| /* |
| * PowerPC floating point and SPE emulation helpers for QEMU. |
| * |
| * Copyright (c) 2003-2007 Jocelyn Mayer |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| #include "qemu/osdep.h" |
| #include "cpu.h" |
| #include "exec/helper-proto.h" |
| #include "exec/exec-all.h" |
| #include "internal.h" |
| #include "fpu/softfloat.h" |
| |
| static inline float128 float128_snan_to_qnan(float128 x) |
| { |
| float128 r; |
| |
| r.high = x.high | 0x0000800000000000; |
| r.low = x.low; |
| return r; |
| } |
| |
| #define float64_snan_to_qnan(x) ((x) | 0x0008000000000000ULL) |
| #define float32_snan_to_qnan(x) ((x) | 0x00400000) |
| #define float16_snan_to_qnan(x) ((x) | 0x0200) |
| |
| static inline bool fp_exceptions_enabled(CPUPPCState *env) |
| { |
| #ifdef CONFIG_USER_ONLY |
| return true; |
| #else |
| return (env->msr & ((1U << MSR_FE0) | (1U << MSR_FE1))) != 0; |
| #endif |
| } |
| |
| /*****************************************************************************/ |
| /* Floating point operations helpers */ |
| |
| /* |
| * This is the non-arithmatic conversion that happens e.g. on loads. |
| * In the Power ISA pseudocode, this is called DOUBLE. |
| */ |
| uint64_t helper_todouble(uint32_t arg) |
| { |
| uint32_t abs_arg = arg & 0x7fffffff; |
| uint64_t ret; |
| |
| if (likely(abs_arg >= 0x00800000)) { |
| if (unlikely(extract32(arg, 23, 8) == 0xff)) { |
| /* Inf or NAN. */ |
| ret = (uint64_t)extract32(arg, 31, 1) << 63; |
| ret |= (uint64_t)0x7ff << 52; |
| ret |= (uint64_t)extract32(arg, 0, 23) << 29; |
| } else { |
| /* Normalized operand. */ |
| ret = (uint64_t)extract32(arg, 30, 2) << 62; |
| ret |= ((extract32(arg, 30, 1) ^ 1) * (uint64_t)7) << 59; |
| ret |= (uint64_t)extract32(arg, 0, 30) << 29; |
| } |
| } else { |
| /* Zero or Denormalized operand. */ |
| ret = (uint64_t)extract32(arg, 31, 1) << 63; |
| if (unlikely(abs_arg != 0)) { |
| /* |
| * Denormalized operand. |
| * Shift fraction so that the msb is in the implicit bit position. |
| * Thus, shift is in the range [1:23]. |
| */ |
| int shift = clz32(abs_arg) - 8; |
| /* |
| * The first 3 terms compute the float64 exponent. We then bias |
| * this result by -1 so that we can swallow the implicit bit below. |
| */ |
| int exp = -126 - shift + 1023 - 1; |
| |
| ret |= (uint64_t)exp << 52; |
| ret += (uint64_t)abs_arg << (52 - 23 + shift); |
| } |
| } |
| return ret; |
| } |
| |
| /* |
| * This is the non-arithmatic conversion that happens e.g. on stores. |
| * In the Power ISA pseudocode, this is called SINGLE. |
| */ |
| uint32_t helper_tosingle(uint64_t arg) |
| { |
| int exp = extract64(arg, 52, 11); |
| uint32_t ret; |
| |
| if (likely(exp > 896)) { |
| /* No denormalization required (includes Inf, NaN). */ |
| ret = extract64(arg, 62, 2) << 30; |
| ret |= extract64(arg, 29, 30); |
| } else { |
| /* |
| * Zero or Denormal result. If the exponent is in bounds for |
| * a single-precision denormal result, extract the proper |
| * bits. If the input is not zero, and the exponent is out of |
| * bounds, then the result is undefined; this underflows to |
| * zero. |
| */ |
| ret = extract64(arg, 63, 1) << 31; |
| if (unlikely(exp >= 874)) { |
| /* Denormal result. */ |
| ret |= ((1ULL << 52) | extract64(arg, 0, 52)) >> (896 + 30 - exp); |
| } |
| } |
| return ret; |
| } |
| |
| static inline int ppc_float32_get_unbiased_exp(float32 f) |
| { |
| return ((f >> 23) & 0xFF) - 127; |
| } |
| |
| static inline int ppc_float64_get_unbiased_exp(float64 f) |
| { |
| return ((f >> 52) & 0x7FF) - 1023; |
| } |
| |
| /* Classify a floating-point number. */ |
| enum { |
| is_normal = 1, |
| is_zero = 2, |
| is_denormal = 4, |
| is_inf = 8, |
| is_qnan = 16, |
| is_snan = 32, |
| is_neg = 64, |
| }; |
| |
| #define COMPUTE_CLASS(tp) \ |
| static int tp##_classify(tp arg) \ |
| { \ |
| int ret = tp##_is_neg(arg) * is_neg; \ |
| if (unlikely(tp##_is_any_nan(arg))) { \ |
| float_status dummy = { }; /* snan_bit_is_one = 0 */ \ |
| ret |= (tp##_is_signaling_nan(arg, &dummy) \ |
| ? is_snan : is_qnan); \ |
| } else if (unlikely(tp##_is_infinity(arg))) { \ |
| ret |= is_inf; \ |
| } else if (tp##_is_zero(arg)) { \ |
| ret |= is_zero; \ |
| } else if (tp##_is_zero_or_denormal(arg)) { \ |
| ret |= is_denormal; \ |
| } else { \ |
| ret |= is_normal; \ |
| } \ |
| return ret; \ |
| } |
| |
| COMPUTE_CLASS(float16) |
| COMPUTE_CLASS(float32) |
| COMPUTE_CLASS(float64) |
| COMPUTE_CLASS(float128) |
| |
| static void set_fprf_from_class(CPUPPCState *env, int class) |
| { |
| static const uint8_t fprf[6][2] = { |
| { 0x04, 0x08 }, /* normalized */ |
| { 0x02, 0x12 }, /* zero */ |
| { 0x14, 0x18 }, /* denormalized */ |
| { 0x05, 0x09 }, /* infinity */ |
| { 0x11, 0x11 }, /* qnan */ |
| { 0x00, 0x00 }, /* snan -- flags are undefined */ |
| }; |
| bool isneg = class & is_neg; |
| |
| env->fpscr &= ~FP_FPRF; |
| env->fpscr |= fprf[ctz32(class)][isneg] << FPSCR_FPRF; |
| } |
| |
| #define COMPUTE_FPRF(tp) \ |
| void helper_compute_fprf_##tp(CPUPPCState *env, tp arg) \ |
| { \ |
| set_fprf_from_class(env, tp##_classify(arg)); \ |
| } |
| |
| COMPUTE_FPRF(float16) |
| COMPUTE_FPRF(float32) |
| COMPUTE_FPRF(float64) |
| COMPUTE_FPRF(float128) |
| |
| /* Floating-point invalid operations exception */ |
| static void finish_invalid_op_excp(CPUPPCState *env, int op, uintptr_t retaddr) |
| { |
| /* Update the floating-point invalid operation summary */ |
| env->fpscr |= FP_VX; |
| /* Update the floating-point exception summary */ |
| env->fpscr |= FP_FX; |
| if (fpscr_ve != 0) { |
| /* Update the floating-point enabled exception summary */ |
| env->fpscr |= FP_FEX; |
| if (fp_exceptions_enabled(env)) { |
| raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM, |
| POWERPC_EXCP_FP | op, retaddr); |
| } |
| } |
| } |
| |
| static void finish_invalid_op_arith(CPUPPCState *env, int op, |
| bool set_fpcc, uintptr_t retaddr) |
| { |
| env->fpscr &= ~(FP_FR | FP_FI); |
| if (fpscr_ve == 0) { |
| if (set_fpcc) { |
| env->fpscr &= ~FP_FPCC; |
| env->fpscr |= (FP_C | FP_FU); |
| } |
| } |
| finish_invalid_op_excp(env, op, retaddr); |
| } |
| |
| /* Signalling NaN */ |
| static void float_invalid_op_vxsnan(CPUPPCState *env, uintptr_t retaddr) |
| { |
| env->fpscr |= FP_VXSNAN; |
| finish_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, retaddr); |
| } |
| |
| /* Magnitude subtraction of infinities */ |
| static void float_invalid_op_vxisi(CPUPPCState *env, bool set_fpcc, |
| uintptr_t retaddr) |
| { |
| env->fpscr |= FP_VXISI; |
| finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXISI, set_fpcc, retaddr); |
| } |
| |
| /* Division of infinity by infinity */ |
| static void float_invalid_op_vxidi(CPUPPCState *env, bool set_fpcc, |
| uintptr_t retaddr) |
| { |
| env->fpscr |= FP_VXIDI; |
| finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXIDI, set_fpcc, retaddr); |
| } |
| |
| /* Division of zero by zero */ |
| static void float_invalid_op_vxzdz(CPUPPCState *env, bool set_fpcc, |
| uintptr_t retaddr) |
| { |
| env->fpscr |= FP_VXZDZ; |
| finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXZDZ, set_fpcc, retaddr); |
| } |
| |
| /* Multiplication of zero by infinity */ |
| static void float_invalid_op_vximz(CPUPPCState *env, bool set_fpcc, |
| uintptr_t retaddr) |
| { |
| env->fpscr |= FP_VXIMZ; |
| finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXIMZ, set_fpcc, retaddr); |
| } |
| |
| /* Square root of a negative number */ |
| static void float_invalid_op_vxsqrt(CPUPPCState *env, bool set_fpcc, |
| uintptr_t retaddr) |
| { |
| env->fpscr |= FP_VXSQRT; |
| finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXSQRT, set_fpcc, retaddr); |
| } |
| |
| /* Ordered comparison of NaN */ |
| static void float_invalid_op_vxvc(CPUPPCState *env, bool set_fpcc, |
| uintptr_t retaddr) |
| { |
| env->fpscr |= FP_VXVC; |
| if (set_fpcc) { |
| env->fpscr &= ~FP_FPCC; |
| env->fpscr |= (FP_C | FP_FU); |
| } |
| /* Update the floating-point invalid operation summary */ |
| env->fpscr |= FP_VX; |
| /* Update the floating-point exception summary */ |
| env->fpscr |= FP_FX; |
| /* We must update the target FPR before raising the exception */ |
| if (fpscr_ve != 0) { |
| CPUState *cs = env_cpu(env); |
| |
| cs->exception_index = POWERPC_EXCP_PROGRAM; |
| env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC; |
| /* Update the floating-point enabled exception summary */ |
| env->fpscr |= FP_FEX; |
| /* Exception is differed */ |
| } |
| } |
| |
| /* Invalid conversion */ |
| static void float_invalid_op_vxcvi(CPUPPCState *env, bool set_fpcc, |
| uintptr_t retaddr) |
| { |
| env->fpscr |= FP_VXCVI; |
| env->fpscr &= ~(FP_FR | FP_FI); |
| if (fpscr_ve == 0) { |
| if (set_fpcc) { |
| env->fpscr &= ~FP_FPCC; |
| env->fpscr |= (FP_C | FP_FU); |
| } |
| } |
| finish_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, retaddr); |
| } |
| |
| static inline void float_zero_divide_excp(CPUPPCState *env, uintptr_t raddr) |
| { |
| env->fpscr |= FP_ZX; |
| env->fpscr &= ~(FP_FR | FP_FI); |
| /* Update the floating-point exception summary */ |
| env->fpscr |= FP_FX; |
| if (fpscr_ze != 0) { |
| /* Update the floating-point enabled exception summary */ |
| env->fpscr |= FP_FEX; |
| if (fp_exceptions_enabled(env)) { |
| raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM, |
| POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX, |
| raddr); |
| } |
| } |
| } |
| |
| static inline void float_overflow_excp(CPUPPCState *env) |
| { |
| CPUState *cs = env_cpu(env); |
| |
| env->fpscr |= FP_OX; |
| /* Update the floating-point exception summary */ |
| env->fpscr |= FP_FX; |
| if (fpscr_oe != 0) { |
| /* XXX: should adjust the result */ |
| /* Update the floating-point enabled exception summary */ |
| env->fpscr |= FP_FEX; |
| /* We must update the target FPR before raising the exception */ |
| cs->exception_index = POWERPC_EXCP_PROGRAM; |
| env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX; |
| } else { |
| env->fpscr |= FP_XX; |
| env->fpscr |= FP_FI; |
| } |
| } |
| |
| static inline void float_underflow_excp(CPUPPCState *env) |
| { |
| CPUState *cs = env_cpu(env); |
| |
| env->fpscr |= FP_UX; |
| /* Update the floating-point exception summary */ |
| env->fpscr |= FP_FX; |
| if (fpscr_ue != 0) { |
| /* XXX: should adjust the result */ |
| /* Update the floating-point enabled exception summary */ |
| env->fpscr |= FP_FEX; |
| /* We must update the target FPR before raising the exception */ |
| cs->exception_index = POWERPC_EXCP_PROGRAM; |
| env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX; |
| } |
| } |
| |
| static inline void float_inexact_excp(CPUPPCState *env) |
| { |
| CPUState *cs = env_cpu(env); |
| |
| env->fpscr |= FP_FI; |
| env->fpscr |= FP_XX; |
| /* Update the floating-point exception summary */ |
| env->fpscr |= FP_FX; |
| if (fpscr_xe != 0) { |
| /* Update the floating-point enabled exception summary */ |
| env->fpscr |= FP_FEX; |
| /* We must update the target FPR before raising the exception */ |
| cs->exception_index = POWERPC_EXCP_PROGRAM; |
| env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX; |
| } |
| } |
| |
| static inline void fpscr_set_rounding_mode(CPUPPCState *env) |
| { |
| int rnd_type; |
| |
| /* Set rounding mode */ |
| switch (fpscr_rn) { |
| case 0: |
| /* Best approximation (round to nearest) */ |
| rnd_type = float_round_nearest_even; |
| break; |
| case 1: |
| /* Smaller magnitude (round toward zero) */ |
| rnd_type = float_round_to_zero; |
| break; |
| case 2: |
| /* Round toward +infinite */ |
| rnd_type = float_round_up; |
| break; |
| default: |
| case 3: |
| /* Round toward -infinite */ |
| rnd_type = float_round_down; |
| break; |
| } |
| set_float_rounding_mode(rnd_type, &env->fp_status); |
| } |
| |
| void helper_fpscr_clrbit(CPUPPCState *env, uint32_t bit) |
| { |
| int prev; |
| |
| prev = (env->fpscr >> bit) & 1; |
| env->fpscr &= ~(1 << bit); |
| if (prev == 1) { |
| switch (bit) { |
| case FPSCR_RN1: |
| case FPSCR_RN0: |
| fpscr_set_rounding_mode(env); |
| break; |
| case FPSCR_VXSNAN: |
| case FPSCR_VXISI: |
| case FPSCR_VXIDI: |
| case FPSCR_VXZDZ: |
| case FPSCR_VXIMZ: |
| case FPSCR_VXVC: |
| case FPSCR_VXSOFT: |
| case FPSCR_VXSQRT: |
| case FPSCR_VXCVI: |
| if (!fpscr_ix) { |
| /* Set VX bit to zero */ |
| env->fpscr &= ~FP_VX; |
| } |
| break; |
| case FPSCR_OX: |
| case FPSCR_UX: |
| case FPSCR_ZX: |
| case FPSCR_XX: |
| case FPSCR_VE: |
| case FPSCR_OE: |
| case FPSCR_UE: |
| case FPSCR_ZE: |
| case FPSCR_XE: |
| if (!fpscr_eex) { |
| /* Set the FEX bit */ |
| env->fpscr &= ~FP_FEX; |
| } |
| break; |
| default: |
| break; |
| } |
| } |
| } |
| |
| void helper_fpscr_setbit(CPUPPCState *env, uint32_t bit) |
| { |
| CPUState *cs = env_cpu(env); |
| int prev; |
| |
| prev = (env->fpscr >> bit) & 1; |
| env->fpscr |= 1 << bit; |
| if (prev == 0) { |
| switch (bit) { |
| case FPSCR_VX: |
| env->fpscr |= FP_FX; |
| if (fpscr_ve) { |
| goto raise_ve; |
| } |
| break; |
| case FPSCR_OX: |
| env->fpscr |= FP_FX; |
| if (fpscr_oe) { |
| goto raise_oe; |
| } |
| break; |
| case FPSCR_UX: |
| env->fpscr |= FP_FX; |
| if (fpscr_ue) { |
| goto raise_ue; |
| } |
| break; |
| case FPSCR_ZX: |
| env->fpscr |= FP_FX; |
| if (fpscr_ze) { |
| goto raise_ze; |
| } |
| break; |
| case FPSCR_XX: |
| env->fpscr |= FP_FX; |
| if (fpscr_xe) { |
| goto raise_xe; |
| } |
| break; |
| case FPSCR_VXSNAN: |
| case FPSCR_VXISI: |
| case FPSCR_VXIDI: |
| case FPSCR_VXZDZ: |
| case FPSCR_VXIMZ: |
| case FPSCR_VXVC: |
| case FPSCR_VXSOFT: |
| case FPSCR_VXSQRT: |
| case FPSCR_VXCVI: |
| env->fpscr |= FP_VX; |
| env->fpscr |= FP_FX; |
| if (fpscr_ve != 0) { |
| goto raise_ve; |
| } |
| break; |
| case FPSCR_VE: |
| if (fpscr_vx != 0) { |
| raise_ve: |
| env->error_code = POWERPC_EXCP_FP; |
| if (fpscr_vxsnan) { |
| env->error_code |= POWERPC_EXCP_FP_VXSNAN; |
| } |
| if (fpscr_vxisi) { |
| env->error_code |= POWERPC_EXCP_FP_VXISI; |
| } |
| if (fpscr_vxidi) { |
| env->error_code |= POWERPC_EXCP_FP_VXIDI; |
| } |
| if (fpscr_vxzdz) { |
| env->error_code |= POWERPC_EXCP_FP_VXZDZ; |
| } |
| if (fpscr_vximz) { |
| env->error_code |= POWERPC_EXCP_FP_VXIMZ; |
| } |
| if (fpscr_vxvc) { |
| env->error_code |= POWERPC_EXCP_FP_VXVC; |
| } |
| if (fpscr_vxsoft) { |
| env->error_code |= POWERPC_EXCP_FP_VXSOFT; |
| } |
| if (fpscr_vxsqrt) { |
| env->error_code |= POWERPC_EXCP_FP_VXSQRT; |
| } |
| if (fpscr_vxcvi) { |
| env->error_code |= POWERPC_EXCP_FP_VXCVI; |
| } |
| goto raise_excp; |
| } |
| break; |
| case FPSCR_OE: |
| if (fpscr_ox != 0) { |
| raise_oe: |
| env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX; |
| goto raise_excp; |
| } |
| break; |
| case FPSCR_UE: |
| if (fpscr_ux != 0) { |
| raise_ue: |
| env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX; |
| goto raise_excp; |
| } |
| break; |
| case FPSCR_ZE: |
| if (fpscr_zx != 0) { |
| raise_ze: |
| env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX; |
| goto raise_excp; |
| } |
| break; |
| case FPSCR_XE: |
| if (fpscr_xx != 0) { |
| raise_xe: |
| env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX; |
| goto raise_excp; |
| } |
| break; |
| case FPSCR_RN1: |
| case FPSCR_RN0: |
| fpscr_set_rounding_mode(env); |
| break; |
| default: |
| break; |
| raise_excp: |
| /* Update the floating-point enabled exception summary */ |
| env->fpscr |= FP_FEX; |
| /* We have to update Rc1 before raising the exception */ |
| cs->exception_index = POWERPC_EXCP_PROGRAM; |
| break; |
| } |
| } |
| } |
| |
| void helper_store_fpscr(CPUPPCState *env, uint64_t arg, uint32_t mask) |
| { |
| CPUState *cs = env_cpu(env); |
| target_ulong prev, new; |
| int i; |
| |
| prev = env->fpscr; |
| new = (target_ulong)arg; |
| new &= ~(FP_FEX | FP_VX); |
| new |= prev & (FP_FEX | FP_VX); |
| for (i = 0; i < sizeof(target_ulong) * 2; i++) { |
| if (mask & (1 << i)) { |
| env->fpscr &= ~(0xFLL << (4 * i)); |
| env->fpscr |= new & (0xFLL << (4 * i)); |
| } |
| } |
| /* Update VX and FEX */ |
| if (fpscr_ix != 0) { |
| env->fpscr |= FP_VX; |
| } else { |
| env->fpscr &= ~FP_VX; |
| } |
| if ((fpscr_ex & fpscr_eex) != 0) { |
| env->fpscr |= FP_FEX; |
| cs->exception_index = POWERPC_EXCP_PROGRAM; |
| /* XXX: we should compute it properly */ |
| env->error_code = POWERPC_EXCP_FP; |
| } else { |
| env->fpscr &= ~FP_FEX; |
| } |
| fpscr_set_rounding_mode(env); |
| } |
| |
| void store_fpscr(CPUPPCState *env, uint64_t arg, uint32_t mask) |
| { |
| helper_store_fpscr(env, arg, mask); |
| } |
| |
| static void do_float_check_status(CPUPPCState *env, uintptr_t raddr) |
| { |
| CPUState *cs = env_cpu(env); |
| int status = get_float_exception_flags(&env->fp_status); |
| |
| if (status & float_flag_overflow) { |
| float_overflow_excp(env); |
| } else if (status & float_flag_underflow) { |
| float_underflow_excp(env); |
| } |
| if (status & float_flag_inexact) { |
| float_inexact_excp(env); |
| } else { |
| env->fpscr &= ~FP_FI; /* clear the FPSCR[FI] bit */ |
| } |
| |
| if (cs->exception_index == POWERPC_EXCP_PROGRAM && |
| (env->error_code & POWERPC_EXCP_FP)) { |
| /* Differred floating-point exception after target FPR update */ |
| if (fp_exceptions_enabled(env)) { |
| raise_exception_err_ra(env, cs->exception_index, |
| env->error_code, raddr); |
| } |
| } |
| } |
| |
| void helper_float_check_status(CPUPPCState *env) |
| { |
| do_float_check_status(env, GETPC()); |
| } |
| |
| void helper_reset_fpstatus(CPUPPCState *env) |
| { |
| set_float_exception_flags(0, &env->fp_status); |
| } |
| |
| static void float_invalid_op_addsub(CPUPPCState *env, bool set_fpcc, |
| uintptr_t retaddr, int classes) |
| { |
| if ((classes & ~is_neg) == is_inf) { |
| /* Magnitude subtraction of infinities */ |
| float_invalid_op_vxisi(env, set_fpcc, retaddr); |
| } else if (classes & is_snan) { |
| float_invalid_op_vxsnan(env, retaddr); |
| } |
| } |
| |
| /* fadd - fadd. */ |
| float64 helper_fadd(CPUPPCState *env, float64 arg1, float64 arg2) |
| { |
| float64 ret = float64_add(arg1, arg2, &env->fp_status); |
| int status = get_float_exception_flags(&env->fp_status); |
| |
| if (unlikely(status & float_flag_invalid)) { |
| float_invalid_op_addsub(env, 1, GETPC(), |
| float64_classify(arg1) | |
| float64_classify(arg2)); |
| } |
| |
| return ret; |
| } |
| |
| /* fsub - fsub. */ |
| float64 helper_fsub(CPUPPCState *env, float64 arg1, float64 arg2) |
| { |
| float64 ret = float64_sub(arg1, arg2, &env->fp_status); |
| int status = get_float_exception_flags(&env->fp_status); |
| |
| if (unlikely(status & float_flag_invalid)) { |
| float_invalid_op_addsub(env, 1, GETPC(), |
| float64_classify(arg1) | |
| float64_classify(arg2)); |
| } |
| |
| return ret; |
| } |
| |
| static void float_invalid_op_mul(CPUPPCState *env, bool set_fprc, |
| uintptr_t retaddr, int classes) |
| { |
| if ((classes & (is_zero | is_inf)) == (is_zero | is_inf)) { |
| /* Multiplication of zero by infinity */ |
| float_invalid_op_vximz(env, set_fprc, retaddr); |
| } else if (classes & is_snan) { |
| float_invalid_op_vxsnan(env, retaddr); |
| } |
| } |
| |
| /* fmul - fmul. */ |
| float64 helper_fmul(CPUPPCState *env, float64 arg1, float64 arg2) |
| { |
| float64 ret = float64_mul(arg1, arg2, &env->fp_status); |
| int status = get_float_exception_flags(&env->fp_status); |
| |
| if (unlikely(status & float_flag_invalid)) { |
| float_invalid_op_mul(env, 1, GETPC(), |
| float64_classify(arg1) | |
| float64_classify(arg2)); |
| } |
| |
| return ret; |
| } |
| |
| static void float_invalid_op_div(CPUPPCState *env, bool set_fprc, |
| uintptr_t retaddr, int classes) |
| { |
| classes &= ~is_neg; |
| if (classes == is_inf) { |
| /* Division of infinity by infinity */ |
| float_invalid_op_vxidi(env, set_fprc, retaddr); |
| } else if (classes == is_zero) { |
| /* Division of zero by zero */ |
| float_invalid_op_vxzdz(env, set_fprc, retaddr); |
| } else if (classes & is_snan) { |
| float_invalid_op_vxsnan(env, retaddr); |
| } |
| } |
| |
| /* fdiv - fdiv. */ |
| float64 helper_fdiv(CPUPPCState *env, float64 arg1, float64 arg2) |
| { |
| float64 ret = float64_div(arg1, arg2, &env->fp_status); |
| int status = get_float_exception_flags(&env->fp_status); |
| |
| if (unlikely(status)) { |
| if (status & float_flag_invalid) { |
| float_invalid_op_div(env, 1, GETPC(), |
| float64_classify(arg1) | |
| float64_classify(arg2)); |
| } |
| if (status & float_flag_divbyzero) { |
| float_zero_divide_excp(env, GETPC()); |
| } |
| } |
| |
| return ret; |
| } |
| |
| static void float_invalid_cvt(CPUPPCState *env, bool set_fprc, |
| uintptr_t retaddr, int class1) |
| { |
| float_invalid_op_vxcvi(env, set_fprc, retaddr); |
| if (class1 & is_snan) { |
| float_invalid_op_vxsnan(env, retaddr); |
| } |
| } |
| |
| #define FPU_FCTI(op, cvt, nanval) \ |
| uint64_t helper_##op(CPUPPCState *env, float64 arg) \ |
| { \ |
| uint64_t ret = float64_to_##cvt(arg, &env->fp_status); \ |
| int status = get_float_exception_flags(&env->fp_status); \ |
| \ |
| if (unlikely(status)) { \ |
| if (status & float_flag_invalid) { \ |
| float_invalid_cvt(env, 1, GETPC(), float64_classify(arg)); \ |
| ret = nanval; \ |
| } \ |
| do_float_check_status(env, GETPC()); \ |
| } \ |
| return ret; \ |
| } |
| |
| FPU_FCTI(fctiw, int32, 0x80000000U) |
| FPU_FCTI(fctiwz, int32_round_to_zero, 0x80000000U) |
| FPU_FCTI(fctiwu, uint32, 0x00000000U) |
| FPU_FCTI(fctiwuz, uint32_round_to_zero, 0x00000000U) |
| FPU_FCTI(fctid, int64, 0x8000000000000000ULL) |
| FPU_FCTI(fctidz, int64_round_to_zero, 0x8000000000000000ULL) |
| FPU_FCTI(fctidu, uint64, 0x0000000000000000ULL) |
| FPU_FCTI(fctiduz, uint64_round_to_zero, 0x0000000000000000ULL) |
| |
| #define FPU_FCFI(op, cvtr, is_single) \ |
| uint64_t helper_##op(CPUPPCState *env, uint64_t arg) \ |
| { \ |
| CPU_DoubleU farg; \ |
| \ |
| if (is_single) { \ |
| float32 tmp = cvtr(arg, &env->fp_status); \ |
| farg.d = float32_to_float64(tmp, &env->fp_status); \ |
| } else { \ |
| farg.d = cvtr(arg, &env->fp_status); \ |
| } \ |
| do_float_check_status(env, GETPC()); \ |
| return farg.ll; \ |
| } |
| |
| FPU_FCFI(fcfid, int64_to_float64, 0) |
| FPU_FCFI(fcfids, int64_to_float32, 1) |
| FPU_FCFI(fcfidu, uint64_to_float64, 0) |
| FPU_FCFI(fcfidus, uint64_to_float32, 1) |
| |
| static inline uint64_t do_fri(CPUPPCState *env, uint64_t arg, |
| int rounding_mode) |
| { |
| CPU_DoubleU farg; |
| |
| farg.ll = arg; |
| |
| if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) { |
| /* sNaN round */ |
| float_invalid_op_vxsnan(env, GETPC()); |
| farg.ll = arg | 0x0008000000000000ULL; |
| } else { |
| int inexact = get_float_exception_flags(&env->fp_status) & |
| float_flag_inexact; |
| set_float_rounding_mode(rounding_mode, &env->fp_status); |
| farg.ll = float64_round_to_int(farg.d, &env->fp_status); |
| /* Restore rounding mode from FPSCR */ |
| fpscr_set_rounding_mode(env); |
| |
| /* fri* does not set FPSCR[XX] */ |
| if (!inexact) { |
| env->fp_status.float_exception_flags &= ~float_flag_inexact; |
| } |
| } |
| do_float_check_status(env, GETPC()); |
| return farg.ll; |
| } |
| |
| uint64_t helper_frin(CPUPPCState *env, uint64_t arg) |
| { |
| return do_fri(env, arg, float_round_ties_away); |
| } |
| |
| uint64_t helper_friz(CPUPPCState *env, uint64_t arg) |
| { |
| return do_fri(env, arg, float_round_to_zero); |
| } |
| |
| uint64_t helper_frip(CPUPPCState *env, uint64_t arg) |
| { |
| return do_fri(env, arg, float_round_up); |
| } |
| |
| uint64_t helper_frim(CPUPPCState *env, uint64_t arg) |
| { |
| return do_fri(env, arg, float_round_down); |
| } |
| |
| #define FPU_MADDSUB_UPDATE(NAME, TP) \ |
| static void NAME(CPUPPCState *env, TP arg1, TP arg2, TP arg3, \ |
| unsigned int madd_flags, uintptr_t retaddr) \ |
| { \ |
| if (TP##_is_signaling_nan(arg1, &env->fp_status) || \ |
| TP##_is_signaling_nan(arg2, &env->fp_status) || \ |
| TP##_is_signaling_nan(arg3, &env->fp_status)) { \ |
| /* sNaN operation */ \ |
| float_invalid_op_vxsnan(env, retaddr); \ |
| } \ |
| if ((TP##_is_infinity(arg1) && TP##_is_zero(arg2)) || \ |
| (TP##_is_zero(arg1) && TP##_is_infinity(arg2))) { \ |
| /* Multiplication of zero by infinity */ \ |
| float_invalid_op_vximz(env, 1, retaddr); \ |
| } \ |
| if ((TP##_is_infinity(arg1) || TP##_is_infinity(arg2)) && \ |
| TP##_is_infinity(arg3)) { \ |
| uint8_t aSign, bSign, cSign; \ |
| \ |
| aSign = TP##_is_neg(arg1); \ |
| bSign = TP##_is_neg(arg2); \ |
| cSign = TP##_is_neg(arg3); \ |
| if (madd_flags & float_muladd_negate_c) { \ |
| cSign ^= 1; \ |
| } \ |
| if (aSign ^ bSign ^ cSign) { \ |
| float_invalid_op_vxisi(env, 1, retaddr); \ |
| } \ |
| } \ |
| } |
| FPU_MADDSUB_UPDATE(float32_maddsub_update_excp, float32) |
| FPU_MADDSUB_UPDATE(float64_maddsub_update_excp, float64) |
| |
| #define FPU_FMADD(op, madd_flags) \ |
| uint64_t helper_##op(CPUPPCState *env, uint64_t arg1, \ |
| uint64_t arg2, uint64_t arg3) \ |
| { \ |
| uint32_t flags; \ |
| float64 ret = float64_muladd(arg1, arg2, arg3, madd_flags, \ |
| &env->fp_status); \ |
| flags = get_float_exception_flags(&env->fp_status); \ |
| if (flags) { \ |
| if (flags & float_flag_invalid) { \ |
| float64_maddsub_update_excp(env, arg1, arg2, arg3, \ |
| madd_flags, GETPC()); \ |
| } \ |
| do_float_check_status(env, GETPC()); \ |
| } \ |
| return ret; \ |
| } |
| |
| #define MADD_FLGS 0 |
| #define MSUB_FLGS float_muladd_negate_c |
| #define NMADD_FLGS float_muladd_negate_result |
| #define NMSUB_FLGS (float_muladd_negate_c | float_muladd_negate_result) |
| |
| FPU_FMADD(fmadd, MADD_FLGS) |
| FPU_FMADD(fnmadd, NMADD_FLGS) |
| FPU_FMADD(fmsub, MSUB_FLGS) |
| FPU_FMADD(fnmsub, NMSUB_FLGS) |
| |
| /* frsp - frsp. */ |
| uint64_t helper_frsp(CPUPPCState *env, uint64_t arg) |
| { |
| CPU_DoubleU farg; |
| float32 f32; |
| |
| farg.ll = arg; |
| |
| if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) { |
| float_invalid_op_vxsnan(env, GETPC()); |
| } |
| f32 = float64_to_float32(farg.d, &env->fp_status); |
| farg.d = float32_to_float64(f32, &env->fp_status); |
| |
| return farg.ll; |
| } |
| |
| /* fsqrt - fsqrt. */ |
| float64 helper_fsqrt(CPUPPCState *env, float64 arg) |
| { |
| float64 ret = float64_sqrt(arg, &env->fp_status); |
| int status = get_float_exception_flags(&env->fp_status); |
| |
| if (unlikely(status & float_flag_invalid)) { |
| if (unlikely(float64_is_any_nan(arg))) { |
| if (unlikely(float64_is_signaling_nan(arg, &env->fp_status))) { |
| /* sNaN square root */ |
| float_invalid_op_vxsnan(env, GETPC()); |
| } |
| } else { |
| /* Square root of a negative nonzero number */ |
| float_invalid_op_vxsqrt(env, 1, GETPC()); |
| } |
| } |
| |
| return ret; |
| } |
| |
| /* fre - fre. */ |
| float64 helper_fre(CPUPPCState *env, float64 arg) |
| { |
| /* "Estimate" the reciprocal with actual division. */ |
| float64 ret = float64_div(float64_one, arg, &env->fp_status); |
| int status = get_float_exception_flags(&env->fp_status); |
| |
| if (unlikely(status)) { |
| if (status & float_flag_invalid) { |
| if (float64_is_signaling_nan(arg, &env->fp_status)) { |
| /* sNaN reciprocal */ |
| float_invalid_op_vxsnan(env, GETPC()); |
| } |
| } |
| if (status & float_flag_divbyzero) { |
| float_zero_divide_excp(env, GETPC()); |
| /* For FPSCR.ZE == 0, the result is 1/2. */ |
| ret = float64_set_sign(float64_half, float64_is_neg(arg)); |
| } |
| } |
| |
| return ret; |
| } |
| |
| /* fres - fres. */ |
| uint64_t helper_fres(CPUPPCState *env, uint64_t arg) |
| { |
| CPU_DoubleU farg; |
| float32 f32; |
| |
| farg.ll = arg; |
| |
| if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) { |
| /* sNaN reciprocal */ |
| float_invalid_op_vxsnan(env, GETPC()); |
| } |
| farg.d = float64_div(float64_one, farg.d, &env->fp_status); |
| f32 = float64_to_float32(farg.d, &env->fp_status); |
| farg.d = float32_to_float64(f32, &env->fp_status); |
| |
| return farg.ll; |
| } |
| |
| /* frsqrte - frsqrte. */ |
| float64 helper_frsqrte(CPUPPCState *env, float64 arg) |
| { |
| /* "Estimate" the reciprocal with actual division. */ |
| float64 rets = float64_sqrt(arg, &env->fp_status); |
| float64 retd = float64_div(float64_one, rets, &env->fp_status); |
| int status = get_float_exception_flags(&env->fp_status); |
| |
| if (unlikely(status)) { |
| if (status & float_flag_invalid) { |
| if (float64_is_signaling_nan(arg, &env->fp_status)) { |
| /* sNaN reciprocal */ |
| float_invalid_op_vxsnan(env, GETPC()); |
| } else { |
| /* Square root of a negative nonzero number */ |
| float_invalid_op_vxsqrt(env, 1, GETPC()); |
| } |
| } |
| if (status & float_flag_divbyzero) { |
| /* Reciprocal of (square root of) zero. */ |
| float_zero_divide_excp(env, GETPC()); |
| } |
| } |
| |
| return retd; |
| } |
| |
| /* fsel - fsel. */ |
| uint64_t helper_fsel(CPUPPCState *env, uint64_t arg1, uint64_t arg2, |
| uint64_t arg3) |
| { |
| CPU_DoubleU farg1; |
| |
| farg1.ll = arg1; |
| |
| if ((!float64_is_neg(farg1.d) || float64_is_zero(farg1.d)) && |
| !float64_is_any_nan(farg1.d)) { |
| return arg2; |
| } else { |
| return arg3; |
| } |
| } |
| |
| uint32_t helper_ftdiv(uint64_t fra, uint64_t frb) |
| { |
| int fe_flag = 0; |
| int fg_flag = 0; |
| |
| if (unlikely(float64_is_infinity(fra) || |
| float64_is_infinity(frb) || |
| float64_is_zero(frb))) { |
| fe_flag = 1; |
| fg_flag = 1; |
| } else { |
| int e_a = ppc_float64_get_unbiased_exp(fra); |
| int e_b = ppc_float64_get_unbiased_exp(frb); |
| |
| if (unlikely(float64_is_any_nan(fra) || |
| float64_is_any_nan(frb))) { |
| fe_flag = 1; |
| } else if ((e_b <= -1022) || (e_b >= 1021)) { |
| fe_flag = 1; |
| } else if (!float64_is_zero(fra) && |
| (((e_a - e_b) >= 1023) || |
| ((e_a - e_b) <= -1021) || |
| (e_a <= -970))) { |
| fe_flag = 1; |
| } |
| |
| if (unlikely(float64_is_zero_or_denormal(frb))) { |
| /* XB is not zero because of the above check and */ |
| /* so must be denormalized. */ |
| fg_flag = 1; |
| } |
| } |
| |
| return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); |
| } |
| |
| uint32_t helper_ftsqrt(uint64_t frb) |
| { |
| int fe_flag = 0; |
| int fg_flag = 0; |
| |
| if (unlikely(float64_is_infinity(frb) || float64_is_zero(frb))) { |
| fe_flag = 1; |
| fg_flag = 1; |
| } else { |
| int e_b = ppc_float64_get_unbiased_exp(frb); |
| |
| if (unlikely(float64_is_any_nan(frb))) { |
| fe_flag = 1; |
| } else if (unlikely(float64_is_zero(frb))) { |
| fe_flag = 1; |
| } else if (unlikely(float64_is_neg(frb))) { |
| fe_flag = 1; |
| } else if (!float64_is_zero(frb) && (e_b <= (-1022 + 52))) { |
| fe_flag = 1; |
| } |
| |
| if (unlikely(float64_is_zero_or_denormal(frb))) { |
| /* XB is not zero because of the above check and */ |
| /* therefore must be denormalized. */ |
| fg_flag = 1; |
| } |
| } |
| |
| return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); |
| } |
| |
| void helper_fcmpu(CPUPPCState *env, uint64_t arg1, uint64_t arg2, |
| uint32_t crfD) |
| { |
| CPU_DoubleU farg1, farg2; |
| uint32_t ret = 0; |
| |
| farg1.ll = arg1; |
| farg2.ll = arg2; |
| |
| if (unlikely(float64_is_any_nan(farg1.d) || |
| float64_is_any_nan(farg2.d))) { |
| ret = 0x01UL; |
| } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) { |
| ret = 0x08UL; |
| } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) { |
| ret = 0x04UL; |
| } else { |
| ret = 0x02UL; |
| } |
| |
| env->fpscr &= ~FP_FPCC; |
| env->fpscr |= ret << FPSCR_FPCC; |
| env->crf[crfD] = ret; |
| if (unlikely(ret == 0x01UL |
| && (float64_is_signaling_nan(farg1.d, &env->fp_status) || |
| float64_is_signaling_nan(farg2.d, &env->fp_status)))) { |
| /* sNaN comparison */ |
| float_invalid_op_vxsnan(env, GETPC()); |
| } |
| } |
| |
| void helper_fcmpo(CPUPPCState *env, uint64_t arg1, uint64_t arg2, |
| uint32_t crfD) |
| { |
| CPU_DoubleU farg1, farg2; |
| uint32_t ret = 0; |
| |
| farg1.ll = arg1; |
| farg2.ll = arg2; |
| |
| if (unlikely(float64_is_any_nan(farg1.d) || |
| float64_is_any_nan(farg2.d))) { |
| ret = 0x01UL; |
| } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) { |
| ret = 0x08UL; |
| } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) { |
| ret = 0x04UL; |
| } else { |
| ret = 0x02UL; |
| } |
| |
| env->fpscr &= ~FP_FPCC; |
| env->fpscr |= ret << FPSCR_FPCC; |
| env->crf[crfD] = (uint32_t) ret; |
| if (unlikely(ret == 0x01UL)) { |
| float_invalid_op_vxvc(env, 1, GETPC()); |
| if (float64_is_signaling_nan(farg1.d, &env->fp_status) || |
| float64_is_signaling_nan(farg2.d, &env->fp_status)) { |
| /* sNaN comparison */ |
| float_invalid_op_vxsnan(env, GETPC()); |
| } |
| } |
| } |
| |
| /* Single-precision floating-point conversions */ |
| static inline uint32_t efscfsi(CPUPPCState *env, uint32_t val) |
| { |
| CPU_FloatU u; |
| |
| u.f = int32_to_float32(val, &env->vec_status); |
| |
| return u.l; |
| } |
| |
| static inline uint32_t efscfui(CPUPPCState *env, uint32_t val) |
| { |
| CPU_FloatU u; |
| |
| u.f = uint32_to_float32(val, &env->vec_status); |
| |
| return u.l; |
| } |
| |
| static inline int32_t efsctsi(CPUPPCState *env, uint32_t val) |
| { |
| CPU_FloatU u; |
| |
| u.l = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) { |
| return 0; |
| } |
| |
| return float32_to_int32(u.f, &env->vec_status); |
| } |
| |
| static inline uint32_t efsctui(CPUPPCState *env, uint32_t val) |
| { |
| CPU_FloatU u; |
| |
| u.l = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) { |
| return 0; |
| } |
| |
| return float32_to_uint32(u.f, &env->vec_status); |
| } |
| |
| static inline uint32_t efsctsiz(CPUPPCState *env, uint32_t val) |
| { |
| CPU_FloatU u; |
| |
| u.l = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) { |
| return 0; |
| } |
| |
| return float32_to_int32_round_to_zero(u.f, &env->vec_status); |
| } |
| |
| static inline uint32_t efsctuiz(CPUPPCState *env, uint32_t val) |
| { |
| CPU_FloatU u; |
| |
| u.l = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) { |
| return 0; |
| } |
| |
| return float32_to_uint32_round_to_zero(u.f, &env->vec_status); |
| } |
| |
| static inline uint32_t efscfsf(CPUPPCState *env, uint32_t val) |
| { |
| CPU_FloatU u; |
| float32 tmp; |
| |
| u.f = int32_to_float32(val, &env->vec_status); |
| tmp = int64_to_float32(1ULL << 32, &env->vec_status); |
| u.f = float32_div(u.f, tmp, &env->vec_status); |
| |
| return u.l; |
| } |
| |
| static inline uint32_t efscfuf(CPUPPCState *env, uint32_t val) |
| { |
| CPU_FloatU u; |
| float32 tmp; |
| |
| u.f = uint32_to_float32(val, &env->vec_status); |
| tmp = uint64_to_float32(1ULL << 32, &env->vec_status); |
| u.f = float32_div(u.f, tmp, &env->vec_status); |
| |
| return u.l; |
| } |
| |
| static inline uint32_t efsctsf(CPUPPCState *env, uint32_t val) |
| { |
| CPU_FloatU u; |
| float32 tmp; |
| |
| u.l = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) { |
| return 0; |
| } |
| tmp = uint64_to_float32(1ULL << 32, &env->vec_status); |
| u.f = float32_mul(u.f, tmp, &env->vec_status); |
| |
| return float32_to_int32(u.f, &env->vec_status); |
| } |
| |
| static inline uint32_t efsctuf(CPUPPCState *env, uint32_t val) |
| { |
| CPU_FloatU u; |
| float32 tmp; |
| |
| u.l = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) { |
| return 0; |
| } |
| tmp = uint64_to_float32(1ULL << 32, &env->vec_status); |
| u.f = float32_mul(u.f, tmp, &env->vec_status); |
| |
| return float32_to_uint32(u.f, &env->vec_status); |
| } |
| |
| #define HELPER_SPE_SINGLE_CONV(name) \ |
| uint32_t helper_e##name(CPUPPCState *env, uint32_t val) \ |
| { \ |
| return e##name(env, val); \ |
| } |
| /* efscfsi */ |
| HELPER_SPE_SINGLE_CONV(fscfsi); |
| /* efscfui */ |
| HELPER_SPE_SINGLE_CONV(fscfui); |
| /* efscfuf */ |
| HELPER_SPE_SINGLE_CONV(fscfuf); |
| /* efscfsf */ |
| HELPER_SPE_SINGLE_CONV(fscfsf); |
| /* efsctsi */ |
| HELPER_SPE_SINGLE_CONV(fsctsi); |
| /* efsctui */ |
| HELPER_SPE_SINGLE_CONV(fsctui); |
| /* efsctsiz */ |
| HELPER_SPE_SINGLE_CONV(fsctsiz); |
| /* efsctuiz */ |
| HELPER_SPE_SINGLE_CONV(fsctuiz); |
| /* efsctsf */ |
| HELPER_SPE_SINGLE_CONV(fsctsf); |
| /* efsctuf */ |
| HELPER_SPE_SINGLE_CONV(fsctuf); |
| |
| #define HELPER_SPE_VECTOR_CONV(name) \ |
| uint64_t helper_ev##name(CPUPPCState *env, uint64_t val) \ |
| { \ |
| return ((uint64_t)e##name(env, val >> 32) << 32) | \ |
| (uint64_t)e##name(env, val); \ |
| } |
| /* evfscfsi */ |
| HELPER_SPE_VECTOR_CONV(fscfsi); |
| /* evfscfui */ |
| HELPER_SPE_VECTOR_CONV(fscfui); |
| /* evfscfuf */ |
| HELPER_SPE_VECTOR_CONV(fscfuf); |
| /* evfscfsf */ |
| HELPER_SPE_VECTOR_CONV(fscfsf); |
| /* evfsctsi */ |
| HELPER_SPE_VECTOR_CONV(fsctsi); |
| /* evfsctui */ |
| HELPER_SPE_VECTOR_CONV(fsctui); |
| /* evfsctsiz */ |
| HELPER_SPE_VECTOR_CONV(fsctsiz); |
| /* evfsctuiz */ |
| HELPER_SPE_VECTOR_CONV(fsctuiz); |
| /* evfsctsf */ |
| HELPER_SPE_VECTOR_CONV(fsctsf); |
| /* evfsctuf */ |
| HELPER_SPE_VECTOR_CONV(fsctuf); |
| |
| /* Single-precision floating-point arithmetic */ |
| static inline uint32_t efsadd(CPUPPCState *env, uint32_t op1, uint32_t op2) |
| { |
| CPU_FloatU u1, u2; |
| |
| u1.l = op1; |
| u2.l = op2; |
| u1.f = float32_add(u1.f, u2.f, &env->vec_status); |
| return u1.l; |
| } |
| |
| static inline uint32_t efssub(CPUPPCState *env, uint32_t op1, uint32_t op2) |
| { |
| CPU_FloatU u1, u2; |
| |
| u1.l = op1; |
| u2.l = op2; |
| u1.f = float32_sub(u1.f, u2.f, &env->vec_status); |
| return u1.l; |
| } |
| |
| static inline uint32_t efsmul(CPUPPCState *env, uint32_t op1, uint32_t op2) |
| { |
| CPU_FloatU u1, u2; |
| |
| u1.l = op1; |
| u2.l = op2; |
| u1.f = float32_mul(u1.f, u2.f, &env->vec_status); |
| return u1.l; |
| } |
| |
| static inline uint32_t efsdiv(CPUPPCState *env, uint32_t op1, uint32_t op2) |
| { |
| CPU_FloatU u1, u2; |
| |
| u1.l = op1; |
| u2.l = op2; |
| u1.f = float32_div(u1.f, u2.f, &env->vec_status); |
| return u1.l; |
| } |
| |
| #define HELPER_SPE_SINGLE_ARITH(name) \ |
| uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \ |
| { \ |
| return e##name(env, op1, op2); \ |
| } |
| /* efsadd */ |
| HELPER_SPE_SINGLE_ARITH(fsadd); |
| /* efssub */ |
| HELPER_SPE_SINGLE_ARITH(fssub); |
| /* efsmul */ |
| HELPER_SPE_SINGLE_ARITH(fsmul); |
| /* efsdiv */ |
| HELPER_SPE_SINGLE_ARITH(fsdiv); |
| |
| #define HELPER_SPE_VECTOR_ARITH(name) \ |
| uint64_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \ |
| { \ |
| return ((uint64_t)e##name(env, op1 >> 32, op2 >> 32) << 32) | \ |
| (uint64_t)e##name(env, op1, op2); \ |
| } |
| /* evfsadd */ |
| HELPER_SPE_VECTOR_ARITH(fsadd); |
| /* evfssub */ |
| HELPER_SPE_VECTOR_ARITH(fssub); |
| /* evfsmul */ |
| HELPER_SPE_VECTOR_ARITH(fsmul); |
| /* evfsdiv */ |
| HELPER_SPE_VECTOR_ARITH(fsdiv); |
| |
| /* Single-precision floating-point comparisons */ |
| static inline uint32_t efscmplt(CPUPPCState *env, uint32_t op1, uint32_t op2) |
| { |
| CPU_FloatU u1, u2; |
| |
| u1.l = op1; |
| u2.l = op2; |
| return float32_lt(u1.f, u2.f, &env->vec_status) ? 4 : 0; |
| } |
| |
| static inline uint32_t efscmpgt(CPUPPCState *env, uint32_t op1, uint32_t op2) |
| { |
| CPU_FloatU u1, u2; |
| |
| u1.l = op1; |
| u2.l = op2; |
| return float32_le(u1.f, u2.f, &env->vec_status) ? 0 : 4; |
| } |
| |
| static inline uint32_t efscmpeq(CPUPPCState *env, uint32_t op1, uint32_t op2) |
| { |
| CPU_FloatU u1, u2; |
| |
| u1.l = op1; |
| u2.l = op2; |
| return float32_eq(u1.f, u2.f, &env->vec_status) ? 4 : 0; |
| } |
| |
| static inline uint32_t efststlt(CPUPPCState *env, uint32_t op1, uint32_t op2) |
| { |
| /* XXX: TODO: ignore special values (NaN, infinites, ...) */ |
| return efscmplt(env, op1, op2); |
| } |
| |
| static inline uint32_t efststgt(CPUPPCState *env, uint32_t op1, uint32_t op2) |
| { |
| /* XXX: TODO: ignore special values (NaN, infinites, ...) */ |
| return efscmpgt(env, op1, op2); |
| } |
| |
| static inline uint32_t efststeq(CPUPPCState *env, uint32_t op1, uint32_t op2) |
| { |
| /* XXX: TODO: ignore special values (NaN, infinites, ...) */ |
| return efscmpeq(env, op1, op2); |
| } |
| |
| #define HELPER_SINGLE_SPE_CMP(name) \ |
| uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \ |
| { \ |
| return e##name(env, op1, op2); \ |
| } |
| /* efststlt */ |
| HELPER_SINGLE_SPE_CMP(fststlt); |
| /* efststgt */ |
| HELPER_SINGLE_SPE_CMP(fststgt); |
| /* efststeq */ |
| HELPER_SINGLE_SPE_CMP(fststeq); |
| /* efscmplt */ |
| HELPER_SINGLE_SPE_CMP(fscmplt); |
| /* efscmpgt */ |
| HELPER_SINGLE_SPE_CMP(fscmpgt); |
| /* efscmpeq */ |
| HELPER_SINGLE_SPE_CMP(fscmpeq); |
| |
| static inline uint32_t evcmp_merge(int t0, int t1) |
| { |
| return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1); |
| } |
| |
| #define HELPER_VECTOR_SPE_CMP(name) \ |
| uint32_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \ |
| { \ |
| return evcmp_merge(e##name(env, op1 >> 32, op2 >> 32), \ |
| e##name(env, op1, op2)); \ |
| } |
| /* evfststlt */ |
| HELPER_VECTOR_SPE_CMP(fststlt); |
| /* evfststgt */ |
| HELPER_VECTOR_SPE_CMP(fststgt); |
| /* evfststeq */ |
| HELPER_VECTOR_SPE_CMP(fststeq); |
| /* evfscmplt */ |
| HELPER_VECTOR_SPE_CMP(fscmplt); |
| /* evfscmpgt */ |
| HELPER_VECTOR_SPE_CMP(fscmpgt); |
| /* evfscmpeq */ |
| HELPER_VECTOR_SPE_CMP(fscmpeq); |
| |
| /* Double-precision floating-point conversion */ |
| uint64_t helper_efdcfsi(CPUPPCState *env, uint32_t val) |
| { |
| CPU_DoubleU u; |
| |
| u.d = int32_to_float64(val, &env->vec_status); |
| |
| return u.ll; |
| } |
| |
| uint64_t helper_efdcfsid(CPUPPCState *env, uint64_t val) |
| { |
| CPU_DoubleU u; |
| |
| u.d = int64_to_float64(val, &env->vec_status); |
| |
| return u.ll; |
| } |
| |
| uint64_t helper_efdcfui(CPUPPCState *env, uint32_t val) |
| { |
| CPU_DoubleU u; |
| |
| u.d = uint32_to_float64(val, &env->vec_status); |
| |
| return u.ll; |
| } |
| |
| uint64_t helper_efdcfuid(CPUPPCState *env, uint64_t val) |
| { |
| CPU_DoubleU u; |
| |
| u.d = uint64_to_float64(val, &env->vec_status); |
| |
| return u.ll; |
| } |
| |
| uint32_t helper_efdctsi(CPUPPCState *env, uint64_t val) |
| { |
| CPU_DoubleU u; |
| |
| u.ll = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(float64_is_any_nan(u.d))) { |
| return 0; |
| } |
| |
| return float64_to_int32(u.d, &env->vec_status); |
| } |
| |
| uint32_t helper_efdctui(CPUPPCState *env, uint64_t val) |
| { |
| CPU_DoubleU u; |
| |
| u.ll = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(float64_is_any_nan(u.d))) { |
| return 0; |
| } |
| |
| return float64_to_uint32(u.d, &env->vec_status); |
| } |
| |
| uint32_t helper_efdctsiz(CPUPPCState *env, uint64_t val) |
| { |
| CPU_DoubleU u; |
| |
| u.ll = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(float64_is_any_nan(u.d))) { |
| return 0; |
| } |
| |
| return float64_to_int32_round_to_zero(u.d, &env->vec_status); |
| } |
| |
| uint64_t helper_efdctsidz(CPUPPCState *env, uint64_t val) |
| { |
| CPU_DoubleU u; |
| |
| u.ll = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(float64_is_any_nan(u.d))) { |
| return 0; |
| } |
| |
| return float64_to_int64_round_to_zero(u.d, &env->vec_status); |
| } |
| |
| uint32_t helper_efdctuiz(CPUPPCState *env, uint64_t val) |
| { |
| CPU_DoubleU u; |
| |
| u.ll = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(float64_is_any_nan(u.d))) { |
| return 0; |
| } |
| |
| return float64_to_uint32_round_to_zero(u.d, &env->vec_status); |
| } |
| |
| uint64_t helper_efdctuidz(CPUPPCState *env, uint64_t val) |
| { |
| CPU_DoubleU u; |
| |
| u.ll = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(float64_is_any_nan(u.d))) { |
| return 0; |
| } |
| |
| return float64_to_uint64_round_to_zero(u.d, &env->vec_status); |
| } |
| |
| uint64_t helper_efdcfsf(CPUPPCState *env, uint32_t val) |
| { |
| CPU_DoubleU u; |
| float64 tmp; |
| |
| u.d = int32_to_float64(val, &env->vec_status); |
| tmp = int64_to_float64(1ULL << 32, &env->vec_status); |
| u.d = float64_div(u.d, tmp, &env->vec_status); |
| |
| return u.ll; |
| } |
| |
| uint64_t helper_efdcfuf(CPUPPCState *env, uint32_t val) |
| { |
| CPU_DoubleU u; |
| float64 tmp; |
| |
| u.d = uint32_to_float64(val, &env->vec_status); |
| tmp = int64_to_float64(1ULL << 32, &env->vec_status); |
| u.d = float64_div(u.d, tmp, &env->vec_status); |
| |
| return u.ll; |
| } |
| |
| uint32_t helper_efdctsf(CPUPPCState *env, uint64_t val) |
| { |
| CPU_DoubleU u; |
| float64 tmp; |
| |
| u.ll = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(float64_is_any_nan(u.d))) { |
| return 0; |
| } |
| tmp = uint64_to_float64(1ULL << 32, &env->vec_status); |
| u.d = float64_mul(u.d, tmp, &env->vec_status); |
| |
| return float64_to_int32(u.d, &env->vec_status); |
| } |
| |
| uint32_t helper_efdctuf(CPUPPCState *env, uint64_t val) |
| { |
| CPU_DoubleU u; |
| float64 tmp; |
| |
| u.ll = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(float64_is_any_nan(u.d))) { |
| return 0; |
| } |
| tmp = uint64_to_float64(1ULL << 32, &env->vec_status); |
| u.d = float64_mul(u.d, tmp, &env->vec_status); |
| |
| return float64_to_uint32(u.d, &env->vec_status); |
| } |
| |
| uint32_t helper_efscfd(CPUPPCState *env, uint64_t val) |
| { |
| CPU_DoubleU u1; |
| CPU_FloatU u2; |
| |
| u1.ll = val; |
| u2.f = float64_to_float32(u1.d, &env->vec_status); |
| |
| return u2.l; |
| } |
| |
| uint64_t helper_efdcfs(CPUPPCState *env, uint32_t val) |
| { |
| CPU_DoubleU u2; |
| CPU_FloatU u1; |
| |
| u1.l = val; |
| u2.d = float32_to_float64(u1.f, &env->vec_status); |
| |
| return u2.ll; |
| } |
| |
| /* Double precision fixed-point arithmetic */ |
| uint64_t helper_efdadd(CPUPPCState *env, uint64_t op1, uint64_t op2) |
| { |
| CPU_DoubleU u1, u2; |
| |
| u1.ll = op1; |
| u2.ll = op2; |
| u1.d = float64_add(u1.d, u2.d, &env->vec_status); |
| return u1.ll; |
| } |
| |
| uint64_t helper_efdsub(CPUPPCState *env, uint64_t op1, uint64_t op2) |
| { |
| CPU_DoubleU u1, u2; |
| |
| u1.ll = op1; |
| u2.ll = op2; |
| u1.d = float64_sub(u1.d, u2.d, &env->vec_status); |
| return u1.ll; |
| } |
| |
| uint64_t helper_efdmul(CPUPPCState *env, uint64_t op1, uint64_t op2) |
| { |
| CPU_DoubleU u1, u2; |
| |
| u1.ll = op1; |
| u2.ll = op2; |
| u1.d = float64_mul(u1.d, u2.d, &env->vec_status); |
| return u1.ll; |
| } |
| |
| uint64_t helper_efddiv(CPUPPCState *env, uint64_t op1, uint64_t op2) |
| { |
| CPU_DoubleU u1, u2; |
| |
| u1.ll = op1; |
| u2.ll = op2; |
| u1.d = float64_div(u1.d, u2.d, &env->vec_status); |
| return u1.ll; |
| } |
| |
| /* Double precision floating point helpers */ |
| uint32_t helper_efdtstlt(CPUPPCState *env, uint64_t op1, uint64_t op2) |
| { |
| CPU_DoubleU u1, u2; |
| |
| u1.ll = op1; |
| u2.ll = op2; |
| return float64_lt(u1.d, u2.d, &env->vec_status) ? 4 : 0; |
| } |
| |
| uint32_t helper_efdtstgt(CPUPPCState *env, uint64_t op1, uint64_t op2) |
| { |
| CPU_DoubleU u1, u2; |
| |
| u1.ll = op1; |
| u2.ll = op2; |
| return float64_le(u1.d, u2.d, &env->vec_status) ? 0 : 4; |
| } |
| |
| uint32_t helper_efdtsteq(CPUPPCState *env, uint64_t op1, uint64_t op2) |
| { |
| CPU_DoubleU u1, u2; |
| |
| u1.ll = op1; |
| u2.ll = op2; |
| return float64_eq_quiet(u1.d, u2.d, &env->vec_status) ? 4 : 0; |
| } |
| |
| uint32_t helper_efdcmplt(CPUPPCState *env, uint64_t op1, uint64_t op2) |
| { |
| /* XXX: TODO: test special values (NaN, infinites, ...) */ |
| return helper_efdtstlt(env, op1, op2); |
| } |
| |
| uint32_t helper_efdcmpgt(CPUPPCState *env, uint64_t op1, uint64_t op2) |
| { |
| /* XXX: TODO: test special values (NaN, infinites, ...) */ |
| return helper_efdtstgt(env, op1, op2); |
| } |
| |
| uint32_t helper_efdcmpeq(CPUPPCState *env, uint64_t op1, uint64_t op2) |
| { |
| /* XXX: TODO: test special values (NaN, infinites, ...) */ |
| return helper_efdtsteq(env, op1, op2); |
| } |
| |
| #define float64_to_float64(x, env) x |
| |
| |
| /* |
| * VSX_ADD_SUB - VSX floating point add/subract |
| * name - instruction mnemonic |
| * op - operation (add or sub) |
| * nels - number of elements (1, 2 or 4) |
| * tp - type (float32 or float64) |
| * fld - vsr_t field (VsrD(*) or VsrW(*)) |
| * sfprf - set FPRF |
| */ |
| #define VSX_ADD_SUB(name, op, nels, tp, fld, sfprf, r2sp) \ |
| void helper_##name(CPUPPCState *env, ppc_vsr_t *xt, \ |
| ppc_vsr_t *xa, ppc_vsr_t *xb) \ |
| { \ |
| ppc_vsr_t t = *xt; \ |
| int i; \ |
| \ |
| helper_reset_fpstatus(env); \ |
| \ |
| for (i = 0; i < nels; i++) { \ |
| float_status tstat = env->fp_status; \ |
| set_float_exception_flags(0, &tstat); \ |
| t.fld = tp##_##op(xa->fld, xb->fld, &tstat); \ |
| env->fp_status.float_exception_flags |= tstat.float_exception_flags; \ |
| \ |
| if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \ |
| float_invalid_op_addsub(env, sfprf, GETPC(), \ |
| tp##_classify(xa->fld) | \ |
| tp##_classify(xb->fld)); \ |
| } \ |
| \ |
| if (r2sp) { \ |
| t.fld = helper_frsp(env, t.fld); \ |
| } \ |
| \ |
| if (sfprf) { \ |
| helper_compute_fprf_float64(env, t.fld); \ |
| } \ |
| } \ |
| *xt = t; \ |
| do_float_check_status(env, GETPC()); \ |
| } |
| |
| VSX_ADD_SUB(xsadddp, add, 1, float64, VsrD(0), 1, 0) |
| VSX_ADD_SUB(xsaddsp, add, 1, float64, VsrD(0), 1, 1) |
| VSX_ADD_SUB(xvadddp, add, 2, float64, VsrD(i), 0, 0) |
| VSX_ADD_SUB(xvaddsp, add, 4, float32, VsrW(i), 0, 0) |
| VSX_ADD_SUB(xssubdp, sub, 1, float64, VsrD(0), 1, 0) |
| VSX_ADD_SUB(xssubsp, sub, 1, float64, VsrD(0), 1, 1) |
| VSX_ADD_SUB(xvsubdp, sub, 2, float64, VsrD(i), 0, 0) |
| VSX_ADD_SUB(xvsubsp, sub, 4, float32, VsrW(i), 0, 0) |
| |
| void helper_xsaddqp(CPUPPCState *env, uint32_t opcode, |
| ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb) |
| { |
| ppc_vsr_t t = *xt; |
| float_status tstat; |
| |
| helper_reset_fpstatus(env); |
| |
| tstat = env->fp_status; |
| if (unlikely(Rc(opcode) != 0)) { |
| tstat.float_rounding_mode = float_round_to_odd; |
| } |
| |
| set_float_exception_flags(0, &tstat); |
| t.f128 = float128_add(xa->f128, xb->f128, &tstat); |
| env->fp_status.float_exception_flags |= tstat.float_exception_flags; |
| |
| if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { |
| float_invalid_op_addsub(env, 1, GETPC(), |
| float128_classify(xa->f128) | |
| float128_classify(xb->f128)); |
| } |
| |
| helper_compute_fprf_float128(env, t.f128); |
| |
| *xt = t; |
| do_float_check_status(env, GETPC()); |
| } |
| |
| /* |
| * VSX_MUL - VSX floating point multiply |
| * op - instruction mnemonic |
| * nels - number of elements (1, 2 or 4) |
| * tp - type (float32 or float64) |
| * fld - vsr_t field (VsrD(*) or VsrW(*)) |
| * sfprf - set FPRF |
| */ |
| #define VSX_MUL(op, nels, tp, fld, sfprf, r2sp) \ |
| void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \ |
| ppc_vsr_t *xa, ppc_vsr_t *xb) \ |
| { \ |
| ppc_vsr_t t = *xt; \ |
| int i; \ |
| \ |
| helper_reset_fpstatus(env); \ |
| \ |
| for (i = 0; i < nels; i++) { \ |
| float_status tstat = env->fp_status; \ |
| set_float_exception_flags(0, &tstat); \ |
| t.fld = tp##_mul(xa->fld, xb->fld, &tstat); \ |
| env->fp_status.float_exception_flags |= tstat.float_exception_flags; \ |
| \ |
| if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \ |
| float_invalid_op_mul(env, sfprf, GETPC(), \ |
| tp##_classify(xa->fld) | \ |
| tp##_classify(xb->fld)); \ |
| } \ |
| \ |
| if (r2sp) { \ |
| t.fld = helper_frsp(env, t.fld); \ |
| } \ |
| \ |
| if (sfprf) { \ |
| helper_compute_fprf_float64(env, t.fld); \ |
| } \ |
| } \ |
| \ |
| *xt = t; \ |
| do_float_check_status(env, GETPC()); \ |
| } |
| |
| VSX_MUL(xsmuldp, 1, float64, VsrD(0), 1, 0) |
| VSX_MUL(xsmulsp, 1, float64, VsrD(0), 1, 1) |
| VSX_MUL(xvmuldp, 2, float64, VsrD(i), 0, 0) |
| VSX_MUL(xvmulsp, 4, float32, VsrW(i), 0, 0) |
| |
| void helper_xsmulqp(CPUPPCState *env, uint32_t opcode, |
| ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb) |
| { |
| ppc_vsr_t t = *xt; |
| float_status tstat; |
| |
| helper_reset_fpstatus(env); |
| tstat = env->fp_status; |
| if (unlikely(Rc(opcode) != 0)) { |
| tstat.float_rounding_mode = float_round_to_odd; |
| } |
| |
| set_float_exception_flags(0, &tstat); |
| t.f128 = float128_mul(xa->f128, xb->f128, &tstat); |
| env->fp_status.float_exception_flags |= tstat.float_exception_flags; |
| |
| if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { |
| float_invalid_op_mul(env, 1, GETPC(), |
| float128_classify(xa->f128) | |
| float128_classify(xb->f128)); |
| } |
| helper_compute_fprf_float128(env, t.f128); |
| |
| *xt = t; |
| do_float_check_status(env, GETPC()); |
| } |
| |
| /* |
| * VSX_DIV - VSX floating point divide |
| * op - instruction mnemonic |
| * nels - number of elements (1, 2 or 4) |
| * tp - type (float32 or float64) |
| * fld - vsr_t field (VsrD(*) or VsrW(*)) |
| * sfprf - set FPRF |
| */ |
| #define VSX_DIV(op, nels, tp, fld, sfprf, r2sp) \ |
| void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \ |
| ppc_vsr_t *xa, ppc_vsr_t *xb) \ |
| { \ |
| ppc_vsr_t t = *xt; \ |
| int i; \ |
| \ |
| helper_reset_fpstatus(env); \ |
| \ |
| for (i = 0; i < nels; i++) { \ |
| float_status tstat = env->fp_status; \ |
| set_float_exception_flags(0, &tstat); \ |
| t.fld = tp##_div(xa->fld, xb->fld, &tstat); \ |
| env->fp_status.float_exception_flags |= tstat.float_exception_flags; \ |
| \ |
| if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \ |
| float_invalid_op_div(env, sfprf, GETPC(), \ |
| tp##_classify(xa->fld) | \ |
| tp##_classify(xb->fld)); \ |
| } \ |
| if (unlikely(tstat.float_exception_flags & float_flag_divbyzero)) { \ |
| float_zero_divide_excp(env, GETPC()); \ |
| } \ |
| \ |
| if (r2sp) { \ |
| t.fld = helper_frsp(env, t.fld); \ |
| } \ |
| \ |
| if (sfprf) { \ |
| helper_compute_fprf_float64(env, t.fld); \ |
| } \ |
| } \ |
| \ |
| *xt = t; \ |
| do_float_check_status(env, GETPC()); \ |
| } |
| |
| VSX_DIV(xsdivdp, 1, float64, VsrD(0), 1, 0) |
| VSX_DIV(xsdivsp, 1, float64, VsrD(0), 1, 1) |
| VSX_DIV(xvdivdp, 2, float64, VsrD(i), 0, 0) |
| VSX_DIV(xvdivsp, 4, float32, VsrW(i), 0, 0) |
| |
| void helper_xsdivqp(CPUPPCState *env, uint32_t opcode, |
| ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb) |
| { |
| ppc_vsr_t t = *xt; |
| float_status tstat; |
| |
| helper_reset_fpstatus(env); |
| tstat = env->fp_status; |
| if (unlikely(Rc(opcode) != 0)) { |
| tstat.float_rounding_mode = float_round_to_odd; |
| } |
| |
| set_float_exception_flags(0, &tstat); |
| t.f128 = float128_div(xa->f128, xb->f128, &tstat); |
| env->fp_status.float_exception_flags |= tstat.float_exception_flags; |
| |
| if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { |
| float_invalid_op_div(env, 1, GETPC(), |
| float128_classify(xa->f128) | |
| float128_classify(xb->f128)); |
| } |
| if (unlikely(tstat.float_exception_flags & float_flag_divbyzero)) { |
| float_zero_divide_excp(env, GETPC()); |
| } |
| |
| helper_compute_fprf_float128(env, t.f128); |
| *xt = t; |
| do_float_check_status(env, GETPC()); |
| } |
| |
| /* |
| * VSX_RE - VSX floating point reciprocal estimate |
| * op - instruction mnemonic |
| * nels - number of elements (1, 2 or 4) |
| * tp - type (float32 or float64) |
| * fld - vsr_t field (VsrD(*) or VsrW(*)) |
| * sfprf - set FPRF |
| */ |
| #define VSX_RE(op, nels, tp, fld, sfprf, r2sp) \ |
| void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \ |
| { \ |
| ppc_vsr_t t = *xt; \ |
| int i; \ |
| \ |
| helper_reset_fpstatus(env); \ |
| \ |
| for (i = 0; i < nels; i++) { \ |
| if (unlikely(tp##_is_signaling_nan(xb->fld, &env->fp_status))) { \ |
| float_invalid_op_vxsnan(env, GETPC()); \ |
| } \ |
| t.fld = tp##_div(tp##_one, xb->fld, &env->fp_status); \ |
| \ |
| if (r2sp) { \ |
| t.fld = helper_frsp(env, t.fld); \ |
| } \ |
| \ |
| if (sfprf) { \ |
| helper_compute_fprf_float64(env, t.fld); \ |
| } \ |
| } \ |
| \ |
| *xt = t; \ |
| do_float_check_status(env, GETPC()); \ |
| } |
| |
| VSX_RE(xsredp, 1, float64, VsrD(0), 1, 0) |
| VSX_RE(xsresp, 1, float64, VsrD(0), 1, 1) |
| VSX_RE(xvredp, 2, float64, VsrD(i), 0, 0) |
| VSX_RE(xvresp, 4, float32, VsrW(i), 0, 0) |
| |
| /* |
| * VSX_SQRT - VSX floating point square root |
| * op - instruction mnemonic |
| * nels - number of elements (1, 2 or 4) |
| * tp - type (float32 or float64) |
| * fld - vsr_t field (VsrD(*) or VsrW(*)) |
| * sfprf - set FPRF |
| */ |
| #define VSX_SQRT(op, nels, tp, fld, sfprf, r2sp) \ |
| void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \ |
| { \ |
| ppc_vsr_t t = *xt; \ |
| int i; \ |
| \ |
| helper_reset_fpstatus(env); \ |
| \ |
| for (i = 0; i < nels; i++) { \ |
| float_status tstat = env->fp_status; \ |
| set_float_exception_flags(0, &tstat); \ |
| t.fld = tp##_sqrt(xb->fld, &tstat); \ |
| env->fp_status.float_exception_flags |= tstat.float_exception_flags; \ |
| \ |
| if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \ |
| if (tp##_is_neg(xb->fld) && !tp##_is_zero(xb->fld)) { \ |
| float_invalid_op_vxsqrt(env, sfprf, GETPC()); \ |
| } else if (tp##_is_signaling_nan(xb->fld, &tstat)) { \ |
| float_invalid_op_vxsnan(env, GETPC()); \ |
| } \ |
| } \ |
| \ |
| if (r2sp) { \ |
| t.fld = helper_frsp(env, t.fld); \ |
| } \ |
| \ |
| if (sfprf) { \ |
| helper_compute_fprf_float64(env, t.fld); \ |
| } \ |
| } \ |
| \ |
| *xt = t; \ |
| do_float_check_status(env, GETPC()); \ |
| } |
| |
| VSX_SQRT(xssqrtdp, 1, float64, VsrD(0), 1, 0) |
| VSX_SQRT(xssqrtsp, 1, float64, VsrD(0), 1, 1) |
| VSX_SQRT(xvsqrtdp, 2, float64, VsrD(i), 0, 0) |
| VSX_SQRT(xvsqrtsp, 4, float32, VsrW(i), 0, 0) |
| |
| /* |
| *VSX_RSQRTE - VSX floating point reciprocal square root estimate |
| * op - instruction mnemonic |
| * nels - number of elements (1, 2 or 4) |
| * tp - type (float32 or float64) |
| * fld - vsr_t field (VsrD(*) or VsrW(*)) |
| * sfprf - set FPRF |
| */ |
| #define VSX_RSQRTE(op, nels, tp, fld, sfprf, r2sp) \ |
| void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \ |
| { \ |
| ppc_vsr_t t = *xt; \ |
| int i; \ |
| \ |
| helper_reset_fpstatus(env); \ |
| \ |
| for (i = 0; i < nels; i++) { \ |
| float_status tstat = env->fp_status; \ |
| set_float_exception_flags(0, &tstat); \ |
| t.fld = tp##_sqrt(xb->fld, &tstat); \ |
| t.fld = tp##_div(tp##_one, t.fld, &tstat); \ |
| env->fp_status.float_exception_flags |= tstat.float_exception_flags; \ |
| \ |
| if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \ |
| if (tp##_is_neg(xb->fld) && !tp##_is_zero(xb->fld)) { \ |
| float_invalid_op_vxsqrt(env, sfprf, GETPC()); \ |
| } else if (tp##_is_signaling_nan(xb->fld, &tstat)) { \ |
| float_invalid_op_vxsnan(env, GETPC()); \ |
| } \ |
| } \ |
| \ |
| if (r2sp) { \ |
| t.fld = helper_frsp(env, t.fld); \ |
| } \ |
| \ |
| if (sfprf) { \ |
| helper_compute_fprf_float64(env, t.fld); \ |
| } \ |
| } \ |
| \ |
| *xt = t; \ |
| do_float_check_status(env, GETPC()); \ |
| } |
| |
| VSX_RSQRTE(xsrsqrtedp, 1, float64, VsrD(0), 1, 0) |
| VSX_RSQRTE(xsrsqrtesp, 1, float64, VsrD(0), 1, 1) |
| VSX_RSQRTE(xvrsqrtedp, 2, float64, VsrD(i), 0, 0) |
| VSX_RSQRTE(xvrsqrtesp, 4, float32, VsrW(i), 0, 0) |
| |
| /* |
| * VSX_TDIV - VSX floating point test for divide |
| * op - instruction mnemonic |
| * nels - number of elements (1, 2 or 4) |
| * tp - type (float32 or float64) |
| * fld - vsr_t field (VsrD(*) or VsrW(*)) |
| * emin - minimum unbiased exponent |
| * emax - maximum unbiased exponent |
| * nbits - number of fraction bits |
| */ |
| #define VSX_TDIV(op, nels, tp, fld, emin, emax, nbits) \ |
| void helper_##op(CPUPPCState *env, uint32_t opcode, \ |
| ppc_vsr_t *xa, ppc_vsr_t *xb) \ |
| { \ |
| int i; \ |
| int fe_flag = 0; \ |
| int fg_flag = 0; \ |
| \ |
| for (i = 0; i < nels; i++) { \ |
| if (unlikely(tp##_is_infinity(xa->fld) || \ |
| tp##_is_infinity(xb->fld) || \ |
| tp##_is_zero(xb->fld))) { \ |
| fe_flag = 1; \ |
| fg_flag = 1; \ |
| } else { \ |
| int e_a = ppc_##tp##_get_unbiased_exp(xa->fld); \ |
| int e_b = ppc_##tp##_get_unbiased_exp(xb->fld); \ |
| \ |
| if (unlikely(tp##_is_any_nan(xa->fld) || \ |
| tp##_is_any_nan(xb->fld))) { \ |
| fe_flag = 1; \ |
| } else if ((e_b <= emin) || (e_b >= (emax - 2))) { \ |
| fe_flag = 1; \ |
| } else if (!tp##_is_zero(xa->fld) && \ |
| (((e_a - e_b) >= emax) || \ |
| ((e_a - e_b) <= (emin + 1)) || \ |
| (e_a <= (emin + nbits)))) { \ |
| fe_flag = 1; \ |
| } \ |
| \ |
| if (unlikely(tp##_is_zero_or_denormal(xb->fld))) { \ |
| /* \ |
| * XB is not zero because of the above check and so \ |
| * must be denormalized. \ |
| */ \ |
| fg_flag = 1; \ |
| } \ |
| } \ |
| } \ |
| \ |
| env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \ |
| } |
| |
| VSX_TDIV(xstdivdp, 1, float64, VsrD(0), -1022, 1023, 52) |
| VSX_TDIV(xvtdivdp, 2, float64, VsrD(i), -1022, 1023, 52) |
| VSX_TDIV(xvtdivsp, 4, float32, VsrW(i), -126, 127, 23) |
| |
| /* |
| * VSX_TSQRT - VSX floating point test for square root |
| * op - instruction mnemonic |
| * nels - number of elements (1, 2 or 4) |
| * tp - type (float32 or float64) |
| * fld - vsr_t field (VsrD(*) or VsrW(*)) |
| * emin - minimum unbiased exponent |
| * emax - maximum unbiased exponent |
| * nbits - number of fraction bits |
| */ |
| #define VSX_TSQRT(op, nels, tp, fld, emin, nbits) \ |
| void helper_##op(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xb) \ |
| { \ |
| int i; \ |
| int fe_flag = 0; \ |
| int fg_flag = 0; \ |
| \ |
| for (i = 0; i < nels; i++) { \ |
| if (unlikely(tp##_is_infinity(xb->fld) || \ |
| tp##_is_zero(xb->fld))) { \ |
| fe_flag = 1; \ |
| fg_flag = 1; \ |
| } else { \ |
| int e_b = ppc_##tp##_get_unbiased_exp(xb->fld); \ |
| \ |
| if (unlikely(tp##_is_any_nan(xb->fld))) { \ |
| fe_flag = 1; \ |
| } else if (unlikely(tp##_is_zero(xb->fld))) { \ |
| fe_flag = 1; \ |
| } else if (unlikely(tp##_is_neg(xb->fld))) { \ |
| fe_flag = 1; \ |
| } else if (!tp##_is_zero(xb->fld) && \ |
| (e_b <= (emin + nbits))) { \ |
| fe_flag = 1; \ |
| } \ |
| \ |
| if (unlikely(tp##_is_zero_or_denormal(xb->fld))) { \ |
| /* \ |
| * XB is not zero because of the above check and \ |
| * therefore must be denormalized. \ |
| */ \ |
| fg_flag = 1; \ |
| } \ |
| } \ |
| } \ |
| \ |
| env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \ |
| } |
| |
| VSX_TSQRT(xstsqrtdp, 1, float64, VsrD(0), -1022, 52) |
| VSX_TSQRT(xvtsqrtdp, 2, float64, VsrD(i), -1022, 52) |
| VSX_TSQRT(xvtsqrtsp, 4, float32, VsrW(i), -126, 23) |
| |
| /* |
| * VSX_MADD - VSX floating point muliply/add variations |
| * op - instruction mnemonic |
| * nels - number of elements (1, 2 or 4) |
| * tp - type (float32 or float64) |
| * fld - vsr_t field (VsrD(*) or VsrW(*)) |
| * maddflgs - flags for the float*muladd routine that control the |
| * various forms (madd, msub, nmadd, nmsub) |
| * sfprf - set FPRF |
| */ |
| #define VSX_MADD(op, nels, tp, fld, maddflgs, sfprf, r2sp) \ |
| void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \ |
| ppc_vsr_t *xa, ppc_vsr_t *b, ppc_vsr_t *c) \ |
| { \ |
| ppc_vsr_t t = *xt; \ |
| int i; \ |
| \ |
| helper_reset_fpstatus(env); \ |
| \ |
| for (i = 0; i < nels; i++) { \ |
| float_status tstat = env->fp_status; \ |
| set_float_exception_flags(0, &tstat); \ |
| if (r2sp && (tstat.float_rounding_mode == float_round_nearest_even)) {\ |
| /* \ |
| * Avoid double rounding errors by rounding the intermediate \ |
| * result to odd. \ |
| */ \ |
| set_float_rounding_mode(float_round_to_zero, &tstat); \ |
| t.fld = tp##_muladd(xa->fld, b->fld, c->fld, \ |
| maddflgs, &tstat); \ |
| t.fld |= (get_float_exception_flags(&tstat) & \ |
| float_flag_inexact) != 0; \ |
| } else { \ |
| t.fld = tp##_muladd(xa->fld, b->fld, c->fld, \ |
| maddflgs, &tstat); \ |
| } \ |
| env->fp_status.float_exception_flags |= tstat.float_exception_flags; \ |
| \ |
| if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \ |
| tp##_maddsub_update_excp(env, xa->fld, b->fld, \ |
| c->fld, maddflgs, GETPC()); \ |
| } \ |
| \ |
| if (r2sp) { \ |
| t.fld = helper_frsp(env, t.fld); \ |
| } \ |
| \ |
| if (sfprf) { \ |
| helper_compute_fprf_float64(env, t.fld); \ |
| } \ |
| } \ |
| *xt = t; \ |
| do_float_check_status(env, GETPC()); \ |
| } |
| |
| VSX_MADD(xsmadddp, 1, float64, VsrD(0), MADD_FLGS, 1, 0) |
| VSX_MADD(xsmsubdp, 1, float64, VsrD(0), MSUB_FLGS, 1, 0) |
| VSX_MADD(xsnmadddp, 1, float64, VsrD(0), NMADD_FLGS, 1, 0) |
| VSX_MADD(xsnmsubdp, 1, float64, VsrD(0), NMSUB_FLGS, 1, 0) |
| VSX_MADD(xsmaddsp, 1, float64, VsrD(0), MADD_FLGS, 1, 1) |
| VSX_MADD(xsmsubsp, 1, float64, VsrD(0), MSUB_FLGS, 1, 1) |
| VSX_MADD(xsnmaddsp, 1, float64, VsrD(0), NMADD_FLGS, 1, 1) |
| VSX_MADD(xsnmsubsp, 1, float64, VsrD(0), NMSUB_FLGS, 1, 1) |
| |
| VSX_MADD(xvmadddp, 2, float64, VsrD(i), MADD_FLGS, 0, 0) |
| VSX_MADD(xvmsubdp, 2, float64, VsrD(i), MSUB_FLGS, 0, 0) |
| VSX_MADD(xvnmadddp, 2, float64, VsrD(i), NMADD_FLGS, 0, 0) |
| VSX_MADD(xvnmsubdp, 2, float64, VsrD(i), NMSUB_FLGS, 0, 0) |
| |
| VSX_MADD(xvmaddsp, 4, float32, VsrW(i), MADD_FLGS, 0, 0) |
| VSX_MADD(xvmsubsp, 4, float32, VsrW(i), MSUB_FLGS, 0, 0) |
| VSX_MADD(xvnmaddsp, 4, float32, VsrW(i), NMADD_FLGS, 0, 0) |
| VSX_MADD(xvnmsubsp, 4, float32, VsrW(i), NMSUB_FLGS, 0, 0) |
| |
| /* |
| * VSX_SCALAR_CMP_DP - VSX scalar floating point compare double precision |
| * op - instruction mnemonic |
| * cmp - comparison operation |
| * exp - expected result of comparison |
| * svxvc - set VXVC bit |
| */ |
| #define VSX_SCALAR_CMP_DP(op, cmp, exp, svxvc) \ |
| void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \ |
| ppc_vsr_t *xa, ppc_vsr_t *xb) \ |
| { \ |
| ppc_vsr_t t = *xt; \ |
| bool vxsnan_flag = false, vxvc_flag = false, vex_flag = false; \ |
| \ |
| if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status) || \ |
| float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) { \ |
| vxsnan_flag = true; \ |
| if (fpscr_ve == 0 && svxvc) { \ |
| vxvc_flag = true; \ |
| } \ |
| } else if (svxvc) { \ |
| vxvc_flag = float64_is_quiet_nan(xa->VsrD(0), &env->fp_status) || \ |
| float64_is_quiet_nan(xb->VsrD(0), &env->fp_status); \ |
| } \ |
| if (vxsnan_flag) { \ |
| float_invalid_op_vxsnan(env, GETPC()); \ |
| } \ |
| if (vxvc_flag) { \ |
| float_invalid_op_vxvc(env, 0, GETPC()); \ |
| } \ |
| vex_flag = fpscr_ve && (vxvc_flag || vxsnan_flag); \ |
| \ |
| if (!vex_flag) { \ |
| if (float64_##cmp(xb->VsrD(0), xa->VsrD(0), \ |
| &env->fp_status) == exp) { \ |
| t.VsrD(0) = -1; \ |
| t.VsrD(1) = 0; \ |
| } else { \ |
| t.VsrD(0) = 0; \ |
| t.VsrD(1) = 0; \ |
| } \ |
| } \ |
| *xt = t; \ |
| do_float_check_status(env, GETPC()); \ |
| } |
| |
| VSX_SCALAR_CMP_DP(xscmpeqdp, eq, 1, 0) |
| VSX_SCALAR_CMP_DP(xscmpgedp, le, 1, 1) |
| VSX_SCALAR_CMP_DP(xscmpgtdp, lt, 1, 1) |
| VSX_SCALAR_CMP_DP(xscmpnedp, eq, 0, 0) |
| |
| void helper_xscmpexpdp(CPUPPCState *env, uint32_t opcode, |
| ppc_vsr_t *xa, ppc_vsr_t *xb) |
| { |
| int64_t exp_a, exp_b; |
| uint32_t cc; |
| |
| exp_a = extract64(xa->VsrD(0), 52, 11); |
| exp_b = extract64(xb->VsrD(0), 52, 11); |
| |
| if (unlikely(float64_is_any_nan(xa->VsrD(0)) || |
| float64_is_any_nan(xb->VsrD(0)))) { |
| cc = CRF_SO; |
| } else { |
| if (exp_a < exp_b) { |
| cc = CRF_LT; |
| } else if (exp_a > exp_b) { |
| cc = CRF_GT; |
| } else { |
| cc = CRF_EQ; |
| } |
| } |
| |
| env->fpscr &= ~FP_FPCC; |
| env->fpscr |= cc << FPSCR_FPCC; |
| env->crf[BF(opcode)] = cc; |
| |
| do_float_check_status(env, GETPC()); |
| } |
| |
| void helper_xscmpexpqp(CPUPPCState *env, uint32_t opcode, |
| ppc_vsr_t *xa, ppc_vsr_t *xb) |
| { |
| int64_t exp_a, exp_b; |
| uint32_t cc; |
| |
| exp_a = extract64(xa->VsrD(0), 48, 15); |
| exp_b = extract64(xb->VsrD(0), 48, 15); |
| |
| if (unlikely(float128_is_any_nan(xa->f128) || |
| float128_is_any_nan(xb->f128))) { |
| cc = CRF_SO; |
| } else { |
| if (exp_a < exp_b) { |
| cc = CRF_LT; |
| } else if (exp_a > exp_b) { |
| cc = CRF_GT; |
| } else { |
| cc = CRF_EQ; |
| } |
| } |
| |
| env->fpscr &= ~FP_FPCC; |
| env->fpscr |= cc << FPSCR_FPCC; |
| env->crf[BF(opcode)] = cc; |
| |
| do_float_check_status(env, GETPC()); |
| } |
| |
| #define VSX_SCALAR_CMP(op, ordered) \ |
| void helper_##op(CPUPPCState *env, uint32_t opcode, \ |
| ppc_vsr_t *xa, ppc_vsr_t *xb) \ |
| { \ |
| uint32_t cc = 0; \ |
| bool vxsnan_flag = false, vxvc_flag = false; \ |
| \ |
| helper_reset_fpstatus(env); \ |
| \ |
| if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status) || \ |
| float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) { \ |
| vxsnan_flag = true; \ |
| cc = CRF_SO; \ |
| if (fpscr_ve == 0 && ordered) { \ |
| vxvc_flag = true; \ |
| } \ |
| } else if (float64_is_quiet_nan(xa->VsrD(0), &env->fp_status) || \ |
| float64_is_quiet_nan(xb->VsrD(0), &env->fp_status)) { \ |
| cc = CRF_SO; \ |
| if (ordered) { \ |
| vxvc_flag = true; \ |
| } \ |
| } \ |
| if (vxsnan_flag) { \ |
| float_invalid_op_vxsnan(env, GETPC()); \ |
| } \ |
| if (vxvc_flag) { \ |
| float_invalid_op_vxvc(env, 0, GETPC()); \ |
| } \ |
| \ |
| if (float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) { \ |
| cc |= CRF_LT; \ |
| } else if (!float64_le(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) { \ |
| cc |= CRF_GT; \ |
| } else { \ |
| cc |= CRF_EQ; \ |
| } \ |
| \ |
| env->fpscr &= ~FP_FPCC; \ |
| env->fpscr |= cc << FPSCR_FPCC; \ |
| env->crf[BF(opcode)] = cc; \ |
| \ |
| do_float_check_status(env, GETPC()); \ |
| } |
| |
| VSX_SCALAR_CMP(xscmpodp, 1) |
| VSX_SCALAR_CMP(xscmpudp, 0) |
| |
| #define VSX_SCALAR_CMPQ(op, ordered) \ |
| void helper_##op(CPUPPCState *env, uint32_t opcode, \ |
| ppc_vsr_t *xa, ppc_vsr_t *xb) \ |
| { \ |
| uint32_t cc = 0; \ |
| bool vxsnan_flag = false, vxvc_flag = false; \ |
| \ |
| helper_reset_fpstatus(env); \ |
| \ |
| if (float128_is_signaling_nan(xa->f128, &env->fp_status) || \ |
| float128_is_signaling_nan(xb->f128, &env->fp_status)) { \ |
| vxsnan_flag = true; \ |
| cc = CRF_SO; \ |
| if (fpscr_ve == 0 && ordered) { \ |
| vxvc_flag = true; \ |
| } \ |
| } else if (float128_is_quiet_nan(xa->f128, &env->fp_status) || \ |
| float128_is_quiet_nan(xb->f128, &env->fp_status)) { \ |
| cc = CRF_SO; \ |
| if (ordered) { \ |
| vxvc_flag = true; \ |
| } \ |
| } \ |
| if (vxsnan_flag) { \ |
| float_invalid_op_vxsnan(env, GETPC()); \ |
| } \ |
| if (vxvc_flag) { \ |
| float_invalid_op_vxvc(env, 0, GETPC()); \ |
| } \ |
| \ |
| if (float128_lt(xa->f128, xb->f128, &env->fp_status)) { \ |
| cc |= CRF_LT; \ |
| } else if (!float128_le(xa->f128, xb->f128, &env->fp_status)) { \ |
| cc |= CRF_GT; \ |
| } else { \ |
| cc |= CRF_EQ; \ |
| } \ |
| \ |
| env->fpscr &= ~FP_FPCC; \ |
| env->fpscr |= cc << FPSCR_FPCC; \ |
| env->crf[BF(opcode)] = cc; \ |
| \ |
| do_float_check_status(env, GETPC()); \ |
| } |
| |
| VSX_SCALAR_CMPQ(xscmpoqp, 1) |
| VSX_SCALAR_CMPQ(xscmpuqp, 0) |
| |
| /* |
| * VSX_MAX_MIN - VSX floating point maximum/minimum |
| * name - instruction mnemonic |
| * op - operation (max or min) |
| * nels - number of elements (1, 2 or 4) |
| * tp - type (float32 or float64) |
| * fld - vsr_t field (VsrD(*) or VsrW(*)) |
| */ |
| #define VSX_MAX_MIN(name, op, nels, tp, fld) \ |
| void helper_##name(CPUPPCState *env, ppc_vsr_t *xt, \ |
| ppc_vsr_t *xa, ppc_vsr_t *xb) \ |
| { \ |
| ppc_vsr_t t = *xt; \ |
| int i; \ |
| \ |
| for (i = 0; i < nels; i++) { \ |
| t.fld = tp##_##op(xa->fld, xb->fld, &env->fp_status); \ |
| if (unlikely(tp##_is_signaling_nan(xa->fld, &env->fp_status) || \ |
| tp##_is_signaling_nan(xb->fld, &env->fp_status))) { \ |
| float_invalid_op_vxsnan(env, GETPC()); \ |
| } \ |
| } \ |
| \ |
| *xt = t; \ |
| do_float_check_status(env, GETPC()); \ |
| } |
| |
| VSX_MAX_MIN(xsmaxdp, maxnum, 1, float64, VsrD(0)) |
| VSX_MAX_MIN(xvmaxdp, maxnum, 2, float64, VsrD(i)) |
| VSX_MAX_MIN(xvmaxsp, maxnum, 4, float32, VsrW(i)) |
| VSX_MAX_MIN(xsmindp, minnum, 1, float64, VsrD(0)) |
| VSX_MAX_MIN(xvmindp, minnum, 2, float64, VsrD(i)) |
| VSX_MAX_MIN(xvminsp, minnum, 4, float32, VsrW(i)) |
| |
| #define VSX_MAX_MINC(name, max) \ |
| void helper_##name(CPUPPCState *env, uint32_t opcode, \ |
| ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb) \ |
| { \ |
| ppc_vsr_t t = *xt; \ |
| bool vxsnan_flag = false, vex_flag = false; \ |
| \ |
| if (unlikely(float64_is_any_nan(xa->VsrD(0)) || \ |
| float64_is_any_nan(xb->VsrD(0)))) { \ |
| if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status) || \ |
| float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) { \ |
| vxsnan_flag = true; \ |
| } \ |
| t.VsrD(0) = xb->VsrD(0); \ |
| } else if ((max && \ |
| !float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) || \ |
| (!max && \ |
| float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status))) { \ |
| t.VsrD(0) = xa->VsrD(0); \ |
| } else { \ |
| t.VsrD(0) = xb->VsrD(0); \ |
| } \ |
| \ |
| vex_flag = fpscr_ve & vxsnan_flag; \ |
| if (vxsnan_flag) { \ |
| float_invalid_op_vxsnan(env, GETPC()); \ |
| } \ |
| if (!vex_flag) { \ |
| *xt = t; \ |
| } \ |
| } \ |
| |
| VSX_MAX_MINC(xsmaxcdp, 1); |
| VSX_MAX_MINC(xsmincdp, 0); |
| |
| #define VSX_MAX_MINJ(name, max) \ |
| void helper_##name(CPUPPCState *env, uint32_t opcode, \ |
| ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb) \ |
| { \ |
| ppc_vsr_t t = *xt; \ |
| bool vxsnan_flag = false, vex_flag = false; \ |
| \ |
| if (unlikely(float64_is_any_nan(xa->VsrD(0)))) { \ |
| if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status)) { \ |
| vxsnan_flag = true; \ |
| } \ |
| t.VsrD(0) = xa->VsrD(0); \ |
| } else if (unlikely(float64_is_any_nan(xb->VsrD(0)))) { \ |
| if (float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) { \ |
| vxsnan_flag = true; \ |
| } \ |
| t.VsrD(0) = xb->VsrD(0); \ |
| } else if (float64_is_zero(xa->VsrD(0)) && \ |
| float64_is_zero(xb->VsrD(0))) { \ |
| if (max) { \ |
| if (!float64_is_neg(xa->VsrD(0)) || \ |
| !float64_is_neg(xb->VsrD(0))) { \ |
| t.VsrD(0) = 0ULL; \ |
| } else { \ |
| t.VsrD(0) = 0x8000000000000000ULL; \ |
| } \ |
| } else { \ |
| if (float64_is_neg(xa->VsrD(0)) || \ |
| float64_is_neg(xb->VsrD(0))) { \ |
| t.VsrD(0) = 0x8000000000000000ULL; \ |
| } else { \ |
| t.VsrD(0) = 0ULL; \ |
| } \ |
| } \ |
| } else if ((max && \ |
| !float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) || \ |
| (!max && \ |
| float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status))) { \ |
| t.VsrD(0) = xa->VsrD(0); \ |
| } else { \ |
| t.VsrD(0) = xb->VsrD(0); \ |
| } \ |
| \ |
| vex_flag = fpscr_ve & vxsnan_flag; \ |
| if (vxsnan_flag) { \ |
| float_invalid_op_vxsnan(env, GETPC()); \ |
| } \ |
| if (!vex_flag) { \ |
| *xt = t; \ |
| } \ |
| } \ |
| |
| VSX_MAX_MINJ(xsmaxjdp, 1); |
| VSX_MAX_MINJ(xsminjdp, 0); |
| |
| /* |
| * VSX_CMP - VSX floating point compare |
| * op - instruction mnemonic |
| * nels - number of elements (1, 2 or 4) |
| * tp - type (float32 or float64) |
| * fld - vsr_t field (VsrD(*) or VsrW(*)) |
| * cmp - comparison operation |
| * svxvc - set VXVC bit |
| * exp - expected result of comparison |
| */ |
| #define VSX_CMP(op, nels, tp, fld, cmp, svxvc, exp) \ |
| uint32_t helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \ |
| ppc_vsr_t *xa, ppc_vsr_t *xb) \ |
| { \ |
| ppc_vsr_t t = *xt; \ |
| uint32_t crf6 = 0; \ |
| int i; \ |
| int all_true = 1; \ |
| int all_false = 1; \ |
| \ |
| for (i = 0; i < nels; i++) { \ |
| if (unlikely(tp##_is_any_nan(xa->fld) || \ |
| tp##_is_any_nan(xb->fld))) { \ |
| if (tp##_is_signaling_nan(xa->fld, &env->fp_status) || \ |
| tp##_is_signaling_nan(xb->fld, &env->fp_status)) { \ |
| float_invalid_op_vxsnan(env, GETPC()); \ |
| } \ |
| if (svxvc) { \ |
| float_invalid_op_vxvc(env, 0, GETPC()); \ |
| } \ |
| t.fld = 0; \ |
| all_true = 0; \ |
| } else { \ |
| if (tp##_##cmp(xb->fld, xa->fld, &env->fp_status) == exp) { \ |
| t.fld = -1; \ |
| all_false = 0; \ |
| } else { \ |
| t.fld = 0; \ |
| all_true = 0; \ |
| } \ |
| } \ |
| } \ |
| \ |
| *xt = t; \ |
| crf6 = (all_true ? 0x8 : 0) | (all_false ? 0x2 : 0); \ |
| return crf6; \ |
| } |
| |
| VSX_CMP(xvcmpeqdp, 2, float64, VsrD(i), eq, 0, 1) |
| VSX_CMP(xvcmpgedp, 2, float64, VsrD(i), le, 1, 1) |
| VSX_CMP(xvcmpgtdp, 2, float64, VsrD(i), lt, 1, 1) |
| VSX_CMP(xvcmpnedp, 2, float64, VsrD(i), eq, 0, 0) |
| VSX_CMP(xvcmpeqsp, 4, float32, VsrW(i), eq, 0, 1) |
| VSX_CMP(xvcmpgesp, 4, float32, VsrW(i), le, 1, 1) |
| VSX_CMP(xvcmpgtsp, 4, float32, VsrW(i), lt, 1, 1) |
| VSX_CMP(xvcmpnesp, 4, float32, VsrW(i), eq, 0, 0) |
| |
| /* |
| * VSX_CVT_FP_TO_FP - VSX floating point/floating point conversion |
| * op - instruction mnemonic |
| * nels - number of elements (1, 2 or 4) |
| * stp - source type (float32 or float64) |
| * ttp - target type (float32 or float64) |
| * sfld - source vsr_t field |
| * tfld - target vsr_t field (f32 or f64) |
| * sfprf - set FPRF |
| */ |
| #define VSX_CVT_FP_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf) \ |
| void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \ |
| { \ |
| ppc_vsr_t t = *xt; \ |
| int i; \ |
| \ |
| for (i = 0; i < nels; i++) { \ |
| t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \ |
| if (unlikely(stp##_is_signaling_nan(xb->sfld, \ |
| &env->fp_status))) { \ |
| float_invalid_op_vxsnan(env, GETPC()); \ |
| t.tfld = ttp##_snan_to_qnan(t.tfld); \ |
| } \ |
| if (sfprf) { \ |
| helper_compute_fprf_##ttp(env, t.tfld); \ |
| } \ |
| } \ |
| \ |
| *xt = t; \ |
| do_float_check_status(env, GETPC()); \ |
| } |
| |
| VSX_CVT_FP_TO_FP(xscvdpsp, 1, float64, float32, VsrD(0), VsrW(0), 1) |
| VSX_CVT_FP_TO_FP(xscvspdp, 1, float32, float64, VsrW(0), VsrD(0), 1) |
| VSX_CVT_FP_TO_FP(xvcvdpsp, 2, float64, float32, VsrD(i), VsrW(2 * i), 0) |
| VSX_CVT_FP_TO_FP(xvcvspdp, 2, float32, float64, VsrW(2 * i), VsrD(i), 0) |
| |
| /* |
| * VSX_CVT_FP_TO_FP_VECTOR - VSX floating point/floating point conversion |
| * op - instruction mnemonic |
| * nels - number of elements (1, 2 or 4) |
| * stp - source type (float32 or float64) |
| * ttp - target type (float32 or float64) |
| * sfld - source vsr_t field |
| * tfld - target vsr_t field (f32 or f64) |
| * sfprf - set FPRF |
| */ |
| #define VSX_CVT_FP_TO_FP_VECTOR(op, nels, stp, ttp, sfld, tfld, sfprf) \ |
| void helper_##op(CPUPPCState *env, uint32_t opcode, \ |
| ppc_vsr_t *xt, ppc_vsr_t *xb) \ |
| { \ |
| ppc_vsr_t t = *xt; \ |
| int i; \ |
| \ |
| for (i = 0; i < nels; i++) { \ |
| t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \ |
| if (unlikely(stp##_is_signaling_nan(xb->sfld, \ |
| &env->fp_status))) { \ |
| float_invalid_op_vxsnan(env, GETPC()); \ |
| t.tfld = ttp##_snan_to_qnan(t.tfld); \ |
| } \ |
| if (sfprf) { \ |
| helper_compute_fprf_##ttp(env, t.tfld); \ |
| } \ |
| } \ |
| \ |
| *xt = t; \ |
| do_float_check_status(env, GETPC()); \ |
| } |
| |
| VSX_CVT_FP_TO_FP_VECTOR(xscvdpqp, 1, float64, float128, VsrD(0), f128, 1) |
| |
| /* |
| * VSX_CVT_FP_TO_FP_HP - VSX floating point/floating point conversion |
| * involving one half precision value |
| * op - instruction mnemonic |
| * nels - number of elements (1, 2 or 4) |
| * stp - source type |
| * ttp - target type |
| * sfld - source vsr_t field |
| * tfld - target vsr_t field |
| * sfprf - set FPRF |
| */ |
| #define VSX_CVT_FP_TO_FP_HP(op, nels, stp, ttp, sfld, tfld, sfprf) \ |
| void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \ |
| { \ |
| ppc_vsr_t t = { }; \ |
| int i; \ |
| \ |
| for (i = 0; i < nels; i++) { \ |
| t.tfld = stp##_to_##ttp(xb->sfld, 1, &env->fp_status); \ |
| if (unlikely(stp##_is_signaling_nan(xb->sfld, \ |
| &env->fp_status))) { \ |
| float_invalid_op_vxsnan(env, GETPC()); \ |
| t.tfld = ttp##_snan_to_qnan(t.tfld); \ |
| } \ |
| if (sfprf) { \ |
| helper_compute_fprf_##ttp(env, t.tfld); \ |
| } \ |
| } \ |
| \ |
| *xt = t; \ |
| do_float_check_status(env, GETPC()); \ |
| } |
| |
| VSX_CVT_FP_TO_FP_HP(xscvdphp, 1, float64, float16, VsrD(0), VsrH(3), 1) |
| VSX_CVT_FP_TO_FP_HP(xscvhpdp, 1, float16, float64, VsrH(3), VsrD(0), 1) |
| VSX_CVT_FP_TO_FP_HP(xvcvsphp, 4, float32, float16, VsrW(i), VsrH(2 * i + 1), 0) |
| VSX_CVT_FP_TO_FP_HP(xvcvhpsp, 4, float16, float32, VsrH(2 * i + 1), VsrW(i), 0) |
| |
| /* |
| * xscvqpdp isn't using VSX_CVT_FP_TO_FP() because xscvqpdpo will be |
| * added to this later. |
| */ |
| void helper_xscvqpdp(CPUPPCState *env, uint32_t opcode, |
| ppc_vsr_t *xt, ppc_vsr_t *xb) |
| { |
| ppc_vsr_t t = { }; |
| float_status tstat; |
| |
| tstat = env->fp_status; |
| if (unlikely(Rc(opcode) != 0)) { |
| tstat.float_rounding_mode = float_round_to_odd; |
| } |
| |
| t.VsrD(0) = float128_to_float64(xb->f128, &tstat); |
| env->fp_status.float_exception_flags |= tstat.float_exception_flags; |
| if (unlikely(float128_is_signaling_nan(xb->f128, &tstat))) { |
| float_invalid_op_vxsnan(env, GETPC()); |
| t.VsrD(0) = float64_snan_to_qnan(t.VsrD(0)); |
| } |
| helper_compute_fprf_float64(env, t.VsrD(0)); |
| |
| *xt = t; |
| do_float_check_status(env, GETPC()); |
| } |
| |
| uint64_t helper_xscvdpspn(CPUPPCState *env, uint64_t xb) |
| { |
| uint64_t result, sign, exp, frac; |
| |
| float_status tstat = env->fp_status; |
| set_float_exception_flags(0, &tstat); |
| |
| sign = extract64(xb, 63, 1); |
| exp = extract64(xb, 52, 11); |
| frac = extract64(xb, 0, 52) | 0x10000000000000ULL; |
| |
| if (unlikely(exp == 0 && extract64(frac, 0, 52) != 0)) { |
| /* DP denormal operand. */ |
| /* Exponent override to DP min exp. */ |
| exp = 1; |
| /* Implicit bit override to 0. */ |
| frac = deposit64(frac, 53, 1, 0); |
| } |
| |
| if (unlikely(exp < 897 && frac != 0)) { |
| /* SP tiny operand. */ |
| if (897 - exp > 63) { |
| frac = 0; |
| } else { |
| /* Denormalize until exp = SP min exp. */ |
| frac >>= (897 - exp); |
| } |
| /* Exponent override to SP min exp - 1. */ |
| exp = 896; |
| } |
| |
| result = sign << 31; |
| result |= extract64(exp, 10, 1) << 30; |
| result |= extract64(exp, 0, 7) << 23; |
| result |= extract64(frac, 29, 23); |
| |
| /* hardware replicates result to both words of the doubleword result. */ |
| return (result << 32) | result; |
| } |
| |
| uint64_t helper_xscvspdpn(CPUPPCState *env, uint64_t xb) |
| { |
| float_status tstat = env->fp_status; |
| set_float_exception_flags(0, &tstat); |
| |
| return float32_to_float64(xb >> 32, &tstat); |
| } |
| |
| /* |
| * VSX_CVT_FP_TO_INT - VSX floating point to integer conversion |
| * op - instruction mnemonic |
| * nels - number of elements (1, 2 or 4) |
| * stp - source type (float32 or float64) |
| * ttp - target type (int32, uint32, int64 or uint64) |
| * sfld - source vsr_t field |
| * tfld - target vsr_t field |
| * rnan - resulting NaN |
| */ |
| #define VSX_CVT_FP_TO_INT(op, nels, stp, ttp, sfld, tfld, rnan) \ |
| void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \ |
| { \ |
| int all_flags = env->fp_status.float_exception_flags, flags; \ |
| ppc_vsr_t t = *xt; \ |
| int i; \ |
| \ |
| for (i = 0; i < nels; i++) { \ |
| env->fp_status.float_exception_flags = 0; \ |
| t.tfld = stp##_to_##ttp##_round_to_zero(xb->sfld, &env->fp_status); \ |
| flags = env->fp_status.float_exception_flags; \ |
| if (unlikely(flags & float_flag_invalid)) { \ |
| float_invalid_cvt(env, 0, GETPC(), stp##_classify(xb->sfld)); \ |
| t.tfld = rnan; \ |
| } \ |
| all_flags |= flags; \ |
| } \ |
| \ |
| *xt = t; \ |
| env->fp_status.float_exception_flags = all_flags; \ |
| do_float_check_status(env, GETPC()); \ |
| } |
| |
| VSX_CVT_FP_TO_INT(xscvdpsxds, 1, float64, int64, VsrD(0), VsrD(0), \ |
| 0x8000000000000000ULL) |
| VSX_CVT_FP_TO_INT(xscvdpsxws, 1, float64, int32, VsrD(0), VsrW(1), \ |
| 0x80000000U) |
| VSX_CVT_FP_TO_INT(xscvdpuxds, 1, float64, uint64, VsrD(0), VsrD(0), 0ULL) |
| VSX_CVT_FP_TO_INT(xscvdpuxws, 1, float64, uint32, VsrD(0), VsrW(1), 0U) |
| VSX_CVT_FP_TO_INT(xvcvdpsxds, 2, float64, int64, VsrD(i), VsrD(i), \ |
| 0x8000000000000000ULL) |
| VSX_CVT_FP_TO_INT(xvcvdpsxws, 2, float64, int32, VsrD(i), VsrW(2 * i), \ |
| 0x80000000U) |
| VSX_CVT_FP_TO_INT(xvcvdpuxds, 2, float64, uint64, VsrD(i), VsrD(i), 0ULL) |
| VSX_CVT_FP_TO_INT(xvcvdpuxws, 2, float64, uint32, VsrD(i), VsrW(2 * i), 0U) |
| VSX_CVT_FP_TO_INT(xvcvspsxds, 2, float32, int64, VsrW(2 * i), VsrD(i), \ |
| 0x8000000000000000ULL) |
| VSX_CVT_FP_TO_INT(xvcvspsxws, 4, float32, int32, VsrW(i), VsrW(i), 0x80000000U) |
| VSX_CVT_FP_TO_INT(xvcvspuxds, 2, float32, uint64, VsrW(2 * i), VsrD(i), 0ULL) |
| VSX_CVT_FP_TO_INT(xvcvspuxws, 4, float32, uint32, VsrW(i), VsrW(i), 0U) |
| |
| /* |
| * VSX_CVT_FP_TO_INT_VECTOR - VSX floating point to integer conversion |
| * op - instruction mnemonic |
| * stp - source type (float32 or float64) |
| * ttp - target type (int32, uint32, int64 or uint64) |
| * sfld - source vsr_t field |
| * tfld - target vsr_t field |
| * rnan - resulting NaN |
| */ |
| #define VSX_CVT_FP_TO_INT_VECTOR(op, stp, ttp, sfld, tfld, rnan) \ |
| void helper_##op(CPUPPCState *env, uint32_t opcode, \ |
| ppc_vsr_t *xt, ppc_vsr_t *xb) \ |
| { \ |
| ppc_vsr_t t = { }; \ |
| \ |
| t.tfld = stp##_to_##ttp##_round_to_zero(xb->sfld, &env->fp_status); \ |
| if (env->fp_status.float_exception_flags & float_flag_invalid) { \ |
| float_invalid_cvt(env, 0, GETPC(), stp##_classify(xb->sfld)); \ |
| t.tfld = rnan; \ |
| } \ |
| \ |
| *xt = t; \ |
| do_float_check_status(env, GETPC()); \ |
| } |
| |
| VSX_CVT_FP_TO_INT_VECTOR(xscvqpsdz, float128, int64, f128, VsrD(0), \ |
| 0x8000000000000000ULL) |
| |
| VSX_CVT_FP_TO_INT_VECTOR(xscvqpswz, float128, int32, f128, VsrD(0), \ |
| 0xffffffff80000000ULL) |
| VSX_CVT_FP_TO_INT_VECTOR(xscvqpudz, float128, uint64, f128, VsrD(0), 0x0ULL) |
| VSX_CVT_FP_TO_INT_VECTOR(xscvqpuwz, float128, uint32, f128, VsrD(0), 0x0ULL) |
| |
| /* |
| * VSX_CVT_INT_TO_FP - VSX integer to floating point conversion |
| * op - instruction mnemonic |
| * nels - number of elements (1, 2 or 4) |
| * stp - source type (int32, uint32, int64 or uint64) |
| * ttp - target type (float32 or float64) |
| * sfld - source vsr_t field |
| * tfld - target vsr_t field |
| * jdef - definition of the j index (i or 2*i) |
| * sfprf - set FPRF |
| */ |
| #define VSX_CVT_INT_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf, r2sp) \ |
| void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \ |
| { \ |
| ppc_vsr_t t = *xt; \ |
| int i; \ |
| \ |
| for (i = 0; i < nels; i++) { \ |
| t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \ |
| if (r2sp) { \ |
| t.tfld = helper_frsp(env, t.tfld); \ |
| } \ |
| if (sfprf) { \ |
| helper_compute_fprf_float64(env, t.tfld); \ |
| } \ |
| } \ |
| \ |
| *xt = t; \ |
| do_float_check_status(env, GETPC()); \ |
| } |
| |
| VSX_CVT_INT_TO_FP(xscvsxddp, 1, int64, float64, VsrD(0), VsrD(0), 1, 0) |
| VSX_CVT_INT_TO_FP(xscvuxddp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 0) |
| VSX_CVT_INT_TO_FP(xscvsxdsp, 1, int64, float64, VsrD(0), VsrD(0), 1, 1) |
| VSX_CVT_INT_TO_FP(xscvuxdsp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 1) |
| VSX_CVT_INT_TO_FP(xvcvsxddp, 2, int64, float64, VsrD(i), VsrD(i), 0, 0) |
| VSX_CVT_INT_TO_FP(xvcvuxddp, 2, uint64, float64, VsrD(i), VsrD(i), 0, 0) |
| VSX_CVT_INT_TO_FP(xvcvsxwdp, 2, int32, float64, VsrW(2 * i), VsrD(i), 0, 0) |
| VSX_CVT_INT_TO_FP(xvcvuxwdp, 2, uint64, float64, VsrW(2 * i), VsrD(i), 0, 0) |
| VSX_CVT_INT_TO_FP(xvcvsxdsp, 2, int64, float32, VsrD(i), VsrW(2 * i), 0, 0) |
| VSX_CVT_INT_TO_FP(xvcvuxdsp, 2, uint64, float32, VsrD(i), VsrW(2 * i), 0, 0) |
| VSX_CVT_INT_TO_FP(xvcvsxwsp, 4, int32, float32, VsrW(i), VsrW(i), 0, 0) |
| VSX_CVT_INT_TO_FP(xvcvuxwsp, 4, uint32, float32, VsrW(i), VsrW(i), 0, 0) |
| |
| /* |
| * VSX_CVT_INT_TO_FP_VECTOR - VSX integer to floating point conversion |
| * op - instruction mnemonic |
| * stp - source type (int32, uint32, int64 or uint64) |
| * ttp - target type (float32 or float64) |
| * sfld - source vsr_t field |
| * tfld - target vsr_t field |
| */ |
| #define VSX_CVT_INT_TO_FP_VECTOR(op, stp, ttp, sfld, tfld) \ |
| void helper_##op(CPUPPCState *env, uint32_t opcode, \ |
| ppc_vsr_t *xt, ppc_vsr_t *xb) \ |
| { \ |
| ppc_vsr_t t = *xt; \ |
| \ |
| t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \ |
| helper_compute_fprf_##ttp(env, t.tfld); \ |
| \ |
| *xt = t; \ |
| do_float_check_status(env, GETPC()); \ |
| } |
| |
| VSX_CVT_INT_TO_FP_VECTOR(xscvsdqp, int64, float128, VsrD(0), f128) |
| VSX_CVT_INT_TO_FP_VECTOR(xscvudqp, uint64, float128, VsrD(0), f128) |
| |
| /* |
| * For "use current rounding mode", define a value that will not be |
| * one of the existing rounding model enums. |
| */ |
| #define FLOAT_ROUND_CURRENT (float_round_nearest_even + float_round_down + \ |
| float_round_up + float_round_to_zero) |
| |
| /* |
| * VSX_ROUND - VSX floating point round |
| * op - instruction mnemonic |
| * nels - number of elements (1, 2 or 4) |
| * tp - type (float32 or float64) |
| * fld - vsr_t field (VsrD(*) or VsrW(*)) |
| * rmode - rounding mode |
| * sfprf - set FPRF |
| */ |
| #define VSX_ROUND(op, nels, tp, fld, rmode, sfprf) \ |
| void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \ |
| { \ |
| ppc_vsr_t t = *xt; \ |
| int i; \ |
| \ |
| if (rmode != FLOAT_ROUND_CURRENT) { \ |
| set_float_rounding_mode(rmode, &env->fp_status); \ |
| } \ |
| \ |
| for (i = 0; i < nels; i++) { \ |
| if (unlikely(tp##_is_signaling_nan(xb->fld, \ |
| &env->fp_status))) { \ |
| float_invalid_op_vxsnan(env, GETPC()); \ |
| t.fld = tp##_snan_to_qnan(xb->fld); \ |
| } else { \ |
| t.fld = tp##_round_to_int(xb->fld, &env->fp_status); \ |
| } \ |
| if (sfprf) { \ |
| helper_compute_fprf_float64(env, t.fld); \ |
| } \ |
| } \ |
| \ |
| /* \ |
| * If this is not a "use current rounding mode" instruction, \ |
| * then inhibit setting of the XX bit and restore rounding \ |
| * mode from FPSCR \ |
| */ \ |
| if (rmode != FLOAT_ROUND_CURRENT) { \ |
| fpscr_set_rounding_mode(env); \ |
| env->fp_status.float_exception_flags &= ~float_flag_inexact; \ |
| } \ |
| \ |
| *xt = t; \ |
| do_float_check_status(env, GETPC()); \ |
| } |
| |
| VSX_ROUND(xsrdpi, 1, float64, VsrD(0), float_round_ties_away, 1) |
| VSX_ROUND(xsrdpic, 1, float64, VsrD(0), FLOAT_ROUND_CURRENT, 1) |
| VSX_ROUND(xsrdpim, 1, float64, VsrD(0), float_round_down, 1) |
| VSX_ROUND(xsrdpip, 1, float64, VsrD(0), float_round_up, 1) |
| VSX_ROUND(xsrdpiz, 1, float64, VsrD(0), float_round_to_zero, 1) |
| |
| VSX_ROUND(xvrdpi, 2, float64, VsrD(i), float_round_ties_away, 0) |
| VSX_ROUND(xvrdpic, 2, float64, VsrD(i), FLOAT_ROUND_CURRENT, 0) |
| VSX_ROUND(xvrdpim, 2, float64, VsrD(i), float_round_down, 0) |
| VSX_ROUND(xvrdpip, 2, float64, VsrD(i), float_round_up, 0) |
| VSX_ROUND(xvrdpiz, 2, float64, VsrD(i), float_round_to_zero, 0) |
| |
| VSX_ROUND(xvrspi, 4, float32, VsrW(i), float_round_ties_away, 0) |
| VSX_ROUND(xvrspic, 4, float32, VsrW(i), FLOAT_ROUND_CURRENT, 0) |
| VSX_ROUND(xvrspim, 4, float32, VsrW(i), float_round_down, 0) |
| VSX_ROUND(xvrspip, 4, float32, VsrW(i), float_round_up, 0) |
| VSX_ROUND(xvrspiz, 4, float32, VsrW(i), float_round_to_zero, 0) |
| |
| uint64_t helper_xsrsp(CPUPPCState *env, uint64_t xb) |
| { |
| helper_reset_fpstatus(env); |
| |
| uint64_t xt = helper_frsp(env, xb); |
| |
| helper_compute_fprf_float64(env, xt); |
| do_float_check_status(env, GETPC()); |
| return xt; |
| } |
| |
| #define VSX_XXPERM(op, indexed) \ |
| void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \ |
| ppc_vsr_t *xa, ppc_vsr_t *pcv) \ |
| { \ |
| ppc_vsr_t t = *xt; \ |
| int i, idx; \ |
| \ |
| for (i = 0; i < 16; i++) { \ |
| idx = pcv->VsrB(i) & 0x1F; \ |
| if (indexed) { \ |
| idx = 31 - idx; \ |
| } \ |
| t.VsrB(i) = (idx <= 15) ? xa->VsrB(idx) \ |
| : xt->VsrB(idx - 16); \ |
| } \ |
| *xt = t; \ |
| } |
| |
| VSX_XXPERM(xxperm, 0) |
| VSX_XXPERM(xxpermr, 1) |
| |
| void helper_xvxsigsp(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) |
| { |
| ppc_vsr_t t = { }; |
| uint32_t exp, i, fraction; |
| |
| for (i = 0; i < 4; i++) { |
| exp = (xb->VsrW(i) >> 23) & 0xFF; |
| fraction = xb->VsrW(i) & 0x7FFFFF; |
| if (exp != 0 && exp != 255) { |
| t.VsrW(i) = fraction | 0x00800000; |
| } else { |
| t.VsrW(i) = fraction; |
| } |
| } |
| *xt = t; |
| } |
| |
| /* |
| * VSX_TEST_DC - VSX floating point test data class |
| * op - instruction mnemonic |
| * nels - number of elements (1, 2 or 4) |
| * xbn - VSR register number |
| * tp - type (float32 or float64) |
| * fld - vsr_t field (VsrD(*) or VsrW(*)) |
| * tfld - target vsr_t field (VsrD(*) or VsrW(*)) |
| * fld_max - target field max |
| * scrf - set result in CR and FPCC |
| */ |
| #define VSX_TEST_DC(op, nels, xbn, tp, fld, tfld, fld_max, scrf) \ |
| void helper_##op(CPUPPCState *env, uint32_t opcode) \ |
| { \ |
| ppc_vsr_t *xt = &env->vsr[xT(opcode)]; \ |
| ppc_vsr_t *xb = &env->vsr[xbn]; \ |
| ppc_vsr_t t = { }; \ |
| uint32_t i, sign, dcmx; \ |
| uint32_t cc, match = 0; \ |
| \ |
| if (!scrf) { \ |
| dcmx = DCMX_XV(opcode); \ |
| } else { \ |
| t = *xt; \ |
| dcmx = DCMX(opcode); \ |
| } \ |
| \ |
| for (i = 0; i < nels; i++) { \ |
| sign = tp##_is_neg(xb->fld); \ |
| if (tp##_is_any_nan(xb->fld)) { \ |
| match = extract32(dcmx, 6, 1); \ |
| } else if (tp##_is_infinity(xb->fld)) { \ |
| match = extract32(dcmx, 4 + !sign, 1); \ |
| } else if (tp##_is_zero(xb->fld)) { \ |
| match = extract32(dcmx, 2 + !sign, 1); \ |
| } else if (tp##_is_zero_or_denormal(xb->fld)) { \ |
| match = extract32(dcmx, 0 + !sign, 1); \ |
| } \ |
| \ |
| if (scrf) { \ |
| cc = sign << CRF_LT_BIT | match << CRF_EQ_BIT; \ |
| env->fpscr &= ~FP_FPCC; \ |
| env->fpscr |= cc << FPSCR_FPCC; \ |
| env->crf[BF(opcode)] = cc; \ |
| } else { \ |
| t.tfld = match ? fld_max : 0; \ |
| } \ |
| match = 0; \ |
| } \ |
| if (!scrf) { \ |
| *xt = t; \ |
| } \ |
| } |
| |
| VSX_TEST_DC(xvtstdcdp, 2, xB(opcode), float64, VsrD(i), VsrD(i), UINT64_MAX, 0) |
| VSX_TEST_DC(xvtstdcsp, 4, xB(opcode), float32, VsrW(i), VsrW(i), UINT32_MAX, 0) |
| VSX_TEST_DC(xststdcdp, 1, xB(opcode), float64, VsrD(0), VsrD(0), 0, 1) |
| VSX_TEST_DC(xststdcqp, 1, (rB(opcode) + 32), float128, f128, VsrD(0), 0, 1) |
| |
| void helper_xststdcsp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xb) |
| { |
| uint32_t dcmx, sign, exp; |
| uint32_t cc, match = 0, not_sp = 0; |
| |
| dcmx = DCMX(opcode); |
| exp = (xb->VsrD(0) >> 52) & 0x7FF; |
| |
| sign = float64_is_neg(xb->VsrD(0)); |
| if (float64_is_any_nan(xb->VsrD(0))) { |
| match = extract32(dcmx, 6, 1); |
| } else if (float64_is_infinity(xb->VsrD(0))) { |
| match = extract32(dcmx, 4 + !sign, 1); |
| } else if (float64_is_zero(xb->VsrD(0))) { |
| match = extract32(dcmx, 2 + !sign, 1); |
| } else if (float64_is_zero_or_denormal(xb->VsrD(0)) || |
| (exp > 0 && exp < 0x381)) { |
| match = extract32(dcmx, 0 + !sign, 1); |
| } |
| |
| not_sp = !float64_eq(xb->VsrD(0), |
| float32_to_float64( |
| float64_to_float32(xb->VsrD(0), &env->fp_status), |
| &env->fp_status), &env->fp_status); |
| |
| cc = sign << CRF_LT_BIT | match << CRF_EQ_BIT | not_sp << CRF_SO_BIT; |
| env->fpscr &= ~FP_FPCC; |
| env->fpscr |= cc << FPSCR_FPCC; |
| env->crf[BF(opcode)] = cc; |
| } |
| |
| void helper_xsrqpi(CPUPPCState *env, uint32_t opcode, |
| ppc_vsr_t *xt, ppc_vsr_t *xb) |
| { |
| ppc_vsr_t t = { }; |
| uint8_t r = Rrm(opcode); |
| uint8_t ex = Rc(opcode); |
| uint8_t rmc = RMC(opcode); |
| uint8_t rmode = 0; |
| float_status tstat; |
| |
| helper_reset_fpstatus(env); |
| |
| if (r == 0 && rmc == 0) { |
| rmode = float_round_ties_away; |
| } else if (r == 0 && rmc == 0x3) { |
| rmode = fpscr_rn; |
| } else if (r == 1) { |
| switch (rmc) { |
| case 0: |
| rmode = float_round_nearest_even; |
| break; |
| case 1: |
| rmode = float_round_to_zero; |
| break; |
| case 2: |
| rmode = float_round_up; |
| break; |
| case 3: |
| rmode = float_round_down; |
| break; |
| default: |
| abort(); |
| } |
| } |
| |
| tstat = env->fp_status; |
| set_float_exception_flags(0, &tstat); |
| set_float_rounding_mode(rmode, &tstat); |
| t.f128 = float128_round_to_int(xb->f128, &tstat); |
| env->fp_status.float_exception_flags |= tstat.float_exception_flags; |
| |
| if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { |
| if (float128_is_signaling_nan(xb->f128, &tstat)) { |
| float_invalid_op_vxsnan(env, GETPC()); |
| t.f128 = float128_snan_to_qnan(t.f128); |
| } |
| } |
| |
| if (ex == 0 && (tstat.float_exception_flags & float_flag_inexact)) { |
| env->fp_status.float_exception_flags &= ~float_flag_inexact; |
| } |
| |
| helper_compute_fprf_float128(env, t.f128); |
| do_float_check_status(env, GETPC()); |
| *xt = t; |
| } |
| |
| void helper_xsrqpxp(CPUPPCState *env, uint32_t opcode, |
| ppc_vsr_t *xt, ppc_vsr_t *xb) |
| { |
| ppc_vsr_t t = { }; |
| uint8_t r = Rrm(opcode); |
| uint8_t rmc = RMC(opcode); |
| uint8_t rmode = 0; |
| floatx80 round_res; |
| float_status tstat; |
| |
| helper_reset_fpstatus(env); |
| |
| if (r == 0 && rmc == 0) { |
| rmode = float_round_ties_away; |
| } else if (r == 0 && rmc == 0x3) { |
| rmode = fpscr_rn; |
| } else if (r == 1) { |
| switch (rmc) { |
| case 0: |
| rmode = float_round_nearest_even; |
| break; |
| case 1: |
| rmode = float_round_to_zero; |
| break; |
| case 2: |
| rmode = float_round_up; |
| break; |
| case 3: |
| rmode = float_round_down; |
| break; |
| default: |
| abort(); |
| } |
| } |
| |
| tstat = env->fp_status; |
| set_float_exception_flags(0, &tstat); |
| set_float_rounding_mode(rmode, &tstat); |
| round_res = float128_to_floatx80(xb->f128, &tstat); |
| t.f128 = floatx80_to_float128(round_res, &tstat); |
| env->fp_status.float_exception_flags |= tstat.float_exception_flags; |
| |
| if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { |
| if (float128_is_signaling_nan(xb->f128, &tstat)) { |
| float_invalid_op_vxsnan(env, GETPC()); |
| t.f128 = float128_snan_to_qnan(t.f128); |
| } |
| } |
| |
| helper_compute_fprf_float128(env, t.f128); |
| *xt = t; |
| do_float_check_status(env, GETPC()); |
| } |
| |
| void helper_xssqrtqp(CPUPPCState *env, uint32_t opcode, |
| ppc_vsr_t *xt, ppc_vsr_t *xb) |
| { |
| ppc_vsr_t t = { }; |
| float_status tstat; |
| |
| helper_reset_fpstatus(env); |
| |
| tstat = env->fp_status; |
| if (unlikely(Rc(opcode) != 0)) { |
| tstat.float_rounding_mode = float_round_to_odd; |
| } |
| |
| set_float_exception_flags(0, &tstat); |
| t.f128 = float128_sqrt(xb->f128, &tstat); |
| env->fp_status.float_exception_flags |= tstat.float_exception_flags; |
| |
| if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { |
| if (float128_is_signaling_nan(xb->f128, &tstat)) { |
| float_invalid_op_vxsnan(env, GETPC()); |
| t.f128 = float128_snan_to_qnan(xb->f128); |
| } else if (float128_is_quiet_nan(xb->f128, &tstat)) { |
| t.f128 = xb->f128; |
| } else if (float128_is_neg(xb->f128) && !float128_is_zero(xb->f128)) { |
| float_invalid_op_vxsqrt(env, 1, GETPC()); |
| t.f128 = float128_default_nan(&env->fp_status); |
| } |
| } |
| |
| helper_compute_fprf_float128(env, t.f128); |
| *xt = t; |
| do_float_check_status(env, GETPC()); |
| } |
| |
| void helper_xssubqp(CPUPPCState *env, uint32_t opcode, |
| ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb) |
| { |
| ppc_vsr_t t = *xt; |
| float_status tstat; |
| |
| helper_reset_fpstatus(env); |
| |
| tstat = env->fp_status; |
| if (unlikely(Rc(opcode) != 0)) { |
| tstat.float_rounding_mode = float_round_to_odd; |
| } |
| |
| set_float_exception_flags(0, &tstat); |
| t.f128 = float128_sub(xa->f128, xb->f128, &tstat); |
| env->fp_status.float_exception_flags |= tstat.float_exception_flags; |
| |
| if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { |
| float_invalid_op_addsub(env, 1, GETPC(), |
| float128_classify(xa->f128) | |
| float128_classify(xb->f128)); |
| } |
| |
| helper_compute_fprf_float128(env, t.f128); |
| *xt = t; |
| do_float_check_status(env, GETPC()); |
| } |