| /* | 
 |  * Coroutine tests | 
 |  * | 
 |  * Copyright IBM, Corp. 2011 | 
 |  * | 
 |  * Authors: | 
 |  *  Stefan Hajnoczi    <stefanha@linux.vnet.ibm.com> | 
 |  * | 
 |  * This work is licensed under the terms of the GNU LGPL, version 2 or later. | 
 |  * See the COPYING.LIB file in the top-level directory. | 
 |  * | 
 |  */ | 
 |  | 
 | #include "qemu/osdep.h" | 
 | #include "qemu/coroutine_int.h" | 
 |  | 
 | /* | 
 |  * Check that qemu_in_coroutine() works | 
 |  */ | 
 |  | 
 | static void coroutine_fn verify_in_coroutine(void *opaque) | 
 | { | 
 |     g_assert(qemu_in_coroutine()); | 
 | } | 
 |  | 
 | static void test_in_coroutine(void) | 
 | { | 
 |     Coroutine *coroutine; | 
 |  | 
 |     g_assert(!qemu_in_coroutine()); | 
 |  | 
 |     coroutine = qemu_coroutine_create(verify_in_coroutine, NULL); | 
 |     qemu_coroutine_enter(coroutine); | 
 | } | 
 |  | 
 | /* | 
 |  * Check that qemu_coroutine_self() works | 
 |  */ | 
 |  | 
 | static void coroutine_fn verify_self(void *opaque) | 
 | { | 
 |     Coroutine **p_co = opaque; | 
 |     g_assert(qemu_coroutine_self() == *p_co); | 
 | } | 
 |  | 
 | static void test_self(void) | 
 | { | 
 |     Coroutine *coroutine; | 
 |  | 
 |     coroutine = qemu_coroutine_create(verify_self, &coroutine); | 
 |     qemu_coroutine_enter(coroutine); | 
 | } | 
 |  | 
 | /* | 
 |  * Check that qemu_coroutine_entered() works | 
 |  */ | 
 |  | 
 | static void coroutine_fn verify_entered_step_2(void *opaque) | 
 | { | 
 |     Coroutine *caller = (Coroutine *)opaque; | 
 |  | 
 |     g_assert(qemu_coroutine_entered(caller)); | 
 |     g_assert(qemu_coroutine_entered(qemu_coroutine_self())); | 
 |     qemu_coroutine_yield(); | 
 |  | 
 |     /* Once more to check it still works after yielding */ | 
 |     g_assert(qemu_coroutine_entered(caller)); | 
 |     g_assert(qemu_coroutine_entered(qemu_coroutine_self())); | 
 | } | 
 |  | 
 | static void coroutine_fn verify_entered_step_1(void *opaque) | 
 | { | 
 |     Coroutine *self = qemu_coroutine_self(); | 
 |     Coroutine *coroutine; | 
 |  | 
 |     g_assert(qemu_coroutine_entered(self)); | 
 |  | 
 |     coroutine = qemu_coroutine_create(verify_entered_step_2, self); | 
 |     g_assert(!qemu_coroutine_entered(coroutine)); | 
 |     qemu_coroutine_enter(coroutine); | 
 |     g_assert(!qemu_coroutine_entered(coroutine)); | 
 |     qemu_coroutine_enter(coroutine); | 
 | } | 
 |  | 
 | static void test_entered(void) | 
 | { | 
 |     Coroutine *coroutine; | 
 |  | 
 |     coroutine = qemu_coroutine_create(verify_entered_step_1, NULL); | 
 |     g_assert(!qemu_coroutine_entered(coroutine)); | 
 |     qemu_coroutine_enter(coroutine); | 
 | } | 
 |  | 
 | /* | 
 |  * Check that coroutines may nest multiple levels | 
 |  */ | 
 |  | 
 | typedef struct { | 
 |     unsigned int n_enter;   /* num coroutines entered */ | 
 |     unsigned int n_return;  /* num coroutines returned */ | 
 |     unsigned int max;       /* maximum level of nesting */ | 
 | } NestData; | 
 |  | 
 | static void coroutine_fn nest(void *opaque) | 
 | { | 
 |     NestData *nd = opaque; | 
 |  | 
 |     nd->n_enter++; | 
 |  | 
 |     if (nd->n_enter < nd->max) { | 
 |         Coroutine *child; | 
 |  | 
 |         child = qemu_coroutine_create(nest, nd); | 
 |         qemu_coroutine_enter(child); | 
 |     } | 
 |  | 
 |     nd->n_return++; | 
 | } | 
 |  | 
 | static void test_nesting(void) | 
 | { | 
 |     Coroutine *root; | 
 |     NestData nd = { | 
 |         .n_enter  = 0, | 
 |         .n_return = 0, | 
 |         .max      = 128, | 
 |     }; | 
 |  | 
 |     root = qemu_coroutine_create(nest, &nd); | 
 |     qemu_coroutine_enter(root); | 
 |  | 
 |     /* Must enter and return from max nesting level */ | 
 |     g_assert_cmpint(nd.n_enter, ==, nd.max); | 
 |     g_assert_cmpint(nd.n_return, ==, nd.max); | 
 | } | 
 |  | 
 | /* | 
 |  * Check that yield/enter transfer control correctly | 
 |  */ | 
 |  | 
 | static void coroutine_fn yield_5_times(void *opaque) | 
 | { | 
 |     bool *done = opaque; | 
 |     int i; | 
 |  | 
 |     for (i = 0; i < 5; i++) { | 
 |         qemu_coroutine_yield(); | 
 |     } | 
 |     *done = true; | 
 | } | 
 |  | 
 | static void test_yield(void) | 
 | { | 
 |     Coroutine *coroutine; | 
 |     bool done = false; | 
 |     int i = -1; /* one extra time to return from coroutine */ | 
 |  | 
 |     coroutine = qemu_coroutine_create(yield_5_times, &done); | 
 |     while (!done) { | 
 |         qemu_coroutine_enter(coroutine); | 
 |         i++; | 
 |     } | 
 |     g_assert_cmpint(i, ==, 5); /* coroutine must yield 5 times */ | 
 | } | 
 |  | 
 | static void coroutine_fn c2_fn(void *opaque) | 
 | { | 
 |     qemu_coroutine_yield(); | 
 | } | 
 |  | 
 | static void coroutine_fn c1_fn(void *opaque) | 
 | { | 
 |     Coroutine *c2 = opaque; | 
 |     qemu_coroutine_enter(c2); | 
 | } | 
 |  | 
 | static void test_no_dangling_access(void) | 
 | { | 
 |     Coroutine *c1; | 
 |     Coroutine *c2; | 
 |     Coroutine tmp; | 
 |  | 
 |     c2 = qemu_coroutine_create(c2_fn, NULL); | 
 |     c1 = qemu_coroutine_create(c1_fn, c2); | 
 |  | 
 |     qemu_coroutine_enter(c1); | 
 |  | 
 |     /* c1 shouldn't be used any more now; make sure we segfault if it is */ | 
 |     tmp = *c1; | 
 |     memset(c1, 0xff, sizeof(Coroutine)); | 
 |     qemu_coroutine_enter(c2); | 
 |  | 
 |     /* Must restore the coroutine now to avoid corrupted pool */ | 
 |     *c1 = tmp; | 
 | } | 
 |  | 
 | static bool locked; | 
 | static int done_count; | 
 |  | 
 | static void coroutine_fn mutex_fn(void *opaque) | 
 | { | 
 |     CoMutex *m = opaque; | 
 |     qemu_co_mutex_lock(m); | 
 |     assert(!locked); | 
 |     locked = true; | 
 |     qemu_coroutine_yield(); | 
 |     locked = false; | 
 |     qemu_co_mutex_unlock(m); | 
 |     done_count++; | 
 | } | 
 |  | 
 | static void coroutine_fn lockable_fn(void *opaque) | 
 | { | 
 |     QemuLockable *x = opaque; | 
 |     qemu_lockable_lock(x); | 
 |     assert(!locked); | 
 |     locked = true; | 
 |     qemu_coroutine_yield(); | 
 |     locked = false; | 
 |     qemu_lockable_unlock(x); | 
 |     done_count++; | 
 | } | 
 |  | 
 | static void do_test_co_mutex(CoroutineEntry *entry, void *opaque) | 
 | { | 
 |     Coroutine *c1 = qemu_coroutine_create(entry, opaque); | 
 |     Coroutine *c2 = qemu_coroutine_create(entry, opaque); | 
 |  | 
 |     done_count = 0; | 
 |     qemu_coroutine_enter(c1); | 
 |     g_assert(locked); | 
 |     qemu_coroutine_enter(c2); | 
 |  | 
 |     /* Unlock queues c2.  It is then started automatically when c1 yields or | 
 |      * terminates. | 
 |      */ | 
 |     qemu_coroutine_enter(c1); | 
 |     g_assert_cmpint(done_count, ==, 1); | 
 |     g_assert(locked); | 
 |  | 
 |     qemu_coroutine_enter(c2); | 
 |     g_assert_cmpint(done_count, ==, 2); | 
 |     g_assert(!locked); | 
 | } | 
 |  | 
 | static void test_co_mutex(void) | 
 | { | 
 |     CoMutex m; | 
 |  | 
 |     qemu_co_mutex_init(&m); | 
 |     do_test_co_mutex(mutex_fn, &m); | 
 | } | 
 |  | 
 | static void test_co_mutex_lockable(void) | 
 | { | 
 |     CoMutex m; | 
 |     CoMutex *null_pointer = NULL; | 
 |  | 
 |     qemu_co_mutex_init(&m); | 
 |     do_test_co_mutex(lockable_fn, QEMU_MAKE_LOCKABLE(&m)); | 
 |  | 
 |     g_assert(QEMU_MAKE_LOCKABLE(null_pointer) == NULL); | 
 | } | 
 |  | 
 | static CoRwlock rwlock; | 
 |  | 
 | /* Test that readers are properly sent back to the queue when upgrading, | 
 |  * even if they are the sole readers.  The test scenario is as follows: | 
 |  * | 
 |  * | 
 |  * | c1           | c2         | | 
 |  * |--------------+------------+ | 
 |  * | rdlock       |            | | 
 |  * | yield        |            | | 
 |  * |              | wrlock     | | 
 |  * |              | <queued>   | | 
 |  * | upgrade      |            | | 
 |  * | <queued>     | <dequeued> | | 
 |  * |              | unlock     | | 
 |  * | <dequeued>   |            | | 
 |  * | unlock       |            | | 
 |  */ | 
 |  | 
 | static void coroutine_fn rwlock_yield_upgrade(void *opaque) | 
 | { | 
 |     qemu_co_rwlock_rdlock(&rwlock); | 
 |     qemu_coroutine_yield(); | 
 |  | 
 |     qemu_co_rwlock_upgrade(&rwlock); | 
 |     qemu_co_rwlock_unlock(&rwlock); | 
 |  | 
 |     *(bool *)opaque = true; | 
 | } | 
 |  | 
 | static void coroutine_fn rwlock_wrlock_yield(void *opaque) | 
 | { | 
 |     qemu_co_rwlock_wrlock(&rwlock); | 
 |     qemu_coroutine_yield(); | 
 |  | 
 |     qemu_co_rwlock_unlock(&rwlock); | 
 |     *(bool *)opaque = true; | 
 | } | 
 |  | 
 | static void test_co_rwlock_upgrade(void) | 
 | { | 
 |     bool c1_done = false; | 
 |     bool c2_done = false; | 
 |     Coroutine *c1, *c2; | 
 |  | 
 |     qemu_co_rwlock_init(&rwlock); | 
 |     c1 = qemu_coroutine_create(rwlock_yield_upgrade, &c1_done); | 
 |     c2 = qemu_coroutine_create(rwlock_wrlock_yield, &c2_done); | 
 |  | 
 |     qemu_coroutine_enter(c1); | 
 |     qemu_coroutine_enter(c2); | 
 |  | 
 |     /* c1 now should go to sleep.  */ | 
 |     qemu_coroutine_enter(c1); | 
 |     g_assert(!c1_done); | 
 |  | 
 |     qemu_coroutine_enter(c2); | 
 |     g_assert(c1_done); | 
 |     g_assert(c2_done); | 
 | } | 
 |  | 
 | static void coroutine_fn rwlock_rdlock_yield(void *opaque) | 
 | { | 
 |     qemu_co_rwlock_rdlock(&rwlock); | 
 |     qemu_coroutine_yield(); | 
 |  | 
 |     qemu_co_rwlock_unlock(&rwlock); | 
 |     qemu_coroutine_yield(); | 
 |  | 
 |     *(bool *)opaque = true; | 
 | } | 
 |  | 
 | static void coroutine_fn rwlock_wrlock_downgrade(void *opaque) | 
 | { | 
 |     qemu_co_rwlock_wrlock(&rwlock); | 
 |  | 
 |     qemu_co_rwlock_downgrade(&rwlock); | 
 |     qemu_co_rwlock_unlock(&rwlock); | 
 |     *(bool *)opaque = true; | 
 | } | 
 |  | 
 | static void coroutine_fn rwlock_rdlock(void *opaque) | 
 | { | 
 |     qemu_co_rwlock_rdlock(&rwlock); | 
 |  | 
 |     qemu_co_rwlock_unlock(&rwlock); | 
 |     *(bool *)opaque = true; | 
 | } | 
 |  | 
 | static void coroutine_fn rwlock_wrlock(void *opaque) | 
 | { | 
 |     qemu_co_rwlock_wrlock(&rwlock); | 
 |  | 
 |     qemu_co_rwlock_unlock(&rwlock); | 
 |     *(bool *)opaque = true; | 
 | } | 
 |  | 
 | /* | 
 |  * Check that downgrading a reader-writer lock does not cause a hang. | 
 |  * | 
 |  * Four coroutines are used to produce a situation where there are | 
 |  * both reader and writer hopefuls waiting to acquire an rwlock that | 
 |  * is held by a reader. | 
 |  * | 
 |  * The correct sequence of operations we aim to provoke can be | 
 |  * represented as: | 
 |  * | 
 |  * | c1     | c2         | c3         | c4         | | 
 |  * |--------+------------+------------+------------| | 
 |  * | rdlock |            |            |            | | 
 |  * | yield  |            |            |            | | 
 |  * |        | wrlock     |            |            | | 
 |  * |        | <queued>   |            |            | | 
 |  * |        |            | rdlock     |            | | 
 |  * |        |            | <queued>   |            | | 
 |  * |        |            |            | wrlock     | | 
 |  * |        |            |            | <queued>   | | 
 |  * | unlock |            |            |            | | 
 |  * | yield  |            |            |            | | 
 |  * |        | <dequeued> |            |            | | 
 |  * |        | downgrade  |            |            | | 
 |  * |        |            | <dequeued> |            | | 
 |  * |        |            | unlock     |            | | 
 |  * |        | ...        |            |            | | 
 |  * |        | unlock     |            |            | | 
 |  * |        |            |            | <dequeued> | | 
 |  * |        |            |            | unlock     | | 
 |  */ | 
 | static void test_co_rwlock_downgrade(void) | 
 | { | 
 |     bool c1_done = false; | 
 |     bool c2_done = false; | 
 |     bool c3_done = false; | 
 |     bool c4_done = false; | 
 |     Coroutine *c1, *c2, *c3, *c4; | 
 |  | 
 |     qemu_co_rwlock_init(&rwlock); | 
 |  | 
 |     c1 = qemu_coroutine_create(rwlock_rdlock_yield, &c1_done); | 
 |     c2 = qemu_coroutine_create(rwlock_wrlock_downgrade, &c2_done); | 
 |     c3 = qemu_coroutine_create(rwlock_rdlock, &c3_done); | 
 |     c4 = qemu_coroutine_create(rwlock_wrlock, &c4_done); | 
 |  | 
 |     qemu_coroutine_enter(c1); | 
 |     qemu_coroutine_enter(c2); | 
 |     qemu_coroutine_enter(c3); | 
 |     qemu_coroutine_enter(c4); | 
 |  | 
 |     qemu_coroutine_enter(c1); | 
 |  | 
 |     g_assert(c2_done); | 
 |     g_assert(c3_done); | 
 |     g_assert(c4_done); | 
 |  | 
 |     qemu_coroutine_enter(c1); | 
 |  | 
 |     g_assert(c1_done); | 
 | } | 
 |  | 
 | /* | 
 |  * Check that creation, enter, and return work | 
 |  */ | 
 |  | 
 | static void coroutine_fn set_and_exit(void *opaque) | 
 | { | 
 |     bool *done = opaque; | 
 |  | 
 |     *done = true; | 
 | } | 
 |  | 
 | static void test_lifecycle(void) | 
 | { | 
 |     Coroutine *coroutine; | 
 |     bool done = false; | 
 |  | 
 |     /* Create, enter, and return from coroutine */ | 
 |     coroutine = qemu_coroutine_create(set_and_exit, &done); | 
 |     qemu_coroutine_enter(coroutine); | 
 |     g_assert(done); /* expect done to be true (first time) */ | 
 |  | 
 |     /* Repeat to check that no state affects this test */ | 
 |     done = false; | 
 |     coroutine = qemu_coroutine_create(set_and_exit, &done); | 
 |     qemu_coroutine_enter(coroutine); | 
 |     g_assert(done); /* expect done to be true (second time) */ | 
 | } | 
 |  | 
 |  | 
 | #define RECORD_SIZE 10 /* Leave some room for expansion */ | 
 | struct coroutine_position { | 
 |     int func; | 
 |     int state; | 
 | }; | 
 | static struct coroutine_position records[RECORD_SIZE]; | 
 | static unsigned record_pos; | 
 |  | 
 | static void record_push(int func, int state) | 
 | { | 
 |     struct coroutine_position *cp = &records[record_pos++]; | 
 |     g_assert_cmpint(record_pos, <, RECORD_SIZE); | 
 |     cp->func = func; | 
 |     cp->state = state; | 
 | } | 
 |  | 
 | static void coroutine_fn co_order_test(void *opaque) | 
 | { | 
 |     record_push(2, 1); | 
 |     g_assert(qemu_in_coroutine()); | 
 |     qemu_coroutine_yield(); | 
 |     record_push(2, 2); | 
 |     g_assert(qemu_in_coroutine()); | 
 | } | 
 |  | 
 | static void do_order_test(void) | 
 | { | 
 |     Coroutine *co; | 
 |  | 
 |     co = qemu_coroutine_create(co_order_test, NULL); | 
 |     record_push(1, 1); | 
 |     qemu_coroutine_enter(co); | 
 |     record_push(1, 2); | 
 |     g_assert(!qemu_in_coroutine()); | 
 |     qemu_coroutine_enter(co); | 
 |     record_push(1, 3); | 
 |     g_assert(!qemu_in_coroutine()); | 
 | } | 
 |  | 
 | static void test_order(void) | 
 | { | 
 |     int i; | 
 |     const struct coroutine_position expected_pos[] = { | 
 |         {1, 1,}, {2, 1}, {1, 2}, {2, 2}, {1, 3} | 
 |     }; | 
 |     do_order_test(); | 
 |     g_assert_cmpint(record_pos, ==, 5); | 
 |     for (i = 0; i < record_pos; i++) { | 
 |         g_assert_cmpint(records[i].func , ==, expected_pos[i].func ); | 
 |         g_assert_cmpint(records[i].state, ==, expected_pos[i].state); | 
 |     } | 
 | } | 
 | /* | 
 |  * Lifecycle benchmark | 
 |  */ | 
 |  | 
 | static void coroutine_fn empty_coroutine(void *opaque) | 
 | { | 
 |     /* Do nothing */ | 
 | } | 
 |  | 
 | static void perf_lifecycle(void) | 
 | { | 
 |     Coroutine *coroutine; | 
 |     unsigned int i, max; | 
 |     double duration; | 
 |  | 
 |     max = 1000000; | 
 |  | 
 |     g_test_timer_start(); | 
 |     for (i = 0; i < max; i++) { | 
 |         coroutine = qemu_coroutine_create(empty_coroutine, NULL); | 
 |         qemu_coroutine_enter(coroutine); | 
 |     } | 
 |     duration = g_test_timer_elapsed(); | 
 |  | 
 |     g_test_message("Lifecycle %u iterations: %f s", max, duration); | 
 | } | 
 |  | 
 | static void perf_nesting(void) | 
 | { | 
 |     unsigned int i, maxcycles, maxnesting; | 
 |     double duration; | 
 |  | 
 |     maxcycles = 10000; | 
 |     maxnesting = 1000; | 
 |     Coroutine *root; | 
 |  | 
 |     g_test_timer_start(); | 
 |     for (i = 0; i < maxcycles; i++) { | 
 |         NestData nd = { | 
 |             .n_enter  = 0, | 
 |             .n_return = 0, | 
 |             .max      = maxnesting, | 
 |         }; | 
 |         root = qemu_coroutine_create(nest, &nd); | 
 |         qemu_coroutine_enter(root); | 
 |     } | 
 |     duration = g_test_timer_elapsed(); | 
 |  | 
 |     g_test_message("Nesting %u iterations of %u depth each: %f s", | 
 |         maxcycles, maxnesting, duration); | 
 | } | 
 |  | 
 | /* | 
 |  * Yield benchmark | 
 |  */ | 
 |  | 
 | static void coroutine_fn yield_loop(void *opaque) | 
 | { | 
 |     unsigned int *counter = opaque; | 
 |  | 
 |     while ((*counter) > 0) { | 
 |         (*counter)--; | 
 |         qemu_coroutine_yield(); | 
 |     } | 
 | } | 
 |  | 
 | static void perf_yield(void) | 
 | { | 
 |     unsigned int i, maxcycles; | 
 |     double duration; | 
 |  | 
 |     maxcycles = 100000000; | 
 |     i = maxcycles; | 
 |     Coroutine *coroutine = qemu_coroutine_create(yield_loop, &i); | 
 |  | 
 |     g_test_timer_start(); | 
 |     while (i > 0) { | 
 |         qemu_coroutine_enter(coroutine); | 
 |     } | 
 |     duration = g_test_timer_elapsed(); | 
 |  | 
 |     g_test_message("Yield %u iterations: %f s", maxcycles, duration); | 
 | } | 
 |  | 
 | static __attribute__((noinline)) void dummy(unsigned *i) | 
 | { | 
 |     (*i)--; | 
 | } | 
 |  | 
 | static void perf_baseline(void) | 
 | { | 
 |     unsigned int i, maxcycles; | 
 |     double duration; | 
 |  | 
 |     maxcycles = 100000000; | 
 |     i = maxcycles; | 
 |  | 
 |     g_test_timer_start(); | 
 |     while (i > 0) { | 
 |         dummy(&i); | 
 |     } | 
 |     duration = g_test_timer_elapsed(); | 
 |  | 
 |     g_test_message("Function call %u iterations: %f s", maxcycles, duration); | 
 | } | 
 |  | 
 | static __attribute__((noinline)) void coroutine_fn perf_cost_func(void *opaque) | 
 | { | 
 |     qemu_coroutine_yield(); | 
 | } | 
 |  | 
 | static void perf_cost(void) | 
 | { | 
 |     const unsigned long maxcycles = 40000000; | 
 |     unsigned long i = 0; | 
 |     double duration; | 
 |     unsigned long ops; | 
 |     Coroutine *co; | 
 |  | 
 |     g_test_timer_start(); | 
 |     while (i++ < maxcycles) { | 
 |         co = qemu_coroutine_create(perf_cost_func, &i); | 
 |         qemu_coroutine_enter(co); | 
 |         qemu_coroutine_enter(co); | 
 |     } | 
 |     duration = g_test_timer_elapsed(); | 
 |     ops = (long)(maxcycles / (duration * 1000)); | 
 |  | 
 |     g_test_message("Run operation %lu iterations %f s, %luK operations/s, " | 
 |                    "%luns per coroutine", | 
 |                    maxcycles, | 
 |                    duration, ops, | 
 |                    (unsigned long)(1000000000.0 * duration / maxcycles)); | 
 | } | 
 |  | 
 | int main(int argc, char **argv) | 
 | { | 
 |     g_test_init(&argc, &argv, NULL); | 
 |  | 
 |     /* This test assumes there is a freelist and marks freed coroutine memory | 
 |      * with a sentinel value.  If there is no freelist this would legitimately | 
 |      * crash, so skip it. | 
 |      */ | 
 |     if (IS_ENABLED(CONFIG_COROUTINE_POOL)) { | 
 |         g_test_add_func("/basic/no-dangling-access", test_no_dangling_access); | 
 |     } | 
 |  | 
 |     g_test_add_func("/basic/lifecycle", test_lifecycle); | 
 |     g_test_add_func("/basic/yield", test_yield); | 
 |     g_test_add_func("/basic/nesting", test_nesting); | 
 |     g_test_add_func("/basic/self", test_self); | 
 |     g_test_add_func("/basic/entered", test_entered); | 
 |     g_test_add_func("/basic/in_coroutine", test_in_coroutine); | 
 |     g_test_add_func("/basic/order", test_order); | 
 |     g_test_add_func("/locking/co-mutex", test_co_mutex); | 
 |     g_test_add_func("/locking/co-mutex/lockable", test_co_mutex_lockable); | 
 |     g_test_add_func("/locking/co-rwlock/upgrade", test_co_rwlock_upgrade); | 
 |     g_test_add_func("/locking/co-rwlock/downgrade", test_co_rwlock_downgrade); | 
 |     if (g_test_perf()) { | 
 |         g_test_add_func("/perf/lifecycle", perf_lifecycle); | 
 |         g_test_add_func("/perf/nesting", perf_nesting); | 
 |         g_test_add_func("/perf/yield", perf_yield); | 
 |         g_test_add_func("/perf/function-call", perf_baseline); | 
 |         g_test_add_func("/perf/cost", perf_cost); | 
 |     } | 
 |     return g_test_run(); | 
 | } |