| /* |
| * ARM AMBA PrimeCell PL031 RTC |
| * |
| * Copyright (c) 2007 CodeSourcery |
| * |
| * This file is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * Contributions after 2012-01-13 are licensed under the terms of the |
| * GNU GPL, version 2 or (at your option) any later version. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu-common.h" |
| #include "hw/rtc/pl031.h" |
| #include "migration/vmstate.h" |
| #include "hw/irq.h" |
| #include "hw/qdev-properties.h" |
| #include "hw/sysbus.h" |
| #include "qemu/timer.h" |
| #include "sysemu/sysemu.h" |
| #include "qemu/cutils.h" |
| #include "qemu/log.h" |
| #include "qemu/module.h" |
| #include "trace.h" |
| |
| #define RTC_DR 0x00 /* Data read register */ |
| #define RTC_MR 0x04 /* Match register */ |
| #define RTC_LR 0x08 /* Data load register */ |
| #define RTC_CR 0x0c /* Control register */ |
| #define RTC_IMSC 0x10 /* Interrupt mask and set register */ |
| #define RTC_RIS 0x14 /* Raw interrupt status register */ |
| #define RTC_MIS 0x18 /* Masked interrupt status register */ |
| #define RTC_ICR 0x1c /* Interrupt clear register */ |
| |
| static const unsigned char pl031_id[] = { |
| 0x31, 0x10, 0x14, 0x00, /* Device ID */ |
| 0x0d, 0xf0, 0x05, 0xb1 /* Cell ID */ |
| }; |
| |
| static void pl031_update(PL031State *s) |
| { |
| uint32_t flags = s->is & s->im; |
| |
| trace_pl031_irq_state(flags); |
| qemu_set_irq(s->irq, flags); |
| } |
| |
| static void pl031_interrupt(void * opaque) |
| { |
| PL031State *s = (PL031State *)opaque; |
| |
| s->is = 1; |
| trace_pl031_alarm_raised(); |
| pl031_update(s); |
| } |
| |
| static uint32_t pl031_get_count(PL031State *s) |
| { |
| int64_t now = qemu_clock_get_ns(rtc_clock); |
| return s->tick_offset + now / NANOSECONDS_PER_SECOND; |
| } |
| |
| static void pl031_set_alarm(PL031State *s) |
| { |
| uint32_t ticks; |
| |
| /* The timer wraps around. This subtraction also wraps in the same way, |
| and gives correct results when alarm < now_ticks. */ |
| ticks = s->mr - pl031_get_count(s); |
| trace_pl031_set_alarm(ticks); |
| if (ticks == 0) { |
| timer_del(s->timer); |
| pl031_interrupt(s); |
| } else { |
| int64_t now = qemu_clock_get_ns(rtc_clock); |
| timer_mod(s->timer, now + (int64_t)ticks * NANOSECONDS_PER_SECOND); |
| } |
| } |
| |
| static uint64_t pl031_read(void *opaque, hwaddr offset, |
| unsigned size) |
| { |
| PL031State *s = (PL031State *)opaque; |
| uint64_t r; |
| |
| switch (offset) { |
| case RTC_DR: |
| r = pl031_get_count(s); |
| break; |
| case RTC_MR: |
| r = s->mr; |
| break; |
| case RTC_IMSC: |
| r = s->im; |
| break; |
| case RTC_RIS: |
| r = s->is; |
| break; |
| case RTC_LR: |
| r = s->lr; |
| break; |
| case RTC_CR: |
| /* RTC is permanently enabled. */ |
| r = 1; |
| break; |
| case RTC_MIS: |
| r = s->is & s->im; |
| break; |
| case 0xfe0 ... 0xfff: |
| r = pl031_id[(offset - 0xfe0) >> 2]; |
| break; |
| case RTC_ICR: |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "pl031: read of write-only register at offset 0x%x\n", |
| (int)offset); |
| r = 0; |
| break; |
| default: |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "pl031_read: Bad offset 0x%x\n", (int)offset); |
| r = 0; |
| break; |
| } |
| |
| trace_pl031_read(offset, r); |
| return r; |
| } |
| |
| static void pl031_write(void * opaque, hwaddr offset, |
| uint64_t value, unsigned size) |
| { |
| PL031State *s = (PL031State *)opaque; |
| |
| trace_pl031_write(offset, value); |
| |
| switch (offset) { |
| case RTC_LR: |
| s->tick_offset += value - pl031_get_count(s); |
| pl031_set_alarm(s); |
| break; |
| case RTC_MR: |
| s->mr = value; |
| pl031_set_alarm(s); |
| break; |
| case RTC_IMSC: |
| s->im = value & 1; |
| pl031_update(s); |
| break; |
| case RTC_ICR: |
| /* The PL031 documentation (DDI0224B) states that the interrupt is |
| cleared when bit 0 of the written value is set. However the |
| arm926e documentation (DDI0287B) states that the interrupt is |
| cleared when any value is written. */ |
| s->is = 0; |
| pl031_update(s); |
| break; |
| case RTC_CR: |
| /* Written value is ignored. */ |
| break; |
| |
| case RTC_DR: |
| case RTC_MIS: |
| case RTC_RIS: |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "pl031: write to read-only register at offset 0x%x\n", |
| (int)offset); |
| break; |
| |
| default: |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "pl031_write: Bad offset 0x%x\n", (int)offset); |
| break; |
| } |
| } |
| |
| static const MemoryRegionOps pl031_ops = { |
| .read = pl031_read, |
| .write = pl031_write, |
| .endianness = DEVICE_NATIVE_ENDIAN, |
| }; |
| |
| static void pl031_init(Object *obj) |
| { |
| PL031State *s = PL031(obj); |
| SysBusDevice *dev = SYS_BUS_DEVICE(obj); |
| struct tm tm; |
| |
| memory_region_init_io(&s->iomem, obj, &pl031_ops, s, "pl031", 0x1000); |
| sysbus_init_mmio(dev, &s->iomem); |
| |
| sysbus_init_irq(dev, &s->irq); |
| qemu_get_timedate(&tm, 0); |
| s->tick_offset = mktimegm(&tm) - |
| qemu_clock_get_ns(rtc_clock) / NANOSECONDS_PER_SECOND; |
| |
| s->timer = timer_new_ns(rtc_clock, pl031_interrupt, s); |
| } |
| |
| static int pl031_pre_save(void *opaque) |
| { |
| PL031State *s = opaque; |
| |
| /* |
| * The PL031 device model code uses the tick_offset field, which is |
| * the offset between what the guest RTC should read and what the |
| * QEMU rtc_clock reads: |
| * guest_rtc = rtc_clock + tick_offset |
| * and so |
| * tick_offset = guest_rtc - rtc_clock |
| * |
| * We want to migrate this offset, which sounds straightforward. |
| * Unfortunately older versions of QEMU migrated a conversion of this |
| * offset into an offset from the vm_clock. (This was in turn an |
| * attempt to be compatible with even older QEMU versions, but it |
| * has incorrect behaviour if the rtc_clock is not the same as the |
| * vm_clock.) So we put the actual tick_offset into a migration |
| * subsection, and the backwards-compatible time-relative-to-vm_clock |
| * in the main migration state. |
| * |
| * Calculate base time relative to QEMU_CLOCK_VIRTUAL: |
| */ |
| int64_t delta = qemu_clock_get_ns(rtc_clock) - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); |
| s->tick_offset_vmstate = s->tick_offset + delta / NANOSECONDS_PER_SECOND; |
| |
| return 0; |
| } |
| |
| static int pl031_pre_load(void *opaque) |
| { |
| PL031State *s = opaque; |
| |
| s->tick_offset_migrated = false; |
| return 0; |
| } |
| |
| static int pl031_post_load(void *opaque, int version_id) |
| { |
| PL031State *s = opaque; |
| |
| /* |
| * If we got the tick_offset subsection, then we can just use |
| * the value in that. Otherwise the source is an older QEMU and |
| * has given us the offset from the vm_clock; convert it back to |
| * an offset from the rtc_clock. This will cause time to incorrectly |
| * go backwards compared to the host RTC, but this is unavoidable. |
| */ |
| |
| if (!s->tick_offset_migrated) { |
| int64_t delta = qemu_clock_get_ns(rtc_clock) - |
| qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); |
| s->tick_offset = s->tick_offset_vmstate - |
| delta / NANOSECONDS_PER_SECOND; |
| } |
| pl031_set_alarm(s); |
| return 0; |
| } |
| |
| static int pl031_tick_offset_post_load(void *opaque, int version_id) |
| { |
| PL031State *s = opaque; |
| |
| s->tick_offset_migrated = true; |
| return 0; |
| } |
| |
| static bool pl031_tick_offset_needed(void *opaque) |
| { |
| PL031State *s = opaque; |
| |
| return s->migrate_tick_offset; |
| } |
| |
| static const VMStateDescription vmstate_pl031_tick_offset = { |
| .name = "pl031/tick-offset", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .needed = pl031_tick_offset_needed, |
| .post_load = pl031_tick_offset_post_load, |
| .fields = (VMStateField[]) { |
| VMSTATE_UINT32(tick_offset, PL031State), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| static const VMStateDescription vmstate_pl031 = { |
| .name = "pl031", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .pre_save = pl031_pre_save, |
| .pre_load = pl031_pre_load, |
| .post_load = pl031_post_load, |
| .fields = (VMStateField[]) { |
| VMSTATE_UINT32(tick_offset_vmstate, PL031State), |
| VMSTATE_UINT32(mr, PL031State), |
| VMSTATE_UINT32(lr, PL031State), |
| VMSTATE_UINT32(cr, PL031State), |
| VMSTATE_UINT32(im, PL031State), |
| VMSTATE_UINT32(is, PL031State), |
| VMSTATE_END_OF_LIST() |
| }, |
| .subsections = (const VMStateDescription*[]) { |
| &vmstate_pl031_tick_offset, |
| NULL |
| } |
| }; |
| |
| static Property pl031_properties[] = { |
| /* |
| * True to correctly migrate the tick offset of the RTC. False to |
| * obtain backward migration compatibility with older QEMU versions, |
| * at the expense of the guest RTC going backwards compared with the |
| * host RTC when the VM is saved/restored if using -rtc host. |
| * (Even if set to 'true' older QEMU can migrate forward to newer QEMU; |
| * 'false' also permits newer QEMU to migrate to older QEMU.) |
| */ |
| DEFINE_PROP_BOOL("migrate-tick-offset", |
| PL031State, migrate_tick_offset, true), |
| DEFINE_PROP_END_OF_LIST() |
| }; |
| |
| static void pl031_class_init(ObjectClass *klass, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| |
| dc->vmsd = &vmstate_pl031; |
| dc->props = pl031_properties; |
| } |
| |
| static const TypeInfo pl031_info = { |
| .name = TYPE_PL031, |
| .parent = TYPE_SYS_BUS_DEVICE, |
| .instance_size = sizeof(PL031State), |
| .instance_init = pl031_init, |
| .class_init = pl031_class_init, |
| }; |
| |
| static void pl031_register_types(void) |
| { |
| type_register_static(&pl031_info); |
| } |
| |
| type_init(pl031_register_types) |