| /* |
| * TriCore emulation for qemu: fpu helper. |
| * |
| * Copyright (c) 2016 Bastian Koppelmann University of Paderborn |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "cpu.h" |
| #include "exec/helper-proto.h" |
| #include "fpu/softfloat.h" |
| |
| #define QUIET_NAN 0x7fc00000 |
| #define ADD_NAN 0x7fc00001 |
| #define SQRT_NAN 0x7fc00004 |
| #define DIV_NAN 0x7fc00008 |
| #define MUL_NAN 0x7fc00002 |
| #define FPU_FS PSW_USB_C |
| #define FPU_FI PSW_USB_V |
| #define FPU_FV PSW_USB_SV |
| #define FPU_FZ PSW_USB_AV |
| #define FPU_FU PSW_USB_SAV |
| |
| #define float32_sqrt_nan make_float32(SQRT_NAN) |
| #define float32_quiet_nan make_float32(QUIET_NAN) |
| |
| /* we don't care about input_denormal */ |
| static inline uint8_t f_get_excp_flags(CPUTriCoreState *env) |
| { |
| return get_float_exception_flags(&env->fp_status) |
| & (float_flag_invalid |
| | float_flag_overflow |
| | float_flag_underflow |
| | float_flag_output_denormal |
| | float_flag_divbyzero |
| | float_flag_inexact); |
| } |
| |
| static inline float32 f_maddsub_nan_result(float32 arg1, float32 arg2, |
| float32 arg3, float32 result, |
| uint32_t muladd_negate_c) |
| { |
| uint32_t aSign, bSign, cSign; |
| uint32_t aExp, bExp, cExp; |
| |
| if (float32_is_any_nan(arg1) || float32_is_any_nan(arg2) || |
| float32_is_any_nan(arg3)) { |
| return QUIET_NAN; |
| } else if (float32_is_infinity(arg1) && float32_is_zero(arg2)) { |
| return MUL_NAN; |
| } else if (float32_is_zero(arg1) && float32_is_infinity(arg2)) { |
| return MUL_NAN; |
| } else { |
| aSign = arg1 >> 31; |
| bSign = arg2 >> 31; |
| cSign = arg3 >> 31; |
| |
| aExp = (arg1 >> 23) & 0xff; |
| bExp = (arg2 >> 23) & 0xff; |
| cExp = (arg3 >> 23) & 0xff; |
| |
| if (muladd_negate_c) { |
| cSign ^= 1; |
| } |
| if (((aExp == 0xff) || (bExp == 0xff)) && (cExp == 0xff)) { |
| if (aSign ^ bSign ^ cSign) { |
| return ADD_NAN; |
| } |
| } |
| } |
| |
| return result; |
| } |
| |
| static void f_update_psw_flags(CPUTriCoreState *env, uint8_t flags) |
| { |
| uint8_t some_excp = 0; |
| set_float_exception_flags(0, &env->fp_status); |
| |
| if (flags & float_flag_invalid) { |
| env->FPU_FI = 1 << 31; |
| some_excp = 1; |
| } |
| |
| if (flags & float_flag_overflow) { |
| env->FPU_FV = 1 << 31; |
| some_excp = 1; |
| } |
| |
| if (flags & float_flag_underflow || flags & float_flag_output_denormal) { |
| env->FPU_FU = 1 << 31; |
| some_excp = 1; |
| } |
| |
| if (flags & float_flag_divbyzero) { |
| env->FPU_FZ = 1 << 31; |
| some_excp = 1; |
| } |
| |
| if (flags & float_flag_inexact || flags & float_flag_output_denormal) { |
| env->PSW |= 1 << 26; |
| some_excp = 1; |
| } |
| |
| env->FPU_FS = some_excp; |
| } |
| |
| #define FADD_SUB(op) \ |
| uint32_t helper_f##op(CPUTriCoreState *env, uint32_t r1, uint32_t r2) \ |
| { \ |
| float32 arg1 = make_float32(r1); \ |
| float32 arg2 = make_float32(r2); \ |
| uint32_t flags; \ |
| float32 f_result; \ |
| \ |
| f_result = float32_##op(arg2, arg1, &env->fp_status); \ |
| flags = f_get_excp_flags(env); \ |
| if (flags) { \ |
| /* If the output is a NaN, but the inputs aren't, \ |
| we return a unique value. */ \ |
| if ((flags & float_flag_invalid) \ |
| && !float32_is_any_nan(arg1) \ |
| && !float32_is_any_nan(arg2)) { \ |
| f_result = ADD_NAN; \ |
| } \ |
| f_update_psw_flags(env, flags); \ |
| } else { \ |
| env->FPU_FS = 0; \ |
| } \ |
| return (uint32_t)f_result; \ |
| } |
| FADD_SUB(add) |
| FADD_SUB(sub) |
| |
| uint32_t helper_fmul(CPUTriCoreState *env, uint32_t r1, uint32_t r2) |
| { |
| uint32_t flags; |
| float32 arg1 = make_float32(r1); |
| float32 arg2 = make_float32(r2); |
| float32 f_result; |
| |
| f_result = float32_mul(arg1, arg2, &env->fp_status); |
| |
| flags = f_get_excp_flags(env); |
| if (flags) { |
| /* If the output is a NaN, but the inputs aren't, |
| we return a unique value. */ |
| if ((flags & float_flag_invalid) |
| && !float32_is_any_nan(arg1) |
| && !float32_is_any_nan(arg2)) { |
| f_result = MUL_NAN; |
| } |
| f_update_psw_flags(env, flags); |
| } else { |
| env->FPU_FS = 0; |
| } |
| return (uint32_t)f_result; |
| |
| } |
| |
| /* |
| * Target TriCore QSEED.F significand Lookup Table |
| * |
| * The QSEED.F output significand depends on the least-significant |
| * exponent bit and the 6 most-significant significand bits. |
| * |
| * IEEE 754 float datatype |
| * partitioned into Sign (S), Exponent (E) and Significand (M): |
| * |
| * S E E E E E E E E M M M M M M ... |
| * | | | |
| * +------+------+-------+-------+ |
| * | | |
| * for lookup table |
| * calculating index for |
| * output E output M |
| * |
| * This lookup table was extracted by analyzing QSEED output |
| * from the real hardware |
| */ |
| static const uint8_t target_qseed_significand_table[128] = { |
| 253, 252, 245, 244, 239, 238, 231, 230, 225, 224, 217, 216, |
| 211, 210, 205, 204, 201, 200, 195, 194, 189, 188, 185, 184, |
| 179, 178, 175, 174, 169, 168, 165, 164, 161, 160, 157, 156, |
| 153, 152, 149, 148, 145, 144, 141, 140, 137, 136, 133, 132, |
| 131, 130, 127, 126, 123, 122, 121, 120, 117, 116, 115, 114, |
| 111, 110, 109, 108, 103, 102, 99, 98, 93, 92, 89, 88, 83, |
| 82, 79, 78, 75, 74, 71, 70, 67, 66, 63, 62, 59, 58, 55, |
| 54, 53, 52, 49, 48, 45, 44, 43, 42, 39, 38, 37, 36, 33, |
| 32, 31, 30, 27, 26, 25, 24, 23, 22, 19, 18, 17, 16, 15, |
| 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2 |
| }; |
| |
| uint32_t helper_qseed(CPUTriCoreState *env, uint32_t r1) |
| { |
| uint32_t arg1, S, E, M, E_minus_one, m_idx; |
| uint32_t new_E, new_M, new_S, result; |
| |
| arg1 = make_float32(r1); |
| |
| /* fetch IEEE-754 fields S, E and the uppermost 6-bit of M */ |
| S = extract32(arg1, 31, 1); |
| E = extract32(arg1, 23, 8); |
| M = extract32(arg1, 17, 6); |
| |
| if (float32_is_any_nan(arg1)) { |
| result = float32_quiet_nan; |
| } else if (float32_is_zero_or_denormal(arg1)) { |
| if (float32_is_neg(arg1)) { |
| result = float32_infinity | (1 << 31); |
| } else { |
| result = float32_infinity; |
| } |
| } else if (float32_is_neg(arg1)) { |
| result = float32_sqrt_nan; |
| } else if (float32_is_infinity(arg1)) { |
| result = float32_zero; |
| } else { |
| E_minus_one = E - 1; |
| m_idx = ((E_minus_one & 1) << 6) | M; |
| new_S = S; |
| new_E = 0xBD - E_minus_one / 2; |
| new_M = target_qseed_significand_table[m_idx]; |
| |
| result = 0; |
| result = deposit32(result, 31, 1, new_S); |
| result = deposit32(result, 23, 8, new_E); |
| result = deposit32(result, 15, 8, new_M); |
| } |
| |
| if (float32_is_signaling_nan(arg1, &env->fp_status) |
| || result == float32_sqrt_nan) { |
| env->FPU_FI = 1 << 31; |
| env->FPU_FS = 1; |
| } else { |
| env->FPU_FS = 0; |
| } |
| |
| return (uint32_t) result; |
| } |
| |
| uint32_t helper_fdiv(CPUTriCoreState *env, uint32_t r1, uint32_t r2) |
| { |
| uint32_t flags; |
| float32 arg1 = make_float32(r1); |
| float32 arg2 = make_float32(r2); |
| float32 f_result; |
| |
| f_result = float32_div(arg1, arg2 , &env->fp_status); |
| |
| flags = f_get_excp_flags(env); |
| if (flags) { |
| /* If the output is a NaN, but the inputs aren't, |
| we return a unique value. */ |
| if ((flags & float_flag_invalid) |
| && !float32_is_any_nan(arg1) |
| && !float32_is_any_nan(arg2)) { |
| f_result = DIV_NAN; |
| } |
| f_update_psw_flags(env, flags); |
| } else { |
| env->FPU_FS = 0; |
| } |
| |
| return (uint32_t)f_result; |
| } |
| |
| uint32_t helper_fmadd(CPUTriCoreState *env, uint32_t r1, |
| uint32_t r2, uint32_t r3) |
| { |
| uint32_t flags; |
| float32 arg1 = make_float32(r1); |
| float32 arg2 = make_float32(r2); |
| float32 arg3 = make_float32(r3); |
| float32 f_result; |
| |
| f_result = float32_muladd(arg1, arg2, arg3, 0, &env->fp_status); |
| |
| flags = f_get_excp_flags(env); |
| if (flags) { |
| if (flags & float_flag_invalid) { |
| arg1 = float32_squash_input_denormal(arg1, &env->fp_status); |
| arg2 = float32_squash_input_denormal(arg2, &env->fp_status); |
| arg3 = float32_squash_input_denormal(arg3, &env->fp_status); |
| f_result = f_maddsub_nan_result(arg1, arg2, arg3, f_result, 0); |
| } |
| f_update_psw_flags(env, flags); |
| } else { |
| env->FPU_FS = 0; |
| } |
| return (uint32_t)f_result; |
| } |
| |
| uint32_t helper_fmsub(CPUTriCoreState *env, uint32_t r1, |
| uint32_t r2, uint32_t r3) |
| { |
| uint32_t flags; |
| float32 arg1 = make_float32(r1); |
| float32 arg2 = make_float32(r2); |
| float32 arg3 = make_float32(r3); |
| float32 f_result; |
| |
| f_result = float32_muladd(arg1, arg2, arg3, float_muladd_negate_product, |
| &env->fp_status); |
| |
| flags = f_get_excp_flags(env); |
| if (flags) { |
| if (flags & float_flag_invalid) { |
| arg1 = float32_squash_input_denormal(arg1, &env->fp_status); |
| arg2 = float32_squash_input_denormal(arg2, &env->fp_status); |
| arg3 = float32_squash_input_denormal(arg3, &env->fp_status); |
| |
| f_result = f_maddsub_nan_result(arg1, arg2, arg3, f_result, 1); |
| } |
| f_update_psw_flags(env, flags); |
| } else { |
| env->FPU_FS = 0; |
| } |
| return (uint32_t)f_result; |
| } |
| |
| uint32_t helper_fcmp(CPUTriCoreState *env, uint32_t r1, uint32_t r2) |
| { |
| uint32_t result, flags; |
| float32 arg1 = make_float32(r1); |
| float32 arg2 = make_float32(r2); |
| |
| set_flush_inputs_to_zero(0, &env->fp_status); |
| |
| result = 1 << (float32_compare_quiet(arg1, arg2, &env->fp_status) + 1); |
| result |= float32_is_denormal(arg1) << 4; |
| result |= float32_is_denormal(arg2) << 5; |
| |
| flags = f_get_excp_flags(env); |
| if (flags) { |
| f_update_psw_flags(env, flags); |
| } else { |
| env->FPU_FS = 0; |
| } |
| |
| set_flush_inputs_to_zero(1, &env->fp_status); |
| return result; |
| } |
| |
| uint32_t helper_ftoi(CPUTriCoreState *env, uint32_t arg) |
| { |
| float32 f_arg = make_float32(arg); |
| int32_t result, flags; |
| |
| result = float32_to_int32(f_arg, &env->fp_status); |
| |
| flags = f_get_excp_flags(env); |
| if (flags) { |
| if (float32_is_any_nan(f_arg)) { |
| result = 0; |
| } |
| f_update_psw_flags(env, flags); |
| } else { |
| env->FPU_FS = 0; |
| } |
| return (uint32_t)result; |
| } |
| |
| uint32_t helper_hptof(CPUTriCoreState *env, uint32_t arg) |
| { |
| float16 f_arg = make_float16(arg); |
| uint32_t result = 0; |
| int32_t flags = 0; |
| |
| /* |
| * if we have any NAN we need to move the top 2 and lower 8 input mantissa |
| * bits to the top 2 and lower 8 output mantissa bits respectively. |
| * Softfloat on the other hand uses the top 10 mantissa bits. |
| */ |
| if (float16_is_any_nan(f_arg)) { |
| if (float16_is_signaling_nan(f_arg, &env->fp_status)) { |
| flags |= float_flag_invalid; |
| } |
| result = 0; |
| result = float32_set_sign(result, f_arg >> 15); |
| result = deposit32(result, 23, 8, 0xff); |
| result = deposit32(result, 21, 2, extract32(f_arg, 8, 2)); |
| result = deposit32(result, 0, 8, extract32(f_arg, 0, 8)); |
| } else { |
| set_flush_inputs_to_zero(0, &env->fp_status); |
| result = float16_to_float32(f_arg, true, &env->fp_status); |
| set_flush_inputs_to_zero(1, &env->fp_status); |
| flags = f_get_excp_flags(env); |
| } |
| |
| if (flags) { |
| f_update_psw_flags(env, flags); |
| } else { |
| env->FPU_FS = 0; |
| } |
| |
| return result; |
| } |
| |
| uint32_t helper_ftohp(CPUTriCoreState *env, uint32_t arg) |
| { |
| float32 f_arg = make_float32(arg); |
| uint32_t result = 0; |
| int32_t flags = 0; |
| |
| /* |
| * if we have any NAN we need to move the top 2 and lower 8 input mantissa |
| * bits to the top 2 and lower 8 output mantissa bits respectively. |
| * Softfloat on the other hand uses the top 10 mantissa bits. |
| */ |
| if (float32_is_any_nan(f_arg)) { |
| if (float32_is_signaling_nan(f_arg, &env->fp_status)) { |
| flags |= float_flag_invalid; |
| } |
| result = float16_set_sign(result, arg >> 31); |
| result = deposit32(result, 10, 5, 0x1f); |
| result = deposit32(result, 8, 2, extract32(arg, 21, 2)); |
| result = deposit32(result, 0, 8, extract32(arg, 0, 8)); |
| if (extract32(result, 0, 10) == 0) { |
| result |= (1 << 8); |
| } |
| } else { |
| set_flush_to_zero(0, &env->fp_status); |
| result = float32_to_float16(f_arg, true, &env->fp_status); |
| set_flush_to_zero(1, &env->fp_status); |
| flags = f_get_excp_flags(env); |
| } |
| |
| if (flags) { |
| f_update_psw_flags(env, flags); |
| } else { |
| env->FPU_FS = 0; |
| } |
| |
| return result; |
| } |
| |
| uint32_t helper_itof(CPUTriCoreState *env, uint32_t arg) |
| { |
| float32 f_result; |
| uint32_t flags; |
| f_result = int32_to_float32(arg, &env->fp_status); |
| |
| flags = f_get_excp_flags(env); |
| if (flags) { |
| f_update_psw_flags(env, flags); |
| } else { |
| env->FPU_FS = 0; |
| } |
| return (uint32_t)f_result; |
| } |
| |
| uint32_t helper_utof(CPUTriCoreState *env, uint32_t arg) |
| { |
| float32 f_result; |
| uint32_t flags; |
| |
| f_result = uint32_to_float32(arg, &env->fp_status); |
| |
| flags = f_get_excp_flags(env); |
| if (flags) { |
| f_update_psw_flags(env, flags); |
| } else { |
| env->FPU_FS = 0; |
| } |
| return (uint32_t)f_result; |
| } |
| |
| uint32_t helper_ftoiz(CPUTriCoreState *env, uint32_t arg) |
| { |
| float32 f_arg = make_float32(arg); |
| uint32_t result; |
| int32_t flags; |
| |
| result = float32_to_int32_round_to_zero(f_arg, &env->fp_status); |
| |
| flags = f_get_excp_flags(env); |
| if (flags & float_flag_invalid) { |
| flags &= ~float_flag_inexact; |
| if (float32_is_any_nan(f_arg)) { |
| result = 0; |
| } |
| } |
| |
| if (flags) { |
| f_update_psw_flags(env, flags); |
| } else { |
| env->FPU_FS = 0; |
| } |
| |
| return result; |
| } |
| |
| uint32_t helper_ftou(CPUTriCoreState *env, uint32_t arg) |
| { |
| float32 f_arg = make_float32(arg); |
| uint32_t result; |
| int32_t flags = 0; |
| |
| result = float32_to_uint32(f_arg, &env->fp_status); |
| |
| flags = f_get_excp_flags(env); |
| if (flags & float_flag_invalid) { |
| flags &= ~float_flag_inexact; |
| if (float32_is_any_nan(f_arg)) { |
| result = 0; |
| } |
| /* |
| * we need to check arg < 0.0 before rounding as TriCore needs to raise |
| * float_flag_invalid as well. For instance, when we have a negative |
| * exponent and sign, softfloat would only raise float_flat_inexact. |
| */ |
| } else if (float32_lt_quiet(f_arg, 0, &env->fp_status)) { |
| flags = float_flag_invalid; |
| result = 0; |
| } |
| |
| if (flags) { |
| f_update_psw_flags(env, flags); |
| } else { |
| env->FPU_FS = 0; |
| } |
| return result; |
| } |
| |
| uint32_t helper_ftouz(CPUTriCoreState *env, uint32_t arg) |
| { |
| float32 f_arg = make_float32(arg); |
| uint32_t result; |
| int32_t flags; |
| |
| result = float32_to_uint32_round_to_zero(f_arg, &env->fp_status); |
| |
| flags = f_get_excp_flags(env); |
| if (flags & float_flag_invalid) { |
| flags &= ~float_flag_inexact; |
| if (float32_is_any_nan(f_arg)) { |
| result = 0; |
| } |
| /* |
| * we need to check arg < 0.0 before rounding as TriCore needs to raise |
| * float_flag_invalid as well. For instance, when we have a negative |
| * exponent and sign, softfloat would only raise float_flat_inexact. |
| */ |
| } else if (float32_lt_quiet(f_arg, 0, &env->fp_status)) { |
| flags = float_flag_invalid; |
| result = 0; |
| } |
| |
| if (flags) { |
| f_update_psw_flags(env, flags); |
| } else { |
| env->FPU_FS = 0; |
| } |
| return result; |
| } |
| |
| void helper_updfl(CPUTriCoreState *env, uint32_t arg) |
| { |
| env->FPU_FS = extract32(arg, 7, 1) & extract32(arg, 15, 1); |
| env->FPU_FI = (extract32(arg, 6, 1) & extract32(arg, 14, 1)) << 31; |
| env->FPU_FV = (extract32(arg, 5, 1) & extract32(arg, 13, 1)) << 31; |
| env->FPU_FZ = (extract32(arg, 4, 1) & extract32(arg, 12, 1)) << 31; |
| env->FPU_FU = (extract32(arg, 3, 1) & extract32(arg, 11, 1)) << 31; |
| /* clear FX and RM */ |
| env->PSW &= ~(extract32(arg, 10, 1) << 26); |
| env->PSW |= (extract32(arg, 2, 1) & extract32(arg, 10, 1)) << 26; |
| |
| fpu_set_state(env); |
| } |