| /* |
| * ASPEED AST2400 Timer |
| * |
| * Andrew Jeffery <andrew@aj.id.au> |
| * |
| * Copyright (C) 2016 IBM Corp. |
| * |
| * This code is licensed under the GPL version 2 or later. See |
| * the COPYING file in the top-level directory. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qapi/error.h" |
| #include "hw/irq.h" |
| #include "hw/sysbus.h" |
| #include "hw/timer/aspeed_timer.h" |
| #include "migration/vmstate.h" |
| #include "qemu/bitops.h" |
| #include "qemu/timer.h" |
| #include "qemu/log.h" |
| #include "qemu/module.h" |
| #include "trace.h" |
| |
| #define TIMER_NR_REGS 4 |
| |
| #define TIMER_CTRL_BITS 4 |
| #define TIMER_CTRL_MASK ((1 << TIMER_CTRL_BITS) - 1) |
| |
| #define TIMER_CLOCK_USE_EXT true |
| #define TIMER_CLOCK_EXT_HZ 1000000 |
| #define TIMER_CLOCK_USE_APB false |
| |
| #define TIMER_REG_STATUS 0 |
| #define TIMER_REG_RELOAD 1 |
| #define TIMER_REG_MATCH_FIRST 2 |
| #define TIMER_REG_MATCH_SECOND 3 |
| |
| #define TIMER_FIRST_CAP_PULSE 4 |
| |
| enum timer_ctrl_op { |
| op_enable = 0, |
| op_external_clock, |
| op_overflow_interrupt, |
| op_pulse_enable |
| }; |
| |
| /* |
| * Minimum value of the reload register to filter out short period |
| * timers which have a noticeable impact in emulation. 5us should be |
| * enough, use 20us for "safety". |
| */ |
| #define TIMER_MIN_NS (20 * SCALE_US) |
| |
| /** |
| * Avoid mutual references between AspeedTimerCtrlState and AspeedTimer |
| * structs, as it's a waste of memory. The ptimer BH callback needs to know |
| * whether a specific AspeedTimer is enabled, but this information is held in |
| * AspeedTimerCtrlState. So, provide a helper to hoist ourselves from an |
| * arbitrary AspeedTimer to AspeedTimerCtrlState. |
| */ |
| static inline AspeedTimerCtrlState *timer_to_ctrl(AspeedTimer *t) |
| { |
| const AspeedTimer (*timers)[] = (void *)t - (t->id * sizeof(*t)); |
| return container_of(timers, AspeedTimerCtrlState, timers); |
| } |
| |
| static inline bool timer_ctrl_status(AspeedTimer *t, enum timer_ctrl_op op) |
| { |
| return !!(timer_to_ctrl(t)->ctrl & BIT(t->id * TIMER_CTRL_BITS + op)); |
| } |
| |
| static inline bool timer_enabled(AspeedTimer *t) |
| { |
| return timer_ctrl_status(t, op_enable); |
| } |
| |
| static inline bool timer_overflow_interrupt(AspeedTimer *t) |
| { |
| return timer_ctrl_status(t, op_overflow_interrupt); |
| } |
| |
| static inline bool timer_can_pulse(AspeedTimer *t) |
| { |
| return t->id >= TIMER_FIRST_CAP_PULSE; |
| } |
| |
| static inline bool timer_external_clock(AspeedTimer *t) |
| { |
| return timer_ctrl_status(t, op_external_clock); |
| } |
| |
| static inline uint32_t calculate_rate(struct AspeedTimer *t) |
| { |
| AspeedTimerCtrlState *s = timer_to_ctrl(t); |
| |
| return timer_external_clock(t) ? TIMER_CLOCK_EXT_HZ : |
| aspeed_scu_get_apb_freq(s->scu); |
| } |
| |
| static inline uint32_t calculate_ticks(struct AspeedTimer *t, uint64_t now_ns) |
| { |
| uint64_t delta_ns = now_ns - MIN(now_ns, t->start); |
| uint32_t rate = calculate_rate(t); |
| uint64_t ticks = muldiv64(delta_ns, rate, NANOSECONDS_PER_SECOND); |
| |
| return t->reload - MIN(t->reload, ticks); |
| } |
| |
| static uint32_t calculate_min_ticks(AspeedTimer *t, uint32_t value) |
| { |
| uint32_t rate = calculate_rate(t); |
| uint32_t min_ticks = muldiv64(TIMER_MIN_NS, rate, NANOSECONDS_PER_SECOND); |
| |
| return value < min_ticks ? min_ticks : value; |
| } |
| |
| static inline uint64_t calculate_time(struct AspeedTimer *t, uint32_t ticks) |
| { |
| uint64_t delta_ns; |
| uint64_t delta_ticks; |
| |
| delta_ticks = t->reload - MIN(t->reload, ticks); |
| delta_ns = muldiv64(delta_ticks, NANOSECONDS_PER_SECOND, calculate_rate(t)); |
| |
| return t->start + delta_ns; |
| } |
| |
| static inline uint32_t calculate_match(struct AspeedTimer *t, int i) |
| { |
| return t->match[i] < t->reload ? t->match[i] : 0; |
| } |
| |
| static uint64_t calculate_next(struct AspeedTimer *t) |
| { |
| uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); |
| uint64_t next; |
| |
| /* |
| * We don't know the relationship between the values in the match |
| * registers, so sort using MAX/MIN/zero. We sort in that order as |
| * the timer counts down to zero. |
| */ |
| |
| next = calculate_time(t, MAX(calculate_match(t, 0), calculate_match(t, 1))); |
| if (now < next) { |
| return next; |
| } |
| |
| next = calculate_time(t, MIN(calculate_match(t, 0), calculate_match(t, 1))); |
| if (now < next) { |
| return next; |
| } |
| |
| next = calculate_time(t, 0); |
| if (now < next) { |
| return next; |
| } |
| |
| /* We've missed all deadlines, fire interrupt and try again */ |
| timer_del(&t->timer); |
| |
| if (timer_overflow_interrupt(t)) { |
| AspeedTimerCtrlState *s = timer_to_ctrl(t); |
| t->level = !t->level; |
| s->irq_sts |= BIT(t->id); |
| qemu_set_irq(t->irq, t->level); |
| } |
| |
| next = MAX(MAX(calculate_match(t, 0), calculate_match(t, 1)), 0); |
| t->start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); |
| |
| return calculate_time(t, next); |
| } |
| |
| static void aspeed_timer_mod(AspeedTimer *t) |
| { |
| uint64_t next = calculate_next(t); |
| if (next) { |
| timer_mod(&t->timer, next); |
| } |
| } |
| |
| static void aspeed_timer_expire(void *opaque) |
| { |
| AspeedTimer *t = opaque; |
| bool interrupt = false; |
| uint32_t ticks; |
| |
| if (!timer_enabled(t)) { |
| return; |
| } |
| |
| ticks = calculate_ticks(t, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); |
| |
| if (!ticks) { |
| interrupt = timer_overflow_interrupt(t) || !t->match[0] || !t->match[1]; |
| } else if (ticks <= MIN(t->match[0], t->match[1])) { |
| interrupt = true; |
| } else if (ticks <= MAX(t->match[0], t->match[1])) { |
| interrupt = true; |
| } |
| |
| if (interrupt) { |
| AspeedTimerCtrlState *s = timer_to_ctrl(t); |
| t->level = !t->level; |
| s->irq_sts |= BIT(t->id); |
| qemu_set_irq(t->irq, t->level); |
| } |
| |
| aspeed_timer_mod(t); |
| } |
| |
| static uint64_t aspeed_timer_get_value(AspeedTimer *t, int reg) |
| { |
| uint64_t value; |
| |
| switch (reg) { |
| case TIMER_REG_STATUS: |
| if (timer_enabled(t)) { |
| value = calculate_ticks(t, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); |
| } else { |
| value = t->reload; |
| } |
| break; |
| case TIMER_REG_RELOAD: |
| value = t->reload; |
| break; |
| case TIMER_REG_MATCH_FIRST: |
| case TIMER_REG_MATCH_SECOND: |
| value = t->match[reg - 2]; |
| break; |
| default: |
| qemu_log_mask(LOG_UNIMP, "%s: Programming error: unexpected reg: %d\n", |
| __func__, reg); |
| value = 0; |
| break; |
| } |
| return value; |
| } |
| |
| static uint64_t aspeed_timer_read(void *opaque, hwaddr offset, unsigned size) |
| { |
| AspeedTimerCtrlState *s = opaque; |
| const int reg = (offset & 0xf) / 4; |
| uint64_t value; |
| |
| switch (offset) { |
| case 0x30: /* Control Register */ |
| value = s->ctrl; |
| break; |
| case 0x00 ... 0x2c: /* Timers 1 - 4 */ |
| value = aspeed_timer_get_value(&s->timers[(offset >> 4)], reg); |
| break; |
| case 0x40 ... 0x8c: /* Timers 5 - 8 */ |
| value = aspeed_timer_get_value(&s->timers[(offset >> 4) - 1], reg); |
| break; |
| default: |
| value = ASPEED_TIMER_GET_CLASS(s)->read(s, offset); |
| break; |
| } |
| trace_aspeed_timer_read(offset, size, value); |
| return value; |
| } |
| |
| static void aspeed_timer_set_value(AspeedTimerCtrlState *s, int timer, int reg, |
| uint32_t value) |
| { |
| AspeedTimer *t; |
| uint32_t old_reload; |
| |
| trace_aspeed_timer_set_value(timer, reg, value); |
| t = &s->timers[timer]; |
| switch (reg) { |
| case TIMER_REG_RELOAD: |
| old_reload = t->reload; |
| t->reload = calculate_min_ticks(t, value); |
| |
| /* If the reload value was not previously set, or zero, and |
| * the current value is valid, try to start the timer if it is |
| * enabled. |
| */ |
| if (old_reload || !t->reload) { |
| break; |
| } |
| |
| case TIMER_REG_STATUS: |
| if (timer_enabled(t)) { |
| uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); |
| int64_t delta = (int64_t) value - (int64_t) calculate_ticks(t, now); |
| uint32_t rate = calculate_rate(t); |
| |
| if (delta >= 0) { |
| t->start += muldiv64(delta, NANOSECONDS_PER_SECOND, rate); |
| } else { |
| t->start -= muldiv64(-delta, NANOSECONDS_PER_SECOND, rate); |
| } |
| aspeed_timer_mod(t); |
| } |
| break; |
| case TIMER_REG_MATCH_FIRST: |
| case TIMER_REG_MATCH_SECOND: |
| t->match[reg - 2] = value; |
| if (timer_enabled(t)) { |
| aspeed_timer_mod(t); |
| } |
| break; |
| default: |
| qemu_log_mask(LOG_UNIMP, "%s: Programming error: unexpected reg: %d\n", |
| __func__, reg); |
| break; |
| } |
| } |
| |
| /* Control register operations are broken out into helpers that can be |
| * explicitly called on aspeed_timer_reset(), but also from |
| * aspeed_timer_ctrl_op(). |
| */ |
| |
| static void aspeed_timer_ctrl_enable(AspeedTimer *t, bool enable) |
| { |
| trace_aspeed_timer_ctrl_enable(t->id, enable); |
| if (enable) { |
| t->start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); |
| aspeed_timer_mod(t); |
| } else { |
| timer_del(&t->timer); |
| } |
| } |
| |
| static void aspeed_timer_ctrl_external_clock(AspeedTimer *t, bool enable) |
| { |
| trace_aspeed_timer_ctrl_external_clock(t->id, enable); |
| } |
| |
| static void aspeed_timer_ctrl_overflow_interrupt(AspeedTimer *t, bool enable) |
| { |
| trace_aspeed_timer_ctrl_overflow_interrupt(t->id, enable); |
| } |
| |
| static void aspeed_timer_ctrl_pulse_enable(AspeedTimer *t, bool enable) |
| { |
| if (timer_can_pulse(t)) { |
| trace_aspeed_timer_ctrl_pulse_enable(t->id, enable); |
| } else { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "%s: Timer does not support pulse mode\n", __func__); |
| } |
| } |
| |
| /** |
| * Given the actions are fixed in number and completely described in helper |
| * functions, dispatch with a lookup table rather than manage control flow with |
| * a switch statement. |
| */ |
| static void (*const ctrl_ops[])(AspeedTimer *, bool) = { |
| [op_enable] = aspeed_timer_ctrl_enable, |
| [op_external_clock] = aspeed_timer_ctrl_external_clock, |
| [op_overflow_interrupt] = aspeed_timer_ctrl_overflow_interrupt, |
| [op_pulse_enable] = aspeed_timer_ctrl_pulse_enable, |
| }; |
| |
| /** |
| * Conditionally affect changes chosen by a timer's control bit. |
| * |
| * The aspeed_timer_ctrl_op() interface is convenient for the |
| * aspeed_timer_set_ctrl() function as the "no change" early exit can be |
| * calculated for all operations, which cleans up the caller code. However the |
| * interface isn't convenient for the reset function where we want to enter a |
| * specific state without artificially constructing old and new values that |
| * will fall through the change guard (and motivates extracting the actions |
| * out to helper functions). |
| * |
| * @t: The timer to manipulate |
| * @op: The type of operation to be performed |
| * @old: The old state of the timer's control bits |
| * @new: The incoming state for the timer's control bits |
| */ |
| static void aspeed_timer_ctrl_op(AspeedTimer *t, enum timer_ctrl_op op, |
| uint8_t old, uint8_t new) |
| { |
| const uint8_t mask = BIT(op); |
| const bool enable = !!(new & mask); |
| const bool changed = ((old ^ new) & mask); |
| if (!changed) { |
| return; |
| } |
| ctrl_ops[op](t, enable); |
| } |
| |
| static void aspeed_timer_set_ctrl(AspeedTimerCtrlState *s, uint32_t reg) |
| { |
| int i; |
| int shift; |
| uint8_t t_old, t_new; |
| AspeedTimer *t; |
| const uint8_t enable_mask = BIT(op_enable); |
| |
| /* Handle a dependency between the 'enable' and remaining three |
| * configuration bits - i.e. if more than one bit in the control set has |
| * changed, including the 'enable' bit, then we want either disable the |
| * timer and perform configuration, or perform configuration and then |
| * enable the timer |
| */ |
| for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) { |
| t = &s->timers[i]; |
| shift = (i * TIMER_CTRL_BITS); |
| t_old = (s->ctrl >> shift) & TIMER_CTRL_MASK; |
| t_new = (reg >> shift) & TIMER_CTRL_MASK; |
| |
| /* If we are disabling, do so first */ |
| if ((t_old & enable_mask) && !(t_new & enable_mask)) { |
| aspeed_timer_ctrl_enable(t, false); |
| } |
| aspeed_timer_ctrl_op(t, op_external_clock, t_old, t_new); |
| aspeed_timer_ctrl_op(t, op_overflow_interrupt, t_old, t_new); |
| aspeed_timer_ctrl_op(t, op_pulse_enable, t_old, t_new); |
| /* If we are enabling, do so last */ |
| if (!(t_old & enable_mask) && (t_new & enable_mask)) { |
| aspeed_timer_ctrl_enable(t, true); |
| } |
| } |
| s->ctrl = reg; |
| } |
| |
| static void aspeed_timer_set_ctrl2(AspeedTimerCtrlState *s, uint32_t value) |
| { |
| trace_aspeed_timer_set_ctrl2(value); |
| } |
| |
| static void aspeed_timer_write(void *opaque, hwaddr offset, uint64_t value, |
| unsigned size) |
| { |
| const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF); |
| const int reg = (offset & 0xf) / 4; |
| AspeedTimerCtrlState *s = opaque; |
| |
| switch (offset) { |
| /* Control Registers */ |
| case 0x30: |
| aspeed_timer_set_ctrl(s, tv); |
| break; |
| /* Timer Registers */ |
| case 0x00 ... 0x2c: |
| aspeed_timer_set_value(s, (offset >> TIMER_NR_REGS), reg, tv); |
| break; |
| case 0x40 ... 0x8c: |
| aspeed_timer_set_value(s, (offset >> TIMER_NR_REGS) - 1, reg, tv); |
| break; |
| default: |
| ASPEED_TIMER_GET_CLASS(s)->write(s, offset, value); |
| break; |
| } |
| } |
| |
| static const MemoryRegionOps aspeed_timer_ops = { |
| .read = aspeed_timer_read, |
| .write = aspeed_timer_write, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| .valid.min_access_size = 4, |
| .valid.max_access_size = 4, |
| .valid.unaligned = false, |
| }; |
| |
| static uint64_t aspeed_2400_timer_read(AspeedTimerCtrlState *s, hwaddr offset) |
| { |
| uint64_t value; |
| |
| switch (offset) { |
| case 0x34: |
| value = s->ctrl2; |
| break; |
| case 0x38: |
| case 0x3C: |
| default: |
| qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n", |
| __func__, offset); |
| value = 0; |
| break; |
| } |
| return value; |
| } |
| |
| static void aspeed_2400_timer_write(AspeedTimerCtrlState *s, hwaddr offset, |
| uint64_t value) |
| { |
| const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF); |
| |
| switch (offset) { |
| case 0x34: |
| aspeed_timer_set_ctrl2(s, tv); |
| break; |
| case 0x38: |
| case 0x3C: |
| default: |
| qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n", |
| __func__, offset); |
| break; |
| } |
| } |
| |
| static uint64_t aspeed_2500_timer_read(AspeedTimerCtrlState *s, hwaddr offset) |
| { |
| uint64_t value; |
| |
| switch (offset) { |
| case 0x34: |
| value = s->ctrl2; |
| break; |
| case 0x38: |
| value = s->ctrl3 & BIT(0); |
| break; |
| case 0x3C: |
| default: |
| qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n", |
| __func__, offset); |
| value = 0; |
| break; |
| } |
| return value; |
| } |
| |
| static void aspeed_2500_timer_write(AspeedTimerCtrlState *s, hwaddr offset, |
| uint64_t value) |
| { |
| const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF); |
| uint8_t command; |
| |
| switch (offset) { |
| case 0x34: |
| aspeed_timer_set_ctrl2(s, tv); |
| break; |
| case 0x38: |
| command = (value >> 1) & 0xFF; |
| if (command == 0xAE) { |
| s->ctrl3 = 0x1; |
| } else if (command == 0xEA) { |
| s->ctrl3 = 0x0; |
| } |
| break; |
| case 0x3C: |
| if (s->ctrl3 & BIT(0)) { |
| aspeed_timer_set_ctrl(s, s->ctrl & ~tv); |
| } |
| break; |
| |
| default: |
| qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n", |
| __func__, offset); |
| break; |
| } |
| } |
| |
| static uint64_t aspeed_2600_timer_read(AspeedTimerCtrlState *s, hwaddr offset) |
| { |
| uint64_t value; |
| |
| switch (offset) { |
| case 0x34: |
| value = s->irq_sts; |
| break; |
| case 0x38: |
| case 0x3C: |
| default: |
| qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n", |
| __func__, offset); |
| value = 0; |
| break; |
| } |
| return value; |
| } |
| |
| static void aspeed_2600_timer_write(AspeedTimerCtrlState *s, hwaddr offset, |
| uint64_t value) |
| { |
| const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF); |
| |
| switch (offset) { |
| case 0x34: |
| s->irq_sts &= tv; |
| break; |
| case 0x3C: |
| aspeed_timer_set_ctrl(s, s->ctrl & ~tv); |
| break; |
| |
| case 0x38: |
| default: |
| qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n", |
| __func__, offset); |
| break; |
| } |
| } |
| |
| static void aspeed_init_one_timer(AspeedTimerCtrlState *s, uint8_t id) |
| { |
| AspeedTimer *t = &s->timers[id]; |
| |
| t->id = id; |
| timer_init_ns(&t->timer, QEMU_CLOCK_VIRTUAL, aspeed_timer_expire, t); |
| } |
| |
| static void aspeed_timer_realize(DeviceState *dev, Error **errp) |
| { |
| int i; |
| SysBusDevice *sbd = SYS_BUS_DEVICE(dev); |
| AspeedTimerCtrlState *s = ASPEED_TIMER(dev); |
| Object *obj; |
| Error *err = NULL; |
| |
| obj = object_property_get_link(OBJECT(dev), "scu", &err); |
| if (!obj) { |
| error_propagate_prepend(errp, err, "required link 'scu' not found: "); |
| return; |
| } |
| s->scu = ASPEED_SCU(obj); |
| |
| for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) { |
| aspeed_init_one_timer(s, i); |
| sysbus_init_irq(sbd, &s->timers[i].irq); |
| } |
| memory_region_init_io(&s->iomem, OBJECT(s), &aspeed_timer_ops, s, |
| TYPE_ASPEED_TIMER, 0x1000); |
| sysbus_init_mmio(sbd, &s->iomem); |
| } |
| |
| static void aspeed_timer_reset(DeviceState *dev) |
| { |
| int i; |
| AspeedTimerCtrlState *s = ASPEED_TIMER(dev); |
| |
| for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) { |
| AspeedTimer *t = &s->timers[i]; |
| /* Explicitly call helpers to avoid any conditional behaviour through |
| * aspeed_timer_set_ctrl(). |
| */ |
| aspeed_timer_ctrl_enable(t, false); |
| aspeed_timer_ctrl_external_clock(t, TIMER_CLOCK_USE_APB); |
| aspeed_timer_ctrl_overflow_interrupt(t, false); |
| aspeed_timer_ctrl_pulse_enable(t, false); |
| t->level = 0; |
| t->reload = 0; |
| t->match[0] = 0; |
| t->match[1] = 0; |
| } |
| s->ctrl = 0; |
| s->ctrl2 = 0; |
| s->ctrl3 = 0; |
| s->irq_sts = 0; |
| } |
| |
| static const VMStateDescription vmstate_aspeed_timer = { |
| .name = "aspeed.timer", |
| .version_id = 2, |
| .minimum_version_id = 2, |
| .fields = (VMStateField[]) { |
| VMSTATE_UINT8(id, AspeedTimer), |
| VMSTATE_INT32(level, AspeedTimer), |
| VMSTATE_TIMER(timer, AspeedTimer), |
| VMSTATE_UINT32(reload, AspeedTimer), |
| VMSTATE_UINT32_ARRAY(match, AspeedTimer, 2), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| static const VMStateDescription vmstate_aspeed_timer_state = { |
| .name = "aspeed.timerctrl", |
| .version_id = 2, |
| .minimum_version_id = 2, |
| .fields = (VMStateField[]) { |
| VMSTATE_UINT32(ctrl, AspeedTimerCtrlState), |
| VMSTATE_UINT32(ctrl2, AspeedTimerCtrlState), |
| VMSTATE_UINT32(ctrl3, AspeedTimerCtrlState), |
| VMSTATE_UINT32(irq_sts, AspeedTimerCtrlState), |
| VMSTATE_STRUCT_ARRAY(timers, AspeedTimerCtrlState, |
| ASPEED_TIMER_NR_TIMERS, 1, vmstate_aspeed_timer, |
| AspeedTimer), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| static void timer_class_init(ObjectClass *klass, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| |
| dc->realize = aspeed_timer_realize; |
| dc->reset = aspeed_timer_reset; |
| dc->desc = "ASPEED Timer"; |
| dc->vmsd = &vmstate_aspeed_timer_state; |
| } |
| |
| static const TypeInfo aspeed_timer_info = { |
| .name = TYPE_ASPEED_TIMER, |
| .parent = TYPE_SYS_BUS_DEVICE, |
| .instance_size = sizeof(AspeedTimerCtrlState), |
| .class_init = timer_class_init, |
| .class_size = sizeof(AspeedTimerClass), |
| .abstract = true, |
| }; |
| |
| static void aspeed_2400_timer_class_init(ObjectClass *klass, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| AspeedTimerClass *awc = ASPEED_TIMER_CLASS(klass); |
| |
| dc->desc = "ASPEED 2400 Timer"; |
| awc->read = aspeed_2400_timer_read; |
| awc->write = aspeed_2400_timer_write; |
| } |
| |
| static const TypeInfo aspeed_2400_timer_info = { |
| .name = TYPE_ASPEED_2400_TIMER, |
| .parent = TYPE_ASPEED_TIMER, |
| .class_init = aspeed_2400_timer_class_init, |
| }; |
| |
| static void aspeed_2500_timer_class_init(ObjectClass *klass, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| AspeedTimerClass *awc = ASPEED_TIMER_CLASS(klass); |
| |
| dc->desc = "ASPEED 2500 Timer"; |
| awc->read = aspeed_2500_timer_read; |
| awc->write = aspeed_2500_timer_write; |
| } |
| |
| static const TypeInfo aspeed_2500_timer_info = { |
| .name = TYPE_ASPEED_2500_TIMER, |
| .parent = TYPE_ASPEED_TIMER, |
| .class_init = aspeed_2500_timer_class_init, |
| }; |
| |
| static void aspeed_2600_timer_class_init(ObjectClass *klass, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| AspeedTimerClass *awc = ASPEED_TIMER_CLASS(klass); |
| |
| dc->desc = "ASPEED 2600 Timer"; |
| awc->read = aspeed_2600_timer_read; |
| awc->write = aspeed_2600_timer_write; |
| } |
| |
| static const TypeInfo aspeed_2600_timer_info = { |
| .name = TYPE_ASPEED_2600_TIMER, |
| .parent = TYPE_ASPEED_TIMER, |
| .class_init = aspeed_2600_timer_class_init, |
| }; |
| |
| static void aspeed_timer_register_types(void) |
| { |
| type_register_static(&aspeed_timer_info); |
| type_register_static(&aspeed_2400_timer_info); |
| type_register_static(&aspeed_2500_timer_info); |
| type_register_static(&aspeed_2600_timer_info); |
| } |
| |
| type_init(aspeed_timer_register_types) |