blob: 5a0a7f8c712b57afa75fc3e394be1fc3ae0825ce [file] [log] [blame]
/*
* QEMU Plugin API
*
* This provides the API that is available to the plugins to interact
* with QEMU. We have to be careful not to expose internal details of
* how QEMU works so we abstract out things like translation and
* instructions to anonymous data types:
*
* qemu_plugin_tb
* qemu_plugin_insn
* qemu_plugin_register
*
* Which can then be passed back into the API to do additional things.
* As such all the public functions in here are exported in
* qemu-plugin.h.
*
* The general life-cycle of a plugin is:
*
* - plugin is loaded, public qemu_plugin_install called
* - the install func registers callbacks for events
* - usually an atexit_cb is registered to dump info at the end
* - when a registered event occurs the plugin is called
* - some events pass additional info
* - during translation the plugin can decide to instrument any
* instruction
* - when QEMU exits all the registered atexit callbacks are called
*
* Copyright (C) 2017, Emilio G. Cota <cota@braap.org>
* Copyright (C) 2019, Linaro
*
* License: GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
* SPDX-License-Identifier: GPL-2.0-or-later
*
*/
#include "qemu/osdep.h"
#include "qemu/main-loop.h"
#include "qemu/plugin.h"
#include "qemu/log.h"
#include "tcg/tcg.h"
#include "exec/exec-all.h"
#include "exec/gdbstub.h"
#include "exec/translator.h"
#include "disas/disas.h"
#include "plugin.h"
#ifndef CONFIG_USER_ONLY
#include "exec/ram_addr.h"
#include "qemu/plugin-memory.h"
#include "hw/boards.h"
#else
#include "qemu.h"
#ifdef CONFIG_LINUX
#include "loader.h"
#endif
#endif
/* Uninstall and Reset handlers */
void qemu_plugin_uninstall(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb)
{
plugin_reset_uninstall(id, cb, false);
}
void qemu_plugin_reset(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb)
{
plugin_reset_uninstall(id, cb, true);
}
/*
* Plugin Register Functions
*
* This allows the plugin to register callbacks for various events
* during the translation.
*/
void qemu_plugin_register_vcpu_init_cb(qemu_plugin_id_t id,
qemu_plugin_vcpu_simple_cb_t cb)
{
plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_INIT, cb);
}
void qemu_plugin_register_vcpu_exit_cb(qemu_plugin_id_t id,
qemu_plugin_vcpu_simple_cb_t cb)
{
plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_EXIT, cb);
}
static bool tb_is_mem_only(void)
{
return tb_cflags(tcg_ctx->gen_tb) & CF_MEMI_ONLY;
}
void qemu_plugin_register_vcpu_tb_exec_cb(struct qemu_plugin_tb *tb,
qemu_plugin_vcpu_udata_cb_t cb,
enum qemu_plugin_cb_flags flags,
void *udata)
{
if (!tb_is_mem_only()) {
plugin_register_dyn_cb__udata(&tb->cbs, cb, flags, udata);
}
}
void qemu_plugin_register_vcpu_tb_exec_cond_cb(struct qemu_plugin_tb *tb,
qemu_plugin_vcpu_udata_cb_t cb,
enum qemu_plugin_cb_flags flags,
enum qemu_plugin_cond cond,
qemu_plugin_u64 entry,
uint64_t imm,
void *udata)
{
if (cond == QEMU_PLUGIN_COND_NEVER || tb_is_mem_only()) {
return;
}
if (cond == QEMU_PLUGIN_COND_ALWAYS) {
qemu_plugin_register_vcpu_tb_exec_cb(tb, cb, flags, udata);
return;
}
plugin_register_dyn_cond_cb__udata(&tb->cbs, cb, flags,
cond, entry, imm, udata);
}
void qemu_plugin_register_vcpu_tb_exec_inline_per_vcpu(
struct qemu_plugin_tb *tb,
enum qemu_plugin_op op,
qemu_plugin_u64 entry,
uint64_t imm)
{
if (!tb_is_mem_only()) {
plugin_register_inline_op_on_entry(&tb->cbs, 0, op, entry, imm);
}
}
void qemu_plugin_register_vcpu_insn_exec_cb(struct qemu_plugin_insn *insn,
qemu_plugin_vcpu_udata_cb_t cb,
enum qemu_plugin_cb_flags flags,
void *udata)
{
if (!tb_is_mem_only()) {
plugin_register_dyn_cb__udata(&insn->insn_cbs, cb, flags, udata);
}
}
void qemu_plugin_register_vcpu_insn_exec_cond_cb(
struct qemu_plugin_insn *insn,
qemu_plugin_vcpu_udata_cb_t cb,
enum qemu_plugin_cb_flags flags,
enum qemu_plugin_cond cond,
qemu_plugin_u64 entry,
uint64_t imm,
void *udata)
{
if (cond == QEMU_PLUGIN_COND_NEVER || tb_is_mem_only()) {
return;
}
if (cond == QEMU_PLUGIN_COND_ALWAYS) {
qemu_plugin_register_vcpu_insn_exec_cb(insn, cb, flags, udata);
return;
}
plugin_register_dyn_cond_cb__udata(&insn->insn_cbs, cb, flags,
cond, entry, imm, udata);
}
void qemu_plugin_register_vcpu_insn_exec_inline_per_vcpu(
struct qemu_plugin_insn *insn,
enum qemu_plugin_op op,
qemu_plugin_u64 entry,
uint64_t imm)
{
if (!tb_is_mem_only()) {
plugin_register_inline_op_on_entry(&insn->insn_cbs, 0, op, entry, imm);
}
}
/*
* We always plant memory instrumentation because they don't finalise until
* after the operation has complete.
*/
void qemu_plugin_register_vcpu_mem_cb(struct qemu_plugin_insn *insn,
qemu_plugin_vcpu_mem_cb_t cb,
enum qemu_plugin_cb_flags flags,
enum qemu_plugin_mem_rw rw,
void *udata)
{
plugin_register_vcpu_mem_cb(&insn->mem_cbs, cb, flags, rw, udata);
}
void qemu_plugin_register_vcpu_mem_inline_per_vcpu(
struct qemu_plugin_insn *insn,
enum qemu_plugin_mem_rw rw,
enum qemu_plugin_op op,
qemu_plugin_u64 entry,
uint64_t imm)
{
plugin_register_inline_op_on_entry(&insn->mem_cbs, rw, op, entry, imm);
}
void qemu_plugin_register_vcpu_tb_trans_cb(qemu_plugin_id_t id,
qemu_plugin_vcpu_tb_trans_cb_t cb)
{
plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_TB_TRANS, cb);
}
void qemu_plugin_register_vcpu_syscall_cb(qemu_plugin_id_t id,
qemu_plugin_vcpu_syscall_cb_t cb)
{
plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL, cb);
}
void
qemu_plugin_register_vcpu_syscall_ret_cb(qemu_plugin_id_t id,
qemu_plugin_vcpu_syscall_ret_cb_t cb)
{
plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL_RET, cb);
}
/*
* Plugin Queries
*
* These are queries that the plugin can make to gauge information
* from our opaque data types. We do not want to leak internal details
* here just information useful to the plugin.
*/
/*
* Translation block information:
*
* A plugin can query the virtual address of the start of the block
* and the number of instructions in it. It can also get access to
* each translated instruction.
*/
size_t qemu_plugin_tb_n_insns(const struct qemu_plugin_tb *tb)
{
return tb->n;
}
uint64_t qemu_plugin_tb_vaddr(const struct qemu_plugin_tb *tb)
{
const DisasContextBase *db = tcg_ctx->plugin_db;
return db->pc_first;
}
struct qemu_plugin_insn *
qemu_plugin_tb_get_insn(const struct qemu_plugin_tb *tb, size_t idx)
{
struct qemu_plugin_insn *insn;
if (unlikely(idx >= tb->n)) {
return NULL;
}
insn = g_ptr_array_index(tb->insns, idx);
return insn;
}
/*
* Instruction information
*
* These queries allow the plugin to retrieve information about each
* instruction being translated.
*/
size_t qemu_plugin_insn_data(const struct qemu_plugin_insn *insn,
void *dest, size_t len)
{
const DisasContextBase *db = tcg_ctx->plugin_db;
len = MIN(len, insn->len);
return translator_st(db, dest, insn->vaddr, len) ? len : 0;
}
size_t qemu_plugin_insn_size(const struct qemu_plugin_insn *insn)
{
return insn->len;
}
uint64_t qemu_plugin_insn_vaddr(const struct qemu_plugin_insn *insn)
{
return insn->vaddr;
}
void *qemu_plugin_insn_haddr(const struct qemu_plugin_insn *insn)
{
const DisasContextBase *db = tcg_ctx->plugin_db;
vaddr page0_last = db->pc_first | ~TARGET_PAGE_MASK;
if (db->fake_insn) {
return NULL;
}
/*
* ??? The return value is not intended for use of host memory,
* but as a proxy for address space and physical address.
* Thus we are only interested in the first byte and do not
* care about spanning pages.
*/
if (insn->vaddr <= page0_last) {
if (db->host_addr[0] == NULL) {
return NULL;
}
return db->host_addr[0] + insn->vaddr - db->pc_first;
} else {
if (db->host_addr[1] == NULL) {
return NULL;
}
return db->host_addr[1] + insn->vaddr - (page0_last + 1);
}
}
char *qemu_plugin_insn_disas(const struct qemu_plugin_insn *insn)
{
return plugin_disas(tcg_ctx->cpu, tcg_ctx->plugin_db,
insn->vaddr, insn->len);
}
const char *qemu_plugin_insn_symbol(const struct qemu_plugin_insn *insn)
{
const char *sym = lookup_symbol(insn->vaddr);
return sym[0] != 0 ? sym : NULL;
}
/*
* The memory queries allow the plugin to query information about a
* memory access.
*/
unsigned qemu_plugin_mem_size_shift(qemu_plugin_meminfo_t info)
{
MemOp op = get_memop(info);
return op & MO_SIZE;
}
bool qemu_plugin_mem_is_sign_extended(qemu_plugin_meminfo_t info)
{
MemOp op = get_memop(info);
return op & MO_SIGN;
}
bool qemu_plugin_mem_is_big_endian(qemu_plugin_meminfo_t info)
{
MemOp op = get_memop(info);
return (op & MO_BSWAP) == MO_BE;
}
bool qemu_plugin_mem_is_store(qemu_plugin_meminfo_t info)
{
return get_plugin_meminfo_rw(info) & QEMU_PLUGIN_MEM_W;
}
/*
* Virtual Memory queries
*/
#ifdef CONFIG_SOFTMMU
static __thread struct qemu_plugin_hwaddr hwaddr_info;
#endif
struct qemu_plugin_hwaddr *qemu_plugin_get_hwaddr(qemu_plugin_meminfo_t info,
uint64_t vaddr)
{
#ifdef CONFIG_SOFTMMU
CPUState *cpu = current_cpu;
unsigned int mmu_idx = get_mmuidx(info);
enum qemu_plugin_mem_rw rw = get_plugin_meminfo_rw(info);
hwaddr_info.is_store = (rw & QEMU_PLUGIN_MEM_W) != 0;
assert(mmu_idx < NB_MMU_MODES);
if (!tlb_plugin_lookup(cpu, vaddr, mmu_idx,
hwaddr_info.is_store, &hwaddr_info)) {
error_report("invalid use of qemu_plugin_get_hwaddr");
return NULL;
}
return &hwaddr_info;
#else
return NULL;
#endif
}
bool qemu_plugin_hwaddr_is_io(const struct qemu_plugin_hwaddr *haddr)
{
#ifdef CONFIG_SOFTMMU
return haddr->is_io;
#else
return false;
#endif
}
uint64_t qemu_plugin_hwaddr_phys_addr(const struct qemu_plugin_hwaddr *haddr)
{
#ifdef CONFIG_SOFTMMU
if (haddr) {
return haddr->phys_addr;
}
#endif
return 0;
}
const char *qemu_plugin_hwaddr_device_name(const struct qemu_plugin_hwaddr *h)
{
#ifdef CONFIG_SOFTMMU
if (h && h->is_io) {
MemoryRegion *mr = h->mr;
if (!mr->name) {
unsigned maddr = (uintptr_t)mr;
g_autofree char *temp = g_strdup_printf("anon%08x", maddr);
return g_intern_string(temp);
} else {
return g_intern_string(mr->name);
}
} else {
return g_intern_static_string("RAM");
}
#else
return g_intern_static_string("Invalid");
#endif
}
int qemu_plugin_num_vcpus(void)
{
return plugin_num_vcpus();
}
/*
* Plugin output
*/
void qemu_plugin_outs(const char *string)
{
qemu_log_mask(CPU_LOG_PLUGIN, "%s", string);
}
bool qemu_plugin_bool_parse(const char *name, const char *value, bool *ret)
{
return name && value && qapi_bool_parse(name, value, ret, NULL);
}
/*
* Binary path, start and end locations
*/
const char *qemu_plugin_path_to_binary(void)
{
char *path = NULL;
#ifdef CONFIG_USER_ONLY
TaskState *ts = get_task_state(current_cpu);
path = g_strdup(ts->bprm->filename);
#endif
return path;
}
uint64_t qemu_plugin_start_code(void)
{
uint64_t start = 0;
#ifdef CONFIG_USER_ONLY
TaskState *ts = get_task_state(current_cpu);
start = ts->info->start_code;
#endif
return start;
}
uint64_t qemu_plugin_end_code(void)
{
uint64_t end = 0;
#ifdef CONFIG_USER_ONLY
TaskState *ts = get_task_state(current_cpu);
end = ts->info->end_code;
#endif
return end;
}
uint64_t qemu_plugin_entry_code(void)
{
uint64_t entry = 0;
#ifdef CONFIG_USER_ONLY
TaskState *ts = get_task_state(current_cpu);
entry = ts->info->entry;
#endif
return entry;
}
/*
* Create register handles.
*
* We need to create a handle for each register so the plugin
* infrastructure can call gdbstub to read a register. They are
* currently just a pointer encapsulation of the gdb_reg but in
* future may hold internal plugin state so its important plugin
* authors are not tempted to treat them as numbers.
*
* We also construct a result array with those handles and some
* ancillary data the plugin might find useful.
*/
static GArray *create_register_handles(GArray *gdbstub_regs)
{
GArray *find_data = g_array_new(true, true,
sizeof(qemu_plugin_reg_descriptor));
for (int i = 0; i < gdbstub_regs->len; i++) {
GDBRegDesc *grd = &g_array_index(gdbstub_regs, GDBRegDesc, i);
qemu_plugin_reg_descriptor desc;
/* skip "un-named" regs */
if (!grd->name) {
continue;
}
/* Create a record for the plugin */
desc.handle = GINT_TO_POINTER(grd->gdb_reg);
desc.name = g_intern_string(grd->name);
desc.feature = g_intern_string(grd->feature_name);
g_array_append_val(find_data, desc);
}
return find_data;
}
GArray *qemu_plugin_get_registers(void)
{
g_assert(current_cpu);
g_autoptr(GArray) regs = gdb_get_register_list(current_cpu);
return create_register_handles(regs);
}
int qemu_plugin_read_register(struct qemu_plugin_register *reg, GByteArray *buf)
{
g_assert(current_cpu);
return gdb_read_register(current_cpu, buf, GPOINTER_TO_INT(reg));
}
struct qemu_plugin_scoreboard *qemu_plugin_scoreboard_new(size_t element_size)
{
return plugin_scoreboard_new(element_size);
}
void qemu_plugin_scoreboard_free(struct qemu_plugin_scoreboard *score)
{
plugin_scoreboard_free(score);
}
void *qemu_plugin_scoreboard_find(struct qemu_plugin_scoreboard *score,
unsigned int vcpu_index)
{
g_assert(vcpu_index < qemu_plugin_num_vcpus());
/* we can't use g_array_index since entry size is not statically known */
char *base_ptr = score->data->data;
return base_ptr + vcpu_index * g_array_get_element_size(score->data);
}
static uint64_t *plugin_u64_address(qemu_plugin_u64 entry,
unsigned int vcpu_index)
{
char *ptr = qemu_plugin_scoreboard_find(entry.score, vcpu_index);
return (uint64_t *)(ptr + entry.offset);
}
void qemu_plugin_u64_add(qemu_plugin_u64 entry, unsigned int vcpu_index,
uint64_t added)
{
*plugin_u64_address(entry, vcpu_index) += added;
}
uint64_t qemu_plugin_u64_get(qemu_plugin_u64 entry,
unsigned int vcpu_index)
{
return *plugin_u64_address(entry, vcpu_index);
}
void qemu_plugin_u64_set(qemu_plugin_u64 entry, unsigned int vcpu_index,
uint64_t val)
{
*plugin_u64_address(entry, vcpu_index) = val;
}
uint64_t qemu_plugin_u64_sum(qemu_plugin_u64 entry)
{
uint64_t total = 0;
for (int i = 0, n = qemu_plugin_num_vcpus(); i < n; ++i) {
total += qemu_plugin_u64_get(entry, i);
}
return total;
}