| /* |
| * ARM GIC support - common bits of emulated and KVM kernel model |
| * |
| * Copyright (c) 2012 Linaro Limited |
| * Written by Peter Maydell |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation, either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License along |
| * with this program; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "gic_internal.h" |
| #include "hw/arm/linux-boot-if.h" |
| |
| static void gic_pre_save(void *opaque) |
| { |
| GICState *s = (GICState *)opaque; |
| ARMGICCommonClass *c = ARM_GIC_COMMON_GET_CLASS(s); |
| |
| if (c->pre_save) { |
| c->pre_save(s); |
| } |
| } |
| |
| static int gic_post_load(void *opaque, int version_id) |
| { |
| GICState *s = (GICState *)opaque; |
| ARMGICCommonClass *c = ARM_GIC_COMMON_GET_CLASS(s); |
| |
| if (c->post_load) { |
| c->post_load(s); |
| } |
| return 0; |
| } |
| |
| static const VMStateDescription vmstate_gic_irq_state = { |
| .name = "arm_gic_irq_state", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .fields = (VMStateField[]) { |
| VMSTATE_UINT8(enabled, gic_irq_state), |
| VMSTATE_UINT8(pending, gic_irq_state), |
| VMSTATE_UINT8(active, gic_irq_state), |
| VMSTATE_UINT8(level, gic_irq_state), |
| VMSTATE_BOOL(model, gic_irq_state), |
| VMSTATE_BOOL(edge_trigger, gic_irq_state), |
| VMSTATE_UINT8(group, gic_irq_state), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| static const VMStateDescription vmstate_gic = { |
| .name = "arm_gic", |
| .version_id = 12, |
| .minimum_version_id = 12, |
| .pre_save = gic_pre_save, |
| .post_load = gic_post_load, |
| .fields = (VMStateField[]) { |
| VMSTATE_UINT32(ctlr, GICState), |
| VMSTATE_UINT32_ARRAY(cpu_ctlr, GICState, GIC_NCPU), |
| VMSTATE_STRUCT_ARRAY(irq_state, GICState, GIC_MAXIRQ, 1, |
| vmstate_gic_irq_state, gic_irq_state), |
| VMSTATE_UINT8_ARRAY(irq_target, GICState, GIC_MAXIRQ), |
| VMSTATE_UINT8_2DARRAY(priority1, GICState, GIC_INTERNAL, GIC_NCPU), |
| VMSTATE_UINT8_ARRAY(priority2, GICState, GIC_MAXIRQ - GIC_INTERNAL), |
| VMSTATE_UINT8_2DARRAY(sgi_pending, GICState, GIC_NR_SGIS, GIC_NCPU), |
| VMSTATE_UINT16_ARRAY(priority_mask, GICState, GIC_NCPU), |
| VMSTATE_UINT16_ARRAY(running_priority, GICState, GIC_NCPU), |
| VMSTATE_UINT16_ARRAY(current_pending, GICState, GIC_NCPU), |
| VMSTATE_UINT8_ARRAY(bpr, GICState, GIC_NCPU), |
| VMSTATE_UINT8_ARRAY(abpr, GICState, GIC_NCPU), |
| VMSTATE_UINT32_2DARRAY(apr, GICState, GIC_NR_APRS, GIC_NCPU), |
| VMSTATE_UINT32_2DARRAY(nsapr, GICState, GIC_NR_APRS, GIC_NCPU), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| void gic_init_irqs_and_mmio(GICState *s, qemu_irq_handler handler, |
| const MemoryRegionOps *ops) |
| { |
| SysBusDevice *sbd = SYS_BUS_DEVICE(s); |
| int i = s->num_irq - GIC_INTERNAL; |
| |
| /* For the GIC, also expose incoming GPIO lines for PPIs for each CPU. |
| * GPIO array layout is thus: |
| * [0..N-1] SPIs |
| * [N..N+31] PPIs for CPU 0 |
| * [N+32..N+63] PPIs for CPU 1 |
| * ... |
| */ |
| if (s->revision != REV_NVIC) { |
| i += (GIC_INTERNAL * s->num_cpu); |
| } |
| qdev_init_gpio_in(DEVICE(s), handler, i); |
| |
| for (i = 0; i < s->num_cpu; i++) { |
| sysbus_init_irq(sbd, &s->parent_irq[i]); |
| } |
| for (i = 0; i < s->num_cpu; i++) { |
| sysbus_init_irq(sbd, &s->parent_fiq[i]); |
| } |
| |
| /* Distributor */ |
| memory_region_init_io(&s->iomem, OBJECT(s), ops, s, "gic_dist", 0x1000); |
| sysbus_init_mmio(sbd, &s->iomem); |
| |
| if (s->revision != REV_NVIC) { |
| /* This is the main CPU interface "for this core". It is always |
| * present because it is required by both software emulation and KVM. |
| * NVIC is not handled here because its CPU interface is different, |
| * neither it can use KVM. |
| */ |
| memory_region_init_io(&s->cpuiomem[0], OBJECT(s), ops ? &ops[1] : NULL, |
| s, "gic_cpu", s->revision == 2 ? 0x1000 : 0x100); |
| sysbus_init_mmio(sbd, &s->cpuiomem[0]); |
| } |
| } |
| |
| static void arm_gic_common_realize(DeviceState *dev, Error **errp) |
| { |
| GICState *s = ARM_GIC_COMMON(dev); |
| int num_irq = s->num_irq; |
| |
| if (s->num_cpu > GIC_NCPU) { |
| error_setg(errp, "requested %u CPUs exceeds GIC maximum %d", |
| s->num_cpu, GIC_NCPU); |
| return; |
| } |
| s->num_irq += GIC_BASE_IRQ; |
| if (s->num_irq > GIC_MAXIRQ) { |
| error_setg(errp, |
| "requested %u interrupt lines exceeds GIC maximum %d", |
| num_irq, GIC_MAXIRQ); |
| return; |
| } |
| /* ITLinesNumber is represented as (N / 32) - 1 (see |
| * gic_dist_readb) so this is an implementation imposed |
| * restriction, not an architectural one: |
| */ |
| if (s->num_irq < 32 || (s->num_irq % 32)) { |
| error_setg(errp, |
| "%d interrupt lines unsupported: not divisible by 32", |
| num_irq); |
| return; |
| } |
| |
| if (s->security_extn && |
| (s->revision == REV_11MPCORE || s->revision == REV_NVIC)) { |
| error_setg(errp, "this GIC revision does not implement " |
| "the security extensions"); |
| return; |
| } |
| } |
| |
| static void arm_gic_common_reset(DeviceState *dev) |
| { |
| GICState *s = ARM_GIC_COMMON(dev); |
| int i, j; |
| int resetprio; |
| |
| /* If we're resetting a TZ-aware GIC as if secure firmware |
| * had set it up ready to start a kernel in non-secure, |
| * we need to set interrupt priorities to a "zero for the |
| * NS view" value. This is particularly critical for the |
| * priority_mask[] values, because if they are zero then NS |
| * code cannot ever rewrite the priority to anything else. |
| */ |
| if (s->security_extn && s->irq_reset_nonsecure) { |
| resetprio = 0x80; |
| } else { |
| resetprio = 0; |
| } |
| |
| memset(s->irq_state, 0, GIC_MAXIRQ * sizeof(gic_irq_state)); |
| for (i = 0 ; i < s->num_cpu; i++) { |
| if (s->revision == REV_11MPCORE) { |
| s->priority_mask[i] = 0xf0; |
| } else { |
| s->priority_mask[i] = resetprio; |
| } |
| s->current_pending[i] = 1023; |
| s->running_priority[i] = 0x100; |
| s->cpu_ctlr[i] = 0; |
| s->bpr[i] = GIC_MIN_BPR; |
| s->abpr[i] = GIC_MIN_ABPR; |
| for (j = 0; j < GIC_INTERNAL; j++) { |
| s->priority1[j][i] = resetprio; |
| } |
| for (j = 0; j < GIC_NR_SGIS; j++) { |
| s->sgi_pending[j][i] = 0; |
| } |
| } |
| for (i = 0; i < GIC_NR_SGIS; i++) { |
| GIC_SET_ENABLED(i, ALL_CPU_MASK); |
| GIC_SET_EDGE_TRIGGER(i); |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(s->priority2); i++) { |
| s->priority2[i] = resetprio; |
| } |
| |
| for (i = 0; i < GIC_MAXIRQ; i++) { |
| /* For uniprocessor GICs all interrupts always target the sole CPU */ |
| if (s->num_cpu == 1) { |
| s->irq_target[i] = 1; |
| } else { |
| s->irq_target[i] = 0; |
| } |
| } |
| if (s->security_extn && s->irq_reset_nonsecure) { |
| for (i = 0; i < GIC_MAXIRQ; i++) { |
| GIC_SET_GROUP(i, ALL_CPU_MASK); |
| } |
| } |
| |
| s->ctlr = 0; |
| } |
| |
| static void arm_gic_common_linux_init(ARMLinuxBootIf *obj, |
| bool secure_boot) |
| { |
| GICState *s = ARM_GIC_COMMON(obj); |
| |
| if (s->security_extn && !secure_boot) { |
| /* We're directly booting a kernel into NonSecure. If this GIC |
| * implements the security extensions then we must configure it |
| * to have all the interrupts be NonSecure (this is a job that |
| * is done by the Secure boot firmware in real hardware, and in |
| * this mode QEMU is acting as a minimalist firmware-and-bootloader |
| * equivalent). |
| */ |
| s->irq_reset_nonsecure = true; |
| } |
| } |
| |
| static Property arm_gic_common_properties[] = { |
| DEFINE_PROP_UINT32("num-cpu", GICState, num_cpu, 1), |
| DEFINE_PROP_UINT32("num-irq", GICState, num_irq, 32), |
| /* Revision can be 1 or 2 for GIC architecture specification |
| * versions 1 or 2, or 0 to indicate the legacy 11MPCore GIC. |
| * (Internally, 0xffffffff also indicates "not a GIC but an NVIC".) |
| */ |
| DEFINE_PROP_UINT32("revision", GICState, revision, 1), |
| /* True if the GIC should implement the security extensions */ |
| DEFINE_PROP_BOOL("has-security-extensions", GICState, security_extn, 0), |
| DEFINE_PROP_END_OF_LIST(), |
| }; |
| |
| static void arm_gic_common_class_init(ObjectClass *klass, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_CLASS(klass); |
| |
| dc->reset = arm_gic_common_reset; |
| dc->realize = arm_gic_common_realize; |
| dc->props = arm_gic_common_properties; |
| dc->vmsd = &vmstate_gic; |
| albifc->arm_linux_init = arm_gic_common_linux_init; |
| } |
| |
| static const TypeInfo arm_gic_common_type = { |
| .name = TYPE_ARM_GIC_COMMON, |
| .parent = TYPE_SYS_BUS_DEVICE, |
| .instance_size = sizeof(GICState), |
| .class_size = sizeof(ARMGICCommonClass), |
| .class_init = arm_gic_common_class_init, |
| .abstract = true, |
| .interfaces = (InterfaceInfo []) { |
| { TYPE_ARM_LINUX_BOOT_IF }, |
| { }, |
| }, |
| }; |
| |
| static void register_types(void) |
| { |
| type_register_static(&arm_gic_common_type); |
| } |
| |
| type_init(register_types) |