blob: 15870a4f36695cdf8de581afe05009a30209de11 [file] [log] [blame]
/* Copyright 2008 IBM Corporation
* 2008 Red Hat, Inc.
* Copyright 2011 Intel Corporation
* Copyright 2016 Veertu, Inc.
* Copyright 2017 The Android Open Source Project
*
* QEMU Hypervisor.framework support
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of version 2 of the GNU General Public
* License as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this program; if not, see <http://www.gnu.org/licenses/>.
*
* This file contain code under public domain from the hvdos project:
* https://github.com/mist64/hvdos
*
* Parts Copyright (c) 2011 NetApp, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "qemu/osdep.h"
#include "qemu-common.h"
#include "qemu/error-report.h"
#include "sysemu/hvf.h"
#include "hvf-i386.h"
#include "vmcs.h"
#include "vmx.h"
#include "x86.h"
#include "x86_descr.h"
#include "x86_mmu.h"
#include "x86_decode.h"
#include "x86_emu.h"
#include "x86_task.h"
#include "x86hvf.h"
#include <Hypervisor/hv.h>
#include <Hypervisor/hv_vmx.h>
#include "exec/address-spaces.h"
#include "exec/exec-all.h"
#include "exec/ioport.h"
#include "hw/i386/apic_internal.h"
#include "hw/boards.h"
#include "qemu/main-loop.h"
#include "sysemu/accel.h"
#include "sysemu/sysemu.h"
#include "target/i386/cpu.h"
pthread_rwlock_t mem_lock = PTHREAD_RWLOCK_INITIALIZER;
HVFState *hvf_state;
int hvf_disabled = 1;
static void assert_hvf_ok(hv_return_t ret)
{
if (ret == HV_SUCCESS) {
return;
}
switch (ret) {
case HV_ERROR:
error_report("Error: HV_ERROR\n");
break;
case HV_BUSY:
error_report("Error: HV_BUSY\n");
break;
case HV_BAD_ARGUMENT:
error_report("Error: HV_BAD_ARGUMENT\n");
break;
case HV_NO_RESOURCES:
error_report("Error: HV_NO_RESOURCES\n");
break;
case HV_NO_DEVICE:
error_report("Error: HV_NO_DEVICE\n");
break;
case HV_UNSUPPORTED:
error_report("Error: HV_UNSUPPORTED\n");
break;
default:
error_report("Unknown Error\n");
}
abort();
}
/* Memory slots */
hvf_slot *hvf_find_overlap_slot(uint64_t start, uint64_t end)
{
hvf_slot *slot;
int x;
for (x = 0; x < hvf_state->num_slots; ++x) {
slot = &hvf_state->slots[x];
if (slot->size && start < (slot->start + slot->size) &&
end > slot->start) {
return slot;
}
}
return NULL;
}
struct mac_slot {
int present;
uint64_t size;
uint64_t gpa_start;
uint64_t gva;
};
struct mac_slot mac_slots[32];
#define ALIGN(x, y) (((x) + (y) - 1) & ~((y) - 1))
static int do_hvf_set_memory(hvf_slot *slot)
{
struct mac_slot *macslot;
hv_memory_flags_t flags;
hv_return_t ret;
macslot = &mac_slots[slot->slot_id];
if (macslot->present) {
if (macslot->size != slot->size) {
macslot->present = 0;
ret = hv_vm_unmap(macslot->gpa_start, macslot->size);
assert_hvf_ok(ret);
}
}
if (!slot->size) {
return 0;
}
flags = HV_MEMORY_READ | HV_MEMORY_WRITE | HV_MEMORY_EXEC;
macslot->present = 1;
macslot->gpa_start = slot->start;
macslot->size = slot->size;
ret = hv_vm_map((hv_uvaddr_t)slot->mem, slot->start, slot->size, flags);
assert_hvf_ok(ret);
return 0;
}
void hvf_set_phys_mem(MemoryRegionSection *section, bool add)
{
hvf_slot *mem;
MemoryRegion *area = section->mr;
if (!memory_region_is_ram(area)) {
return;
}
mem = hvf_find_overlap_slot(
section->offset_within_address_space,
section->offset_within_address_space + int128_get64(section->size));
if (mem && add) {
if (mem->size == int128_get64(section->size) &&
mem->start == section->offset_within_address_space &&
mem->mem == (memory_region_get_ram_ptr(area) +
section->offset_within_region)) {
return; /* Same region was attempted to register, go away. */
}
}
/* Region needs to be reset. set the size to 0 and remap it. */
if (mem) {
mem->size = 0;
if (do_hvf_set_memory(mem)) {
error_report("Failed to reset overlapping slot\n");
abort();
}
}
if (!add) {
return;
}
/* Now make a new slot. */
int x;
for (x = 0; x < hvf_state->num_slots; ++x) {
mem = &hvf_state->slots[x];
if (!mem->size) {
break;
}
}
if (x == hvf_state->num_slots) {
error_report("No free slots\n");
abort();
}
mem->size = int128_get64(section->size);
mem->mem = memory_region_get_ram_ptr(area) + section->offset_within_region;
mem->start = section->offset_within_address_space;
mem->region = area;
if (do_hvf_set_memory(mem)) {
error_report("Error registering new memory slot\n");
abort();
}
}
void vmx_update_tpr(CPUState *cpu)
{
/* TODO: need integrate APIC handling */
X86CPU *x86_cpu = X86_CPU(cpu);
int tpr = cpu_get_apic_tpr(x86_cpu->apic_state) << 4;
int irr = apic_get_highest_priority_irr(x86_cpu->apic_state);
wreg(cpu->hvf_fd, HV_X86_TPR, tpr);
if (irr == -1) {
wvmcs(cpu->hvf_fd, VMCS_TPR_THRESHOLD, 0);
} else {
wvmcs(cpu->hvf_fd, VMCS_TPR_THRESHOLD, (irr > tpr) ? tpr >> 4 :
irr >> 4);
}
}
void update_apic_tpr(CPUState *cpu)
{
X86CPU *x86_cpu = X86_CPU(cpu);
int tpr = rreg(cpu->hvf_fd, HV_X86_TPR) >> 4;
cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
}
#define VECTORING_INFO_VECTOR_MASK 0xff
static void hvf_handle_interrupt(CPUState * cpu, int mask)
{
cpu->interrupt_request |= mask;
if (!qemu_cpu_is_self(cpu)) {
qemu_cpu_kick(cpu);
}
}
void hvf_handle_io(CPUArchState *env, uint16_t port, void *buffer,
int direction, int size, int count)
{
int i;
uint8_t *ptr = buffer;
for (i = 0; i < count; i++) {
address_space_rw(&address_space_io, port, MEMTXATTRS_UNSPECIFIED,
ptr, size,
direction);
ptr += size;
}
}
/* TODO: synchronize vcpu state */
static void do_hvf_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
{
CPUState *cpu_state = cpu;
if (cpu_state->vcpu_dirty == 0) {
hvf_get_registers(cpu_state);
}
cpu_state->vcpu_dirty = 1;
}
void hvf_cpu_synchronize_state(CPUState *cpu_state)
{
if (cpu_state->vcpu_dirty == 0) {
run_on_cpu(cpu_state, do_hvf_cpu_synchronize_state, RUN_ON_CPU_NULL);
}
}
static void do_hvf_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
{
CPUState *cpu_state = cpu;
hvf_put_registers(cpu_state);
cpu_state->vcpu_dirty = false;
}
void hvf_cpu_synchronize_post_reset(CPUState *cpu_state)
{
run_on_cpu(cpu_state, do_hvf_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
}
void _hvf_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
{
CPUState *cpu_state = cpu;
hvf_put_registers(cpu_state);
cpu_state->vcpu_dirty = false;
}
void hvf_cpu_synchronize_post_init(CPUState *cpu_state)
{
run_on_cpu(cpu_state, _hvf_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
}
static bool ept_emulation_fault(hvf_slot *slot, uint64_t gpa, uint64_t ept_qual)
{
int read, write;
/* EPT fault on an instruction fetch doesn't make sense here */
if (ept_qual & EPT_VIOLATION_INST_FETCH) {
return false;
}
/* EPT fault must be a read fault or a write fault */
read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
if ((read | write) == 0) {
return false;
}
if (write && slot) {
if (slot->flags & HVF_SLOT_LOG) {
memory_region_set_dirty(slot->region, gpa - slot->start, 1);
hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size,
HV_MEMORY_READ | HV_MEMORY_WRITE);
}
}
/*
* The EPT violation must have been caused by accessing a
* guest-physical address that is a translation of a guest-linear
* address.
*/
if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
(ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
return false;
}
return !slot;
}
static void hvf_set_dirty_tracking(MemoryRegionSection *section, bool on)
{
hvf_slot *slot;
slot = hvf_find_overlap_slot(
section->offset_within_address_space,
section->offset_within_address_space + int128_get64(section->size));
/* protect region against writes; begin tracking it */
if (on) {
slot->flags |= HVF_SLOT_LOG;
hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size,
HV_MEMORY_READ);
/* stop tracking region*/
} else {
slot->flags &= ~HVF_SLOT_LOG;
hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size,
HV_MEMORY_READ | HV_MEMORY_WRITE);
}
}
static void hvf_log_start(MemoryListener *listener,
MemoryRegionSection *section, int old, int new)
{
if (old != 0) {
return;
}
hvf_set_dirty_tracking(section, 1);
}
static void hvf_log_stop(MemoryListener *listener,
MemoryRegionSection *section, int old, int new)
{
if (new != 0) {
return;
}
hvf_set_dirty_tracking(section, 0);
}
static void hvf_log_sync(MemoryListener *listener,
MemoryRegionSection *section)
{
/*
* sync of dirty pages is handled elsewhere; just make sure we keep
* tracking the region.
*/
hvf_set_dirty_tracking(section, 1);
}
static void hvf_region_add(MemoryListener *listener,
MemoryRegionSection *section)
{
hvf_set_phys_mem(section, true);
}
static void hvf_region_del(MemoryListener *listener,
MemoryRegionSection *section)
{
hvf_set_phys_mem(section, false);
}
static MemoryListener hvf_memory_listener = {
.priority = 10,
.region_add = hvf_region_add,
.region_del = hvf_region_del,
.log_start = hvf_log_start,
.log_stop = hvf_log_stop,
.log_sync = hvf_log_sync,
};
void hvf_reset_vcpu(CPUState *cpu) {
/* TODO: this shouldn't be needed; there is already a call to
* cpu_synchronize_all_post_reset in vl.c
*/
wvmcs(cpu->hvf_fd, VMCS_ENTRY_CTLS, 0);
wvmcs(cpu->hvf_fd, VMCS_GUEST_IA32_EFER, 0);
macvm_set_cr0(cpu->hvf_fd, 0x60000010);
wvmcs(cpu->hvf_fd, VMCS_CR4_MASK, CR4_VMXE_MASK);
wvmcs(cpu->hvf_fd, VMCS_CR4_SHADOW, 0x0);
wvmcs(cpu->hvf_fd, VMCS_GUEST_CR4, CR4_VMXE_MASK);
/* set VMCS guest state fields */
wvmcs(cpu->hvf_fd, VMCS_GUEST_CS_SELECTOR, 0xf000);
wvmcs(cpu->hvf_fd, VMCS_GUEST_CS_LIMIT, 0xffff);
wvmcs(cpu->hvf_fd, VMCS_GUEST_CS_ACCESS_RIGHTS, 0x9b);
wvmcs(cpu->hvf_fd, VMCS_GUEST_CS_BASE, 0xffff0000);
wvmcs(cpu->hvf_fd, VMCS_GUEST_DS_SELECTOR, 0);
wvmcs(cpu->hvf_fd, VMCS_GUEST_DS_LIMIT, 0xffff);
wvmcs(cpu->hvf_fd, VMCS_GUEST_DS_ACCESS_RIGHTS, 0x93);
wvmcs(cpu->hvf_fd, VMCS_GUEST_DS_BASE, 0);
wvmcs(cpu->hvf_fd, VMCS_GUEST_ES_SELECTOR, 0);
wvmcs(cpu->hvf_fd, VMCS_GUEST_ES_LIMIT, 0xffff);
wvmcs(cpu->hvf_fd, VMCS_GUEST_ES_ACCESS_RIGHTS, 0x93);
wvmcs(cpu->hvf_fd, VMCS_GUEST_ES_BASE, 0);
wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_SELECTOR, 0);
wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_LIMIT, 0xffff);
wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_ACCESS_RIGHTS, 0x93);
wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_BASE, 0);
wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_SELECTOR, 0);
wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_LIMIT, 0xffff);
wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_ACCESS_RIGHTS, 0x93);
wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_BASE, 0);
wvmcs(cpu->hvf_fd, VMCS_GUEST_SS_SELECTOR, 0);
wvmcs(cpu->hvf_fd, VMCS_GUEST_SS_LIMIT, 0xffff);
wvmcs(cpu->hvf_fd, VMCS_GUEST_SS_ACCESS_RIGHTS, 0x93);
wvmcs(cpu->hvf_fd, VMCS_GUEST_SS_BASE, 0);
wvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_SELECTOR, 0);
wvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_LIMIT, 0);
wvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_ACCESS_RIGHTS, 0x10000);
wvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_BASE, 0);
wvmcs(cpu->hvf_fd, VMCS_GUEST_TR_SELECTOR, 0);
wvmcs(cpu->hvf_fd, VMCS_GUEST_TR_LIMIT, 0);
wvmcs(cpu->hvf_fd, VMCS_GUEST_TR_ACCESS_RIGHTS, 0x83);
wvmcs(cpu->hvf_fd, VMCS_GUEST_TR_BASE, 0);
wvmcs(cpu->hvf_fd, VMCS_GUEST_GDTR_LIMIT, 0);
wvmcs(cpu->hvf_fd, VMCS_GUEST_GDTR_BASE, 0);
wvmcs(cpu->hvf_fd, VMCS_GUEST_IDTR_LIMIT, 0);
wvmcs(cpu->hvf_fd, VMCS_GUEST_IDTR_BASE, 0);
/*wvmcs(cpu->hvf_fd, VMCS_GUEST_CR2, 0x0);*/
wvmcs(cpu->hvf_fd, VMCS_GUEST_CR3, 0x0);
wreg(cpu->hvf_fd, HV_X86_RIP, 0xfff0);
wreg(cpu->hvf_fd, HV_X86_RDX, 0x623);
wreg(cpu->hvf_fd, HV_X86_RFLAGS, 0x2);
wreg(cpu->hvf_fd, HV_X86_RSP, 0x0);
wreg(cpu->hvf_fd, HV_X86_RAX, 0x0);
wreg(cpu->hvf_fd, HV_X86_RBX, 0x0);
wreg(cpu->hvf_fd, HV_X86_RCX, 0x0);
wreg(cpu->hvf_fd, HV_X86_RSI, 0x0);
wreg(cpu->hvf_fd, HV_X86_RDI, 0x0);
wreg(cpu->hvf_fd, HV_X86_RBP, 0x0);
for (int i = 0; i < 8; i++) {
wreg(cpu->hvf_fd, HV_X86_R8 + i, 0x0);
}
hv_vm_sync_tsc(0);
cpu->halted = 0;
hv_vcpu_invalidate_tlb(cpu->hvf_fd);
hv_vcpu_flush(cpu->hvf_fd);
}
void hvf_vcpu_destroy(CPUState *cpu)
{
hv_return_t ret = hv_vcpu_destroy((hv_vcpuid_t)cpu->hvf_fd);
assert_hvf_ok(ret);
}
static void dummy_signal(int sig)
{
}
int hvf_init_vcpu(CPUState *cpu)
{
X86CPU *x86cpu = X86_CPU(cpu);
CPUX86State *env = &x86cpu->env;
int r;
/* init cpu signals */
sigset_t set;
struct sigaction sigact;
memset(&sigact, 0, sizeof(sigact));
sigact.sa_handler = dummy_signal;
sigaction(SIG_IPI, &sigact, NULL);
pthread_sigmask(SIG_BLOCK, NULL, &set);
sigdelset(&set, SIG_IPI);
init_emu();
init_decoder();
hvf_state->hvf_caps = g_new0(struct hvf_vcpu_caps, 1);
env->hvf_emul = g_new0(HVFX86EmulatorState, 1);
r = hv_vcpu_create((hv_vcpuid_t *)&cpu->hvf_fd, HV_VCPU_DEFAULT);
cpu->vcpu_dirty = 1;
assert_hvf_ok(r);
if (hv_vmx_read_capability(HV_VMX_CAP_PINBASED,
&hvf_state->hvf_caps->vmx_cap_pinbased)) {
abort();
}
if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED,
&hvf_state->hvf_caps->vmx_cap_procbased)) {
abort();
}
if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED2,
&hvf_state->hvf_caps->vmx_cap_procbased2)) {
abort();
}
if (hv_vmx_read_capability(HV_VMX_CAP_ENTRY,
&hvf_state->hvf_caps->vmx_cap_entry)) {
abort();
}
/* set VMCS control fields */
wvmcs(cpu->hvf_fd, VMCS_PIN_BASED_CTLS,
cap2ctrl(hvf_state->hvf_caps->vmx_cap_pinbased,
VMCS_PIN_BASED_CTLS_EXTINT |
VMCS_PIN_BASED_CTLS_NMI |
VMCS_PIN_BASED_CTLS_VNMI));
wvmcs(cpu->hvf_fd, VMCS_PRI_PROC_BASED_CTLS,
cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased,
VMCS_PRI_PROC_BASED_CTLS_HLT |
VMCS_PRI_PROC_BASED_CTLS_MWAIT |
VMCS_PRI_PROC_BASED_CTLS_TSC_OFFSET |
VMCS_PRI_PROC_BASED_CTLS_TPR_SHADOW) |
VMCS_PRI_PROC_BASED_CTLS_SEC_CONTROL);
wvmcs(cpu->hvf_fd, VMCS_SEC_PROC_BASED_CTLS,
cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased2,
VMCS_PRI_PROC_BASED2_CTLS_APIC_ACCESSES));
wvmcs(cpu->hvf_fd, VMCS_ENTRY_CTLS, cap2ctrl(hvf_state->hvf_caps->vmx_cap_entry,
0));
wvmcs(cpu->hvf_fd, VMCS_EXCEPTION_BITMAP, 0); /* Double fault */
wvmcs(cpu->hvf_fd, VMCS_TPR_THRESHOLD, 0);
hvf_reset_vcpu(cpu);
x86cpu = X86_CPU(cpu);
x86cpu->env.kvm_xsave_buf = qemu_memalign(4096, 4096);
hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_STAR, 1);
hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_LSTAR, 1);
hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_CSTAR, 1);
hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_FMASK, 1);
hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_FSBASE, 1);
hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_GSBASE, 1);
hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_KERNELGSBASE, 1);
hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_TSC_AUX, 1);
/*hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_TSC, 1);*/
hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_SYSENTER_CS, 1);
hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_SYSENTER_EIP, 1);
hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_SYSENTER_ESP, 1);
return 0;
}
void hvf_disable(int shouldDisable)
{
hvf_disabled = shouldDisable;
}
static void hvf_store_events(CPUState *cpu, uint32_t ins_len, uint64_t idtvec_info)
{
X86CPU *x86_cpu = X86_CPU(cpu);
CPUX86State *env = &x86_cpu->env;
env->exception_injected = -1;
env->interrupt_injected = -1;
env->nmi_injected = false;
if (idtvec_info & VMCS_IDT_VEC_VALID) {
switch (idtvec_info & VMCS_IDT_VEC_TYPE) {
case VMCS_IDT_VEC_HWINTR:
case VMCS_IDT_VEC_SWINTR:
env->interrupt_injected = idtvec_info & VMCS_IDT_VEC_VECNUM;
break;
case VMCS_IDT_VEC_NMI:
env->nmi_injected = true;
break;
case VMCS_IDT_VEC_HWEXCEPTION:
case VMCS_IDT_VEC_SWEXCEPTION:
env->exception_injected = idtvec_info & VMCS_IDT_VEC_VECNUM;
break;
case VMCS_IDT_VEC_PRIV_SWEXCEPTION:
default:
abort();
}
if ((idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWEXCEPTION ||
(idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWINTR) {
env->ins_len = ins_len;
}
if (idtvec_info & VMCS_INTR_DEL_ERRCODE) {
env->has_error_code = true;
env->error_code = rvmcs(cpu->hvf_fd, VMCS_IDT_VECTORING_ERROR);
}
}
if ((rvmcs(cpu->hvf_fd, VMCS_GUEST_INTERRUPTIBILITY) &
VMCS_INTERRUPTIBILITY_NMI_BLOCKING)) {
env->hflags2 |= HF2_NMI_MASK;
} else {
env->hflags2 &= ~HF2_NMI_MASK;
}
if (rvmcs(cpu->hvf_fd, VMCS_GUEST_INTERRUPTIBILITY) &
(VMCS_INTERRUPTIBILITY_STI_BLOCKING |
VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)) {
env->hflags |= HF_INHIBIT_IRQ_MASK;
} else {
env->hflags &= ~HF_INHIBIT_IRQ_MASK;
}
}
int hvf_vcpu_exec(CPUState *cpu)
{
X86CPU *x86_cpu = X86_CPU(cpu);
CPUX86State *env = &x86_cpu->env;
int ret = 0;
uint64_t rip = 0;
cpu->halted = 0;
if (hvf_process_events(cpu)) {
return EXCP_HLT;
}
do {
if (cpu->vcpu_dirty) {
hvf_put_registers(cpu);
cpu->vcpu_dirty = false;
}
if (hvf_inject_interrupts(cpu)) {
return EXCP_INTERRUPT;
}
vmx_update_tpr(cpu);
qemu_mutex_unlock_iothread();
if (!cpu_is_bsp(X86_CPU(cpu)) && cpu->halted) {
qemu_mutex_lock_iothread();
return EXCP_HLT;
}
hv_return_t r = hv_vcpu_run(cpu->hvf_fd);
assert_hvf_ok(r);
/* handle VMEXIT */
uint64_t exit_reason = rvmcs(cpu->hvf_fd, VMCS_EXIT_REASON);
uint64_t exit_qual = rvmcs(cpu->hvf_fd, VMCS_EXIT_QUALIFICATION);
uint32_t ins_len = (uint32_t)rvmcs(cpu->hvf_fd,
VMCS_EXIT_INSTRUCTION_LENGTH);
uint64_t idtvec_info = rvmcs(cpu->hvf_fd, VMCS_IDT_VECTORING_INFO);
hvf_store_events(cpu, ins_len, idtvec_info);
rip = rreg(cpu->hvf_fd, HV_X86_RIP);
RFLAGS(env) = rreg(cpu->hvf_fd, HV_X86_RFLAGS);
env->eflags = RFLAGS(env);
qemu_mutex_lock_iothread();
update_apic_tpr(cpu);
current_cpu = cpu;
ret = 0;
switch (exit_reason) {
case EXIT_REASON_HLT: {
macvm_set_rip(cpu, rip + ins_len);
if (!((cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
(EFLAGS(env) & IF_MASK))
&& !(cpu->interrupt_request & CPU_INTERRUPT_NMI) &&
!(idtvec_info & VMCS_IDT_VEC_VALID)) {
cpu->halted = 1;
ret = EXCP_HLT;
}
ret = EXCP_INTERRUPT;
break;
}
case EXIT_REASON_MWAIT: {
ret = EXCP_INTERRUPT;
break;
}
/* Need to check if MMIO or unmmaped fault */
case EXIT_REASON_EPT_FAULT:
{
hvf_slot *slot;
uint64_t gpa = rvmcs(cpu->hvf_fd, VMCS_GUEST_PHYSICAL_ADDRESS);
if (((idtvec_info & VMCS_IDT_VEC_VALID) == 0) &&
((exit_qual & EXIT_QUAL_NMIUDTI) != 0)) {
vmx_set_nmi_blocking(cpu);
}
slot = hvf_find_overlap_slot(gpa, gpa);
/* mmio */
if (ept_emulation_fault(slot, gpa, exit_qual)) {
struct x86_decode decode;
load_regs(cpu);
env->hvf_emul->fetch_rip = rip;
decode_instruction(env, &decode);
exec_instruction(env, &decode);
store_regs(cpu);
break;
}
break;
}
case EXIT_REASON_INOUT:
{
uint32_t in = (exit_qual & 8) != 0;
uint32_t size = (exit_qual & 7) + 1;
uint32_t string = (exit_qual & 16) != 0;
uint32_t port = exit_qual >> 16;
/*uint32_t rep = (exit_qual & 0x20) != 0;*/
if (!string && in) {
uint64_t val = 0;
load_regs(cpu);
hvf_handle_io(env, port, &val, 0, size, 1);
if (size == 1) {
AL(env) = val;
} else if (size == 2) {
AX(env) = val;
} else if (size == 4) {
RAX(env) = (uint32_t)val;
} else {
RAX(env) = (uint64_t)val;
}
RIP(env) += ins_len;
store_regs(cpu);
break;
} else if (!string && !in) {
RAX(env) = rreg(cpu->hvf_fd, HV_X86_RAX);
hvf_handle_io(env, port, &RAX(env), 1, size, 1);
macvm_set_rip(cpu, rip + ins_len);
break;
}
struct x86_decode decode;
load_regs(cpu);
env->hvf_emul->fetch_rip = rip;
decode_instruction(env, &decode);
assert(ins_len == decode.len);
exec_instruction(env, &decode);
store_regs(cpu);
break;
}
case EXIT_REASON_CPUID: {
uint32_t rax = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RAX);
uint32_t rbx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RBX);
uint32_t rcx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RCX);
uint32_t rdx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RDX);
cpu_x86_cpuid(env, rax, rcx, &rax, &rbx, &rcx, &rdx);
wreg(cpu->hvf_fd, HV_X86_RAX, rax);
wreg(cpu->hvf_fd, HV_X86_RBX, rbx);
wreg(cpu->hvf_fd, HV_X86_RCX, rcx);
wreg(cpu->hvf_fd, HV_X86_RDX, rdx);
macvm_set_rip(cpu, rip + ins_len);
break;
}
case EXIT_REASON_XSETBV: {
X86CPU *x86_cpu = X86_CPU(cpu);
CPUX86State *env = &x86_cpu->env;
uint32_t eax = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RAX);
uint32_t ecx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RCX);
uint32_t edx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RDX);
if (ecx) {
macvm_set_rip(cpu, rip + ins_len);
break;
}
env->xcr0 = ((uint64_t)edx << 32) | eax;
wreg(cpu->hvf_fd, HV_X86_XCR0, env->xcr0 | 1);
macvm_set_rip(cpu, rip + ins_len);
break;
}
case EXIT_REASON_INTR_WINDOW:
vmx_clear_int_window_exiting(cpu);
ret = EXCP_INTERRUPT;
break;
case EXIT_REASON_NMI_WINDOW:
vmx_clear_nmi_window_exiting(cpu);
ret = EXCP_INTERRUPT;
break;
case EXIT_REASON_EXT_INTR:
/* force exit and allow io handling */
ret = EXCP_INTERRUPT;
break;
case EXIT_REASON_RDMSR:
case EXIT_REASON_WRMSR:
{
load_regs(cpu);
if (exit_reason == EXIT_REASON_RDMSR) {
simulate_rdmsr(cpu);
} else {
simulate_wrmsr(cpu);
}
RIP(env) += rvmcs(cpu->hvf_fd, VMCS_EXIT_INSTRUCTION_LENGTH);
store_regs(cpu);
break;
}
case EXIT_REASON_CR_ACCESS: {
int cr;
int reg;
load_regs(cpu);
cr = exit_qual & 15;
reg = (exit_qual >> 8) & 15;
switch (cr) {
case 0x0: {
macvm_set_cr0(cpu->hvf_fd, RRX(env, reg));
break;
}
case 4: {
macvm_set_cr4(cpu->hvf_fd, RRX(env, reg));
break;
}
case 8: {
X86CPU *x86_cpu = X86_CPU(cpu);
if (exit_qual & 0x10) {
RRX(env, reg) = cpu_get_apic_tpr(x86_cpu->apic_state);
} else {
int tpr = RRX(env, reg);
cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
ret = EXCP_INTERRUPT;
}
break;
}
default:
error_report("Unrecognized CR %d\n", cr);
abort();
}
RIP(env) += ins_len;
store_regs(cpu);
break;
}
case EXIT_REASON_APIC_ACCESS: { /* TODO */
struct x86_decode decode;
load_regs(cpu);
env->hvf_emul->fetch_rip = rip;
decode_instruction(env, &decode);
exec_instruction(env, &decode);
store_regs(cpu);
break;
}
case EXIT_REASON_TPR: {
ret = 1;
break;
}
case EXIT_REASON_TASK_SWITCH: {
uint64_t vinfo = rvmcs(cpu->hvf_fd, VMCS_IDT_VECTORING_INFO);
x68_segment_selector sel = {.sel = exit_qual & 0xffff};
vmx_handle_task_switch(cpu, sel, (exit_qual >> 30) & 0x3,
vinfo & VMCS_INTR_VALID, vinfo & VECTORING_INFO_VECTOR_MASK, vinfo
& VMCS_INTR_T_MASK);
break;
}
case EXIT_REASON_TRIPLE_FAULT: {
qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
ret = EXCP_INTERRUPT;
break;
}
case EXIT_REASON_RDPMC:
wreg(cpu->hvf_fd, HV_X86_RAX, 0);
wreg(cpu->hvf_fd, HV_X86_RDX, 0);
macvm_set_rip(cpu, rip + ins_len);
break;
case VMX_REASON_VMCALL:
env->exception_injected = EXCP0D_GPF;
env->has_error_code = true;
env->error_code = 0;
break;
default:
error_report("%llx: unhandled exit %llx\n", rip, exit_reason);
}
} while (ret == 0);
return ret;
}
static bool hvf_allowed;
static int hvf_accel_init(MachineState *ms)
{
int x;
hv_return_t ret;
HVFState *s;
hvf_disable(0);
ret = hv_vm_create(HV_VM_DEFAULT);
assert_hvf_ok(ret);
s = g_new0(HVFState, 1);
s->num_slots = 32;
for (x = 0; x < s->num_slots; ++x) {
s->slots[x].size = 0;
s->slots[x].slot_id = x;
}
hvf_state = s;
cpu_interrupt_handler = hvf_handle_interrupt;
memory_listener_register(&hvf_memory_listener, &address_space_memory);
return 0;
}
static void hvf_accel_class_init(ObjectClass *oc, void *data)
{
AccelClass *ac = ACCEL_CLASS(oc);
ac->name = "HVF";
ac->init_machine = hvf_accel_init;
ac->allowed = &hvf_allowed;
}
static const TypeInfo hvf_accel_type = {
.name = TYPE_HVF_ACCEL,
.parent = TYPE_ACCEL,
.class_init = hvf_accel_class_init,
};
static void hvf_type_init(void)
{
type_register_static(&hvf_accel_type);
}
type_init(hvf_type_init);