blob: 0cd542675ffc9f71127ce1925bf3297f9d66869b [file] [log] [blame]
/*
* PowerPC exception emulation helpers for QEMU.
*
* Copyright (c) 2003-2007 Jocelyn Mayer
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/main-loop.h"
#include "qemu/log.h"
#include "sysemu/sysemu.h"
#include "sysemu/runstate.h"
#include "cpu.h"
#include "exec/exec-all.h"
#include "internal.h"
#include "helper_regs.h"
#include "hw/ppc/ppc.h"
#include "trace.h"
#ifdef CONFIG_TCG
#include "sysemu/tcg.h"
#include "exec/helper-proto.h"
#include "exec/cpu_ldst.h"
#endif
/*****************************************************************************/
/* Exception processing */
#ifndef CONFIG_USER_ONLY
static const char *powerpc_excp_name(int excp)
{
switch (excp) {
case POWERPC_EXCP_CRITICAL: return "CRITICAL";
case POWERPC_EXCP_MCHECK: return "MCHECK";
case POWERPC_EXCP_DSI: return "DSI";
case POWERPC_EXCP_ISI: return "ISI";
case POWERPC_EXCP_EXTERNAL: return "EXTERNAL";
case POWERPC_EXCP_ALIGN: return "ALIGN";
case POWERPC_EXCP_PROGRAM: return "PROGRAM";
case POWERPC_EXCP_FPU: return "FPU";
case POWERPC_EXCP_SYSCALL: return "SYSCALL";
case POWERPC_EXCP_APU: return "APU";
case POWERPC_EXCP_DECR: return "DECR";
case POWERPC_EXCP_FIT: return "FIT";
case POWERPC_EXCP_WDT: return "WDT";
case POWERPC_EXCP_DTLB: return "DTLB";
case POWERPC_EXCP_ITLB: return "ITLB";
case POWERPC_EXCP_DEBUG: return "DEBUG";
case POWERPC_EXCP_SPEU: return "SPEU";
case POWERPC_EXCP_EFPDI: return "EFPDI";
case POWERPC_EXCP_EFPRI: return "EFPRI";
case POWERPC_EXCP_EPERFM: return "EPERFM";
case POWERPC_EXCP_DOORI: return "DOORI";
case POWERPC_EXCP_DOORCI: return "DOORCI";
case POWERPC_EXCP_GDOORI: return "GDOORI";
case POWERPC_EXCP_GDOORCI: return "GDOORCI";
case POWERPC_EXCP_HYPPRIV: return "HYPPRIV";
case POWERPC_EXCP_RESET: return "RESET";
case POWERPC_EXCP_DSEG: return "DSEG";
case POWERPC_EXCP_ISEG: return "ISEG";
case POWERPC_EXCP_HDECR: return "HDECR";
case POWERPC_EXCP_TRACE: return "TRACE";
case POWERPC_EXCP_HDSI: return "HDSI";
case POWERPC_EXCP_HISI: return "HISI";
case POWERPC_EXCP_HDSEG: return "HDSEG";
case POWERPC_EXCP_HISEG: return "HISEG";
case POWERPC_EXCP_VPU: return "VPU";
case POWERPC_EXCP_PIT: return "PIT";
case POWERPC_EXCP_EMUL: return "EMUL";
case POWERPC_EXCP_IFTLB: return "IFTLB";
case POWERPC_EXCP_DLTLB: return "DLTLB";
case POWERPC_EXCP_DSTLB: return "DSTLB";
case POWERPC_EXCP_FPA: return "FPA";
case POWERPC_EXCP_DABR: return "DABR";
case POWERPC_EXCP_IABR: return "IABR";
case POWERPC_EXCP_SMI: return "SMI";
case POWERPC_EXCP_PERFM: return "PERFM";
case POWERPC_EXCP_THERM: return "THERM";
case POWERPC_EXCP_VPUA: return "VPUA";
case POWERPC_EXCP_SOFTP: return "SOFTP";
case POWERPC_EXCP_MAINT: return "MAINT";
case POWERPC_EXCP_MEXTBR: return "MEXTBR";
case POWERPC_EXCP_NMEXTBR: return "NMEXTBR";
case POWERPC_EXCP_ITLBE: return "ITLBE";
case POWERPC_EXCP_DTLBE: return "DTLBE";
case POWERPC_EXCP_VSXU: return "VSXU";
case POWERPC_EXCP_FU: return "FU";
case POWERPC_EXCP_HV_EMU: return "HV_EMU";
case POWERPC_EXCP_HV_MAINT: return "HV_MAINT";
case POWERPC_EXCP_HV_FU: return "HV_FU";
case POWERPC_EXCP_SDOOR: return "SDOOR";
case POWERPC_EXCP_SDOOR_HV: return "SDOOR_HV";
case POWERPC_EXCP_HVIRT: return "HVIRT";
case POWERPC_EXCP_SYSCALL_VECTORED: return "SYSCALL_VECTORED";
default:
g_assert_not_reached();
}
}
static void dump_syscall(CPUPPCState *env)
{
qemu_log_mask(CPU_LOG_INT, "syscall r0=%016" PRIx64
" r3=%016" PRIx64 " r4=%016" PRIx64 " r5=%016" PRIx64
" r6=%016" PRIx64 " r7=%016" PRIx64 " r8=%016" PRIx64
" nip=" TARGET_FMT_lx "\n",
ppc_dump_gpr(env, 0), ppc_dump_gpr(env, 3),
ppc_dump_gpr(env, 4), ppc_dump_gpr(env, 5),
ppc_dump_gpr(env, 6), ppc_dump_gpr(env, 7),
ppc_dump_gpr(env, 8), env->nip);
}
static void dump_hcall(CPUPPCState *env)
{
qemu_log_mask(CPU_LOG_INT, "hypercall r3=%016" PRIx64
" r4=%016" PRIx64 " r5=%016" PRIx64 " r6=%016" PRIx64
" r7=%016" PRIx64 " r8=%016" PRIx64 " r9=%016" PRIx64
" r10=%016" PRIx64 " r11=%016" PRIx64 " r12=%016" PRIx64
" nip=" TARGET_FMT_lx "\n",
ppc_dump_gpr(env, 3), ppc_dump_gpr(env, 4),
ppc_dump_gpr(env, 5), ppc_dump_gpr(env, 6),
ppc_dump_gpr(env, 7), ppc_dump_gpr(env, 8),
ppc_dump_gpr(env, 9), ppc_dump_gpr(env, 10),
ppc_dump_gpr(env, 11), ppc_dump_gpr(env, 12),
env->nip);
}
#ifdef CONFIG_TCG
/* Return true iff byteswap is needed to load instruction */
static inline bool insn_need_byteswap(CPUArchState *env)
{
/* SYSTEM builds TARGET_BIG_ENDIAN. Need to swap when MSR[LE] is set */
return !!(env->msr & ((target_ulong)1 << MSR_LE));
}
static uint32_t ppc_ldl_code(CPUArchState *env, target_ulong addr)
{
uint32_t insn = cpu_ldl_code(env, addr);
if (insn_need_byteswap(env)) {
insn = bswap32(insn);
}
return insn;
}
#endif
static void ppc_excp_debug_sw_tlb(CPUPPCState *env, int excp)
{
const char *es;
target_ulong *miss, *cmp;
int en;
if (!qemu_loglevel_mask(CPU_LOG_MMU)) {
return;
}
if (excp == POWERPC_EXCP_IFTLB) {
es = "I";
en = 'I';
miss = &env->spr[SPR_IMISS];
cmp = &env->spr[SPR_ICMP];
} else {
if (excp == POWERPC_EXCP_DLTLB) {
es = "DL";
} else {
es = "DS";
}
en = 'D';
miss = &env->spr[SPR_DMISS];
cmp = &env->spr[SPR_DCMP];
}
qemu_log("6xx %sTLB miss: %cM " TARGET_FMT_lx " %cC "
TARGET_FMT_lx " H1 " TARGET_FMT_lx " H2 "
TARGET_FMT_lx " %08x\n", es, en, *miss, en, *cmp,
env->spr[SPR_HASH1], env->spr[SPR_HASH2],
env->error_code);
}
#ifdef TARGET_PPC64
static int powerpc_reset_wakeup(CPUPPCState *env, int excp, target_ulong *msr)
{
/* We no longer are in a PM state */
env->resume_as_sreset = false;
/* Pretend to be returning from doze always as we don't lose state */
*msr |= SRR1_WS_NOLOSS;
/* Machine checks are sent normally */
if (excp == POWERPC_EXCP_MCHECK) {
return excp;
}
switch (excp) {
case POWERPC_EXCP_RESET:
*msr |= SRR1_WAKERESET;
break;
case POWERPC_EXCP_EXTERNAL:
*msr |= SRR1_WAKEEE;
break;
case POWERPC_EXCP_DECR:
*msr |= SRR1_WAKEDEC;
break;
case POWERPC_EXCP_SDOOR:
*msr |= SRR1_WAKEDBELL;
break;
case POWERPC_EXCP_SDOOR_HV:
*msr |= SRR1_WAKEHDBELL;
break;
case POWERPC_EXCP_HV_MAINT:
*msr |= SRR1_WAKEHMI;
break;
case POWERPC_EXCP_HVIRT:
*msr |= SRR1_WAKEHVI;
break;
default:
cpu_abort(env_cpu(env),
"Unsupported exception %d in Power Save mode\n", excp);
}
return POWERPC_EXCP_RESET;
}
/*
* AIL - Alternate Interrupt Location, a mode that allows interrupts to be
* taken with the MMU on, and which uses an alternate location (e.g., so the
* kernel/hv can map the vectors there with an effective address).
*
* An interrupt is considered to be taken "with AIL" or "AIL applies" if they
* are delivered in this way. AIL requires the LPCR to be set to enable this
* mode, and then a number of conditions have to be true for AIL to apply.
*
* First of all, SRESET, MCE, and HMI are always delivered without AIL, because
* they specifically want to be in real mode (e.g., the MCE might be signaling
* a SLB multi-hit which requires SLB flush before the MMU can be enabled).
*
* After that, behaviour depends on the current MSR[IR], MSR[DR], MSR[HV],
* whether or not the interrupt changes MSR[HV] from 0 to 1, and the current
* radix mode (LPCR[HR]).
*
* POWER8, POWER9 with LPCR[HR]=0
* | LPCR[AIL] | MSR[IR||DR] | MSR[HV] | new MSR[HV] | AIL |
* +-----------+-------------+---------+-------------+-----+
* | a | 00/01/10 | x | x | 0 |
* | a | 11 | 0 | 1 | 0 |
* | a | 11 | 1 | 1 | a |
* | a | 11 | 0 | 0 | a |
* +-------------------------------------------------------+
*
* POWER9 with LPCR[HR]=1
* | LPCR[AIL] | MSR[IR||DR] | MSR[HV] | new MSR[HV] | AIL |
* +-----------+-------------+---------+-------------+-----+
* | a | 00/01/10 | x | x | 0 |
* | a | 11 | x | x | a |
* +-------------------------------------------------------+
*
* The difference with POWER9 being that MSR[HV] 0->1 interrupts can be sent to
* the hypervisor in AIL mode if the guest is radix. This is good for
* performance but allows the guest to influence the AIL of hypervisor
* interrupts using its MSR, and also the hypervisor must disallow guest
* interrupts (MSR[HV] 0->0) from using AIL if the hypervisor does not want to
* use AIL for its MSR[HV] 0->1 interrupts.
*
* POWER10 addresses those issues with a new LPCR[HAIL] bit that is applied to
* interrupts that begin execution with MSR[HV]=1 (so both MSR[HV] 0->1 and
* MSR[HV] 1->1).
*
* HAIL=1 is equivalent to AIL=3, for interrupts delivered with MSR[HV]=1.
*
* POWER10 behaviour is
* | LPCR[AIL] | LPCR[HAIL] | MSR[IR||DR] | MSR[HV] | new MSR[HV] | AIL |
* +-----------+------------+-------------+---------+-------------+-----+
* | a | h | 00/01/10 | 0 | 0 | 0 |
* | a | h | 11 | 0 | 0 | a |
* | a | h | x | 0 | 1 | h |
* | a | h | 00/01/10 | 1 | 1 | 0 |
* | a | h | 11 | 1 | 1 | h |
* +--------------------------------------------------------------------+
*/
static void ppc_excp_apply_ail(PowerPCCPU *cpu, int excp, target_ulong msr,
target_ulong *new_msr, target_ulong *vector)
{
PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
CPUPPCState *env = &cpu->env;
bool mmu_all_on = ((msr >> MSR_IR) & 1) && ((msr >> MSR_DR) & 1);
bool hv_escalation = !(msr & MSR_HVB) && (*new_msr & MSR_HVB);
int ail = 0;
if (excp == POWERPC_EXCP_MCHECK ||
excp == POWERPC_EXCP_RESET ||
excp == POWERPC_EXCP_HV_MAINT) {
/* SRESET, MCE, HMI never apply AIL */
return;
}
if (!(pcc->lpcr_mask & LPCR_AIL)) {
/* This CPU does not have AIL */
return;
}
/* P8 & P9 */
if (!(pcc->lpcr_mask & LPCR_HAIL)) {
if (!mmu_all_on) {
/* AIL only works if MSR[IR] and MSR[DR] are both enabled. */
return;
}
if (hv_escalation && !(env->spr[SPR_LPCR] & LPCR_HR)) {
/*
* AIL does not work if there is a MSR[HV] 0->1 transition and the
* partition is in HPT mode. For radix guests, such interrupts are
* allowed to be delivered to the hypervisor in ail mode.
*/
return;
}
ail = (env->spr[SPR_LPCR] & LPCR_AIL) >> LPCR_AIL_SHIFT;
if (ail == 0) {
return;
}
if (ail == 1) {
/* AIL=1 is reserved, treat it like AIL=0 */
return;
}
/* P10 and up */
} else {
if (!mmu_all_on && !hv_escalation) {
/*
* AIL works for HV interrupts even with guest MSR[IR/DR] disabled.
* Guest->guest and HV->HV interrupts do require MMU on.
*/
return;
}
if (*new_msr & MSR_HVB) {
if (!(env->spr[SPR_LPCR] & LPCR_HAIL)) {
/* HV interrupts depend on LPCR[HAIL] */
return;
}
ail = 3; /* HAIL=1 gives AIL=3 behaviour for HV interrupts */
} else {
ail = (env->spr[SPR_LPCR] & LPCR_AIL) >> LPCR_AIL_SHIFT;
}
if (ail == 0) {
return;
}
if (ail == 1 || ail == 2) {
/* AIL=1 and AIL=2 are reserved, treat them like AIL=0 */
return;
}
}
/*
* AIL applies, so the new MSR gets IR and DR set, and an offset applied
* to the new IP.
*/
*new_msr |= (1 << MSR_IR) | (1 << MSR_DR);
if (excp != POWERPC_EXCP_SYSCALL_VECTORED) {
if (ail == 2) {
*vector |= 0x0000000000018000ull;
} else if (ail == 3) {
*vector |= 0xc000000000004000ull;
}
} else {
/*
* scv AIL is a little different. AIL=2 does not change the address,
* only the MSR. AIL=3 replaces the 0x17000 base with 0xc...3000.
*/
if (ail == 3) {
*vector &= ~0x0000000000017000ull; /* Un-apply the base offset */
*vector |= 0xc000000000003000ull; /* Apply scv's AIL=3 offset */
}
}
}
#endif /* TARGET_PPC64 */
static void powerpc_reset_excp_state(PowerPCCPU *cpu)
{
CPUState *cs = CPU(cpu);
CPUPPCState *env = &cpu->env;
/* Reset exception state */
cs->exception_index = POWERPC_EXCP_NONE;
env->error_code = 0;
}
static void powerpc_set_excp_state(PowerPCCPU *cpu, target_ulong vector,
target_ulong msr)
{
CPUPPCState *env = &cpu->env;
assert((msr & env->msr_mask) == msr);
/*
* We don't use hreg_store_msr here as already have treated any
* special case that could occur. Just store MSR and update hflags
*
* Note: We *MUST* not use hreg_store_msr() as-is anyway because it will
* prevent setting of the HV bit which some exceptions might need to do.
*/
env->nip = vector;
env->msr = msr;
hreg_compute_hflags(env);
ppc_maybe_interrupt(env);
powerpc_reset_excp_state(cpu);
/*
* Any interrupt is context synchronizing, check if TCG TLB needs
* a delayed flush on ppc64
*/
check_tlb_flush(env, false);
/* Reset the reservation */
env->reserve_addr = -1;
}
#ifdef CONFIG_TCG
/*
* This stops the machine and logs CPU state without killing QEMU (like
* cpu_abort()) because it is often a guest error as opposed to a QEMU error,
* so the machine can still be debugged.
*/
static G_NORETURN void powerpc_checkstop(CPUPPCState *env, const char *reason)
{
CPUState *cs = env_cpu(env);
FILE *f;
f = qemu_log_trylock();
if (f) {
fprintf(f, "Entering checkstop state: %s\n", reason);
cpu_dump_state(cs, f, CPU_DUMP_FPU | CPU_DUMP_CCOP);
qemu_log_unlock(f);
}
/*
* This stops the machine and logs CPU state without killing QEMU
* (like cpu_abort()) so the machine can still be debugged (because
* it is often a guest error).
*/
qemu_system_guest_panicked(NULL);
cpu_loop_exit_noexc(cs);
}
#if defined(TARGET_PPC64) && !defined(CONFIG_USER_ONLY)
void helper_attn(CPUPPCState *env)
{
/* POWER attn is unprivileged when enabled by HID, otherwise illegal */
if ((*env->check_attn)(env)) {
powerpc_checkstop(env, "host executed attn");
} else {
raise_exception_err(env, POWERPC_EXCP_HV_EMU,
POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL);
}
}
#endif
#endif /* CONFIG_TCG */
static void powerpc_mcheck_checkstop(CPUPPCState *env)
{
/* KVM guests always have MSR[ME] enabled */
#ifdef CONFIG_TCG
if (FIELD_EX64(env->msr, MSR, ME)) {
return;
}
powerpc_checkstop(env, "machine check with MSR[ME]=0");
#endif
}
static void powerpc_excp_40x(PowerPCCPU *cpu, int excp)
{
CPUPPCState *env = &cpu->env;
target_ulong msr, new_msr, vector;
int srr0 = SPR_SRR0, srr1 = SPR_SRR1;
/* new srr1 value excluding must-be-zero bits */
msr = env->msr & ~0x783f0000ULL;
/* new interrupt handler msr preserves ME unless explicitly overridden */
new_msr = env->msr & (((target_ulong)1 << MSR_ME));
/* HV emu assistance interrupt only exists on server arch 2.05 or later */
if (excp == POWERPC_EXCP_HV_EMU) {
excp = POWERPC_EXCP_PROGRAM;
}
vector = env->excp_vectors[excp];
if (vector == (target_ulong)-1ULL) {
cpu_abort(env_cpu(env),
"Raised an exception without defined vector %d\n", excp);
}
vector |= env->excp_prefix;
switch (excp) {
case POWERPC_EXCP_CRITICAL: /* Critical input */
srr0 = SPR_40x_SRR2;
srr1 = SPR_40x_SRR3;
break;
case POWERPC_EXCP_MCHECK: /* Machine check exception */
powerpc_mcheck_checkstop(env);
/* machine check exceptions don't have ME set */
new_msr &= ~((target_ulong)1 << MSR_ME);
srr0 = SPR_40x_SRR2;
srr1 = SPR_40x_SRR3;
break;
case POWERPC_EXCP_DSI: /* Data storage exception */
trace_ppc_excp_dsi(env->spr[SPR_40x_ESR], env->spr[SPR_40x_DEAR]);
break;
case POWERPC_EXCP_ISI: /* Instruction storage exception */
trace_ppc_excp_isi(msr, env->nip);
break;
case POWERPC_EXCP_EXTERNAL: /* External input */
break;
case POWERPC_EXCP_ALIGN: /* Alignment exception */
break;
case POWERPC_EXCP_PROGRAM: /* Program exception */
switch (env->error_code & ~0xF) {
case POWERPC_EXCP_FP:
if (!FIELD_EX64_FE(env->msr) || !FIELD_EX64(env->msr, MSR, FP)) {
trace_ppc_excp_fp_ignore();
powerpc_reset_excp_state(cpu);
return;
}
env->spr[SPR_40x_ESR] = ESR_FP;
break;
case POWERPC_EXCP_INVAL:
trace_ppc_excp_inval(env->nip);
env->spr[SPR_40x_ESR] = ESR_PIL;
break;
case POWERPC_EXCP_PRIV:
env->spr[SPR_40x_ESR] = ESR_PPR;
break;
case POWERPC_EXCP_TRAP:
env->spr[SPR_40x_ESR] = ESR_PTR;
break;
default:
cpu_abort(env_cpu(env), "Invalid program exception %d. Aborting\n",
env->error_code);
break;
}
break;
case POWERPC_EXCP_SYSCALL: /* System call exception */
dump_syscall(env);
/*
* We need to correct the NIP which in this case is supposed
* to point to the next instruction
*/
env->nip += 4;
break;
case POWERPC_EXCP_FIT: /* Fixed-interval timer interrupt */
trace_ppc_excp_print("FIT");
break;
case POWERPC_EXCP_WDT: /* Watchdog timer interrupt */
trace_ppc_excp_print("WDT");
break;
case POWERPC_EXCP_DTLB: /* Data TLB error */
case POWERPC_EXCP_ITLB: /* Instruction TLB error */
break;
case POWERPC_EXCP_PIT: /* Programmable interval timer interrupt */
trace_ppc_excp_print("PIT");
break;
case POWERPC_EXCP_DEBUG: /* Debug interrupt */
cpu_abort(env_cpu(env), "%s exception not implemented\n",
powerpc_excp_name(excp));
break;
default:
cpu_abort(env_cpu(env), "Invalid PowerPC exception %d. Aborting\n",
excp);
break;
}
env->spr[srr0] = env->nip;
env->spr[srr1] = msr;
powerpc_set_excp_state(cpu, vector, new_msr);
}
static void powerpc_excp_6xx(PowerPCCPU *cpu, int excp)
{
CPUPPCState *env = &cpu->env;
target_ulong msr, new_msr, vector;
/* new srr1 value excluding must-be-zero bits */
msr = env->msr & ~0x783f0000ULL;
/* new interrupt handler msr preserves ME unless explicitly overridden */
new_msr = env->msr & ((target_ulong)1 << MSR_ME);
/* HV emu assistance interrupt only exists on server arch 2.05 or later */
if (excp == POWERPC_EXCP_HV_EMU) {
excp = POWERPC_EXCP_PROGRAM;
}
vector = env->excp_vectors[excp];
if (vector == (target_ulong)-1ULL) {
cpu_abort(env_cpu(env),
"Raised an exception without defined vector %d\n", excp);
}
vector |= env->excp_prefix;
switch (excp) {
case POWERPC_EXCP_CRITICAL: /* Critical input */
break;
case POWERPC_EXCP_MCHECK: /* Machine check exception */
powerpc_mcheck_checkstop(env);
/* machine check exceptions don't have ME set */
new_msr &= ~((target_ulong)1 << MSR_ME);
break;
case POWERPC_EXCP_DSI: /* Data storage exception */
trace_ppc_excp_dsi(env->spr[SPR_DSISR], env->spr[SPR_DAR]);
break;
case POWERPC_EXCP_ISI: /* Instruction storage exception */
trace_ppc_excp_isi(msr, env->nip);
msr |= env->error_code;
break;
case POWERPC_EXCP_EXTERNAL: /* External input */
break;
case POWERPC_EXCP_ALIGN: /* Alignment exception */
/* Get rS/rD and rA from faulting opcode */
/*
* Note: the opcode fields will not be set properly for a
* direct store load/store, but nobody cares as nobody
* actually uses direct store segments.
*/
env->spr[SPR_DSISR] |= (env->error_code & 0x03FF0000) >> 16;
break;
case POWERPC_EXCP_PROGRAM: /* Program exception */
switch (env->error_code & ~0xF) {
case POWERPC_EXCP_FP:
if (!FIELD_EX64_FE(env->msr) || !FIELD_EX64(env->msr, MSR, FP)) {
trace_ppc_excp_fp_ignore();
powerpc_reset_excp_state(cpu);
return;
}
/*
* NIP always points to the faulting instruction for FP exceptions,
* so always use store_next and claim we are precise in the MSR.
*/
msr |= 0x00100000;
break;
case POWERPC_EXCP_INVAL:
trace_ppc_excp_inval(env->nip);
msr |= 0x00080000;
break;
case POWERPC_EXCP_PRIV:
msr |= 0x00040000;
break;
case POWERPC_EXCP_TRAP:
msr |= 0x00020000;
break;
default:
/* Should never occur */
cpu_abort(env_cpu(env), "Invalid program exception %d. Aborting\n",
env->error_code);
break;
}
break;
case POWERPC_EXCP_SYSCALL: /* System call exception */
dump_syscall(env);
/*
* We need to correct the NIP which in this case is supposed
* to point to the next instruction
*/
env->nip += 4;
break;
case POWERPC_EXCP_FPU: /* Floating-point unavailable exception */
case POWERPC_EXCP_DECR: /* Decrementer exception */
break;
case POWERPC_EXCP_DTLB: /* Data TLB error */
case POWERPC_EXCP_ITLB: /* Instruction TLB error */
break;
case POWERPC_EXCP_RESET: /* System reset exception */
if (FIELD_EX64(env->msr, MSR, POW)) {
cpu_abort(env_cpu(env),
"Trying to deliver power-saving system reset exception "
"%d with no HV support\n", excp);
}
break;
case POWERPC_EXCP_TRACE: /* Trace exception */
break;
case POWERPC_EXCP_IFTLB: /* Instruction fetch TLB error */
case POWERPC_EXCP_DLTLB: /* Data load TLB miss */
case POWERPC_EXCP_DSTLB: /* Data store TLB miss */
/* Swap temporary saved registers with GPRs */
if (!(new_msr & ((target_ulong)1 << MSR_TGPR))) {
new_msr |= (target_ulong)1 << MSR_TGPR;
hreg_swap_gpr_tgpr(env);
}
ppc_excp_debug_sw_tlb(env, excp);
msr |= env->crf[0] << 28;
msr |= env->error_code; /* key, D/I, S/L bits */
/* Set way using a LRU mechanism */
msr |= ((env->last_way + 1) & (env->nb_ways - 1)) << 17;
break;
case POWERPC_EXCP_FPA: /* Floating-point assist exception */
case POWERPC_EXCP_DABR: /* Data address breakpoint */
case POWERPC_EXCP_IABR: /* Instruction address breakpoint */
case POWERPC_EXCP_SMI: /* System management interrupt */
case POWERPC_EXCP_MEXTBR: /* Maskable external breakpoint */
case POWERPC_EXCP_NMEXTBR: /* Non maskable external breakpoint */
cpu_abort(env_cpu(env), "%s exception not implemented\n",
powerpc_excp_name(excp));
break;
default:
cpu_abort(env_cpu(env), "Invalid PowerPC exception %d. Aborting\n",
excp);
break;
}
if (ppc_interrupts_little_endian(cpu, !!(new_msr & MSR_HVB))) {
new_msr |= (target_ulong)1 << MSR_LE;
}
env->spr[SPR_SRR0] = env->nip;
env->spr[SPR_SRR1] = msr;
powerpc_set_excp_state(cpu, vector, new_msr);
}
static void powerpc_excp_7xx(PowerPCCPU *cpu, int excp)
{
CPUPPCState *env = &cpu->env;
target_ulong msr, new_msr, vector;
/* new srr1 value excluding must-be-zero bits */
msr = env->msr & ~0x783f0000ULL;
/* new interrupt handler msr preserves ME unless explicitly overridden */
new_msr = env->msr & ((target_ulong)1 << MSR_ME);
/* HV emu assistance interrupt only exists on server arch 2.05 or later */
if (excp == POWERPC_EXCP_HV_EMU) {
excp = POWERPC_EXCP_PROGRAM;
}
vector = env->excp_vectors[excp];
if (vector == (target_ulong)-1ULL) {
cpu_abort(env_cpu(env),
"Raised an exception without defined vector %d\n", excp);
}
vector |= env->excp_prefix;
switch (excp) {
case POWERPC_EXCP_MCHECK: /* Machine check exception */
powerpc_mcheck_checkstop(env);
/* machine check exceptions don't have ME set */
new_msr &= ~((target_ulong)1 << MSR_ME);
break;
case POWERPC_EXCP_DSI: /* Data storage exception */
trace_ppc_excp_dsi(env->spr[SPR_DSISR], env->spr[SPR_DAR]);
break;
case POWERPC_EXCP_ISI: /* Instruction storage exception */
trace_ppc_excp_isi(msr, env->nip);
msr |= env->error_code;
break;
case POWERPC_EXCP_EXTERNAL: /* External input */
break;
case POWERPC_EXCP_ALIGN: /* Alignment exception */
/* Get rS/rD and rA from faulting opcode */
/*
* Note: the opcode fields will not be set properly for a
* direct store load/store, but nobody cares as nobody
* actually uses direct store segments.
*/
env->spr[SPR_DSISR] |= (env->error_code & 0x03FF0000) >> 16;
break;
case POWERPC_EXCP_PROGRAM: /* Program exception */
switch (env->error_code & ~0xF) {
case POWERPC_EXCP_FP:
if (!FIELD_EX64_FE(env->msr) || !FIELD_EX64(env->msr, MSR, FP)) {
trace_ppc_excp_fp_ignore();
powerpc_reset_excp_state(cpu);
return;
}
/*
* NIP always points to the faulting instruction for FP exceptions,
* so always use store_next and claim we are precise in the MSR.
*/
msr |= 0x00100000;
break;
case POWERPC_EXCP_INVAL:
trace_ppc_excp_inval(env->nip);
msr |= 0x00080000;
break;
case POWERPC_EXCP_PRIV:
msr |= 0x00040000;
break;
case POWERPC_EXCP_TRAP:
msr |= 0x00020000;
break;
default:
/* Should never occur */
cpu_abort(env_cpu(env), "Invalid program exception %d. Aborting\n",
env->error_code);
break;
}
break;
case POWERPC_EXCP_SYSCALL: /* System call exception */
{
int lev = env->error_code;
if (lev == 1 && cpu->vhyp) {
dump_hcall(env);
} else {
dump_syscall(env);
}
/*
* We need to correct the NIP which in this case is supposed
* to point to the next instruction
*/
env->nip += 4;
/*
* The Virtual Open Firmware (VOF) relies on the 'sc 1'
* instruction to communicate with QEMU. The pegasos2 machine
* uses VOF and the 7xx CPUs, so although the 7xx don't have
* HV mode, we need to keep hypercall support.
*/
if (lev == 1 && cpu->vhyp) {
cpu->vhyp_class->hypercall(cpu->vhyp, cpu);
powerpc_reset_excp_state(cpu);
return;
}
break;
}
case POWERPC_EXCP_FPU: /* Floating-point unavailable exception */
case POWERPC_EXCP_DECR: /* Decrementer exception */
break;
case POWERPC_EXCP_RESET: /* System reset exception */
if (FIELD_EX64(env->msr, MSR, POW)) {
cpu_abort(env_cpu(env),
"Trying to deliver power-saving system reset exception "
"%d with no HV support\n", excp);
}
break;
case POWERPC_EXCP_TRACE: /* Trace exception */
break;
case POWERPC_EXCP_IFTLB: /* Instruction fetch TLB error */
case POWERPC_EXCP_DLTLB: /* Data load TLB miss */
case POWERPC_EXCP_DSTLB: /* Data store TLB miss */
ppc_excp_debug_sw_tlb(env, excp);
msr |= env->crf[0] << 28;
msr |= env->error_code; /* key, D/I, S/L bits */
/* Set way using a LRU mechanism */
msr |= ((env->last_way + 1) & (env->nb_ways - 1)) << 17;
break;
case POWERPC_EXCP_IABR: /* Instruction address breakpoint */
case POWERPC_EXCP_SMI: /* System management interrupt */
case POWERPC_EXCP_THERM: /* Thermal interrupt */
case POWERPC_EXCP_PERFM: /* Embedded performance monitor interrupt */
cpu_abort(env_cpu(env), "%s exception not implemented\n",
powerpc_excp_name(excp));
break;
default:
cpu_abort(env_cpu(env), "Invalid PowerPC exception %d. Aborting\n",
excp);
break;
}
if (ppc_interrupts_little_endian(cpu, !!(new_msr & MSR_HVB))) {
new_msr |= (target_ulong)1 << MSR_LE;
}
env->spr[SPR_SRR0] = env->nip;
env->spr[SPR_SRR1] = msr;
powerpc_set_excp_state(cpu, vector, new_msr);
}
static void powerpc_excp_74xx(PowerPCCPU *cpu, int excp)
{
CPUPPCState *env = &cpu->env;
target_ulong msr, new_msr, vector;
/* new srr1 value excluding must-be-zero bits */
msr = env->msr & ~0x783f0000ULL;
/* new interrupt handler msr preserves ME unless explicitly overridden */
new_msr = env->msr & ((target_ulong)1 << MSR_ME);
/* HV emu assistance interrupt only exists on server arch 2.05 or later */
if (excp == POWERPC_EXCP_HV_EMU) {
excp = POWERPC_EXCP_PROGRAM;
}
vector = env->excp_vectors[excp];
if (vector == (target_ulong)-1ULL) {
cpu_abort(env_cpu(env),
"Raised an exception without defined vector %d\n", excp);
}
vector |= env->excp_prefix;
switch (excp) {
case POWERPC_EXCP_MCHECK: /* Machine check exception */
powerpc_mcheck_checkstop(env);
/* machine check exceptions don't have ME set */
new_msr &= ~((target_ulong)1 << MSR_ME);
break;
case POWERPC_EXCP_DSI: /* Data storage exception */
trace_ppc_excp_dsi(env->spr[SPR_DSISR], env->spr[SPR_DAR]);
break;
case POWERPC_EXCP_ISI: /* Instruction storage exception */
trace_ppc_excp_isi(msr, env->nip);
msr |= env->error_code;
break;
case POWERPC_EXCP_EXTERNAL: /* External input */
break;
case POWERPC_EXCP_ALIGN: /* Alignment exception */
/* Get rS/rD and rA from faulting opcode */
/*
* Note: the opcode fields will not be set properly for a
* direct store load/store, but nobody cares as nobody
* actually uses direct store segments.
*/
env->spr[SPR_DSISR] |= (env->error_code & 0x03FF0000) >> 16;
break;
case POWERPC_EXCP_PROGRAM: /* Program exception */
switch (env->error_code & ~0xF) {
case POWERPC_EXCP_FP:
if (!FIELD_EX64_FE(env->msr) || !FIELD_EX64(env->msr, MSR, FP)) {
trace_ppc_excp_fp_ignore();
powerpc_reset_excp_state(cpu);
return;
}
/*
* NIP always points to the faulting instruction for FP exceptions,
* so always use store_next and claim we are precise in the MSR.
*/
msr |= 0x00100000;
break;
case POWERPC_EXCP_INVAL:
trace_ppc_excp_inval(env->nip);
msr |= 0x00080000;
break;
case POWERPC_EXCP_PRIV:
msr |= 0x00040000;
break;
case POWERPC_EXCP_TRAP:
msr |= 0x00020000;
break;
default:
/* Should never occur */
cpu_abort(env_cpu(env), "Invalid program exception %d. Aborting\n",
env->error_code);
break;
}
break;
case POWERPC_EXCP_SYSCALL: /* System call exception */
{
int lev = env->error_code;
if (lev == 1 && cpu->vhyp) {
dump_hcall(env);
} else {
dump_syscall(env);
}
/*
* We need to correct the NIP which in this case is supposed
* to point to the next instruction
*/
env->nip += 4;
/*
* The Virtual Open Firmware (VOF) relies on the 'sc 1'
* instruction to communicate with QEMU. The pegasos2 machine
* uses VOF and the 74xx CPUs, so although the 74xx don't have
* HV mode, we need to keep hypercall support.
*/
if (lev == 1 && cpu->vhyp) {
cpu->vhyp_class->hypercall(cpu->vhyp, cpu);
powerpc_reset_excp_state(cpu);
return;
}
break;
}
case POWERPC_EXCP_FPU: /* Floating-point unavailable exception */
case POWERPC_EXCP_DECR: /* Decrementer exception */
break;
case POWERPC_EXCP_RESET: /* System reset exception */
if (FIELD_EX64(env->msr, MSR, POW)) {
cpu_abort(env_cpu(env),
"Trying to deliver power-saving system reset "
"exception %d with no HV support\n", excp);
}
break;
case POWERPC_EXCP_TRACE: /* Trace exception */
break;
case POWERPC_EXCP_VPU: /* Vector unavailable exception */
break;
case POWERPC_EXCP_IABR: /* Instruction address breakpoint */
case POWERPC_EXCP_SMI: /* System management interrupt */
case POWERPC_EXCP_THERM: /* Thermal interrupt */
case POWERPC_EXCP_PERFM: /* Embedded performance monitor interrupt */
case POWERPC_EXCP_VPUA: /* Vector assist exception */
cpu_abort(env_cpu(env), "%s exception not implemented\n",
powerpc_excp_name(excp));
break;
default:
cpu_abort(env_cpu(env), "Invalid PowerPC exception %d. Aborting\n",
excp);
break;
}
if (ppc_interrupts_little_endian(cpu, !!(new_msr & MSR_HVB))) {
new_msr |= (target_ulong)1 << MSR_LE;
}
env->spr[SPR_SRR0] = env->nip;
env->spr[SPR_SRR1] = msr;
powerpc_set_excp_state(cpu, vector, new_msr);
}
static void powerpc_excp_booke(PowerPCCPU *cpu, int excp)
{
CPUPPCState *env = &cpu->env;
target_ulong msr, new_msr, vector;
int srr0 = SPR_SRR0, srr1 = SPR_SRR1;
/*
* Book E does not play games with certain bits of xSRR1 being MSR save
* bits and others being error status. xSRR1 is the old MSR, period.
*/
msr = env->msr;
/* new interrupt handler msr preserves ME unless explicitly overridden */
new_msr = env->msr & ((target_ulong)1 << MSR_ME);
/* HV emu assistance interrupt only exists on server arch 2.05 or later */
if (excp == POWERPC_EXCP_HV_EMU) {
excp = POWERPC_EXCP_PROGRAM;
}
#ifdef TARGET_PPC64
/*
* SPEU and VPU share the same IVOR but they exist in different
* processors. SPEU is e500v1/2 only and VPU is e6500 only.
*/
if (excp == POWERPC_EXCP_VPU) {
excp = POWERPC_EXCP_SPEU;
}
#endif
vector = env->excp_vectors[excp];
if (vector == (target_ulong)-1ULL) {
cpu_abort(env_cpu(env),
"Raised an exception without defined vector %d\n", excp);
}
vector |= env->excp_prefix;
switch (excp) {
case POWERPC_EXCP_CRITICAL: /* Critical input */
srr0 = SPR_BOOKE_CSRR0;
srr1 = SPR_BOOKE_CSRR1;
break;
case POWERPC_EXCP_MCHECK: /* Machine check exception */
powerpc_mcheck_checkstop(env);
/* machine check exceptions don't have ME set */
new_msr &= ~((target_ulong)1 << MSR_ME);
/* FIXME: choose one or the other based on CPU type */
srr0 = SPR_BOOKE_MCSRR0;
srr1 = SPR_BOOKE_MCSRR1;
env->spr[SPR_BOOKE_CSRR0] = env->nip;
env->spr[SPR_BOOKE_CSRR1] = msr;
break;
case POWERPC_EXCP_DSI: /* Data storage exception */
trace_ppc_excp_dsi(env->spr[SPR_BOOKE_ESR], env->spr[SPR_BOOKE_DEAR]);
break;
case POWERPC_EXCP_ISI: /* Instruction storage exception */
trace_ppc_excp_isi(msr, env->nip);
break;
case POWERPC_EXCP_EXTERNAL: /* External input */
if (env->mpic_proxy) {
CPUState *cs = env_cpu(env);
/* IACK the IRQ on delivery */
env->spr[SPR_BOOKE_EPR] = ldl_phys(cs->as, env->mpic_iack);
}
break;
case POWERPC_EXCP_ALIGN: /* Alignment exception */
break;
case POWERPC_EXCP_PROGRAM: /* Program exception */
switch (env->error_code & ~0xF) {
case POWERPC_EXCP_FP:
if (!FIELD_EX64_FE(env->msr) || !FIELD_EX64(env->msr, MSR, FP)) {
trace_ppc_excp_fp_ignore();
powerpc_reset_excp_state(cpu);
return;
}
/*
* NIP always points to the faulting instruction for FP exceptions,
* so always use store_next and claim we are precise in the MSR.
*/
msr |= 0x00100000;
env->spr[SPR_BOOKE_ESR] = ESR_FP;
break;
case POWERPC_EXCP_INVAL:
trace_ppc_excp_inval(env->nip);
msr |= 0x00080000;
env->spr[SPR_BOOKE_ESR] = ESR_PIL;
break;
case POWERPC_EXCP_PRIV:
msr |= 0x00040000;
env->spr[SPR_BOOKE_ESR] = ESR_PPR;
break;
case POWERPC_EXCP_TRAP:
msr |= 0x00020000;
env->spr[SPR_BOOKE_ESR] = ESR_PTR;
break;
default:
/* Should never occur */
cpu_abort(env_cpu(env), "Invalid program exception %d. Aborting\n",
env->error_code);
break;
}
break;
case POWERPC_EXCP_SYSCALL: /* System call exception */
dump_syscall(env);
/*
* We need to correct the NIP which in this case is supposed
* to point to the next instruction
*/
env->nip += 4;
break;
case POWERPC_EXCP_FPU: /* Floating-point unavailable exception */
case POWERPC_EXCP_APU: /* Auxiliary processor unavailable */
case POWERPC_EXCP_DECR: /* Decrementer exception */
break;
case POWERPC_EXCP_FIT: /* Fixed-interval timer interrupt */
/* FIT on 4xx */
trace_ppc_excp_print("FIT");
break;
case POWERPC_EXCP_WDT: /* Watchdog timer interrupt */
trace_ppc_excp_print("WDT");
srr0 = SPR_BOOKE_CSRR0;
srr1 = SPR_BOOKE_CSRR1;
break;
case POWERPC_EXCP_DTLB: /* Data TLB error */
case POWERPC_EXCP_ITLB: /* Instruction TLB error */
break;
case POWERPC_EXCP_DEBUG: /* Debug interrupt */
if (env->flags & POWERPC_FLAG_DE) {
/* FIXME: choose one or the other based on CPU type */
srr0 = SPR_BOOKE_DSRR0;
srr1 = SPR_BOOKE_DSRR1;
env->spr[SPR_BOOKE_CSRR0] = env->nip;
env->spr[SPR_BOOKE_CSRR1] = msr;
/* DBSR already modified by caller */
} else {
cpu_abort(env_cpu(env),
"Debug exception triggered on unsupported model\n");
}
break;
case POWERPC_EXCP_SPEU: /* SPE/embedded floating-point unavailable/VPU */
env->spr[SPR_BOOKE_ESR] = ESR_SPV;
break;
case POWERPC_EXCP_DOORI: /* Embedded doorbell interrupt */
break;
case POWERPC_EXCP_DOORCI: /* Embedded doorbell critical interrupt */
srr0 = SPR_BOOKE_CSRR0;
srr1 = SPR_BOOKE_CSRR1;
break;
case POWERPC_EXCP_RESET: /* System reset exception */
if (FIELD_EX64(env->msr, MSR, POW)) {
cpu_abort(env_cpu(env),
"Trying to deliver power-saving system reset "
"exception %d with no HV support\n", excp);
}
break;
case POWERPC_EXCP_EFPDI: /* Embedded floating-point data interrupt */
case POWERPC_EXCP_EFPRI: /* Embedded floating-point round interrupt */
cpu_abort(env_cpu(env), "%s exception not implemented\n",
powerpc_excp_name(excp));
break;
default:
cpu_abort(env_cpu(env), "Invalid PowerPC exception %d. Aborting\n",
excp);
break;
}
#ifdef TARGET_PPC64
if (env->spr[SPR_BOOKE_EPCR] & EPCR_ICM) {
/* Cat.64-bit: EPCR.ICM is copied to MSR.CM */
new_msr |= (target_ulong)1 << MSR_CM;
} else {
vector = (uint32_t)vector;
}
#endif
env->spr[srr0] = env->nip;
env->spr[srr1] = msr;
powerpc_set_excp_state(cpu, vector, new_msr);
}
/*
* When running a nested HV guest under vhyp, external interrupts are
* delivered as HVIRT.
*/
static bool books_vhyp_promotes_external_to_hvirt(PowerPCCPU *cpu)
{
if (cpu->vhyp) {
return vhyp_cpu_in_nested(cpu);
}
return false;
}
#ifdef TARGET_PPC64
/*
* When running under vhyp, hcalls are always intercepted and sent to the
* vhc->hypercall handler.
*/
static bool books_vhyp_handles_hcall(PowerPCCPU *cpu)
{
if (cpu->vhyp) {
return !vhyp_cpu_in_nested(cpu);
}
return false;
}
/*
* When running a nested KVM HV guest under vhyp, HV exceptions are not
* delivered to the guest (because there is no concept of HV support), but
* rather they are sent to the vhyp to exit from the L2 back to the L1 and
* return from the H_ENTER_NESTED hypercall.
*/
static bool books_vhyp_handles_hv_excp(PowerPCCPU *cpu)
{
if (cpu->vhyp) {
return vhyp_cpu_in_nested(cpu);
}
return false;
}
#ifdef CONFIG_TCG
static bool is_prefix_insn(CPUPPCState *env, uint32_t insn)
{
if (!(env->insns_flags2 & PPC2_ISA310)) {
return false;
}
return ((insn & 0xfc000000) == 0x04000000);
}
static bool is_prefix_insn_excp(PowerPCCPU *cpu, int excp)
{
CPUPPCState *env = &cpu->env;
if (!(env->insns_flags2 & PPC2_ISA310)) {
return false;
}
if (!tcg_enabled()) {
/*
* This does not load instructions and set the prefix bit correctly
* for injected interrupts with KVM. That may have to be discovered
* and set by the KVM layer before injecting.
*/
return false;
}
switch (excp) {
case POWERPC_EXCP_MCHECK:
if (!(env->error_code & PPC_BIT(42))) {
/*
* Fetch attempt caused a machine check, so attempting to fetch
* again would cause a recursive machine check.
*/
return false;
}
break;
case POWERPC_EXCP_HDSI:
/* HDSI PRTABLE_FAULT has the originating access type in error_code */
if ((env->spr[SPR_HDSISR] & DSISR_PRTABLE_FAULT) &&
(env->error_code == MMU_INST_FETCH)) {
/*
* Fetch failed due to partition scope translation, so prefix
* indication is not relevant (and attempting to load the
* instruction at NIP would cause recursive faults with the same
* translation).
*/
return false;
}
break;
case POWERPC_EXCP_DSI:
case POWERPC_EXCP_DSEG:
case POWERPC_EXCP_ALIGN:
case POWERPC_EXCP_PROGRAM:
case POWERPC_EXCP_FPU:
case POWERPC_EXCP_TRACE:
case POWERPC_EXCP_HV_EMU:
case POWERPC_EXCP_VPU:
case POWERPC_EXCP_VSXU:
case POWERPC_EXCP_FU:
case POWERPC_EXCP_HV_FU:
break;
default:
return false;
}
return is_prefix_insn(env, ppc_ldl_code(env, env->nip));
}
#else
static bool is_prefix_insn_excp(PowerPCCPU *cpu, int excp)
{
return false;
}
#endif
static void powerpc_excp_books(PowerPCCPU *cpu, int excp)
{
CPUPPCState *env = &cpu->env;
target_ulong msr, new_msr, vector;
int srr0 = SPR_SRR0, srr1 = SPR_SRR1, lev = -1;
/* new srr1 value excluding must-be-zero bits */
msr = env->msr & ~0x783f0000ULL;
/*
* new interrupt handler msr preserves HV and ME unless explicitly
* overridden
*/
new_msr = env->msr & (((target_ulong)1 << MSR_ME) | MSR_HVB);
/*
* check for special resume at 0x100 from doze/nap/sleep/winkle on
* P7/P8/P9
*/
if (env->resume_as_sreset) {
excp = powerpc_reset_wakeup(env, excp, &msr);
}
/*
* We don't want to generate a Hypervisor Emulation Assistance
* Interrupt if we don't have HVB in msr_mask (PAPR mode),
* unless running a nested-hv guest, in which case the L1
* kernel wants the interrupt.
*/
if (excp == POWERPC_EXCP_HV_EMU && !(env->msr_mask & MSR_HVB) &&
!books_vhyp_handles_hv_excp(cpu)) {
excp = POWERPC_EXCP_PROGRAM;
}
vector = env->excp_vectors[excp];
if (vector == (target_ulong)-1ULL) {
cpu_abort(env_cpu(env),
"Raised an exception without defined vector %d\n", excp);
}
vector |= env->excp_prefix;
if (is_prefix_insn_excp(cpu, excp)) {
msr |= PPC_BIT(34);
}
switch (excp) {
case POWERPC_EXCP_MCHECK: /* Machine check exception */
powerpc_mcheck_checkstop(env);
if (env->msr_mask & MSR_HVB) {
/*
* ISA specifies HV, but can be delivered to guest with HV
* clear (e.g., see FWNMI in PAPR).
*/
new_msr |= (target_ulong)MSR_HVB;
/* HV machine check exceptions don't have ME set */
new_msr &= ~((target_ulong)1 << MSR_ME);
}
msr |= env->error_code;
break;
case POWERPC_EXCP_DSI: /* Data storage exception */
trace_ppc_excp_dsi(env->spr[SPR_DSISR], env->spr[SPR_DAR]);
break;
case POWERPC_EXCP_ISI: /* Instruction storage exception */
trace_ppc_excp_isi(msr, env->nip);
msr |= env->error_code;
break;
case POWERPC_EXCP_EXTERNAL: /* External input */
{
bool lpes0;
/* LPES0 is only taken into consideration if we support HV mode */
if (!env->has_hv_mode) {
break;
}
lpes0 = !!(env->spr[SPR_LPCR] & LPCR_LPES0);
if (!lpes0) {
new_msr |= (target_ulong)MSR_HVB;
new_msr |= env->msr & ((target_ulong)1 << MSR_RI);
srr0 = SPR_HSRR0;
srr1 = SPR_HSRR1;
}
break;
}
case POWERPC_EXCP_ALIGN: /* Alignment exception */
/* Optional DSISR update was removed from ISA v3.0 */
if (!(env->insns_flags2 & PPC2_ISA300)) {
/* Get rS/rD and rA from faulting opcode */
/*
* Note: the opcode fields will not be set properly for a
* direct store load/store, but nobody cares as nobody
* actually uses direct store segments.
*/
env->spr[SPR_DSISR] |= (env->error_code & 0x03FF0000) >> 16;
}
break;
case POWERPC_EXCP_PROGRAM: /* Program exception */
switch (env->error_code & ~0xF) {
case POWERPC_EXCP_FP:
if (!FIELD_EX64_FE(env->msr) || !FIELD_EX64(env->msr, MSR, FP)) {
trace_ppc_excp_fp_ignore();
powerpc_reset_excp_state(cpu);
return;
}
/*
* NIP always points to the faulting instruction for FP exceptions,
* so always use store_next and claim we are precise in the MSR.
*/
msr |= 0x00100000;
break;
case POWERPC_EXCP_INVAL:
trace_ppc_excp_inval(env->nip);
msr |= 0x00080000;
break;
case POWERPC_EXCP_PRIV:
msr |= 0x00040000;
break;
case POWERPC_EXCP_TRAP:
msr |= 0x00020000;
break;
default:
/* Should never occur */
cpu_abort(env_cpu(env), "Invalid program exception %d. Aborting\n",
env->error_code);
break;
}
break;
case POWERPC_EXCP_SYSCALL: /* System call exception */
lev = env->error_code;
if (lev == 1 && cpu->vhyp) {
dump_hcall(env);
} else {
dump_syscall(env);
}
/*
* We need to correct the NIP which in this case is supposed
* to point to the next instruction
*/
env->nip += 4;
/* "PAPR mode" built-in hypercall emulation */
if (lev == 1 && books_vhyp_handles_hcall(cpu)) {
cpu->vhyp_class->hypercall(cpu->vhyp, cpu);
powerpc_reset_excp_state(cpu);
return;
}
if (env->insns_flags2 & PPC2_ISA310) {
/* ISAv3.1 puts LEV into SRR1 */
msr |= lev << 20;
}
if (lev == 1) {
new_msr |= (target_ulong)MSR_HVB;
}
break;
case POWERPC_EXCP_SYSCALL_VECTORED: /* scv exception */
lev = env->error_code;
dump_syscall(env);
env->nip += 4;
new_msr |= env->msr & ((target_ulong)1 << MSR_EE);
new_msr |= env->msr & ((target_ulong)1 << MSR_RI);
vector += lev * 0x20;
env->lr = env->nip;
env->ctr = msr;
break;
case POWERPC_EXCP_FPU: /* Floating-point unavailable exception */
case POWERPC_EXCP_DECR: /* Decrementer exception */
break;
case POWERPC_EXCP_RESET: /* System reset exception */
/* A power-saving exception sets ME, otherwise it is unchanged */
if (FIELD_EX64(env->msr, MSR, POW)) {
/* indicate that we resumed from power save mode */
msr |= 0x10000;
new_msr |= ((target_ulong)1 << MSR_ME);
}
if (env->msr_mask & MSR_HVB) {
/*
* ISA specifies HV, but can be delivered to guest with HV
* clear (e.g., see FWNMI in PAPR, NMI injection in QEMU).
*/
new_msr |= (target_ulong)MSR_HVB;
} else {
if (FIELD_EX64(env->msr, MSR, POW)) {
cpu_abort(env_cpu(env),
"Trying to deliver power-saving system reset "
"exception %d with no HV support\n", excp);
}
}
break;
case POWERPC_EXCP_TRACE: /* Trace exception */
msr |= env->error_code;
/* fall through */
case POWERPC_EXCP_DSEG: /* Data segment exception */
case POWERPC_EXCP_ISEG: /* Instruction segment exception */
case POWERPC_EXCP_SDOOR: /* Doorbell interrupt */
case POWERPC_EXCP_PERFM: /* Performance monitor interrupt */
break;
case POWERPC_EXCP_HISI: /* Hypervisor instruction storage exception */
msr |= env->error_code;
/* fall through */
case POWERPC_EXCP_HDECR: /* Hypervisor decrementer exception */
case POWERPC_EXCP_HDSI: /* Hypervisor data storage exception */
case POWERPC_EXCP_SDOOR_HV: /* Hypervisor Doorbell interrupt */
case POWERPC_EXCP_HVIRT: /* Hypervisor virtualization */
srr0 = SPR_HSRR0;
srr1 = SPR_HSRR1;
new_msr |= (target_ulong)MSR_HVB;
new_msr |= env->msr & ((target_ulong)1 << MSR_RI);
break;
#ifdef CONFIG_TCG
case POWERPC_EXCP_HV_EMU: {
uint32_t insn = ppc_ldl_code(env, env->nip);
env->spr[SPR_HEIR] = insn;
if (is_prefix_insn(env, insn)) {
uint32_t insn2 = ppc_ldl_code(env, env->nip + 4);
env->spr[SPR_HEIR] <<= 32;
env->spr[SPR_HEIR] |= insn2;
}
srr0 = SPR_HSRR0;
srr1 = SPR_HSRR1;
new_msr |= (target_ulong)MSR_HVB;
new_msr |= env->msr & ((target_ulong)1 << MSR_RI);
break;
}
#endif
case POWERPC_EXCP_VPU: /* Vector unavailable exception */
case POWERPC_EXCP_VSXU: /* VSX unavailable exception */
case POWERPC_EXCP_FU: /* Facility unavailable exception */
env->spr[SPR_FSCR] |= ((target_ulong)env->error_code << 56);
break;
case POWERPC_EXCP_HV_FU: /* Hypervisor Facility Unavailable Exception */
env->spr[SPR_HFSCR] |= ((target_ulong)env->error_code << FSCR_IC_POS);
srr0 = SPR_HSRR0;
srr1 = SPR_HSRR1;
new_msr |= (target_ulong)MSR_HVB;
new_msr |= env->msr & ((target_ulong)1 << MSR_RI);
break;
case POWERPC_EXCP_PERFM_EBB: /* Performance Monitor EBB Exception */
case POWERPC_EXCP_EXTERNAL_EBB: /* External EBB Exception */
env->spr[SPR_BESCR] &= ~BESCR_GE;
/*
* Save NIP for rfebb insn in SPR_EBBRR. Next nip is
* stored in the EBB Handler SPR_EBBHR.
*/
env->spr[SPR_EBBRR] = env->nip;
powerpc_set_excp_state(cpu, env->spr[SPR_EBBHR], env->msr);
/*
* This exception is handled in userspace. No need to proceed.
*/
return;
case POWERPC_EXCP_THERM: /* Thermal interrupt */
case POWERPC_EXCP_VPUA: /* Vector assist exception */
case POWERPC_EXCP_MAINT: /* Maintenance exception */
case POWERPC_EXCP_HV_MAINT: /* Hypervisor Maintenance exception */
cpu_abort(env_cpu(env), "%s exception not implemented\n",
powerpc_excp_name(excp));
break;
default:
cpu_abort(env_cpu(env), "Invalid PowerPC exception %d. Aborting\n",
excp);
break;
}
if (ppc_interrupts_little_endian(cpu, !!(new_msr & MSR_HVB))) {
new_msr |= (target_ulong)1 << MSR_LE;
}
new_msr |= (target_ulong)1 << MSR_SF;
if (excp != POWERPC_EXCP_SYSCALL_VECTORED) {
env->spr[srr0] = env->nip;
env->spr[srr1] = msr;
}
if ((new_msr & MSR_HVB) && books_vhyp_handles_hv_excp(cpu)) {
/* Deliver interrupt to L1 by returning from the H_ENTER_NESTED call */
cpu->vhyp_class->deliver_hv_excp(cpu, excp);
powerpc_reset_excp_state(cpu);
} else {
/* Sanity check */
if (!(env->msr_mask & MSR_HVB) && srr0 == SPR_HSRR0) {
cpu_abort(env_cpu(env), "Trying to deliver HV exception (HSRR) %d "
"with no HV support\n", excp);
}
/* This can update new_msr and vector if AIL applies */
ppc_excp_apply_ail(cpu, excp, msr, &new_msr, &vector);
powerpc_set_excp_state(cpu, vector, new_msr);
}
}
#else
static inline void powerpc_excp_books(PowerPCCPU *cpu, int excp)
{
g_assert_not_reached();
}
#endif /* TARGET_PPC64 */
static void powerpc_excp(PowerPCCPU *cpu, int excp)
{
CPUPPCState *env = &cpu->env;
if (excp <= POWERPC_EXCP_NONE || excp >= POWERPC_EXCP_NB) {
cpu_abort(env_cpu(env), "Invalid PowerPC exception %d. Aborting\n",
excp);
}
qemu_log_mask(CPU_LOG_INT, "Raise exception at " TARGET_FMT_lx
" => %s (%d) error=%02x\n", env->nip, powerpc_excp_name(excp),
excp, env->error_code);
env->excp_stats[excp]++;
switch (env->excp_model) {
case POWERPC_EXCP_40x:
powerpc_excp_40x(cpu, excp);
break;
case POWERPC_EXCP_6xx:
powerpc_excp_6xx(cpu, excp);
break;
case POWERPC_EXCP_7xx:
powerpc_excp_7xx(cpu, excp);
break;
case POWERPC_EXCP_74xx:
powerpc_excp_74xx(cpu, excp);
break;
case POWERPC_EXCP_BOOKE:
powerpc_excp_booke(cpu, excp);
break;
case POWERPC_EXCP_970:
case POWERPC_EXCP_POWER7:
case POWERPC_EXCP_POWER8:
case POWERPC_EXCP_POWER9:
case POWERPC_EXCP_POWER10:
powerpc_excp_books(cpu, excp);
break;
default:
g_assert_not_reached();
}
}
void ppc_cpu_do_interrupt(CPUState *cs)
{
PowerPCCPU *cpu = POWERPC_CPU(cs);
powerpc_excp(cpu, cs->exception_index);
}
#ifdef TARGET_PPC64
#define P7_UNUSED_INTERRUPTS \
(PPC_INTERRUPT_RESET | PPC_INTERRUPT_HVIRT | PPC_INTERRUPT_CEXT | \
PPC_INTERRUPT_WDT | PPC_INTERRUPT_CDOORBELL | PPC_INTERRUPT_FIT | \
PPC_INTERRUPT_PIT | PPC_INTERRUPT_DOORBELL | PPC_INTERRUPT_HDOORBELL | \
PPC_INTERRUPT_THERM | PPC_INTERRUPT_EBB)
static int p7_interrupt_powersave(CPUPPCState *env)
{
if ((env->pending_interrupts & PPC_INTERRUPT_EXT) &&
(env->spr[SPR_LPCR] & LPCR_P7_PECE0)) {
return PPC_INTERRUPT_EXT;
}
if ((env->pending_interrupts & PPC_INTERRUPT_DECR) &&
(env->spr[SPR_LPCR] & LPCR_P7_PECE1)) {
return PPC_INTERRUPT_DECR;
}
if ((env->pending_interrupts & PPC_INTERRUPT_MCK) &&
(env->spr[SPR_LPCR] & LPCR_P7_PECE2)) {
return PPC_INTERRUPT_MCK;
}
if ((env->pending_interrupts & PPC_INTERRUPT_HMI) &&
(env->spr[SPR_LPCR] & LPCR_P7_PECE2)) {
return PPC_INTERRUPT_HMI;
}
if (env->pending_interrupts & PPC_INTERRUPT_RESET) {
return PPC_INTERRUPT_RESET;
}
return 0;
}
static int p7_next_unmasked_interrupt(CPUPPCState *env)
{
CPUState *cs = env_cpu(env);
/* Ignore MSR[EE] when coming out of some power management states */
bool msr_ee = FIELD_EX64(env->msr, MSR, EE) || env->resume_as_sreset;
assert((env->pending_interrupts & P7_UNUSED_INTERRUPTS) == 0);
if (cs->halted) {
/* LPCR[PECE] controls which interrupts can exit power-saving mode */
return p7_interrupt_powersave(env);
}
/* Machine check exception */
if (env->pending_interrupts & PPC_INTERRUPT_MCK) {
return PPC_INTERRUPT_MCK;
}
/* Hypervisor decrementer exception */
if (env->pending_interrupts & PPC_INTERRUPT_HDECR) {
/* LPCR will be clear when not supported so this will work */
bool hdice = !!(env->spr[SPR_LPCR] & LPCR_HDICE);
if ((msr_ee || !FIELD_EX64_HV(env->msr)) && hdice) {
/* HDEC clears on delivery */
return PPC_INTERRUPT_HDECR;
}
}
/* External interrupt can ignore MSR:EE under some circumstances */
if (env->pending_interrupts & PPC_INTERRUPT_EXT) {
bool lpes0 = !!(env->spr[SPR_LPCR] & LPCR_LPES0);
bool heic = !!(env->spr[SPR_LPCR] & LPCR_HEIC);
/* HEIC blocks delivery to the hypervisor */
if ((msr_ee && !(heic && FIELD_EX64_HV(env->msr) &&
!FIELD_EX64(env->msr, MSR, PR))) ||
(env->has_hv_mode && !FIELD_EX64_HV(env->msr) && !lpes0)) {
return PPC_INTERRUPT_EXT;
}
}
if (msr_ee != 0) {
/* Decrementer exception */
if (env->pending_interrupts & PPC_INTERRUPT_DECR) {
return PPC_INTERRUPT_DECR;
}
if (env->pending_interrupts & PPC_INTERRUPT_PERFM) {
return PPC_INTERRUPT_PERFM;
}
}
return 0;
}
#define P8_UNUSED_INTERRUPTS \
(PPC_INTERRUPT_RESET | PPC_INTERRUPT_DEBUG | PPC_INTERRUPT_HVIRT | \
PPC_INTERRUPT_CEXT | PPC_INTERRUPT_WDT | PPC_INTERRUPT_CDOORBELL | \
PPC_INTERRUPT_FIT | PPC_INTERRUPT_PIT | PPC_INTERRUPT_THERM)
static int p8_interrupt_powersave(CPUPPCState *env)
{
if ((env->pending_interrupts & PPC_INTERRUPT_EXT) &&
(env->spr[SPR_LPCR] & LPCR_P8_PECE2)) {
return PPC_INTERRUPT_EXT;
}
if ((env->pending_interrupts & PPC_INTERRUPT_DECR) &&
(env->spr[SPR_LPCR] & LPCR_P8_PECE3)) {
return PPC_INTERRUPT_DECR;
}
if ((env->pending_interrupts & PPC_INTERRUPT_MCK) &&
(env->spr[SPR_LPCR] & LPCR_P8_PECE4)) {
return PPC_INTERRUPT_MCK;
}
if ((env->pending_interrupts & PPC_INTERRUPT_HMI) &&
(env->spr[SPR_LPCR] & LPCR_P8_PECE4)) {
return PPC_INTERRUPT_HMI;
}
if ((env->pending_interrupts & PPC_INTERRUPT_DOORBELL) &&
(env->spr[SPR_LPCR] & LPCR_P8_PECE0)) {
return PPC_INTERRUPT_DOORBELL;
}
if ((env->pending_interrupts & PPC_INTERRUPT_HDOORBELL) &&
(env->spr[SPR_LPCR] & LPCR_P8_PECE1)) {
return PPC_INTERRUPT_HDOORBELL;
}
if (env->pending_interrupts & PPC_INTERRUPT_RESET) {
return PPC_INTERRUPT_RESET;
}
return 0;
}
static int p8_next_unmasked_interrupt(CPUPPCState *env)
{
CPUState *cs = env_cpu(env);
/* Ignore MSR[EE] when coming out of some power management states */
bool msr_ee = FIELD_EX64(env->msr, MSR, EE) || env->resume_as_sreset;
assert((env->pending_interrupts & P8_UNUSED_INTERRUPTS) == 0);
if (cs->halted) {
/* LPCR[PECE] controls which interrupts can exit power-saving mode */
return p8_interrupt_powersave(env);
}
/* Machine check exception */
if (env->pending_interrupts & PPC_INTERRUPT_MCK) {
return PPC_INTERRUPT_MCK;
}
/* Hypervisor decrementer exception */
if (env->pending_interrupts & PPC_INTERRUPT_HDECR) {
/* LPCR will be clear when not supported so this will work */
bool hdice = !!(env->spr[SPR_LPCR] & LPCR_HDICE);
if ((msr_ee || !FIELD_EX64_HV(env->msr)) && hdice) {
/* HDEC clears on delivery */
return PPC_INTERRUPT_HDECR;
}
}
/* External interrupt can ignore MSR:EE under some circumstances */
if (env->pending_interrupts & PPC_INTERRUPT_EXT) {
bool lpes0 = !!(env->spr[SPR_LPCR] & LPCR_LPES0);
bool heic = !!(env->spr[SPR_LPCR] & LPCR_HEIC);
/* HEIC blocks delivery to the hypervisor */
if ((msr_ee && !(heic && FIELD_EX64_HV(env->msr) &&
!FIELD_EX64(env->msr, MSR, PR))) ||
(env->has_hv_mode && !FIELD_EX64_HV(env->msr) && !lpes0)) {
return PPC_INTERRUPT_EXT;
}
}
if (msr_ee != 0) {
/* Decrementer exception */
if (env->pending_interrupts & PPC_INTERRUPT_DECR) {
return PPC_INTERRUPT_DECR;
}
if (env->pending_interrupts & PPC_INTERRUPT_DOORBELL) {
return PPC_INTERRUPT_DOORBELL;
}
if (env->pending_interrupts & PPC_INTERRUPT_HDOORBELL) {
return PPC_INTERRUPT_HDOORBELL;
}
if (env->pending_interrupts & PPC_INTERRUPT_PERFM) {
return PPC_INTERRUPT_PERFM;
}
/* EBB exception */
if (env->pending_interrupts & PPC_INTERRUPT_EBB) {
/*
* EBB exception must be taken in problem state and
* with BESCR_GE set.
*/
if (FIELD_EX64(env->msr, MSR, PR) &&
(env->spr[SPR_BESCR] & BESCR_GE)) {
return PPC_INTERRUPT_EBB;
}
}
}
return 0;
}
#define P9_UNUSED_INTERRUPTS \
(PPC_INTERRUPT_RESET | PPC_INTERRUPT_DEBUG | PPC_INTERRUPT_CEXT | \
PPC_INTERRUPT_WDT | PPC_INTERRUPT_CDOORBELL | PPC_INTERRUPT_FIT | \
PPC_INTERRUPT_PIT | PPC_INTERRUPT_THERM)
static int p9_interrupt_powersave(CPUPPCState *env)
{
/* External Exception */
if ((env->pending_interrupts & PPC_INTERRUPT_EXT) &&
(env->spr[SPR_LPCR] & LPCR_EEE)) {
bool heic = !!(env->spr[SPR_LPCR] & LPCR_HEIC);
if (!heic || !FIELD_EX64_HV(env->msr) ||
FIELD_EX64(env->msr, MSR, PR)) {
return PPC_INTERRUPT_EXT;
}
}
/* Decrementer Exception */
if ((env->pending_interrupts & PPC_INTERRUPT_DECR) &&
(env->spr[SPR_LPCR] & LPCR_DEE)) {
return PPC_INTERRUPT_DECR;
}
/* Machine Check or Hypervisor Maintenance Exception */
if (env->spr[SPR_LPCR] & LPCR_OEE) {
if (env->pending_interrupts & PPC_INTERRUPT_MCK) {
return PPC_INTERRUPT_MCK;
}
if (env->pending_interrupts & PPC_INTERRUPT_HMI) {
return PPC_INTERRUPT_HMI;
}
}
/* Privileged Doorbell Exception */
if ((env->pending_interrupts & PPC_INTERRUPT_DOORBELL) &&
(env->spr[SPR_LPCR] & LPCR_PDEE)) {
return PPC_INTERRUPT_DOORBELL;
}
/* Hypervisor Doorbell Exception */
if ((env->pending_interrupts & PPC_INTERRUPT_HDOORBELL) &&
(env->spr[SPR_LPCR] & LPCR_HDEE)) {
return PPC_INTERRUPT_HDOORBELL;
}
/* Hypervisor virtualization exception */
if ((env->pending_interrupts & PPC_INTERRUPT_HVIRT) &&
(env->spr[SPR_LPCR] & LPCR_HVEE)) {
return PPC_INTERRUPT_HVIRT;
}
if (env->pending_interrupts & PPC_INTERRUPT_RESET) {
return PPC_INTERRUPT_RESET;
}
return 0;
}
static int p9_next_unmasked_interrupt(CPUPPCState *env)
{
CPUState *cs = env_cpu(env);
/* Ignore MSR[EE] when coming out of some power management states */
bool msr_ee = FIELD_EX64(env->msr, MSR, EE) || env->resume_as_sreset;
assert((env->pending_interrupts & P9_UNUSED_INTERRUPTS) == 0);
if (cs->halted) {
if (env->spr[SPR_PSSCR] & PSSCR_EC) {
/*
* When PSSCR[EC] is set, LPCR[PECE] controls which interrupts can
* wakeup the processor
*/
return p9_interrupt_powersave(env);
} else {
/*
* When it's clear, any system-caused exception exits power-saving
* mode, even the ones that gate on MSR[EE].
*/
msr_ee = true;
}
}
/* Machine check exception */
if (env->pending_interrupts & PPC_INTERRUPT_MCK) {
return PPC_INTERRUPT_MCK;
}
/* Hypervisor decrementer exception */
if (env->pending_interrupts & PPC_INTERRUPT_HDECR) {
/* LPCR will be clear when not supported so this will work */
bool hdice = !!(env->spr[SPR_LPCR] & LPCR_HDICE);
if ((msr_ee || !FIELD_EX64_HV(env->msr)) && hdice) {
/* HDEC clears on delivery */
return PPC_INTERRUPT_HDECR;
}
}
/* Hypervisor virtualization interrupt */
if (env->pending_interrupts & PPC_INTERRUPT_HVIRT) {
/* LPCR will be clear when not supported so this will work */
bool hvice = !!(env->spr[SPR_LPCR] & LPCR_HVICE);
if ((msr_ee || !FIELD_EX64_HV(env->msr)) && hvice) {
return PPC_INTERRUPT_HVIRT;
}
}
/* External interrupt can ignore MSR:EE under some circumstances */
if (env->pending_interrupts & PPC_INTERRUPT_EXT) {
bool lpes0 = !!(env->spr[SPR_LPCR] & LPCR_LPES0);
bool heic = !!(env->spr[SPR_LPCR] & LPCR_HEIC);
/* HEIC blocks delivery to the hypervisor */
if ((msr_ee && !(heic && FIELD_EX64_HV(env->msr) &&
!FIELD_EX64(env->msr, MSR, PR))) ||
(env->has_hv_mode && !FIELD_EX64_HV(env->msr) && !lpes0)) {
return PPC_INTERRUPT_EXT;
}
}
if (msr_ee != 0) {
/* Decrementer exception */
if (env->pending_interrupts & PPC_INTERRUPT_DECR) {
return PPC_INTERRUPT_DECR;
}
if (env->pending_interrupts & PPC_INTERRUPT_DOORBELL) {
return PPC_INTERRUPT_DOORBELL;
}
if (env->pending_interrupts & PPC_INTERRUPT_HDOORBELL) {
return PPC_INTERRUPT_HDOORBELL;
}
if (env->pending_interrupts & PPC_INTERRUPT_PERFM) {
return PPC_INTERRUPT_PERFM;
}
/* EBB exception */
if (env->pending_interrupts & PPC_INTERRUPT_EBB) {
/*
* EBB exception must be taken in problem state and
* with BESCR_GE set.
*/
if (FIELD_EX64(env->msr, MSR, PR) &&
(env->spr[SPR_BESCR] & BESCR_GE)) {
return PPC_INTERRUPT_EBB;
}
}
}
return 0;
}
#endif /* TARGET_PPC64 */
static int ppc_next_unmasked_interrupt(CPUPPCState *env)
{
#ifdef TARGET_PPC64
switch (env->excp_model) {
case POWERPC_EXCP_POWER7:
return p7_next_unmasked_interrupt(env);
case POWERPC_EXCP_POWER8:
return p8_next_unmasked_interrupt(env);
case POWERPC_EXCP_POWER9:
case POWERPC_EXCP_POWER10:
return p9_next_unmasked_interrupt(env);
default:
break;
}
#endif
bool async_deliver;
/* External reset */
if (env->pending_interrupts & PPC_INTERRUPT_RESET) {
return PPC_INTERRUPT_RESET;
}
/* Machine check exception */
if (env->pending_interrupts & PPC_INTERRUPT_MCK) {
return PPC_INTERRUPT_MCK;
}
#if 0 /* TODO */
/* External debug exception */
if (env->pending_interrupts & PPC_INTERRUPT_DEBUG) {
return PPC_INTERRUPT_DEBUG;
}
#endif
/*
* For interrupts that gate on MSR:EE, we need to do something a
* bit more subtle, as we need to let them through even when EE is
* clear when coming out of some power management states (in order
* for them to become a 0x100).
*/
async_deliver = FIELD_EX64(env->msr, MSR, EE) || env->resume_as_sreset;
/* Hypervisor decrementer exception */
if (env->pending_interrupts & PPC_INTERRUPT_HDECR) {
/* LPCR will be clear when not supported so this will work */
bool hdice = !!(env->spr[SPR_LPCR] & LPCR_HDICE);
if ((async_deliver || !FIELD_EX64_HV(env->msr)) && hdice) {
/* HDEC clears on delivery */
return PPC_INTERRUPT_HDECR;
}
}
/* Hypervisor virtualization interrupt */
if (env->pending_interrupts & PPC_INTERRUPT_HVIRT) {
/* LPCR will be clear when not supported so this will work */
bool hvice = !!(env->spr[SPR_LPCR] & LPCR_HVICE);
if ((async_deliver || !FIELD_EX64_HV(env->msr)) && hvice) {
return PPC_INTERRUPT_HVIRT;
}
}
/* External interrupt can ignore MSR:EE under some circumstances */
if (env->pending_interrupts & PPC_INTERRUPT_EXT) {
bool lpes0 = !!(env->spr[SPR_LPCR] & LPCR_LPES0);
bool heic = !!(env->spr[SPR_LPCR] & LPCR_HEIC);
/* HEIC blocks delivery to the hypervisor */
if ((async_deliver && !(heic && FIELD_EX64_HV(env->msr) &&
!FIELD_EX64(env->msr, MSR, PR))) ||
(env->has_hv_mode && !FIELD_EX64_HV(env->msr) && !lpes0)) {
return PPC_INTERRUPT_EXT;
}
}
if (FIELD_EX64(env->msr, MSR, CE)) {
/* External critical interrupt */
if (env->pending_interrupts & PPC_INTERRUPT_CEXT) {
return PPC_INTERRUPT_CEXT;
}
}
if (async_deliver != 0) {
/* Watchdog timer on embedded PowerPC */
if (env->pending_interrupts & PPC_INTERRUPT_WDT) {
return PPC_INTERRUPT_WDT;
}
if (env->pending_interrupts & PPC_INTERRUPT_CDOORBELL) {
return PPC_INTERRUPT_CDOORBELL;
}
/* Fixed interval timer on embedded PowerPC */
if (env->pending_interrupts & PPC_INTERRUPT_FIT) {
return PPC_INTERRUPT_FIT;
}
/* Programmable interval timer on embedded PowerPC */
if (env->pending_interrupts & PPC_INTERRUPT_PIT) {
return PPC_INTERRUPT_PIT;
}
/* Decrementer exception */
if (env->pending_interrupts & PPC_INTERRUPT_DECR) {
return PPC_INTERRUPT_DECR;
}
if (env->pending_interrupts & PPC_INTERRUPT_DOORBELL) {
return PPC_INTERRUPT_DOORBELL;
}
if (env->pending_interrupts & PPC_INTERRUPT_HDOORBELL) {
return PPC_INTERRUPT_HDOORBELL;
}
if (env->pending_interrupts & PPC_INTERRUPT_PERFM) {
return PPC_INTERRUPT_PERFM;
}
/* Thermal interrupt */
if (env->pending_interrupts & PPC_INTERRUPT_THERM) {
return PPC_INTERRUPT_THERM;
}
/* EBB exception */
if (env->pending_interrupts & PPC_INTERRUPT_EBB) {
/*
* EBB exception must be taken in problem state and
* with BESCR_GE set.
*/
if (FIELD_EX64(env->msr, MSR, PR) &&
(env->spr[SPR_BESCR] & BESCR_GE)) {
return PPC_INTERRUPT_EBB;
}
}
}
return 0;
}
/*
* Sets CPU_INTERRUPT_HARD if there is at least one unmasked interrupt to be
* delivered and clears CPU_INTERRUPT_HARD otherwise.
*
* This method is called by ppc_set_interrupt when an interrupt is raised or
* lowered, and should also be called whenever an interrupt masking condition
* is changed, e.g.:
* - When relevant bits of MSR are altered, like EE, HV, PR, etc.;
* - When relevant bits of LPCR are altered, like PECE, HDICE, HVICE, etc.;
* - When PSSCR[EC] or env->resume_as_sreset are changed;
* - When cs->halted is changed and the CPU has a different interrupt masking
* logic in power-saving mode (e.g., POWER7/8/9/10);
*/
void ppc_maybe_interrupt(CPUPPCState *env)
{
CPUState *cs = env_cpu(env);
BQL_LOCK_GUARD();
if (ppc_next_unmasked_interrupt(env)) {
cpu_interrupt(cs, CPU_INTERRUPT_HARD);
} else {
cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
}
}
#ifdef TARGET_PPC64
static void p7_deliver_interrupt(CPUPPCState *env, int interrupt)
{
PowerPCCPU *cpu = env_archcpu(env);
switch (interrupt) {
case PPC_INTERRUPT_MCK: /* Machine check exception */
env->pending_interrupts &= ~PPC_INTERRUPT_MCK;
powerpc_excp(cpu, POWERPC_EXCP_MCHECK);
break;
case PPC_INTERRUPT_HDECR: /* Hypervisor decrementer exception */
/* HDEC clears on delivery */
env->pending_interrupts &= ~PPC_INTERRUPT_HDECR;
powerpc_excp(cpu, POWERPC_EXCP_HDECR);
break;
case PPC_INTERRUPT_EXT:
if (books_vhyp_promotes_external_to_hvirt(cpu)) {
powerpc_excp(cpu, POWERPC_EXCP_HVIRT);
} else {
powerpc_excp(cpu, POWERPC_EXCP_EXTERNAL);
}
break;
case PPC_INTERRUPT_DECR: /* Decrementer exception */
powerpc_excp(cpu, POWERPC_EXCP_DECR);
break;
case PPC_INTERRUPT_PERFM:
env->pending_interrupts &= ~PPC_INTERRUPT_PERFM;
powerpc_excp(cpu, POWERPC_EXCP_PERFM);
break;
case 0:
/*
* This is a bug ! It means that has_work took us out of halt without
* anything to deliver while in a PM state that requires getting
* out via a 0x100
*
* This means we will incorrectly execute past the power management
* instruction instead of triggering a reset.
*
* It generally means a discrepancy between the wakeup conditions in the
* processor has_work implementation and the logic in this function.
*/
assert(!env->resume_as_sreset);
break;
default:
cpu_abort(env_cpu(env), "Invalid PowerPC interrupt %d. Aborting\n",
interrupt);
}
}
static void p8_deliver_interrupt(CPUPPCState *env, int interrupt)
{
PowerPCCPU *cpu = env_archcpu(env);
switch (interrupt) {
case PPC_INTERRUPT_MCK: /* Machine check exception */
env->pending_interrupts &= ~PPC_INTERRUPT_MCK;
powerpc_excp(cpu, POWERPC_EXCP_MCHECK);
break;
case PPC_INTERRUPT_HDECR: /* Hypervisor decrementer exception */
/* HDEC clears on delivery */
env->pending_interrupts &= ~PPC_INTERRUPT_HDECR;
powerpc_excp(cpu, POWERPC_EXCP_HDECR);
break;
case PPC_INTERRUPT_EXT:
if (books_vhyp_promotes_external_to_hvirt(cpu)) {
powerpc_excp(cpu, POWERPC_EXCP_HVIRT);
} else {
powerpc_excp(cpu, POWERPC_EXCP_EXTERNAL);
}
break;
case PPC_INTERRUPT_DECR: /* Decrementer exception */
powerpc_excp(cpu, POWERPC_EXCP_DECR);
break;
case PPC_INTERRUPT_DOORBELL:
env->pending_interrupts &= ~PPC_INTERRUPT_DOORBELL;
if (is_book3s_arch2x(env)) {
powerpc_excp(cpu, POWERPC_EXCP_SDOOR);
} else {
powerpc_excp(cpu, POWERPC_EXCP_DOORI);
}
break;
case PPC_INTERRUPT_HDOORBELL:
env->pending_interrupts &= ~PPC_INTERRUPT_HDOORBELL;
powerpc_excp(cpu, POWERPC_EXCP_SDOOR_HV);
break;
case PPC_INTERRUPT_PERFM:
env->pending_interrupts &= ~PPC_INTERRUPT_PERFM;
powerpc_excp(cpu, POWERPC_EXCP_PERFM);
break;
case PPC_INTERRUPT_EBB: /* EBB exception */
env->pending_interrupts &= ~PPC_INTERRUPT_EBB;
if (env->spr[SPR_BESCR] & BESCR_PMEO) {
powerpc_excp(cpu, POWERPC_EXCP_PERFM_EBB);
} else if (env->spr[SPR_BESCR] & BESCR_EEO) {
powerpc_excp(cpu, POWERPC_EXCP_EXTERNAL_EBB);
}
break;
case 0:
/*
* This is a bug ! It means that has_work took us out of halt without
* anything to deliver while in a PM state that requires getting
* out via a 0x100
*
* This means we will incorrectly execute past the power management
* instruction instead of triggering a reset.
*
* It generally means a discrepancy between the wakeup conditions in the
* processor has_work implementation and the logic in this function.
*/
assert(!env->resume_as_sreset);
break;
default:
cpu_abort(env_cpu(env), "Invalid PowerPC interrupt %d. Aborting\n",
interrupt);
}
}
static void p9_deliver_interrupt(CPUPPCState *env, int interrupt)
{
PowerPCCPU *cpu = env_archcpu(env);
CPUState *cs = env_cpu(env);
if (cs->halted && !(env->spr[SPR_PSSCR] & PSSCR_EC) &&
!FIELD_EX64(env->msr, MSR, EE)) {
/*
* A pending interrupt took us out of power-saving, but MSR[EE] says
* that we should return to NIP+4 instead of delivering it.
*/
return;
}
switch (interrupt) {
case PPC_INTERRUPT_MCK: /* Machine check exception */
env->pending_interrupts &= ~PPC_INTERRUPT_MCK;
powerpc_excp(cpu, POWERPC_EXCP_MCHECK);
break;
case PPC_INTERRUPT_HDECR: /* Hypervisor decrementer exception */
/* HDEC clears on delivery */
env->pending_interrupts &= ~PPC_INTERRUPT_HDECR;
powerpc_excp(cpu, POWERPC_EXCP_HDECR);
break;
case PPC_INTERRUPT_HVIRT: /* Hypervisor virtualization interrupt */
powerpc_excp(cpu, POWERPC_EXCP_HVIRT);
break;
case PPC_INTERRUPT_EXT:
if (books_vhyp_promotes_external_to_hvirt(cpu)) {
powerpc_excp(cpu, POWERPC_EXCP_HVIRT);
} else {
powerpc_excp(cpu, POWERPC_EXCP_EXTERNAL);
}
break;
case PPC_INTERRUPT_DECR: /* Decrementer exception */
powerpc_excp(cpu, POWERPC_EXCP_DECR);
break;
case PPC_INTERRUPT_DOORBELL:
env->pending_interrupts &= ~PPC_INTERRUPT_DOORBELL;
powerpc_excp(cpu, POWERPC_EXCP_SDOOR);
break;
case PPC_INTERRUPT_HDOORBELL:
env->pending_interrupts &= ~PPC_INTERRUPT_HDOORBELL;
powerpc_excp(cpu, POWERPC_EXCP_SDOOR_HV);
break;
case PPC_INTERRUPT_PERFM:
env->pending_interrupts &= ~PPC_INTERRUPT_PERFM;
powerpc_excp(cpu, POWERPC_EXCP_PERFM);
break;
case PPC_INTERRUPT_EBB: /* EBB exception */
env->pending_interrupts &= ~PPC_INTERRUPT_EBB;
if (env->spr[SPR_BESCR] & BESCR_PMEO) {
powerpc_excp(cpu, POWERPC_EXCP_PERFM_EBB);
} else if (env->spr[SPR_BESCR] & BESCR_EEO) {
powerpc_excp(cpu, POWERPC_EXCP_EXTERNAL_EBB);
}
break;
case 0:
/*
* This is a bug ! It means that has_work took us out of halt without
* anything to deliver while in a PM state that requires getting
* out via a 0x100
*
* This means we will incorrectly execute past the power management
* instruction instead of triggering a reset.
*
* It generally means a discrepancy between the wakeup conditions in the
* processor has_work implementation and the logic in this function.
*/
assert(!env->resume_as_sreset);
break;
default:
cpu_abort(env_cpu(env), "Invalid PowerPC interrupt %d. Aborting\n",
interrupt);
}
}
#endif /* TARGET_PPC64 */
static void ppc_deliver_interrupt(CPUPPCState *env, int interrupt)
{
#ifdef TARGET_PPC64
switch (env->excp_model) {
case POWERPC_EXCP_POWER7:
return p7_deliver_interrupt(env, interrupt);
case POWERPC_EXCP_POWER8:
return p8_deliver_interrupt(env, interrupt);
case POWERPC_EXCP_POWER9:
case POWERPC_EXCP_POWER10:
return p9_deliver_interrupt(env, interrupt);
default:
break;
}
#endif
PowerPCCPU *cpu = env_archcpu(env);
switch (interrupt) {
case PPC_INTERRUPT_RESET: /* External reset */
env->pending_interrupts &= ~PPC_INTERRUPT_RESET;
powerpc_excp(cpu, POWERPC_EXCP_RESET);
break;
case PPC_INTERRUPT_MCK: /* Machine check exception */
env->pending_interrupts &= ~PPC_INTERRUPT_MCK;
powerpc_excp(cpu, POWERPC_EXCP_MCHECK);
break;
case PPC_INTERRUPT_HDECR: /* Hypervisor decrementer exception */
/* HDEC clears on delivery */
env->pending_interrupts &= ~PPC_INTERRUPT_HDECR;
powerpc_excp(cpu, POWERPC_EXCP_HDECR);
break;
case PPC_INTERRUPT_HVIRT: /* Hypervisor virtualization interrupt */
powerpc_excp(cpu, POWERPC_EXCP_HVIRT);
break;
case PPC_INTERRUPT_EXT:
if (books_vhyp_promotes_external_to_hvirt(cpu)) {
powerpc_excp(cpu, POWERPC_EXCP_HVIRT);
} else {
powerpc_excp(cpu, POWERPC_EXCP_EXTERNAL);
}
break;
case PPC_INTERRUPT_CEXT: /* External critical interrupt */
powerpc_excp(cpu, POWERPC_EXCP_CRITICAL);
break;
case PPC_INTERRUPT_WDT: /* Watchdog timer on embedded PowerPC */
env->pending_interrupts &= ~PPC_INTERRUPT_WDT;
powerpc_excp(cpu, POWERPC_EXCP_WDT);
break;
case PPC_INTERRUPT_CDOORBELL:
env->pending_interrupts &= ~PPC_INTERRUPT_CDOORBELL;
powerpc_excp(cpu, POWERPC_EXCP_DOORCI);
break;
case PPC_INTERRUPT_FIT: /* Fixed interval timer on embedded PowerPC */
env->pending_interrupts &= ~PPC_INTERRUPT_FIT;
powerpc_excp(cpu, POWERPC_EXCP_FIT);
break;
case PPC_INTERRUPT_PIT: /* Programmable interval timer on embedded ppc */
env->pending_interrupts &= ~PPC_INTERRUPT_PIT;
powerpc_excp(cpu, POWERPC_EXCP_PIT);
break;
case PPC_INTERRUPT_DECR: /* Decrementer exception */
if (ppc_decr_clear_on_delivery(env)) {
env->pending_interrupts &= ~PPC_INTERRUPT_DECR;
}
powerpc_excp(cpu, POWERPC_EXCP_DECR);
break;
case PPC_INTERRUPT_DOORBELL:
env->pending_interrupts &= ~PPC_INTERRUPT_DOORBELL;
if (is_book3s_arch2x(env)) {
powerpc_excp(cpu, POWERPC_EXCP_SDOOR);
} else {
powerpc_excp(cpu, POWERPC_EXCP_DOORI);
}
break;
case PPC_INTERRUPT_HDOORBELL:
env->pending_interrupts &= ~PPC_INTERRUPT_HDOORBELL;
powerpc_excp(cpu, POWERPC_EXCP_SDOOR_HV);
break;
case PPC_INTERRUPT_PERFM:
env->pending_interrupts &= ~PPC_INTERRUPT_PERFM;
powerpc_excp(cpu, POWERPC_EXCP_PERFM);
break;
case PPC_INTERRUPT_THERM: /* Thermal interrupt */
env->pending_interrupts &= ~PPC_INTERRUPT_THERM;
powerpc_excp(cpu, POWERPC_EXCP_THERM);
break;
case PPC_INTERRUPT_EBB: /* EBB exception */
env->pending_interrupts &= ~PPC_INTERRUPT_EBB;
if (env->spr[SPR_BESCR] & BESCR_PMEO) {
powerpc_excp(cpu, POWERPC_EXCP_PERFM_EBB);
} else if (env->spr[SPR_BESCR] & BESCR_EEO) {
powerpc_excp(cpu, POWERPC_EXCP_EXTERNAL_EBB);
}
break;
case 0:
/*
* This is a bug ! It means that has_work took us out of halt without
* anything to deliver while in a PM state that requires getting
* out via a 0x100
*
* This means we will incorrectly execute past the power management
* instruction instead of triggering a reset.
*
* It generally means a discrepancy between the wakeup conditions in the
* processor has_work implementation and the logic in this function.
*/
assert(!env->resume_as_sreset);
break;
default:
cpu_abort(env_cpu(env), "Invalid PowerPC interrupt %d. Aborting\n",
interrupt);
}
}
void ppc_cpu_do_system_reset(CPUState *cs)
{
PowerPCCPU *cpu = POWERPC_CPU(cs);
powerpc_excp(cpu, POWERPC_EXCP_RESET);
}
void ppc_cpu_do_fwnmi_machine_check(CPUState *cs, target_ulong vector)
{
PowerPCCPU *cpu = POWERPC_CPU(cs);
CPUPPCState *env = &cpu->env;
target_ulong msr = 0;
/*
* Set MSR and NIP for the handler, SRR0/1, DAR and DSISR have already
* been set by KVM.
*/
msr = (1ULL << MSR_ME);
msr |= env->msr & (1ULL << MSR_SF);
if (ppc_interrupts_little_endian(cpu, false)) {
msr |= (1ULL << MSR_LE);
}
/* Anything for nested required here? MSR[HV] bit? */
powerpc_set_excp_state(cpu, vector, msr);
}
bool ppc_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
{
CPUPPCState *env = cpu_env(cs);
int interrupt;
if ((interrupt_request & CPU_INTERRUPT_HARD) == 0) {
return false;
}
interrupt = ppc_next_unmasked_interrupt(env);
if (interrupt == 0) {
return false;
}
ppc_deliver_interrupt(env, interrupt);
if (env->pending_interrupts == 0) {
cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
}
return true;
}
#endif /* !CONFIG_USER_ONLY */
/*****************************************************************************/
/* Exceptions processing helpers */
void raise_exception_err_ra(CPUPPCState *env, uint32_t exception,
uint32_t error_code, uintptr_t raddr)
{
CPUState *cs = env_cpu(env);
cs->exception_index = exception;
env->error_code = error_code;
cpu_loop_exit_restore(cs, raddr);
}
void raise_exception_err(CPUPPCState *env, uint32_t exception,
uint32_t error_code)
{
raise_exception_err_ra(env, exception, error_code, 0);
}
void raise_exception(CPUPPCState *env, uint32_t exception)
{
raise_exception_err_ra(env, exception, 0, 0);
}
void raise_exception_ra(CPUPPCState *env, uint32_t exception,
uintptr_t raddr)
{
raise_exception_err_ra(env, exception, 0, raddr);
}
#ifdef CONFIG_TCG
void helper_raise_exception_err(CPUPPCState *env, uint32_t exception,
uint32_t error_code)
{
raise_exception_err_ra(env, exception, error_code, 0);
}
void helper_raise_exception(CPUPPCState *env, uint32_t exception)
{
raise_exception_err_ra(env, exception, 0, 0);
}
#ifndef CONFIG_USER_ONLY
void helper_store_msr(CPUPPCState *env, target_ulong val)
{
uint32_t excp = hreg_store_msr(env, val, 0);
if (excp != 0) {
cpu_interrupt_exittb(env_cpu(env));
raise_exception(env, excp);
}
}
void helper_ppc_maybe_interrupt(CPUPPCState *env)
{
ppc_maybe_interrupt(env);
}
#ifdef TARGET_PPC64
void helper_scv(CPUPPCState *env, uint32_t lev)
{
if (env->spr[SPR_FSCR] & (1ull << FSCR_SCV)) {
raise_exception_err(env, POWERPC_EXCP_SYSCALL_VECTORED, lev);
} else {
raise_exception_err(env, POWERPC_EXCP_FU, FSCR_IC_SCV);
}
}
void helper_pminsn(CPUPPCState *env, uint32_t insn)
{
CPUState *cs = env_cpu(env);
cs->halted = 1;
/* Condition for waking up at 0x100 */
env->resume_as_sreset = (insn != PPC_PM_STOP) ||
(env->spr[SPR_PSSCR] & PSSCR_EC);
/* HDECR is not to wake from PM state, it may have already fired */
if (env->resume_as_sreset) {
PowerPCCPU *cpu = env_archcpu(env);
ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0);
}
ppc_maybe_interrupt(env);
}
#endif /* TARGET_PPC64 */
static void do_rfi(CPUPPCState *env, target_ulong nip, target_ulong msr)
{
/* MSR:POW cannot be set by any form of rfi */
msr &= ~(1ULL << MSR_POW);
/* MSR:TGPR cannot be set by any form of rfi */
if (env->flags & POWERPC_FLAG_TGPR)
msr &= ~(1ULL << MSR_TGPR);
#ifdef TARGET_PPC64
/* Switching to 32-bit ? Crop the nip */
if (!msr_is_64bit(env, msr)) {
nip = (uint32_t)nip;
}
#else
nip = (uint32_t)nip;
#endif
/* XXX: beware: this is false if VLE is supported */
env->nip = nip & ~((target_ulong)0x00000003);
hreg_store_msr(env, msr, 1);
trace_ppc_excp_rfi(env->nip, env->msr);
/*
* No need to raise an exception here, as rfi is always the last
* insn of a TB
*/
cpu_interrupt_exittb(env_cpu(env));
/* Reset the reservation */
env->reserve_addr = -1;
/* Context synchronizing: check if TCG TLB needs flush */
check_tlb_flush(env, false);
}
void helper_rfi(CPUPPCState *env)
{
do_rfi(env, env->spr[SPR_SRR0], env->spr[SPR_SRR1] & 0xfffffffful);
}
#ifdef TARGET_PPC64
void helper_rfid(CPUPPCState *env)
{
/*
* The architecture defines a number of rules for which bits can
* change but in practice, we handle this in hreg_store_msr()
* which will be called by do_rfi(), so there is no need to filter
* here
*/
do_rfi(env, env->spr[SPR_SRR0], env->spr[SPR_SRR1]);
}
void helper_rfscv(CPUPPCState *env)
{
do_rfi(env, env->lr, env->ctr);
}
void helper_hrfid(CPUPPCState *env)
{
do_rfi(env, env->spr[SPR_HSRR0], env->spr[SPR_HSRR1]);
}
void helper_rfebb(CPUPPCState *env, target_ulong s)
{
target_ulong msr = env->msr;
/*
* Handling of BESCR bits 32:33 according to PowerISA v3.1:
*
* "If BESCR 32:33 != 0b00 the instruction is treated as if
* the instruction form were invalid."
*/
if (env->spr[SPR_BESCR] & BESCR_INVALID) {
raise_exception_err(env, POWERPC_EXCP_PROGRAM,
POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL);
}
env->nip = env->spr[SPR_EBBRR];
/* Switching to 32-bit ? Crop the nip */
if (!msr_is_64bit(env, msr)) {
env->nip = (uint32_t)env->spr[SPR_EBBRR];
}
if (s) {
env->spr[SPR_BESCR] |= BESCR_GE;
} else {
env->spr[SPR_BESCR] &= ~BESCR_GE;
}
}
/*
* Triggers or queues an 'ebb_excp' EBB exception. All checks
* but FSCR, HFSCR and msr_pr must be done beforehand.
*
* PowerISA v3.1 isn't clear about whether an EBB should be
* postponed or cancelled if the EBB facility is unavailable.
* Our assumption here is that the EBB is cancelled if both
* FSCR and HFSCR EBB facilities aren't available.
*/
static void do_ebb(CPUPPCState *env, int ebb_excp)
{
PowerPCCPU *cpu = env_archcpu(env);
/*
* FSCR_EBB and FSCR_IC_EBB are the same bits used with
* HFSCR.
*/
helper_fscr_facility_check(env, FSCR_EBB, 0, FSCR_IC_EBB);
helper_hfscr_facility_check(env, FSCR_EBB, "EBB", FSCR_IC_EBB);
if (ebb_excp == POWERPC_EXCP_PERFM_EBB) {
env->spr[SPR_BESCR] |= BESCR_PMEO;
} else if (ebb_excp == POWERPC_EXCP_EXTERNAL_EBB) {
env->spr[SPR_BESCR] |= BESCR_EEO;
}
if (FIELD_EX64(env->msr, MSR, PR)) {
powerpc_excp(cpu, ebb_excp);
} else {
ppc_set_irq(cpu, PPC_INTERRUPT_EBB, 1);
}
}
void raise_ebb_perfm_exception(CPUPPCState *env)
{
bool perfm_ebb_enabled = env->spr[SPR_POWER_MMCR0] & MMCR0_EBE &&
env->spr[SPR_BESCR] & BESCR_PME &&
env->spr[SPR_BESCR] & BESCR_GE;
if (!perfm_ebb_enabled) {
return;
}
do_ebb(env, POWERPC_EXCP_PERFM_EBB);
}
#endif /* TARGET_PPC64 */
/*****************************************************************************/
/* Embedded PowerPC specific helpers */
void helper_40x_rfci(CPUPPCState *env)
{
do_rfi(env, env->spr[SPR_40x_SRR2], env->spr[SPR_40x_SRR3]);
}
void helper_rfci(CPUPPCState *env)
{
do_rfi(env, env->spr[SPR_BOOKE_CSRR0], env->spr[SPR_BOOKE_CSRR1]);
}
void helper_rfdi(CPUPPCState *env)
{
/* FIXME: choose CSRR1 or DSRR1 based on cpu type */
do_rfi(env, env->spr[SPR_BOOKE_DSRR0], env->spr[SPR_BOOKE_DSRR1]);
}
void helper_rfmci(CPUPPCState *env)
{
/* FIXME: choose CSRR1 or MCSRR1 based on cpu type */
do_rfi(env, env->spr[SPR_BOOKE_MCSRR0], env->spr[SPR_BOOKE_MCSRR1]);
}
#endif /* !CONFIG_USER_ONLY */
void helper_TW(CPUPPCState *env, target_ulong arg1, target_ulong arg2,
uint32_t flags)
{
if (!likely(!(((int32_t)arg1 < (int32_t)arg2 && (flags & 0x10)) ||
((int32_t)arg1 > (int32_t)arg2 && (flags & 0x08)) ||
((int32_t)arg1 == (int32_t)arg2 && (flags & 0x04)) ||
((uint32_t)arg1 < (uint32_t)arg2 && (flags & 0x02)) ||
((uint32_t)arg1 > (uint32_t)arg2 && (flags & 0x01))))) {
raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
POWERPC_EXCP_TRAP, GETPC());
}
}
#ifdef TARGET_PPC64
void helper_TD(CPUPPCState *env, target_ulong arg1, target_ulong arg2,
uint32_t flags)
{
if (!likely(!(((int64_t)arg1 < (int64_t)arg2 && (flags & 0x10)) ||
((int64_t)arg1 > (int64_t)arg2 && (flags & 0x08)) ||
((int64_t)arg1 == (int64_t)arg2 && (flags & 0x04)) ||
((uint64_t)arg1 < (uint64_t)arg2 && (flags & 0x02)) ||
((uint64_t)arg1 > (uint64_t)arg2 && (flags & 0x01))))) {
raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
POWERPC_EXCP_TRAP, GETPC());
}
}
#endif /* TARGET_PPC64 */
static uint32_t helper_SIMON_LIKE_32_64(uint32_t x, uint64_t key, uint32_t lane)
{
const uint16_t c = 0xfffc;
const uint64_t z0 = 0xfa2561cdf44ac398ULL;
uint16_t z = 0, temp;
uint16_t k[32], eff_k[32], xleft[33], xright[33], fxleft[32];
for (int i = 3; i >= 0; i--) {
k[i] = key & 0xffff;
key >>= 16;
}
xleft[0] = x & 0xffff;
xright[0] = (x >> 16) & 0xffff;
for (int i = 0; i < 28; i++) {
z = (z0 >> (63 - i)) & 1;
temp = ror16(k[i + 3], 3) ^ k[i + 1];
k[i + 4] = c ^ z ^ k[i] ^ temp ^ ror16(temp, 1);
}
for (int i = 0; i < 8; i++) {
eff_k[4 * i + 0] = k[4 * i + ((0 + lane) % 4)];
eff_k[4 * i + 1] = k[4 * i + ((1 + lane) % 4)];
eff_k[4 * i + 2] = k[4 * i + ((2 + lane) % 4)];
eff_k[4 * i + 3] = k[4 * i + ((3 + lane) % 4)];
}
for (int i = 0; i < 32; i++) {
fxleft[i] = (rol16(xleft[i], 1) &
rol16(xleft[i], 8)) ^ rol16(xleft[i], 2);
xleft[i + 1] = xright[i] ^ fxleft[i] ^ eff_k[i];
xright[i + 1] = xleft[i];
}
return (((uint32_t)xright[32]) << 16) | xleft[32];
}
static uint64_t hash_digest(uint64_t ra, uint64_t rb, uint64_t key)
{
uint64_t stage0_h = 0ULL, stage0_l = 0ULL;
uint64_t stage1_h, stage1_l;
for (int i = 0; i < 4; i++) {
stage0_h |= ror64(rb & 0xff, 8 * (2 * i + 1));
stage0_h |= ((ra >> 32) & 0xff) << (8 * 2 * i);
stage0_l |= ror64((rb >> 32) & 0xff, 8 * (2 * i + 1));
stage0_l |= (ra & 0xff) << (8 * 2 * i);
rb >>= 8;
ra >>= 8;
}
stage1_h = (uint64_t)helper_SIMON_LIKE_32_64(stage0_h >> 32, key, 0) << 32;
stage1_h |= helper_SIMON_LIKE_32_64(stage0_h, key, 1);
stage1_l = (uint64_t)helper_SIMON_LIKE_32_64(stage0_l >> 32, key, 2) << 32;
stage1_l |= helper_SIMON_LIKE_32_64(stage0_l, key, 3);
return stage1_h ^ stage1_l;
}
static void do_hash(CPUPPCState *env, target_ulong ea, target_ulong ra,
target_ulong rb, uint64_t key, bool store)
{
uint64_t calculated_hash = hash_digest(ra, rb, key), loaded_hash;
if (store) {
cpu_stq_data_ra(env, ea, calculated_hash, GETPC());
} else {
loaded_hash = cpu_ldq_data_ra(env, ea, GETPC());
if (loaded_hash != calculated_hash) {
raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
POWERPC_EXCP_TRAP, GETPC());
}
}
}
#include "qemu/guest-random.h"
#ifdef TARGET_PPC64
#define HELPER_HASH(op, key, store, dexcr_aspect) \
void helper_##op(CPUPPCState *env, target_ulong ea, target_ulong ra, \
target_ulong rb) \
{ \
if (env->msr & R_MSR_PR_MASK) { \
if (!(env->spr[SPR_DEXCR] & R_DEXCR_PRO_##dexcr_aspect##_MASK || \
env->spr[SPR_HDEXCR] & R_HDEXCR_ENF_##dexcr_aspect##_MASK)) \
return; \
} else if (!(env->msr & R_MSR_HV_MASK)) { \
if (!(env->spr[SPR_DEXCR] & R_DEXCR_PNH_##dexcr_aspect##_MASK || \
env->spr[SPR_HDEXCR] & R_HDEXCR_ENF_##dexcr_aspect##_MASK)) \
return; \
} else if (!(env->msr & R_MSR_S_MASK)) { \
if (!(env->spr[SPR_HDEXCR] & R_HDEXCR_HNU_##dexcr_aspect##_MASK)) \
return; \
} \
\
do_hash(env, ea, ra, rb, key, store); \
}
#else
#define HELPER_HASH(op, key, store, dexcr_aspect) \
void helper_##op(CPUPPCState *env, target_ulong ea, target_ulong ra, \
target_ulong rb) \
{ \
do_hash(env, ea, ra, rb, key, store); \
}
#endif /* TARGET_PPC64 */
HELPER_HASH(HASHST, env->spr[SPR_HASHKEYR], true, NPHIE)
HELPER_HASH(HASHCHK, env->spr[SPR_HASHKEYR], false, NPHIE)
HELPER_HASH(HASHSTP, env->spr[SPR_HASHPKEYR], true, PHIE)
HELPER_HASH(HASHCHKP, env->spr[SPR_HASHPKEYR], false, PHIE)
#ifndef CONFIG_USER_ONLY
/* Embedded.Processor Control */
static int dbell2irq(target_ulong rb)
{
int msg = rb & DBELL_TYPE_MASK;
int irq = -1;
switch (msg) {
case DBELL_TYPE_DBELL:
irq = PPC_INTERRUPT_DOORBELL;
break;
case DBELL_TYPE_DBELL_CRIT:
irq = PPC_INTERRUPT_CDOORBELL;
break;
case DBELL_TYPE_G_DBELL:
case DBELL_TYPE_G_DBELL_CRIT:
case DBELL_TYPE_G_DBELL_MC:
/* XXX implement */
default:
break;
}
return irq;
}
void helper_msgclr(CPUPPCState *env, target_ulong rb)
{
int irq = dbell2irq(rb);
if (irq < 0) {
return;
}
ppc_set_irq(env_archcpu(env), irq, 0);
}
void helper_msgsnd(target_ulong rb)
{
int irq = dbell2irq(rb);
int pir = rb & DBELL_PIRTAG_MASK;
CPUState *cs;
if (irq < 0) {
return;
}
bql_lock();
CPU_FOREACH(cs) {
PowerPCCPU *cpu = POWERPC_CPU(cs);
CPUPPCState *cenv = &cpu->env;
if ((rb & DBELL_BRDCAST_MASK) || (cenv->spr[SPR_BOOKE_PIR] == pir)) {
ppc_set_irq(cpu, irq, 1);
}
}
bql_unlock();
}
/* Server Processor Control */
static bool dbell_type_server(target_ulong rb)
{
/*
* A Directed Hypervisor Doorbell message is sent only if the
* message type is 5. All other types are reserved and the
* instruction is a no-op
*/
return (rb & DBELL_TYPE_MASK) == DBELL_TYPE_DBELL_SERVER;
}
static inline bool dbell_bcast_core(target_ulong rb)
{
return (rb & DBELL_BRDCAST_MASK) == DBELL_BRDCAST_CORE;
}
static inline bool dbell_bcast_subproc(target_ulong rb)
{
return (rb & DBELL_BRDCAST_MASK) == DBELL_BRDCAST_SUBPROC;
}
void helper_book3s_msgclr(CPUPPCState *env, target_ulong rb)
{
if (!dbell_type_server(rb)) {
return;
}
ppc_set_irq(env_archcpu(env), PPC_INTERRUPT_HDOORBELL, 0);
}
void helper_book3s_msgsnd(CPUPPCState *env, target_ulong rb)
{
int pir = rb & DBELL_PROCIDTAG_MASK;
bool brdcast = false;
CPUState *cs, *ccs;
PowerPCCPU *cpu;
if (!dbell_type_server(rb)) {
return;
}
cpu = ppc_get_vcpu_by_pir(pir);
if (!cpu) {
return;
}
cs = CPU(cpu);
if (dbell_bcast_core(rb) || (dbell_bcast_subproc(rb) &&
(env->flags & POWERPC_FLAG_SMT_1LPAR))) {
brdcast = true;
}
if (cs->nr_threads == 1 || !brdcast) {
ppc_set_irq(cpu, PPC_INTERRUPT_HDOORBELL, 1);
return;
}
/*
* Why is bql needed for walking CPU list? Answer seems to be because ppc
* irq handling needs it, but ppc_set_irq takes the lock itself if needed,
* so could this be removed?
*/
bql_lock();
THREAD_SIBLING_FOREACH(cs, ccs) {
ppc_set_irq(POWERPC_CPU(ccs), PPC_INTERRUPT_HDOORBELL, 1);
}
bql_unlock();
}
#ifdef TARGET_PPC64
void helper_book3s_msgclrp(CPUPPCState *env, target_ulong rb)
{
helper_hfscr_facility_check(env, HFSCR_MSGP, "msgclrp", HFSCR_IC_MSGP);
if (!dbell_type_server(rb)) {
return;
}
ppc_set_irq(env_archcpu(env), PPC_INTERRUPT_DOORBELL, 0);
}
/*
* sends a message to another thread on the same
* multi-threaded processor
*/
void helper_book3s_msgsndp(CPUPPCState *env, target_ulong rb)
{
CPUState *cs = env_cpu(env);
PowerPCCPU *cpu = env_archcpu(env);
CPUState *ccs;
uint32_t nr_threads = cs->nr_threads;
int ttir = rb & PPC_BITMASK(57, 63);
helper_hfscr_facility_check(env, HFSCR_MSGP, "msgsndp", HFSCR_IC_MSGP);
if (!(env->flags & POWERPC_FLAG_SMT_1LPAR)) {
nr_threads = 1; /* msgsndp behaves as 1-thread in LPAR-per-thread mode*/
}
if (!dbell_type_server(rb) || ttir >= nr_threads) {
return;
}
if (nr_threads == 1) {
ppc_set_irq(cpu, PPC_INTERRUPT_DOORBELL, 1);
return;
}
/* Does iothread need to be locked for walking CPU list? */
bql_lock();
THREAD_SIBLING_FOREACH(cs, ccs) {
PowerPCCPU *ccpu = POWERPC_CPU(ccs);
uint32_t thread_id = ppc_cpu_tir(ccpu);
if (ttir == thread_id) {
ppc_set_irq(ccpu, PPC_INTERRUPT_DOORBELL, 1);
bql_unlock();
return;
}
}
g_assert_not_reached();
}
#endif /* TARGET_PPC64 */
/* Single-step tracing */
void helper_book3s_trace(CPUPPCState *env, target_ulong prev_ip)
{
uint32_t error_code = 0;
if (env->insns_flags2 & PPC2_ISA207S) {
/* Load/store reporting, SRR1[35, 36] and SDAR, are not implemented. */
env->spr[SPR_POWER_SIAR] = prev_ip;
error_code = PPC_BIT(33);
}
raise_exception_err(env, POWERPC_EXCP_TRACE, error_code);
}
void ppc_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
MMUAccessType access_type,
int mmu_idx, uintptr_t retaddr)
{
CPUPPCState *env = cpu_env(cs);
uint32_t insn;
/* Restore state and reload the insn we executed, for filling in DSISR. */
cpu_restore_state(cs, retaddr);
insn = ppc_ldl_code(env, env->nip);
switch (env->mmu_model) {
case POWERPC_MMU_SOFT_4xx:
env->spr[SPR_40x_DEAR] = vaddr;
break;
case POWERPC_MMU_BOOKE:
case POWERPC_MMU_BOOKE206:
env->spr[SPR_BOOKE_DEAR] = vaddr;
break;
default:
env->spr[SPR_DAR] = vaddr;
break;
}
cs->exception_index = POWERPC_EXCP_ALIGN;
env->error_code = insn & 0x03FF0000;
cpu_loop_exit(cs);
}
void ppc_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
vaddr vaddr, unsigned size,
MMUAccessType access_type,
int mmu_idx, MemTxAttrs attrs,
MemTxResult response, uintptr_t retaddr)
{
CPUPPCState *env = cpu_env(cs);
switch (env->excp_model) {
#if defined(TARGET_PPC64)
case POWERPC_EXCP_POWER8:
case POWERPC_EXCP_POWER9:
case POWERPC_EXCP_POWER10:
/*
* Machine check codes can be found in processor User Manual or
* Linux or skiboot source.
*/
if (access_type == MMU_DATA_LOAD) {
env->spr[SPR_DAR] = vaddr;
env->spr[SPR_DSISR] = PPC_BIT(57);
env->error_code = PPC_BIT(42);
} else if (access_type == MMU_DATA_STORE) {
/*
* MCE for stores in POWER is asynchronous so hardware does
* not set DAR, but QEMU can do better.
*/
env->spr[SPR_DAR] = vaddr;
env->error_code = PPC_BIT(36) | PPC_BIT(43) | PPC_BIT(45);
env->error_code |= PPC_BIT(42);
} else { /* Fetch */
/*
* is_prefix_insn_excp() tests !PPC_BIT(42) to avoid fetching
* the instruction, so that must always be clear for fetches.
*/
env->error_code = PPC_BIT(36) | PPC_BIT(44) | PPC_BIT(45);
}
break;
#endif
default:
/*
* TODO: Check behaviour for other CPUs, for now do nothing.
* Could add a basic MCE even if real hardware ignores.
*/
return;
}
cs->exception_index = POWERPC_EXCP_MCHECK;
cpu_loop_exit_restore(cs, retaddr);
}
void ppc_cpu_debug_excp_handler(CPUState *cs)
{
#if defined(TARGET_PPC64)
CPUPPCState *env = cpu_env(cs);
if (env->insns_flags2 & PPC2_ISA207S) {
if (cs->watchpoint_hit) {
if (cs->watchpoint_hit->flags & BP_CPU) {
env->spr[SPR_DAR] = cs->watchpoint_hit->hitaddr;
env->spr[SPR_DSISR] = PPC_BIT(41);
cs->watchpoint_hit = NULL;
raise_exception(env, POWERPC_EXCP_DSI);
}
cs->watchpoint_hit = NULL;
} else if (cpu_breakpoint_test(cs, env->nip, BP_CPU)) {
raise_exception_err(env, POWERPC_EXCP_TRACE,
PPC_BIT(33) | PPC_BIT(43));
}
}
#endif
}
bool ppc_cpu_debug_check_breakpoint(CPUState *cs)
{
#if defined(TARGET_PPC64)
CPUPPCState *env = cpu_env(cs);
if (env->insns_flags2 & PPC2_ISA207S) {
target_ulong priv;
priv = env->spr[SPR_CIABR] & PPC_BITMASK(62, 63);
switch (priv) {
case 0x1: /* problem */
return env->msr & ((target_ulong)1 << MSR_PR);
case 0x2: /* supervisor */
return (!(env->msr & ((target_ulong)1 << MSR_PR)) &&
!(env->msr & ((target_ulong)1 << MSR_HV)));
case 0x3: /* hypervisor */
return (!(env->msr & ((target_ulong)1 << MSR_PR)) &&
(env->msr & ((target_ulong)1 << MSR_HV)));
default:
g_assert_not_reached();
}
}
#endif
return false;
}
bool ppc_cpu_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp)
{
#if defined(TARGET_PPC64)
CPUPPCState *env = cpu_env(cs);
if (env->insns_flags2 & PPC2_ISA207S) {
if (wp == env->dawr0_watchpoint) {
uint32_t dawrx = env->spr[SPR_DAWRX0];
bool wt = extract32(dawrx, PPC_BIT_NR(59), 1);
bool wti = extract32(dawrx, PPC_BIT_NR(60), 1);
bool hv = extract32(dawrx, PPC_BIT_NR(61), 1);
bool sv = extract32(dawrx, PPC_BIT_NR(62), 1);
bool pr = extract32(dawrx, PPC_BIT_NR(62), 1);
if ((env->msr & ((target_ulong)1 << MSR_PR)) && !pr) {
return false;
} else if ((env->msr & ((target_ulong)1 << MSR_HV)) && !hv) {
return false;
} else if (!sv) {
return false;
}
if (!wti) {
if (env->msr & ((target_ulong)1 << MSR_DR)) {
if (!wt) {
return false;
}
} else {
if (wt) {
return false;
}
}
}
return true;
}
}
#endif
return false;
}
#endif /* !CONFIG_USER_ONLY */
#endif /* CONFIG_TCG */