| /* |
| * ARM implementation of KVM hooks, 32 bit specific code. |
| * |
| * Copyright Christoffer Dall 2009-2010 |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2 or later. |
| * See the COPYING file in the top-level directory. |
| * |
| */ |
| |
| #include "qemu/osdep.h" |
| #include <sys/ioctl.h> |
| |
| #include <linux/kvm.h> |
| |
| #include "qemu-common.h" |
| #include "cpu.h" |
| #include "qemu/timer.h" |
| #include "sysemu/runstate.h" |
| #include "sysemu/kvm.h" |
| #include "kvm_arm.h" |
| #include "internals.h" |
| #include "qemu/log.h" |
| |
| static inline void set_feature(uint64_t *features, int feature) |
| { |
| *features |= 1ULL << feature; |
| } |
| |
| static int read_sys_reg32(int fd, uint32_t *pret, uint64_t id) |
| { |
| struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)pret }; |
| |
| assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32); |
| return ioctl(fd, KVM_GET_ONE_REG, &idreg); |
| } |
| |
| bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf) |
| { |
| /* Identify the feature bits corresponding to the host CPU, and |
| * fill out the ARMHostCPUClass fields accordingly. To do this |
| * we have to create a scratch VM, create a single CPU inside it, |
| * and then query that CPU for the relevant ID registers. |
| */ |
| int err = 0, fdarray[3]; |
| uint32_t midr, id_pfr0; |
| uint64_t features = 0; |
| |
| /* Old kernels may not know about the PREFERRED_TARGET ioctl: however |
| * we know these will only support creating one kind of guest CPU, |
| * which is its preferred CPU type. |
| */ |
| static const uint32_t cpus_to_try[] = { |
| QEMU_KVM_ARM_TARGET_CORTEX_A15, |
| QEMU_KVM_ARM_TARGET_NONE |
| }; |
| /* |
| * target = -1 informs kvm_arm_create_scratch_host_vcpu() |
| * to use the preferred target |
| */ |
| struct kvm_vcpu_init init = { .target = -1, }; |
| |
| if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) { |
| return false; |
| } |
| |
| ahcf->target = init.target; |
| |
| /* This is not strictly blessed by the device tree binding docs yet, |
| * but in practice the kernel does not care about this string so |
| * there is no point maintaining an KVM_ARM_TARGET_* -> string table. |
| */ |
| ahcf->dtb_compatible = "arm,arm-v7"; |
| |
| err |= read_sys_reg32(fdarray[2], &midr, ARM_CP15_REG32(0, 0, 0, 0)); |
| err |= read_sys_reg32(fdarray[2], &id_pfr0, ARM_CP15_REG32(0, 0, 1, 0)); |
| |
| err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar0, |
| ARM_CP15_REG32(0, 0, 2, 0)); |
| err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar1, |
| ARM_CP15_REG32(0, 0, 2, 1)); |
| err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar2, |
| ARM_CP15_REG32(0, 0, 2, 2)); |
| err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar3, |
| ARM_CP15_REG32(0, 0, 2, 3)); |
| err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar4, |
| ARM_CP15_REG32(0, 0, 2, 4)); |
| err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar5, |
| ARM_CP15_REG32(0, 0, 2, 5)); |
| if (read_sys_reg32(fdarray[2], &ahcf->isar.id_isar6, |
| ARM_CP15_REG32(0, 0, 2, 7))) { |
| /* |
| * Older kernels don't support reading ID_ISAR6. This register was |
| * only introduced in ARMv8, so we can assume that it is zero on a |
| * CPU that a kernel this old is running on. |
| */ |
| ahcf->isar.id_isar6 = 0; |
| } |
| |
| err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr0, |
| KVM_REG_ARM | KVM_REG_SIZE_U32 | |
| KVM_REG_ARM_VFP | KVM_REG_ARM_VFP_MVFR0); |
| err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr1, |
| KVM_REG_ARM | KVM_REG_SIZE_U32 | |
| KVM_REG_ARM_VFP | KVM_REG_ARM_VFP_MVFR1); |
| /* |
| * FIXME: There is not yet a way to read MVFR2. |
| * Fortunately there is not yet anything in there that affects migration. |
| */ |
| |
| kvm_arm_destroy_scratch_host_vcpu(fdarray); |
| |
| if (err < 0) { |
| return false; |
| } |
| |
| /* Now we've retrieved all the register information we can |
| * set the feature bits based on the ID register fields. |
| * We can assume any KVM supporting CPU is at least a v7 |
| * with VFPv3, virtualization extensions, and the generic |
| * timers; this in turn implies most of the other feature |
| * bits, but a few must be tested. |
| */ |
| set_feature(&features, ARM_FEATURE_V7VE); |
| set_feature(&features, ARM_FEATURE_VFP3); |
| set_feature(&features, ARM_FEATURE_GENERIC_TIMER); |
| |
| if (extract32(id_pfr0, 12, 4) == 1) { |
| set_feature(&features, ARM_FEATURE_THUMB2EE); |
| } |
| if (extract32(ahcf->isar.mvfr1, 12, 4) == 1) { |
| set_feature(&features, ARM_FEATURE_NEON); |
| } |
| if (extract32(ahcf->isar.mvfr1, 28, 4) == 1) { |
| /* FMAC support implies VFPv4 */ |
| set_feature(&features, ARM_FEATURE_VFP4); |
| } |
| |
| ahcf->features = features; |
| |
| return true; |
| } |
| |
| bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx) |
| { |
| /* Return true if the regidx is a register we should synchronize |
| * via the cpreg_tuples array (ie is not a core reg we sync by |
| * hand in kvm_arch_get/put_registers()) |
| */ |
| switch (regidx & KVM_REG_ARM_COPROC_MASK) { |
| case KVM_REG_ARM_CORE: |
| case KVM_REG_ARM_VFP: |
| return false; |
| default: |
| return true; |
| } |
| } |
| |
| typedef struct CPRegStateLevel { |
| uint64_t regidx; |
| int level; |
| } CPRegStateLevel; |
| |
| /* All coprocessor registers not listed in the following table are assumed to |
| * be of the level KVM_PUT_RUNTIME_STATE. If a register should be written less |
| * often, you must add it to this table with a state of either |
| * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE. |
| */ |
| static const CPRegStateLevel non_runtime_cpregs[] = { |
| { KVM_REG_ARM_TIMER_CNT, KVM_PUT_FULL_STATE }, |
| }; |
| |
| int kvm_arm_cpreg_level(uint64_t regidx) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(non_runtime_cpregs); i++) { |
| const CPRegStateLevel *l = &non_runtime_cpregs[i]; |
| if (l->regidx == regidx) { |
| return l->level; |
| } |
| } |
| |
| return KVM_PUT_RUNTIME_STATE; |
| } |
| |
| #define ARM_CPU_ID_MPIDR 0, 0, 0, 5 |
| |
| int kvm_arch_init_vcpu(CPUState *cs) |
| { |
| int ret; |
| uint64_t v; |
| uint32_t mpidr; |
| struct kvm_one_reg r; |
| ARMCPU *cpu = ARM_CPU(cs); |
| |
| if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE) { |
| fprintf(stderr, "KVM is not supported for this guest CPU type\n"); |
| return -EINVAL; |
| } |
| |
| qemu_add_vm_change_state_handler(kvm_arm_vm_state_change, cs); |
| |
| /* Determine init features for this CPU */ |
| memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features)); |
| if (cpu->start_powered_off) { |
| cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF; |
| } |
| if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) { |
| cpu->psci_version = 2; |
| cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2; |
| } |
| |
| /* Do KVM_ARM_VCPU_INIT ioctl */ |
| ret = kvm_arm_vcpu_init(cs); |
| if (ret) { |
| return ret; |
| } |
| |
| /* Query the kernel to make sure it supports 32 VFP |
| * registers: QEMU's "cortex-a15" CPU is always a |
| * VFP-D32 core. The simplest way to do this is just |
| * to attempt to read register d31. |
| */ |
| r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP | 31; |
| r.addr = (uintptr_t)(&v); |
| ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); |
| if (ret == -ENOENT) { |
| return -EINVAL; |
| } |
| |
| /* |
| * When KVM is in use, PSCI is emulated in-kernel and not by qemu. |
| * Currently KVM has its own idea about MPIDR assignment, so we |
| * override our defaults with what we get from KVM. |
| */ |
| ret = kvm_get_one_reg(cs, ARM_CP15_REG32(ARM_CPU_ID_MPIDR), &mpidr); |
| if (ret) { |
| return ret; |
| } |
| cpu->mp_affinity = mpidr & ARM32_AFFINITY_MASK; |
| |
| /* Check whether userspace can specify guest syndrome value */ |
| kvm_arm_init_serror_injection(cs); |
| |
| return kvm_arm_init_cpreg_list(cpu); |
| } |
| |
| int kvm_arch_destroy_vcpu(CPUState *cs) |
| { |
| return 0; |
| } |
| |
| typedef struct Reg { |
| uint64_t id; |
| int offset; |
| } Reg; |
| |
| #define COREREG(KERNELNAME, QEMUFIELD) \ |
| { \ |
| KVM_REG_ARM | KVM_REG_SIZE_U32 | \ |
| KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \ |
| offsetof(CPUARMState, QEMUFIELD) \ |
| } |
| |
| #define VFPSYSREG(R) \ |
| { \ |
| KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | \ |
| KVM_REG_ARM_VFP_##R, \ |
| offsetof(CPUARMState, vfp.xregs[ARM_VFP_##R]) \ |
| } |
| |
| /* Like COREREG, but handle fields which are in a uint64_t in CPUARMState. */ |
| #define COREREG64(KERNELNAME, QEMUFIELD) \ |
| { \ |
| KVM_REG_ARM | KVM_REG_SIZE_U32 | \ |
| KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \ |
| offsetoflow32(CPUARMState, QEMUFIELD) \ |
| } |
| |
| static const Reg regs[] = { |
| /* R0_usr .. R14_usr */ |
| COREREG(usr_regs.uregs[0], regs[0]), |
| COREREG(usr_regs.uregs[1], regs[1]), |
| COREREG(usr_regs.uregs[2], regs[2]), |
| COREREG(usr_regs.uregs[3], regs[3]), |
| COREREG(usr_regs.uregs[4], regs[4]), |
| COREREG(usr_regs.uregs[5], regs[5]), |
| COREREG(usr_regs.uregs[6], regs[6]), |
| COREREG(usr_regs.uregs[7], regs[7]), |
| COREREG(usr_regs.uregs[8], usr_regs[0]), |
| COREREG(usr_regs.uregs[9], usr_regs[1]), |
| COREREG(usr_regs.uregs[10], usr_regs[2]), |
| COREREG(usr_regs.uregs[11], usr_regs[3]), |
| COREREG(usr_regs.uregs[12], usr_regs[4]), |
| COREREG(usr_regs.uregs[13], banked_r13[BANK_USRSYS]), |
| COREREG(usr_regs.uregs[14], banked_r14[BANK_USRSYS]), |
| /* R13, R14, SPSR for SVC, ABT, UND, IRQ banks */ |
| COREREG(svc_regs[0], banked_r13[BANK_SVC]), |
| COREREG(svc_regs[1], banked_r14[BANK_SVC]), |
| COREREG64(svc_regs[2], banked_spsr[BANK_SVC]), |
| COREREG(abt_regs[0], banked_r13[BANK_ABT]), |
| COREREG(abt_regs[1], banked_r14[BANK_ABT]), |
| COREREG64(abt_regs[2], banked_spsr[BANK_ABT]), |
| COREREG(und_regs[0], banked_r13[BANK_UND]), |
| COREREG(und_regs[1], banked_r14[BANK_UND]), |
| COREREG64(und_regs[2], banked_spsr[BANK_UND]), |
| COREREG(irq_regs[0], banked_r13[BANK_IRQ]), |
| COREREG(irq_regs[1], banked_r14[BANK_IRQ]), |
| COREREG64(irq_regs[2], banked_spsr[BANK_IRQ]), |
| /* R8_fiq .. R14_fiq and SPSR_fiq */ |
| COREREG(fiq_regs[0], fiq_regs[0]), |
| COREREG(fiq_regs[1], fiq_regs[1]), |
| COREREG(fiq_regs[2], fiq_regs[2]), |
| COREREG(fiq_regs[3], fiq_regs[3]), |
| COREREG(fiq_regs[4], fiq_regs[4]), |
| COREREG(fiq_regs[5], banked_r13[BANK_FIQ]), |
| COREREG(fiq_regs[6], banked_r14[BANK_FIQ]), |
| COREREG64(fiq_regs[7], banked_spsr[BANK_FIQ]), |
| /* R15 */ |
| COREREG(usr_regs.uregs[15], regs[15]), |
| /* VFP system registers */ |
| VFPSYSREG(FPSID), |
| VFPSYSREG(MVFR1), |
| VFPSYSREG(MVFR0), |
| VFPSYSREG(FPEXC), |
| VFPSYSREG(FPINST), |
| VFPSYSREG(FPINST2), |
| }; |
| |
| int kvm_arch_put_registers(CPUState *cs, int level) |
| { |
| ARMCPU *cpu = ARM_CPU(cs); |
| CPUARMState *env = &cpu->env; |
| struct kvm_one_reg r; |
| int mode, bn; |
| int ret, i; |
| uint32_t cpsr, fpscr; |
| |
| /* Make sure the banked regs are properly set */ |
| mode = env->uncached_cpsr & CPSR_M; |
| bn = bank_number(mode); |
| if (mode == ARM_CPU_MODE_FIQ) { |
| memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); |
| } else { |
| memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); |
| } |
| env->banked_r13[bn] = env->regs[13]; |
| env->banked_spsr[bn] = env->spsr; |
| env->banked_r14[r14_bank_number(mode)] = env->regs[14]; |
| |
| /* Now we can safely copy stuff down to the kernel */ |
| for (i = 0; i < ARRAY_SIZE(regs); i++) { |
| r.id = regs[i].id; |
| r.addr = (uintptr_t)(env) + regs[i].offset; |
| ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); |
| if (ret) { |
| return ret; |
| } |
| } |
| |
| /* Special cases which aren't a single CPUARMState field */ |
| cpsr = cpsr_read(env); |
| r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | |
| KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr); |
| r.addr = (uintptr_t)(&cpsr); |
| ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); |
| if (ret) { |
| return ret; |
| } |
| |
| /* VFP registers */ |
| r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP; |
| for (i = 0; i < 32; i++) { |
| r.addr = (uintptr_t)aa32_vfp_dreg(env, i); |
| ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); |
| if (ret) { |
| return ret; |
| } |
| r.id++; |
| } |
| |
| r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | |
| KVM_REG_ARM_VFP_FPSCR; |
| fpscr = vfp_get_fpscr(env); |
| r.addr = (uintptr_t)&fpscr; |
| ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); |
| if (ret) { |
| return ret; |
| } |
| |
| ret = kvm_put_vcpu_events(cpu); |
| if (ret) { |
| return ret; |
| } |
| |
| write_cpustate_to_list(cpu, true); |
| |
| if (!write_list_to_kvmstate(cpu, level)) { |
| return EINVAL; |
| } |
| |
| kvm_arm_sync_mpstate_to_kvm(cpu); |
| |
| return ret; |
| } |
| |
| int kvm_arch_get_registers(CPUState *cs) |
| { |
| ARMCPU *cpu = ARM_CPU(cs); |
| CPUARMState *env = &cpu->env; |
| struct kvm_one_reg r; |
| int mode, bn; |
| int ret, i; |
| uint32_t cpsr, fpscr; |
| |
| for (i = 0; i < ARRAY_SIZE(regs); i++) { |
| r.id = regs[i].id; |
| r.addr = (uintptr_t)(env) + regs[i].offset; |
| ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); |
| if (ret) { |
| return ret; |
| } |
| } |
| |
| /* Special cases which aren't a single CPUARMState field */ |
| r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | |
| KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr); |
| r.addr = (uintptr_t)(&cpsr); |
| ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); |
| if (ret) { |
| return ret; |
| } |
| cpsr_write(env, cpsr, 0xffffffff, CPSRWriteRaw); |
| |
| /* Make sure the current mode regs are properly set */ |
| mode = env->uncached_cpsr & CPSR_M; |
| bn = bank_number(mode); |
| if (mode == ARM_CPU_MODE_FIQ) { |
| memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); |
| } else { |
| memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); |
| } |
| env->regs[13] = env->banked_r13[bn]; |
| env->spsr = env->banked_spsr[bn]; |
| env->regs[14] = env->banked_r14[r14_bank_number(mode)]; |
| |
| /* VFP registers */ |
| r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP; |
| for (i = 0; i < 32; i++) { |
| r.addr = (uintptr_t)aa32_vfp_dreg(env, i); |
| ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); |
| if (ret) { |
| return ret; |
| } |
| r.id++; |
| } |
| |
| r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | |
| KVM_REG_ARM_VFP_FPSCR; |
| r.addr = (uintptr_t)&fpscr; |
| ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); |
| if (ret) { |
| return ret; |
| } |
| vfp_set_fpscr(env, fpscr); |
| |
| ret = kvm_get_vcpu_events(cpu); |
| if (ret) { |
| return ret; |
| } |
| |
| if (!write_kvmstate_to_list(cpu)) { |
| return EINVAL; |
| } |
| /* Note that it's OK to have registers which aren't in CPUState, |
| * so we can ignore a failure return here. |
| */ |
| write_list_to_cpustate(cpu); |
| |
| kvm_arm_sync_mpstate_to_qemu(cpu); |
| |
| return 0; |
| } |
| |
| int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) |
| { |
| qemu_log_mask(LOG_UNIMP, "%s: guest debug not yet implemented\n", __func__); |
| return -EINVAL; |
| } |
| |
| int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) |
| { |
| qemu_log_mask(LOG_UNIMP, "%s: guest debug not yet implemented\n", __func__); |
| return -EINVAL; |
| } |
| |
| bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit) |
| { |
| qemu_log_mask(LOG_UNIMP, "%s: guest debug not yet implemented\n", __func__); |
| return false; |
| } |
| |
| int kvm_arch_insert_hw_breakpoint(target_ulong addr, |
| target_ulong len, int type) |
| { |
| qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__); |
| return -EINVAL; |
| } |
| |
| int kvm_arch_remove_hw_breakpoint(target_ulong addr, |
| target_ulong len, int type) |
| { |
| qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__); |
| return -EINVAL; |
| } |
| |
| void kvm_arch_remove_all_hw_breakpoints(void) |
| { |
| qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__); |
| } |
| |
| void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr) |
| { |
| qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__); |
| } |
| |
| bool kvm_arm_hw_debug_active(CPUState *cs) |
| { |
| return false; |
| } |
| |
| void kvm_arm_pmu_set_irq(CPUState *cs, int irq) |
| { |
| qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__); |
| } |
| |
| void kvm_arm_pmu_init(CPUState *cs) |
| { |
| qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__); |
| } |