| // Copyright 2015, ARM Limited |
| // All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of ARM Limited nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND |
| // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE |
| // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
| // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
| // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
| // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #ifndef VIXL_UTILS_H |
| #define VIXL_UTILS_H |
| |
| #include <cmath> |
| #include <cstring> |
| #include "vixl/globals.h" |
| #include "vixl/compiler-intrinsics.h" |
| |
| namespace vixl { |
| |
| // Macros for compile-time format checking. |
| #if GCC_VERSION_OR_NEWER(4, 4, 0) |
| #define PRINTF_CHECK(format_index, varargs_index) \ |
| __attribute__((format(gnu_printf, format_index, varargs_index))) |
| #else |
| #define PRINTF_CHECK(format_index, varargs_index) |
| #endif |
| |
| // Check number width. |
| inline bool is_intn(unsigned n, int64_t x) { |
| VIXL_ASSERT((0 < n) && (n < 64)); |
| int64_t limit = INT64_C(1) << (n - 1); |
| return (-limit <= x) && (x < limit); |
| } |
| |
| inline bool is_uintn(unsigned n, int64_t x) { |
| VIXL_ASSERT((0 < n) && (n < 64)); |
| return !(x >> n); |
| } |
| |
| inline uint32_t truncate_to_intn(unsigned n, int64_t x) { |
| VIXL_ASSERT((0 < n) && (n < 64)); |
| return static_cast<uint32_t>(x & ((INT64_C(1) << n) - 1)); |
| } |
| |
| #define INT_1_TO_63_LIST(V) \ |
| V(1) V(2) V(3) V(4) V(5) V(6) V(7) V(8) \ |
| V(9) V(10) V(11) V(12) V(13) V(14) V(15) V(16) \ |
| V(17) V(18) V(19) V(20) V(21) V(22) V(23) V(24) \ |
| V(25) V(26) V(27) V(28) V(29) V(30) V(31) V(32) \ |
| V(33) V(34) V(35) V(36) V(37) V(38) V(39) V(40) \ |
| V(41) V(42) V(43) V(44) V(45) V(46) V(47) V(48) \ |
| V(49) V(50) V(51) V(52) V(53) V(54) V(55) V(56) \ |
| V(57) V(58) V(59) V(60) V(61) V(62) V(63) |
| |
| #define DECLARE_IS_INT_N(N) \ |
| inline bool is_int##N(int64_t x) { return is_intn(N, x); } |
| #define DECLARE_IS_UINT_N(N) \ |
| inline bool is_uint##N(int64_t x) { return is_uintn(N, x); } |
| #define DECLARE_TRUNCATE_TO_INT_N(N) \ |
| inline uint32_t truncate_to_int##N(int x) { return truncate_to_intn(N, x); } |
| INT_1_TO_63_LIST(DECLARE_IS_INT_N) |
| INT_1_TO_63_LIST(DECLARE_IS_UINT_N) |
| INT_1_TO_63_LIST(DECLARE_TRUNCATE_TO_INT_N) |
| #undef DECLARE_IS_INT_N |
| #undef DECLARE_IS_UINT_N |
| #undef DECLARE_TRUNCATE_TO_INT_N |
| |
| // Bit field extraction. |
| inline uint32_t unsigned_bitextract_32(int msb, int lsb, uint32_t x) { |
| return (x >> lsb) & ((1 << (1 + msb - lsb)) - 1); |
| } |
| |
| inline uint64_t unsigned_bitextract_64(int msb, int lsb, uint64_t x) { |
| return (x >> lsb) & ((static_cast<uint64_t>(1) << (1 + msb - lsb)) - 1); |
| } |
| |
| inline int32_t signed_bitextract_32(int msb, int lsb, int32_t x) { |
| return (x << (31 - msb)) >> (lsb + 31 - msb); |
| } |
| |
| inline int64_t signed_bitextract_64(int msb, int lsb, int64_t x) { |
| return (x << (63 - msb)) >> (lsb + 63 - msb); |
| } |
| |
| // Floating point representation. |
| uint32_t float_to_rawbits(float value); |
| uint64_t double_to_rawbits(double value); |
| float rawbits_to_float(uint32_t bits); |
| double rawbits_to_double(uint64_t bits); |
| |
| uint32_t float_sign(float val); |
| uint32_t float_exp(float val); |
| uint32_t float_mantissa(float val); |
| uint32_t double_sign(double val); |
| uint32_t double_exp(double val); |
| uint64_t double_mantissa(double val); |
| |
| float float_pack(uint32_t sign, uint32_t exp, uint32_t mantissa); |
| double double_pack(uint64_t sign, uint64_t exp, uint64_t mantissa); |
| |
| // An fpclassify() function for 16-bit half-precision floats. |
| int float16classify(float16 value); |
| |
| // NaN tests. |
| inline bool IsSignallingNaN(double num) { |
| const uint64_t kFP64QuietNaNMask = UINT64_C(0x0008000000000000); |
| uint64_t raw = double_to_rawbits(num); |
| if (std::isnan(num) && ((raw & kFP64QuietNaNMask) == 0)) { |
| return true; |
| } |
| return false; |
| } |
| |
| |
| inline bool IsSignallingNaN(float num) { |
| const uint32_t kFP32QuietNaNMask = 0x00400000; |
| uint32_t raw = float_to_rawbits(num); |
| if (std::isnan(num) && ((raw & kFP32QuietNaNMask) == 0)) { |
| return true; |
| } |
| return false; |
| } |
| |
| |
| inline bool IsSignallingNaN(float16 num) { |
| const uint16_t kFP16QuietNaNMask = 0x0200; |
| return (float16classify(num) == FP_NAN) && |
| ((num & kFP16QuietNaNMask) == 0); |
| } |
| |
| |
| template <typename T> |
| inline bool IsQuietNaN(T num) { |
| return std::isnan(num) && !IsSignallingNaN(num); |
| } |
| |
| |
| // Convert the NaN in 'num' to a quiet NaN. |
| inline double ToQuietNaN(double num) { |
| const uint64_t kFP64QuietNaNMask = UINT64_C(0x0008000000000000); |
| VIXL_ASSERT(std::isnan(num)); |
| return rawbits_to_double(double_to_rawbits(num) | kFP64QuietNaNMask); |
| } |
| |
| |
| inline float ToQuietNaN(float num) { |
| const uint32_t kFP32QuietNaNMask = 0x00400000; |
| VIXL_ASSERT(std::isnan(num)); |
| return rawbits_to_float(float_to_rawbits(num) | kFP32QuietNaNMask); |
| } |
| |
| |
| // Fused multiply-add. |
| inline double FusedMultiplyAdd(double op1, double op2, double a) { |
| return fma(op1, op2, a); |
| } |
| |
| |
| inline float FusedMultiplyAdd(float op1, float op2, float a) { |
| return fmaf(op1, op2, a); |
| } |
| |
| |
| inline uint64_t LowestSetBit(uint64_t value) { |
| return value & -value; |
| } |
| |
| |
| template<typename T> |
| inline int HighestSetBitPosition(T value) { |
| VIXL_ASSERT(value != 0); |
| return (sizeof(value) * 8 - 1) - CountLeadingZeros(value); |
| } |
| |
| |
| template<typename V> |
| inline int WhichPowerOf2(V value) { |
| VIXL_ASSERT(IsPowerOf2(value)); |
| return CountTrailingZeros(value); |
| } |
| |
| |
| unsigned CountClearHalfWords(uint64_t imm, unsigned reg_size); |
| |
| |
| template <typename T> |
| T ReverseBits(T value) { |
| VIXL_ASSERT((sizeof(value) == 1) || (sizeof(value) == 2) || |
| (sizeof(value) == 4) || (sizeof(value) == 8)); |
| T result = 0; |
| for (unsigned i = 0; i < (sizeof(value) * 8); i++) { |
| result = (result << 1) | (value & 1); |
| value >>= 1; |
| } |
| return result; |
| } |
| |
| |
| template <typename T> |
| T ReverseBytes(T value, int block_bytes_log2) { |
| VIXL_ASSERT((sizeof(value) == 4) || (sizeof(value) == 8)); |
| VIXL_ASSERT((1U << block_bytes_log2) <= sizeof(value)); |
| // Split the 64-bit value into an 8-bit array, where b[0] is the least |
| // significant byte, and b[7] is the most significant. |
| uint8_t bytes[8]; |
| uint64_t mask = UINT64_C(0xff00000000000000); |
| for (int i = 7; i >= 0; i--) { |
| bytes[i] = (static_cast<uint64_t>(value) & mask) >> (i * 8); |
| mask >>= 8; |
| } |
| |
| // Permutation tables for REV instructions. |
| // permute_table[0] is used by REV16_x, REV16_w |
| // permute_table[1] is used by REV32_x, REV_w |
| // permute_table[2] is used by REV_x |
| VIXL_ASSERT((0 < block_bytes_log2) && (block_bytes_log2 < 4)); |
| static const uint8_t permute_table[3][8] = { {6, 7, 4, 5, 2, 3, 0, 1}, |
| {4, 5, 6, 7, 0, 1, 2, 3}, |
| {0, 1, 2, 3, 4, 5, 6, 7} }; |
| T result = 0; |
| for (int i = 0; i < 8; i++) { |
| result <<= 8; |
| result |= bytes[permute_table[block_bytes_log2 - 1][i]]; |
| } |
| return result; |
| } |
| |
| |
| // Pointer alignment |
| // TODO: rename/refactor to make it specific to instructions. |
| template<typename T> |
| bool IsWordAligned(T pointer) { |
| VIXL_ASSERT(sizeof(pointer) == sizeof(intptr_t)); // NOLINT(runtime/sizeof) |
| return ((intptr_t)(pointer) & 3) == 0; |
| } |
| |
| // Increment a pointer (up to 64 bits) until it has the specified alignment. |
| template<class T> |
| T AlignUp(T pointer, size_t alignment) { |
| // Use C-style casts to get static_cast behaviour for integral types (T), and |
| // reinterpret_cast behaviour for other types. |
| |
| uint64_t pointer_raw = (uint64_t)pointer; |
| VIXL_STATIC_ASSERT(sizeof(pointer) <= sizeof(pointer_raw)); |
| |
| size_t align_step = (alignment - pointer_raw) % alignment; |
| VIXL_ASSERT((pointer_raw + align_step) % alignment == 0); |
| |
| return (T)(pointer_raw + align_step); |
| } |
| |
| // Decrement a pointer (up to 64 bits) until it has the specified alignment. |
| template<class T> |
| T AlignDown(T pointer, size_t alignment) { |
| // Use C-style casts to get static_cast behaviour for integral types (T), and |
| // reinterpret_cast behaviour for other types. |
| |
| uint64_t pointer_raw = (uint64_t)pointer; |
| VIXL_STATIC_ASSERT(sizeof(pointer) <= sizeof(pointer_raw)); |
| |
| size_t align_step = pointer_raw % alignment; |
| VIXL_ASSERT((pointer_raw - align_step) % alignment == 0); |
| |
| return (T)(pointer_raw - align_step); |
| } |
| |
| } // namespace vixl |
| |
| #endif // VIXL_UTILS_H |