULL, NULL); |
| object_class_property_set_description(oc, "kvm-shadow-mem", |
| "KVM shadow MMU size"); |
| |
| object_class_property_add(oc, "dirty-ring-size", "uint32", |
| kvm_get_dirty_ring_size, kvm_set_dirty_ring_size, |
| NULL, NULL); |
| object_class_property_set_description(oc, "dirty-ring-size", |
| "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)"); |
| |
| kvm_arch_accel_class_init(oc); |
| } |
| |
| static const TypeInfo kvm_accel_type = { |
| .name = TYPE_KVM_ACCEL, |
| .parent = TYPE_ACCEL, |
| .instance_init = kvm_accel_instance_init, |
| .class_init = kvm_accel_class_init, |
| .instance_size = sizeof(KVMState), |
| }; |
| |
| static void kvm_type_init(void) |
| { |
| type_register_static(&kvm_accel_type); |
| } |
| |
| type_init(kvm_type_init); |
| |
| typedef struct StatsArgs { |
| union StatsResultsType { |
| StatsResultList **stats; |
| StatsSchemaList **schema; |
| } result; |
| strList *names; |
| Error **errp; |
| } StatsArgs; |
| |
| static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc, |
| uint64_t *stats_data, |
| StatsList *stats_list, |
| Error **errp) |
| { |
| |
| Stats *stats; |
| uint64List *val_list = NULL; |
| |
| /* Only add stats that we understand. */ |
| switch (pdesc->flags & KVM_STATS_TYPE_MASK) { |
| case KVM_STATS_TYPE_CUMULATIVE: |
| case KVM_STATS_TYPE_INSTANT: |
| case KVM_STATS_TYPE_PEAK: |
| case KVM_STATS_TYPE_LINEAR_HIST: |
| case KVM_STATS_TYPE_LOG_HIST: |
| break; |
| default: |
| return stats_list; |
| } |
| |
| switch (pdesc->flags & KVM_STATS_UNIT_MASK) { |
| case KVM_STATS_UNIT_NONE: |
| case KVM_STATS_UNIT_BYTES: |
| case KVM_STATS_UNIT_CYCLES: |
| case KVM_STATS_UNIT_SECONDS: |
| case KVM_STATS_UNIT_BOOLEAN: |
| break; |
| default: |
| return stats_list; |
| } |
| |
| switch (pdesc->flags & KVM_STATS_BASE_MASK) { |
| case KVM_STATS_BASE_POW10: |
| case KVM_STATS_BASE_POW2: |
| break; |
| default: |
| return stats_list; |
| } |
| |
| /* Alloc and populate data list */ |
| stats = g_new0(Stats, 1); |
| stats->name = g_strdup(pdesc->name); |
| stats->value = g_new0(StatsValue, 1);; |
| |
| if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) { |
| stats->value->u.boolean = *stats_data; |
| stats->value->type = QTYPE_QBOOL; |
| } else if (pdesc->size == 1) { |
| stats->value->u.scalar = *stats_data; |
| stats->value->type = QTYPE_QNUM; |
| } else { |
| int i; |
| for (i = 0; i < pdesc->size; i++) { |
| QAPI_LIST_PREPEND(val_list, stats_data[i]); |
| } |
| stats->value->u.list = val_list; |
| stats->value->type = QTYPE_QLIST; |
| } |
| |
| QAPI_LIST_PREPEND(stats_list, stats); |
| return stats_list; |
| } |
| |
| static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc, |
| StatsSchemaValueList *list, |
| Error **errp) |
| { |
| StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1); |
| schema_entry->value = g_new0(StatsSchemaValue, 1); |
| |
| switch (pdesc->flags & KVM_STATS_TYPE_MASK) { |
| case KVM_STATS_TYPE_CUMULATIVE: |
| schema_entry->value->type = STATS_TYPE_CUMULATIVE; |
| break; |
| case KVM_STATS_TYPE_INSTANT: |
| schema_entry->value->type = STATS_TYPE_INSTANT; |
| break; |
| case KVM_STATS_TYPE_PEAK: |
| schema_entry->value->type = STATS_TYPE_PEAK; |
| break; |
| case KVM_STATS_TYPE_LINEAR_HIST: |
| schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM; |
| schema_entry->value->bucket_size = pdesc->bucket_size; |
| schema_entry->value->has_bucket_size = true; |
| break; |
| case KVM_STATS_TYPE_LOG_HIST: |
| schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM; |
| break; |
| default: |
| goto exit; |
| } |
| |
| switch (pdesc->flags & KVM_STATS_UNIT_MASK) { |
| case KVM_STATS_UNIT_NONE: |
| break; |
| case KVM_STATS_UNIT_BOOLEAN: |
| schema_entry->value->has_unit = true; |
| schema_entry->value->unit = STATS_UNIT_BOOLEAN; |
| break; |
| case KVM_STATS_UNIT_BYTES: |
| schema_entry->value->has_unit = true; |
| schema_entry->value->unit = STATS_UNIT_BYTES; |
| break; |
| case KVM_STATS_UNIT_CYCLES: |
| schema_entry->value->has_unit = true; |
| schema_entry->value->unit = STATS_UNIT_CYCLES; |
| break; |
| case KVM_STATS_UNIT_SECONDS: |
| schema_entry->value->has_unit = true; |
| schema_entry->value->unit = STATS_UNIT_SECONDS; |
| break; |
| default: |
| goto exit; |
| } |
| |
| schema_entry->value->exponent = pdesc->exponent; |
| if (pdesc->exponent) { |
| switch (pdesc->flags & KVM_STATS_BASE_MASK) { |
| case KVM_STATS_BASE_POW10: |
| schema_entry->value->has_base = true; |
| schema_entry->value->base = 10; |
| break; |
| case KVM_STATS_BASE_POW2: |
| schema_entry->value->has_base = true; |
| schema_entry->value->base = 2; |
| break; |
| default: |
| goto exit; |
| } |
| } |
| |
| schema_entry->value->name = g_strdup(pdesc->name); |
| schema_entry->next = list; |
| return schema_entry; |
| exit: |
| g_free(schema_entry->value); |
| g_free(schema_entry); |
| return list; |
| } |
| |
| /* Cached stats descriptors */ |
| typedef struct StatsDescriptors { |
| const char *ident; /* cache key, currently the StatsTarget */ |
| struct kvm_stats_desc *kvm_stats_desc; |
| struct kvm_stats_header kvm_stats_header; |
| QTAILQ_ENTRY(StatsDescriptors) next; |
| } StatsDescriptors; |
| |
| static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors = |
| QTAILQ_HEAD_INITIALIZER(stats_descriptors); |
| |
| /* |
| * Return the descriptors for 'target', that either have already been read |
| * or are retrieved from 'stats_fd'. |
| */ |
| static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd, |
| Error **errp) |
| { |
| StatsDescriptors *descriptors; |
| const char *ident; |
| struct kvm_stats_desc *kvm_stats_desc; |
| struct kvm_stats_header *kvm_stats_header; |
| size_t size_desc; |
| ssize_t ret; |
| |
| ident = StatsTarget_str(target); |
| QTAILQ_FOREACH(descriptors, &stats_descriptors, next) { |
| if (g_str_equal(descriptors->ident, ident)) { |
| return descriptors; |
| } |
| } |
| |
| descriptors = g_new0(StatsDescriptors, 1); |
| |
| /* Read stats header */ |
| kvm_stats_header = &descriptors->kvm_stats_header; |
| ret = pread(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header), 0); |
| if (ret != sizeof(*kvm_stats_header)) { |
| error_setg(errp, "KVM stats: failed to read stats header: " |
| "expected %zu actual %zu", |
| sizeof(*kvm_stats_header), ret); |
| g_free(descriptors); |
| return NULL; |
| } |
| size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; |
| |
| /* Read stats descriptors */ |
| kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc); |
| ret = pread(stats_fd, kvm_stats_desc, |
| size_desc * kvm_stats_header->num_desc, |
| kvm_stats_header->desc_offset); |
| |
| if (ret != size_desc * kvm_stats_header->num_desc) { |
| error_setg(errp, "KVM stats: failed to read stats descriptors: " |
| "expected %zu actual %zu", |
| size_desc * kvm_stats_header->num_desc, ret); |
| g_free(descriptors); |
| g_free(kvm_stats_desc); |
| return NULL; |
| } |
| descriptors->kvm_stats_desc = kvm_stats_desc; |
| descriptors->ident = ident; |
| QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next); |
| return descriptors; |
| } |
| |
| static void query_stats(StatsResultList **result, StatsTarget target, |
| strList *names, int stats_fd, CPUState *cpu, |
| Error **errp) |
| { |
| struct kvm_stats_desc *kvm_stats_desc; |
| struct kvm_stats_header *kvm_stats_header; |
| StatsDescriptors *descriptors; |
| g_autofree uint64_t *stats_data = NULL; |
| struct kvm_stats_desc *pdesc; |
| StatsList *stats_list = NULL; |
| size_t size_desc, size_data = 0; |
| ssize_t ret; |
| int i; |
| |
| descriptors = find_stats_descriptors(target, stats_fd, errp); |
| if (!descriptors) { |
| return; |
| } |
| |
| kvm_stats_header = &descriptors->kvm_stats_header; |
| kvm_stats_desc = descriptors->kvm_stats_desc; |
| size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; |
| |
| /* Tally the total data size; read schema data */ |
| for (i = 0; i < kvm_stats_header->num_desc; ++i) { |
| pdesc = (void *)kvm_stats_desc + i * size_desc; |
| size_data += pdesc->size * sizeof(*stats_data); |
| } |
| |
| stats_data = g_malloc0(size_data); |
| ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset); |
| |
| if (ret != size_data) { |
| error_setg(errp, "KVM stats: failed to read data: " |
| "expected %zu actual %zu", size_data, ret); |
| return; |
| } |
| |
| for (i = 0; i < kvm_stats_header->num_desc; ++i) { |
| uint64_t *stats; |
| pdesc = (void *)kvm_stats_desc + i * size_desc; |
| |
| /* Add entry to the list */ |
| stats = (void *)stats_data + pdesc->offset; |
| if (!apply_str_list_filter(pdesc->name, names)) { |
| continue; |
| } |
| stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp); |
| } |
| |
| if (!stats_list) { |
| return; |
| } |
| |
| switch (target) { |
| case STATS_TARGET_VM: |
| add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list); |
| break; |
| case STATS_TARGET_VCPU: |
| add_stats_entry(result, STATS_PROVIDER_KVM, |
| cpu->parent_obj.canonical_path, |
| stats_list); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| static void query_stats_schema(StatsSchemaList **result, StatsTarget target, |
| int stats_fd, Error **errp) |
| { |
| struct kvm_stats_desc *kvm_stats_desc; |
| struct kvm_stats_header *kvm_stats_header; |
| StatsDescriptors *descriptors; |
| struct kvm_stats_desc *pdesc; |
| StatsSchemaValueList *stats_list = NULL; |
| size_t size_desc; |
| int i; |
| |
| descriptors = find_stats_descriptors(target, stats_fd, errp); |
| if (!descriptors) { |
| return; |
| } |
| |
| kvm_stats_header = &descriptors->kvm_stats_header; |
| kvm_stats_desc = descriptors->kvm_stats_desc; |
| size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; |
| |
| /* Tally the total data size; read schema data */ |
| for (i = 0; i < kvm_stats_header->num_desc; ++i) { |
| pdesc = (void *)kvm_stats_desc + i * size_desc; |
| stats_list = add_kvmschema_entry(pdesc, stats_list, errp); |
| } |
| |
| add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list); |
| } |
| |
| static void query_stats_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args) |
| { |
| int stats_fd = cpu->kvm_vcpu_stats_fd; |
| Error *local_err = NULL; |
| |
| if (stats_fd == -1) { |
| error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); |
| error_propagate(kvm_stats_args->errp, local_err); |
| return; |
| } |
| query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU, |
| kvm_stats_args->names, stats_fd, cpu, |
| kvm_stats_args->errp); |
| } |
| |
| static void query_stats_schema_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args) |
| { |
| int stats_fd = cpu->kvm_vcpu_stats_fd; |
| Error *local_err = NULL; |
| |
| if (stats_fd == -1) { |
| error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); |
| error_propagate(kvm_stats_args->errp, local_err); |
| return; |
| } |
| query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd, |
| kvm_stats_args->errp); |
| } |
| |
| static void query_stats_cb(StatsResultList **result, StatsTarget target, |
| strList *names, strList *targets, Error **errp) |
| { |
| KVMState *s = kvm_state; |
| CPUState *cpu; |
| int stats_fd; |
| |
| switch (target) { |
| case STATS_TARGET_VM: |
| { |
| stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); |
| if (stats_fd == -1) { |
| error_setg_errno(errp, errno, "KVM stats: ioctl failed"); |
| return; |
| } |
| query_stats(result, target, names, stats_fd, NULL, errp); |
| close(stats_fd); |
| break; |
| } |
| case STATS_TARGET_VCPU: |
| { |
| StatsArgs stats_args; |
| stats_args.result.stats = result; |
| stats_args.names = names; |
| stats_args.errp = errp; |
| CPU_FOREACH(cpu) { |
| if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) { |
| continue; |
| } |
| query_stats_vcpu(cpu, &stats_args); |
| } |
| break; |
| } |
| default: |
| break; |
| } |
| } |
| |
| void query_stats_schemas_cb(StatsSchemaList **result, Error **errp) |
| { |
| StatsArgs stats_args; |
| KVMState *s = kvm_state; |
| int stats_fd; |
| |
| stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); |
| if (stats_fd == -1) { |
| error_setg_errno(errp, errno, "KVM stats: ioctl failed"); |
| return; |
| } |
| query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp); |
| close(stats_fd); |
| |
| if (first_cpu) { |
| stats_args.result.schema = result; |
| stats_args.errp = errp; |
| query_stats_schema_vcpu(first_cpu, &stats_args); |
| } |
| } |