blob: 32aa738b72cc6ddf9924abc159f35e4b3ddba567 [file] [log] [blame]
/*
* QTest testcase for e1000e NIC
*
* Copyright (c) 2015 Ravello Systems LTD (http://ravellosystems.com)
* Developed by Daynix Computing LTD (http://www.daynix.com)
*
* Authors:
* Dmitry Fleytman <dmitry@daynix.com>
* Leonid Bloch <leonid@daynix.com>
* Yan Vugenfirer <yan@daynix.com>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "libqtest.h"
#include "qemu-common.h"
#include "libqos/pci-pc.h"
#include "qemu/sockets.h"
#include "qemu/iov.h"
#include "qemu/bitops.h"
#include "libqos/malloc.h"
#include "libqos/malloc-pc.h"
#include "libqos/malloc-generic.h"
#define E1000E_IMS (0x00d0)
#define E1000E_STATUS (0x0008)
#define E1000E_STATUS_LU BIT(1)
#define E1000E_STATUS_ASDV1000 BIT(9)
#define E1000E_CTRL (0x0000)
#define E1000E_CTRL_RESET BIT(26)
#define E1000E_RCTL (0x0100)
#define E1000E_RCTL_EN BIT(1)
#define E1000E_RCTL_UPE BIT(3)
#define E1000E_RCTL_MPE BIT(4)
#define E1000E_RFCTL (0x5008)
#define E1000E_RFCTL_EXTEN BIT(15)
#define E1000E_TCTL (0x0400)
#define E1000E_TCTL_EN BIT(1)
#define E1000E_CTRL_EXT (0x0018)
#define E1000E_CTRL_EXT_DRV_LOAD BIT(28)
#define E1000E_CTRL_EXT_TXLSFLOW BIT(22)
#define E1000E_RX0_MSG_ID (0)
#define E1000E_TX0_MSG_ID (1)
#define E1000E_OTHER_MSG_ID (2)
#define E1000E_IVAR (0x00E4)
#define E1000E_IVAR_TEST_CFG ((E1000E_RX0_MSG_ID << 0) | BIT(3) | \
(E1000E_TX0_MSG_ID << 8) | BIT(11) | \
(E1000E_OTHER_MSG_ID << 16) | BIT(19) | \
BIT(31))
#define E1000E_RING_LEN (0x1000)
#define E1000E_TXD_LEN (16)
#define E1000E_RXD_LEN (16)
#define E1000E_TDBAL (0x3800)
#define E1000E_TDBAH (0x3804)
#define E1000E_TDLEN (0x3808)
#define E1000E_TDH (0x3810)
#define E1000E_TDT (0x3818)
#define E1000E_RDBAL (0x2800)
#define E1000E_RDBAH (0x2804)
#define E1000E_RDLEN (0x2808)
#define E1000E_RDH (0x2810)
#define E1000E_RDT (0x2818)
typedef struct e1000e_device {
QPCIDevice *pci_dev;
QPCIBar mac_regs;
uint64_t tx_ring;
uint64_t rx_ring;
} e1000e_device;
static int test_sockets[2];
static QGuestAllocator *test_alloc;
static QPCIBus *test_bus;
static void e1000e_pci_foreach_callback(QPCIDevice *dev, int devfn, void *data)
{
QPCIDevice **res = data;
g_assert_null(*res);
*res = dev;
}
static QPCIDevice *e1000e_device_find(QPCIBus *bus)
{
static const int e1000e_vendor_id = 0x8086;
static const int e1000e_dev_id = 0x10D3;
QPCIDevice *e1000e_dev = NULL;
qpci_device_foreach(bus, e1000e_vendor_id, e1000e_dev_id,
e1000e_pci_foreach_callback, &e1000e_dev);
g_assert_nonnull(e1000e_dev);
return e1000e_dev;
}
static void e1000e_macreg_write(e1000e_device *d, uint32_t reg, uint32_t val)
{
qpci_io_writel(d->pci_dev, d->mac_regs, reg, val);
}
static uint32_t e1000e_macreg_read(e1000e_device *d, uint32_t reg)
{
return qpci_io_readl(d->pci_dev, d->mac_regs, reg);
}
static void e1000e_device_init(QPCIBus *bus, e1000e_device *d)
{
uint32_t val;
d->pci_dev = e1000e_device_find(bus);
/* Enable the device */
qpci_device_enable(d->pci_dev);
/* Map BAR0 (mac registers) */
d->mac_regs = qpci_iomap(d->pci_dev, 0, NULL);
/* Reset the device */
val = e1000e_macreg_read(d, E1000E_CTRL);
e1000e_macreg_write(d, E1000E_CTRL, val | E1000E_CTRL_RESET);
/* Enable and configure MSI-X */
qpci_msix_enable(d->pci_dev);
e1000e_macreg_write(d, E1000E_IVAR, E1000E_IVAR_TEST_CFG);
/* Check the device status - link and speed */
val = e1000e_macreg_read(d, E1000E_STATUS);
g_assert_cmphex(val & (E1000E_STATUS_LU | E1000E_STATUS_ASDV1000),
==, E1000E_STATUS_LU | E1000E_STATUS_ASDV1000);
/* Initialize TX/RX logic */
e1000e_macreg_write(d, E1000E_RCTL, 0);
e1000e_macreg_write(d, E1000E_TCTL, 0);
/* Notify the device that the driver is ready */
val = e1000e_macreg_read(d, E1000E_CTRL_EXT);
e1000e_macreg_write(d, E1000E_CTRL_EXT,
val | E1000E_CTRL_EXT_DRV_LOAD | E1000E_CTRL_EXT_TXLSFLOW);
/* Allocate and setup TX ring */
d->tx_ring = guest_alloc(test_alloc, E1000E_RING_LEN);
g_assert(d->tx_ring != 0);
e1000e_macreg_write(d, E1000E_TDBAL, (uint32_t) d->tx_ring);
e1000e_macreg_write(d, E1000E_TDBAH, (uint32_t) (d->tx_ring >> 32));
e1000e_macreg_write(d, E1000E_TDLEN, E1000E_RING_LEN);
e1000e_macreg_write(d, E1000E_TDT, 0);
e1000e_macreg_write(d, E1000E_TDH, 0);
/* Enable transmit */
e1000e_macreg_write(d, E1000E_TCTL, E1000E_TCTL_EN);
/* Allocate and setup RX ring */
d->rx_ring = guest_alloc(test_alloc, E1000E_RING_LEN);
g_assert(d->rx_ring != 0);
e1000e_macreg_write(d, E1000E_RDBAL, (uint32_t)d->rx_ring);
e1000e_macreg_write(d, E1000E_RDBAH, (uint32_t)(d->rx_ring >> 32));
e1000e_macreg_write(d, E1000E_RDLEN, E1000E_RING_LEN);
e1000e_macreg_write(d, E1000E_RDT, 0);
e1000e_macreg_write(d, E1000E_RDH, 0);
/* Enable receive */
e1000e_macreg_write(d, E1000E_RFCTL, E1000E_RFCTL_EXTEN);
e1000e_macreg_write(d, E1000E_RCTL, E1000E_RCTL_EN |
E1000E_RCTL_UPE |
E1000E_RCTL_MPE);
/* Enable all interrupts */
e1000e_macreg_write(d, E1000E_IMS, 0xFFFFFFFF);
}
static void e1000e_tx_ring_push(e1000e_device *d, void *descr)
{
uint32_t tail = e1000e_macreg_read(d, E1000E_TDT);
uint32_t len = e1000e_macreg_read(d, E1000E_TDLEN) / E1000E_TXD_LEN;
memwrite(d->tx_ring + tail * E1000E_TXD_LEN, descr, E1000E_TXD_LEN);
e1000e_macreg_write(d, E1000E_TDT, (tail + 1) % len);
/* Read WB data for the packet transmitted */
memread(d->tx_ring + tail * E1000E_TXD_LEN, descr, E1000E_TXD_LEN);
}
static void e1000e_rx_ring_push(e1000e_device *d, void *descr)
{
uint32_t tail = e1000e_macreg_read(d, E1000E_RDT);
uint32_t len = e1000e_macreg_read(d, E1000E_RDLEN) / E1000E_RXD_LEN;
memwrite(d->rx_ring + tail * E1000E_RXD_LEN, descr, E1000E_RXD_LEN);
e1000e_macreg_write(d, E1000E_RDT, (tail + 1) % len);
/* Read WB data for the packet received */
memread(d->rx_ring + tail * E1000E_RXD_LEN, descr, E1000E_RXD_LEN);
}
static void e1000e_wait_isr(e1000e_device *d, uint16_t msg_id)
{
guint64 end_time = g_get_monotonic_time() + 5 * G_TIME_SPAN_SECOND;
do {
if (qpci_msix_pending(d->pci_dev, msg_id)) {
return;
}
clock_step(10000);
} while (g_get_monotonic_time() < end_time);
g_error("Timeout expired");
}
static void e1000e_send_verify(e1000e_device *d)
{
struct {
uint64_t buffer_addr;
union {
uint32_t data;
struct {
uint16_t length;
uint8_t cso;
uint8_t cmd;
} flags;
} lower;
union {
uint32_t data;
struct {
uint8_t status;
uint8_t css;
uint16_t special;
} fields;
} upper;
} descr;
static const uint32_t dtyp_data = BIT(20);
static const uint32_t dtyp_ext = BIT(29);
static const uint32_t dcmd_rs = BIT(27);
static const uint32_t dcmd_eop = BIT(24);
static const uint32_t dsta_dd = BIT(0);
static const int data_len = 64;
char buffer[64];
int ret;
uint32_t recv_len;
/* Prepare test data buffer */
uint64_t data = guest_alloc(test_alloc, data_len);
memwrite(data, "TEST", 5);
/* Prepare TX descriptor */
memset(&descr, 0, sizeof(descr));
descr.buffer_addr = cpu_to_le64(data);
descr.lower.data = cpu_to_le32(dcmd_rs |
dcmd_eop |
dtyp_ext |
dtyp_data |
data_len);
/* Put descriptor to the ring */
e1000e_tx_ring_push(d, &descr);
/* Wait for TX WB interrupt */
e1000e_wait_isr(d, E1000E_TX0_MSG_ID);
/* Check DD bit */
g_assert_cmphex(le32_to_cpu(descr.upper.data) & dsta_dd, ==, dsta_dd);
/* Check data sent to the backend */
ret = qemu_recv(test_sockets[0], &recv_len, sizeof(recv_len), 0);
g_assert_cmpint(ret, == , sizeof(recv_len));
qemu_recv(test_sockets[0], buffer, 64, 0);
g_assert_cmpstr(buffer, == , "TEST");
/* Free test data buffer */
guest_free(test_alloc, data);
}
static void e1000e_receive_verify(e1000e_device *d)
{
union {
struct {
uint64_t buffer_addr;
uint64_t reserved;
} read;
struct {
struct {
uint32_t mrq;
union {
uint32_t rss;
struct {
uint16_t ip_id;
uint16_t csum;
} csum_ip;
} hi_dword;
} lower;
struct {
uint32_t status_error;
uint16_t length;
uint16_t vlan;
} upper;
} wb;
} descr;
static const uint32_t esta_dd = BIT(0);
char test[] = "TEST";
int len = htonl(sizeof(test));
struct iovec iov[] = {
{
.iov_base = &len,
.iov_len = sizeof(len),
},{
.iov_base = test,
.iov_len = sizeof(test),
},
};
static const int data_len = 64;
char buffer[64];
int ret;
/* Send a dummy packet to device's socket*/
ret = iov_send(test_sockets[0], iov, 2, 0, sizeof(len) + sizeof(test));
g_assert_cmpint(ret, == , sizeof(test) + sizeof(len));
/* Prepare test data buffer */
uint64_t data = guest_alloc(test_alloc, data_len);
/* Prepare RX descriptor */
memset(&descr, 0, sizeof(descr));
descr.read.buffer_addr = cpu_to_le64(data);
/* Put descriptor to the ring */
e1000e_rx_ring_push(d, &descr);
/* Wait for TX WB interrupt */
e1000e_wait_isr(d, E1000E_RX0_MSG_ID);
/* Check DD bit */
g_assert_cmphex(le32_to_cpu(descr.wb.upper.status_error) &
esta_dd, ==, esta_dd);
/* Check data sent to the backend */
memread(data, buffer, sizeof(buffer));
g_assert_cmpstr(buffer, == , "TEST");
/* Free test data buffer */
guest_free(test_alloc, data);
}
static void e1000e_device_clear(QPCIBus *bus, e1000e_device *d)
{
qpci_iounmap(d->pci_dev, d->mac_regs);
qpci_msix_disable(d->pci_dev);
}
static void data_test_init(e1000e_device *d)
{
char *cmdline;
int ret = socketpair(PF_UNIX, SOCK_STREAM, 0, test_sockets);
g_assert_cmpint(ret, != , -1);
cmdline = g_strdup_printf("-netdev socket,fd=%d,id=hs0 "
"-device e1000e,netdev=hs0", test_sockets[1]);
g_assert_nonnull(cmdline);
qtest_start(cmdline);
g_free(cmdline);
test_alloc = pc_alloc_init(global_qtest);
g_assert_nonnull(test_alloc);
test_bus = qpci_init_pc(global_qtest, test_alloc);
g_assert_nonnull(test_bus);
e1000e_device_init(test_bus, d);
}
static void data_test_clear(e1000e_device *d)
{
e1000e_device_clear(test_bus, d);
close(test_sockets[0]);
pc_alloc_uninit(test_alloc);
g_free(d->pci_dev);
qpci_free_pc(test_bus);
qtest_end();
}
static void test_e1000e_init(gconstpointer data)
{
e1000e_device d;
data_test_init(&d);
data_test_clear(&d);
}
static void test_e1000e_tx(gconstpointer data)
{
e1000e_device d;
data_test_init(&d);
e1000e_send_verify(&d);
data_test_clear(&d);
}
static void test_e1000e_rx(gconstpointer data)
{
e1000e_device d;
data_test_init(&d);
e1000e_receive_verify(&d);
data_test_clear(&d);
}
static void test_e1000e_multiple_transfers(gconstpointer data)
{
static const long iterations = 4 * 1024;
long i;
e1000e_device d;
data_test_init(&d);
for (i = 0; i < iterations; i++) {
e1000e_send_verify(&d);
e1000e_receive_verify(&d);
}
data_test_clear(&d);
}
static void test_e1000e_hotplug(gconstpointer data)
{
static const uint8_t slot = 0x06;
qtest_start("-device e1000e");
qpci_plug_device_test("e1000e", "e1000e_net", slot, NULL);
qpci_unplug_acpi_device_test("e1000e_net", slot);
qtest_end();
}
int main(int argc, char **argv)
{
g_test_init(&argc, &argv, NULL);
qtest_add_data_func("e1000e/init", NULL, test_e1000e_init);
qtest_add_data_func("e1000e/tx", NULL, test_e1000e_tx);
qtest_add_data_func("e1000e/rx", NULL, test_e1000e_rx);
qtest_add_data_func("e1000e/multiple_transfers", NULL,
test_e1000e_multiple_transfers);
qtest_add_data_func("e1000e/hotplug", NULL, test_e1000e_hotplug);
return g_test_run();
}