| /* |
| * Copyright (c) 2012-2014 Bastian Koppelmann C-Lab/University Paderborn |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| #include "qemu/osdep.h" |
| #include "cpu.h" |
| #include "qemu/host-utils.h" |
| #include "exec/helper-proto.h" |
| #include "exec/exec-all.h" |
| #include "exec/cpu_ldst.h" |
| #include <zlib.h> /* for crc32 */ |
| |
| |
| /* Exception helpers */ |
| |
| static G_NORETURN |
| void raise_exception_sync_internal(CPUTriCoreState *env, uint32_t class, int tin, |
| uintptr_t pc, uint32_t fcd_pc) |
| { |
| CPUState *cs = env_cpu(env); |
| /* in case we come from a helper-call we need to restore the PC */ |
| cpu_restore_state(cs, pc); |
| |
| /* Tin is loaded into d[15] */ |
| env->gpr_d[15] = tin; |
| |
| if (class == TRAPC_CTX_MNG && tin == TIN3_FCU) { |
| /* upper context cannot be saved, if the context list is empty */ |
| } else { |
| helper_svucx(env); |
| } |
| |
| /* The return address in a[11] is updated */ |
| if (class == TRAPC_CTX_MNG && tin == TIN3_FCD) { |
| env->SYSCON |= MASK_SYSCON_FCD_SF; |
| /* when we run out of CSAs after saving a context a FCD trap is taken |
| and the return address is the start of the trap handler which used |
| the last CSA */ |
| env->gpr_a[11] = fcd_pc; |
| } else if (class == TRAPC_SYSCALL) { |
| env->gpr_a[11] = env->PC + 4; |
| } else { |
| env->gpr_a[11] = env->PC; |
| } |
| /* The stack pointer in A[10] is set to the Interrupt Stack Pointer (ISP) |
| when the processor was not previously using the interrupt stack |
| (in case of PSW.IS = 0). The stack pointer bit is set for using the |
| interrupt stack: PSW.IS = 1. */ |
| if ((env->PSW & MASK_PSW_IS) == 0) { |
| env->gpr_a[10] = env->ISP; |
| } |
| env->PSW |= MASK_PSW_IS; |
| /* The I/O mode is set to Supervisor mode, which means all permissions |
| are enabled: PSW.IO = 10 B .*/ |
| env->PSW |= (2 << 10); |
| |
| /*The current Protection Register Set is set to 0: PSW.PRS = 00 B .*/ |
| env->PSW &= ~MASK_PSW_PRS; |
| |
| /* The Call Depth Counter (CDC) is cleared, and the call depth limit is |
| set for 64: PSW.CDC = 0000000 B .*/ |
| env->PSW &= ~MASK_PSW_CDC; |
| |
| /* Call Depth Counter is enabled, PSW.CDE = 1. */ |
| env->PSW |= MASK_PSW_CDE; |
| |
| /* Write permission to global registers A[0], A[1], A[8], A[9] is |
| disabled: PSW.GW = 0. */ |
| env->PSW &= ~MASK_PSW_GW; |
| |
| /*The interrupt system is globally disabled: ICR.IE = 0. The ‘old’ |
| ICR.IE and ICR.CCPN are saved */ |
| |
| /* PCXI.PIE = ICR.IE */ |
| pcxi_set_pie(env, icr_get_ie(env)); |
| |
| /* PCXI.PCPN = ICR.CCPN */ |
| pcxi_set_pcpn(env, icr_get_ccpn(env)); |
| /* Update PC using the trap vector table */ |
| env->PC = env->BTV | (class << 5); |
| |
| cpu_loop_exit(cs); |
| } |
| |
| void helper_raise_exception_sync(CPUTriCoreState *env, uint32_t class, |
| uint32_t tin) |
| { |
| raise_exception_sync_internal(env, class, tin, 0, 0); |
| } |
| |
| static void raise_exception_sync_helper(CPUTriCoreState *env, uint32_t class, |
| uint32_t tin, uintptr_t pc) |
| { |
| raise_exception_sync_internal(env, class, tin, pc, 0); |
| } |
| |
| /* Addressing mode helper */ |
| |
| static uint16_t reverse16(uint16_t val) |
| { |
| uint8_t high = (uint8_t)(val >> 8); |
| uint8_t low = (uint8_t)(val & 0xff); |
| |
| uint16_t rh, rl; |
| |
| rl = (uint16_t)((high * 0x0202020202ULL & 0x010884422010ULL) % 1023); |
| rh = (uint16_t)((low * 0x0202020202ULL & 0x010884422010ULL) % 1023); |
| |
| return (rh << 8) | rl; |
| } |
| |
| uint32_t helper_br_update(uint32_t reg) |
| { |
| uint32_t index = reg & 0xffff; |
| uint32_t incr = reg >> 16; |
| uint32_t new_index = reverse16(reverse16(index) + reverse16(incr)); |
| return reg - index + new_index; |
| } |
| |
| uint32_t helper_circ_update(uint32_t reg, uint32_t off) |
| { |
| uint32_t index = reg & 0xffff; |
| uint32_t length = reg >> 16; |
| int32_t new_index = index + off; |
| if (new_index < 0) { |
| new_index += length; |
| } else { |
| new_index %= length; |
| } |
| return reg - index + new_index; |
| } |
| |
| static uint32_t ssov32(CPUTriCoreState *env, int64_t arg) |
| { |
| uint32_t ret; |
| int64_t max_pos = INT32_MAX; |
| int64_t max_neg = INT32_MIN; |
| if (arg > max_pos) { |
| env->PSW_USB_V = (1 << 31); |
| env->PSW_USB_SV = (1 << 31); |
| ret = (target_ulong)max_pos; |
| } else { |
| if (arg < max_neg) { |
| env->PSW_USB_V = (1 << 31); |
| env->PSW_USB_SV = (1 << 31); |
| ret = (target_ulong)max_neg; |
| } else { |
| env->PSW_USB_V = 0; |
| ret = (target_ulong)arg; |
| } |
| } |
| env->PSW_USB_AV = arg ^ arg * 2u; |
| env->PSW_USB_SAV |= env->PSW_USB_AV; |
| return ret; |
| } |
| |
| static uint32_t suov32_pos(CPUTriCoreState *env, uint64_t arg) |
| { |
| uint32_t ret; |
| uint64_t max_pos = UINT32_MAX; |
| if (arg > max_pos) { |
| env->PSW_USB_V = (1 << 31); |
| env->PSW_USB_SV = (1 << 31); |
| ret = (target_ulong)max_pos; |
| } else { |
| env->PSW_USB_V = 0; |
| ret = (target_ulong)arg; |
| } |
| env->PSW_USB_AV = arg ^ arg * 2u; |
| env->PSW_USB_SAV |= env->PSW_USB_AV; |
| return ret; |
| } |
| |
| static uint32_t suov32_neg(CPUTriCoreState *env, int64_t arg) |
| { |
| uint32_t ret; |
| |
| if (arg < 0) { |
| env->PSW_USB_V = (1 << 31); |
| env->PSW_USB_SV = (1 << 31); |
| ret = 0; |
| } else { |
| env->PSW_USB_V = 0; |
| ret = (target_ulong)arg; |
| } |
| env->PSW_USB_AV = arg ^ arg * 2u; |
| env->PSW_USB_SAV |= env->PSW_USB_AV; |
| return ret; |
| } |
| |
| static uint32_t ssov16(CPUTriCoreState *env, int32_t hw0, int32_t hw1) |
| { |
| int32_t max_pos = INT16_MAX; |
| int32_t max_neg = INT16_MIN; |
| int32_t av0, av1; |
| |
| env->PSW_USB_V = 0; |
| av0 = hw0 ^ hw0 * 2u; |
| if (hw0 > max_pos) { |
| env->PSW_USB_V = (1 << 31); |
| hw0 = max_pos; |
| } else if (hw0 < max_neg) { |
| env->PSW_USB_V = (1 << 31); |
| hw0 = max_neg; |
| } |
| |
| av1 = hw1 ^ hw1 * 2u; |
| if (hw1 > max_pos) { |
| env->PSW_USB_V = (1 << 31); |
| hw1 = max_pos; |
| } else if (hw1 < max_neg) { |
| env->PSW_USB_V = (1 << 31); |
| hw1 = max_neg; |
| } |
| |
| env->PSW_USB_SV |= env->PSW_USB_V; |
| env->PSW_USB_AV = (av0 | av1) << 16; |
| env->PSW_USB_SAV |= env->PSW_USB_AV; |
| return (hw0 & 0xffff) | (hw1 << 16); |
| } |
| |
| static uint32_t suov16(CPUTriCoreState *env, int32_t hw0, int32_t hw1) |
| { |
| int32_t max_pos = UINT16_MAX; |
| int32_t av0, av1; |
| |
| env->PSW_USB_V = 0; |
| av0 = hw0 ^ hw0 * 2u; |
| if (hw0 > max_pos) { |
| env->PSW_USB_V = (1 << 31); |
| hw0 = max_pos; |
| } else if (hw0 < 0) { |
| env->PSW_USB_V = (1 << 31); |
| hw0 = 0; |
| } |
| |
| av1 = hw1 ^ hw1 * 2u; |
| if (hw1 > max_pos) { |
| env->PSW_USB_V = (1 << 31); |
| hw1 = max_pos; |
| } else if (hw1 < 0) { |
| env->PSW_USB_V = (1 << 31); |
| hw1 = 0; |
| } |
| |
| env->PSW_USB_SV |= env->PSW_USB_V; |
| env->PSW_USB_AV = (av0 | av1) << 16; |
| env->PSW_USB_SAV |= env->PSW_USB_AV; |
| return (hw0 & 0xffff) | (hw1 << 16); |
| } |
| |
| target_ulong helper_add_ssov(CPUTriCoreState *env, target_ulong r1, |
| target_ulong r2) |
| { |
| int64_t t1 = sextract64(r1, 0, 32); |
| int64_t t2 = sextract64(r2, 0, 32); |
| int64_t result = t1 + t2; |
| return ssov32(env, result); |
| } |
| |
| uint64_t helper_add64_ssov(CPUTriCoreState *env, uint64_t r1, uint64_t r2) |
| { |
| uint64_t result; |
| int64_t ovf; |
| |
| result = r1 + r2; |
| ovf = (result ^ r1) & ~(r1 ^ r2); |
| env->PSW_USB_AV = (result ^ result * 2u) >> 32; |
| env->PSW_USB_SAV |= env->PSW_USB_AV; |
| if (ovf < 0) { |
| env->PSW_USB_V = (1 << 31); |
| env->PSW_USB_SV = (1 << 31); |
| /* ext_ret > MAX_INT */ |
| if ((int64_t)r1 >= 0) { |
| result = INT64_MAX; |
| /* ext_ret < MIN_INT */ |
| } else { |
| result = INT64_MIN; |
| } |
| } else { |
| env->PSW_USB_V = 0; |
| } |
| return result; |
| } |
| |
| target_ulong helper_add_h_ssov(CPUTriCoreState *env, target_ulong r1, |
| target_ulong r2) |
| { |
| int32_t ret_hw0, ret_hw1; |
| |
| ret_hw0 = sextract32(r1, 0, 16) + sextract32(r2, 0, 16); |
| ret_hw1 = sextract32(r1, 16, 16) + sextract32(r2, 16, 16); |
| return ssov16(env, ret_hw0, ret_hw1); |
| } |
| |
| uint32_t helper_addr_h_ssov(CPUTriCoreState *env, uint64_t r1, uint32_t r2_l, |
| uint32_t r2_h) |
| { |
| int64_t mul_res0 = sextract64(r1, 0, 32); |
| int64_t mul_res1 = sextract64(r1, 32, 32); |
| int64_t r2_low = sextract64(r2_l, 0, 32); |
| int64_t r2_high = sextract64(r2_h, 0, 32); |
| int64_t result0, result1; |
| uint32_t ovf0, ovf1; |
| uint32_t avf0, avf1; |
| |
| ovf0 = ovf1 = 0; |
| |
| result0 = r2_low + mul_res0 + 0x8000; |
| result1 = r2_high + mul_res1 + 0x8000; |
| |
| avf0 = result0 * 2u; |
| avf0 = result0 ^ avf0; |
| avf1 = result1 * 2u; |
| avf1 = result1 ^ avf1; |
| |
| if (result0 > INT32_MAX) { |
| ovf0 = (1 << 31); |
| result0 = INT32_MAX; |
| } else if (result0 < INT32_MIN) { |
| ovf0 = (1 << 31); |
| result0 = INT32_MIN; |
| } |
| |
| if (result1 > INT32_MAX) { |
| ovf1 = (1 << 31); |
| result1 = INT32_MAX; |
| } else if (result1 < INT32_MIN) { |
| ovf1 = (1 << 31); |
| result1 = INT32_MIN; |
| } |
| |
| env->PSW_USB_V = ovf0 | ovf1; |
| env->PSW_USB_SV |= env->PSW_USB_V; |
| |
| env->PSW_USB_AV = avf0 | avf1; |
| env->PSW_USB_SAV |= env->PSW_USB_AV; |
| |
| return (result1 & 0xffff0000ULL) | ((result0 >> 16) & 0xffffULL); |
| } |
| |
| uint32_t helper_addsur_h_ssov(CPUTriCoreState *env, uint64_t r1, uint32_t r2_l, |
| uint32_t r2_h) |
| { |
| int64_t mul_res0 = sextract64(r1, 0, 32); |
| int64_t mul_res1 = sextract64(r1, 32, 32); |
| int64_t r2_low = sextract64(r2_l, 0, 32); |
| int64_t r2_high = sextract64(r2_h, 0, 32); |
| int64_t result0, result1; |
| uint32_t ovf0, ovf1; |
| uint32_t avf0, avf1; |
| |
| ovf0 = ovf1 = 0; |
| |
| result0 = r2_low - mul_res0 + 0x8000; |
| result1 = r2_high + mul_res1 + 0x8000; |
| |
| avf0 = result0 * 2u; |
| avf0 = result0 ^ avf0; |
| avf1 = result1 * 2u; |
| avf1 = result1 ^ avf1; |
| |
| if (result0 > INT32_MAX) { |
| ovf0 = (1 << 31); |
| result0 = INT32_MAX; |
| } else if (result0 < INT32_MIN) { |
| ovf0 = (1 << 31); |
| result0 = INT32_MIN; |
| } |
| |
| if (result1 > INT32_MAX) { |
| ovf1 = (1 << 31); |
| result1 = INT32_MAX; |
| } else if (result1 < INT32_MIN) { |
| ovf1 = (1 << 31); |
| result1 = INT32_MIN; |
| } |
| |
| env->PSW_USB_V = ovf0 | ovf1; |
| env->PSW_USB_SV |= env->PSW_USB_V; |
| |
| env->PSW_USB_AV = avf0 | avf1; |
| env->PSW_USB_SAV |= env->PSW_USB_AV; |
| |
| return (result1 & 0xffff0000ULL) | ((result0 >> 16) & 0xffffULL); |
| } |
| |
| |
| target_ulong helper_add_suov(CPUTriCoreState *env, target_ulong r1, |
| target_ulong r2) |
| { |
| int64_t t1 = extract64(r1, 0, 32); |
| int64_t t2 = extract64(r2, 0, 32); |
| int64_t result = t1 + t2; |
| return suov32_pos(env, result); |
| } |
| |
| target_ulong helper_add_h_suov(CPUTriCoreState *env, target_ulong r1, |
| target_ulong r2) |
| { |
| int32_t ret_hw0, ret_hw1; |
| |
| ret_hw0 = extract32(r1, 0, 16) + extract32(r2, 0, 16); |
| ret_hw1 = extract32(r1, 16, 16) + extract32(r2, 16, 16); |
| return suov16(env, ret_hw0, ret_hw1); |
| } |
| |
| target_ulong helper_sub_ssov(CPUTriCoreState *env, target_ulong r1, |
| target_ulong r2) |
| { |
| int64_t t1 = sextract64(r1, 0, 32); |
| int64_t t2 = sextract64(r2, 0, 32); |
| int64_t result = t1 - t2; |
| return ssov32(env, result); |
| } |
| |
| uint64_t helper_sub64_ssov(CPUTriCoreState *env, uint64_t r1, uint64_t r2) |
| { |
| uint64_t result; |
| int64_t ovf; |
| |
| result = r1 - r2; |
| ovf = (result ^ r1) & (r1 ^ r2); |
| env->PSW_USB_AV = (result ^ result * 2u) >> 32; |
| env->PSW_USB_SAV |= env->PSW_USB_AV; |
| if (ovf < 0) { |
| env->PSW_USB_V = (1 << 31); |
| env->PSW_USB_SV = (1 << 31); |
| /* ext_ret > MAX_INT */ |
| if ((int64_t)r1 >= 0) { |
| result = INT64_MAX; |
| /* ext_ret < MIN_INT */ |
| } else { |
| result = INT64_MIN; |
| } |
| } else { |
| env->PSW_USB_V = 0; |
| } |
| return result; |
| } |
| |
| target_ulong helper_sub_h_ssov(CPUTriCoreState *env, target_ulong r1, |
| target_ulong r2) |
| { |
| int32_t ret_hw0, ret_hw1; |
| |
| ret_hw0 = sextract32(r1, 0, 16) - sextract32(r2, 0, 16); |
| ret_hw1 = sextract32(r1, 16, 16) - sextract32(r2, 16, 16); |
| return ssov16(env, ret_hw0, ret_hw1); |
| } |
| |
| uint32_t helper_subr_h_ssov(CPUTriCoreState *env, uint64_t r1, uint32_t r2_l, |
| uint32_t r2_h) |
| { |
| int64_t mul_res0 = sextract64(r1, 0, 32); |
| int64_t mul_res1 = sextract64(r1, 32, 32); |
| int64_t r2_low = sextract64(r2_l, 0, 32); |
| int64_t r2_high = sextract64(r2_h, 0, 32); |
| int64_t result0, result1; |
| uint32_t ovf0, ovf1; |
| uint32_t avf0, avf1; |
| |
| ovf0 = ovf1 = 0; |
| |
| result0 = r2_low - mul_res0 + 0x8000; |
| result1 = r2_high - mul_res1 + 0x8000; |
| |
| avf0 = result0 * 2u; |
| avf0 = result0 ^ avf0; |
| avf1 = result1 * 2u; |
| avf1 = result1 ^ avf1; |
| |
| if (result0 > INT32_MAX) { |
| ovf0 = (1 << 31); |
| result0 = INT32_MAX; |
| } else if (result0 < INT32_MIN) { |
| ovf0 = (1 << 31); |
| result0 = INT32_MIN; |
| } |
| |
| if (result1 > INT32_MAX) { |
| ovf1 = (1 << 31); |
| result1 = INT32_MAX; |
| } else if (result1 < INT32_MIN) { |
| ovf1 = (1 << 31); |
| result1 = INT32_MIN; |
| } |
| |
| env->PSW_USB_V = ovf0 | ovf1; |
| env->PSW_USB_SV |= env->PSW_USB_V; |
| |
| env->PSW_USB_AV = avf0 | avf1; |
| env->PSW_USB_SAV |= env->PSW_USB_AV; |
| |
| return (result1 & 0xffff0000ULL) | ((result0 >> 16) & 0xffffULL); |
| } |
| |
| uint32_t helper_subadr_h_ssov(CPUTriCoreState *env, uint64_t r1, uint32_t r2_l, |
| uint32_t r2_h) |
| { |
| int64_t mul_res0 = sextract64(r1, 0, 32); |
| int64_t mul_res1 = sextract64(r1, 32, 32); |
| int64_t r2_low = sextract64(r2_l, 0, 32); |
| int64_t r2_high = sextract64(r2_h, 0, 32); |
| int64_t result0, result1; |
| uint32_t ovf0, ovf1; |
| uint32_t avf0, avf1; |
| |
| ovf0 = ovf1 = 0; |
| |
| result0 = r2_low + mul_res0 + 0x8000; |
| result1 = r2_high - mul_res1 + 0x8000; |
| |
| avf0 = result0 * 2u; |
| avf0 = result0 ^ avf0; |
| avf1 = result1 * 2u; |
| avf1 = result1 ^ avf1; |
| |
| if (result0 > INT32_MAX) { |
| ovf0 = (1 << 31); |
| result0 = INT32_MAX; |
| } else if (result0 < INT32_MIN) { |
| ovf0 = (1 << 31); |
| result0 = INT32_MIN; |
| } |
| |
| if (result1 > INT32_MAX) { |
| ovf1 = (1 << 31); |
| result1 = INT32_MAX; |
| } else if (result1 < INT32_MIN) { |
| ovf1 = (1 << 31); |
| result1 = INT32_MIN; |
| } |
| |
| env->PSW_USB_V = ovf0 | ovf1; |
| env->PSW_USB_SV |= env->PSW_USB_V; |
| |
| env->PSW_USB_AV = avf0 | avf1; |
| env->PSW_USB_SAV |= env->PSW_USB_AV; |
| |
| return (result1 & 0xffff0000ULL) | ((result0 >> 16) & 0xffffULL); |
| } |
| |
| target_ulong helper_sub_suov(CPUTriCoreState *env, target_ulong r1, |
| target_ulong r2) |
| { |
| int64_t t1 = extract64(r1, 0, 32); |
| int64_t t2 = extract64(r2, 0, 32); |
| int64_t result = t1 - t2; |
| return suov32_neg(env, result); |
| } |
| |
| target_ulong helper_sub_h_suov(CPUTriCoreState *env, target_ulong r1, |
| target_ulong r2) |
| { |
| int32_t ret_hw0, ret_hw1; |
| |
| ret_hw0 = extract32(r1, 0, 16) - extract32(r2, 0, 16); |
| ret_hw1 = extract32(r1, 16, 16) - extract32(r2, 16, 16); |
| return suov16(env, ret_hw0, ret_hw1); |
| } |
| |
| target_ulong helper_mul_ssov(CPUTriCoreState *env, target_ulong r1, |
| target_ulong r2) |
| { |
| int64_t t1 = sextract64(r1, 0, 32); |
| int64_t t2 = sextract64(r2, 0, 32); |
| int64_t result = t1 * t2; |
| return ssov32(env, result); |
| } |
| |
| target_ulong helper_mul_suov(CPUTriCoreState *env, target_ulong r1, |
| target_ulong r2) |
| { |
| int64_t t1 = extract64(r1, 0, 32); |
| int64_t t2 = extract64(r2, 0, 32); |
| int64_t result = t1 * t2; |
| |
| return suov32_pos(env, result); |
| } |
| |
| target_ulong helper_sha_ssov(CPUTriCoreState *env, target_ulong r1, |
| target_ulong r2) |
| { |
| int64_t t1 = sextract64(r1, 0, 32); |
| int32_t t2 = sextract64(r2, 0, 6); |
| int64_t result; |
| if (t2 == 0) { |
| result = t1; |
| } else if (t2 > 0) { |
| result = t1 << t2; |
| } else { |
| result = t1 >> -t2; |
| } |
| return ssov32(env, result); |
| } |
| |
| uint32_t helper_abs_ssov(CPUTriCoreState *env, target_ulong r1) |
| { |
| target_ulong result; |
| result = ((int32_t)r1 >= 0) ? r1 : (0 - r1); |
| return ssov32(env, result); |
| } |
| |
| uint32_t helper_abs_h_ssov(CPUTriCoreState *env, target_ulong r1) |
| { |
| int32_t ret_h0, ret_h1; |
| |
| ret_h0 = sextract32(r1, 0, 16); |
| ret_h0 = (ret_h0 >= 0) ? ret_h0 : (0 - ret_h0); |
| |
| ret_h1 = sextract32(r1, 16, 16); |
| ret_h1 = (ret_h1 >= 0) ? ret_h1 : (0 - ret_h1); |
| |
| return ssov16(env, ret_h0, ret_h1); |
| } |
| |
| target_ulong helper_absdif_ssov(CPUTriCoreState *env, target_ulong r1, |
| target_ulong r2) |
| { |
| int64_t t1 = sextract64(r1, 0, 32); |
| int64_t t2 = sextract64(r2, 0, 32); |
| int64_t result; |
| |
| if (t1 > t2) { |
| result = t1 - t2; |
| } else { |
| result = t2 - t1; |
| } |
| return ssov32(env, result); |
| } |
| |
| uint32_t helper_absdif_h_ssov(CPUTriCoreState *env, target_ulong r1, |
| target_ulong r2) |
| { |
| int32_t t1, t2; |
| int32_t ret_h0, ret_h1; |
| |
| t1 = sextract32(r1, 0, 16); |
| t2 = sextract32(r2, 0, 16); |
| if (t1 > t2) { |
| ret_h0 = t1 - t2; |
| } else { |
| ret_h0 = t2 - t1; |
| } |
| |
| t1 = sextract32(r1, 16, 16); |
| t2 = sextract32(r2, 16, 16); |
| if (t1 > t2) { |
| ret_h1 = t1 - t2; |
| } else { |
| ret_h1 = t2 - t1; |
| } |
| |
| return ssov16(env, ret_h0, ret_h1); |
| } |
| |
| target_ulong helper_madd32_ssov(CPUTriCoreState *env, target_ulong r1, |
| target_ulong r2, target_ulong r3) |
| { |
| int64_t t1 = sextract64(r1, 0, 32); |
| int64_t t2 = sextract64(r2, 0, 32); |
| int64_t t3 = sextract64(r3, 0, 32); |
| int64_t result; |
| |
| result = t2 + (t1 * t3); |
| return ssov32(env, result); |
| } |
| |
| target_ulong helper_madd32_suov(CPUTriCoreState *env, target_ulong r1, |
| target_ulong r2, target_ulong r3) |
| { |
| uint64_t t1 = extract64(r1, 0, 32); |
| uint64_t t2 = extract64(r2, 0, 32); |
| uint64_t t3 = extract64(r3, 0, 32); |
| int64_t result; |
| |
| result = t2 + (t1 * t3); |
| return suov32_pos(env, result); |
| } |
| |
| uint64_t helper_madd64_ssov(CPUTriCoreState *env, target_ulong r1, |
| uint64_t r2, target_ulong r3) |
| { |
| uint64_t ret, ovf; |
| int64_t t1 = sextract64(r1, 0, 32); |
| int64_t t3 = sextract64(r3, 0, 32); |
| int64_t mul; |
| |
| mul = t1 * t3; |
| ret = mul + r2; |
| ovf = (ret ^ mul) & ~(mul ^ r2); |
| |
| t1 = ret >> 32; |
| env->PSW_USB_AV = t1 ^ t1 * 2u; |
| env->PSW_USB_SAV |= env->PSW_USB_AV; |
| |
| if ((int64_t)ovf < 0) { |
| env->PSW_USB_V = (1 << 31); |
| env->PSW_USB_SV = (1 << 31); |
| /* ext_ret > MAX_INT */ |
| if (mul >= 0) { |
| ret = INT64_MAX; |
| /* ext_ret < MIN_INT */ |
| } else { |
| ret = INT64_MIN; |
| } |
| } else { |
| env->PSW_USB_V = 0; |
| } |
| |
| return ret; |
| } |
| |
| uint32_t |
| helper_madd32_q_add_ssov(CPUTriCoreState *env, uint64_t r1, uint64_t r2) |
| { |
| int64_t result; |
| |
| result = (r1 + r2); |
| |
| env->PSW_USB_AV = (result ^ result * 2u); |
| env->PSW_USB_SAV |= env->PSW_USB_AV; |
| |
| /* we do the saturation by hand, since we produce an overflow on the host |
| if the mul before was (0x80000000 * 0x80000000) << 1). If this is the |
| case, we flip the saturated value. */ |
| if (r2 == 0x8000000000000000LL) { |
| if (result > 0x7fffffffLL) { |
| env->PSW_USB_V = (1 << 31); |
| env->PSW_USB_SV = (1 << 31); |
| result = INT32_MIN; |
| } else if (result < -0x80000000LL) { |
| env->PSW_USB_V = (1 << 31); |
| env->PSW_USB_SV = (1 << 31); |
| result = INT32_MAX; |
| } else { |
| env->PSW_USB_V = 0; |
| } |
| } else { |
| if (result > 0x7fffffffLL) { |
| env->PSW_USB_V = (1 << 31); |
| env->PSW_USB_SV = (1 << 31); |
| result = INT32_MAX; |
| } else if (result < -0x80000000LL) { |
| env->PSW_USB_V = (1 << 31); |
| env->PSW_USB_SV = (1 << 31); |
| result = INT32_MIN; |
| } else { |
| env->PSW_USB_V = 0; |
| } |
| } |
| return (uint32_t)result; |
| } |
| |
| uint64_t helper_madd64_q_ssov(CPUTriCoreState *env, uint64_t r1, uint32_t r2, |
| uint32_t r3, uint32_t n) |
| { |
| int64_t t1 = (int64_t)r1; |
| int64_t t2 = sextract64(r2, 0, 32); |
| int64_t t3 = sextract64(r3, 0, 32); |
| int64_t result, mul; |
| int64_t ovf; |
| |
| mul = (t2 * t3) << n; |
| result = mul + t1; |
| |
| env->PSW_USB_AV = (result ^ result * 2u) >> 32; |
| env->PSW_USB_SAV |= env->PSW_USB_AV; |
| |
| ovf = (result ^ mul) & ~(mul ^ t1); |
| /* we do the saturation by hand, since we produce an overflow on the host |
| if the mul was (0x80000000 * 0x80000000) << 1). If this is the |
| case, we flip the saturated value. */ |
| if ((r2 == 0x80000000) && (r3 == 0x80000000) && (n == 1)) { |
| if (ovf >= 0) { |
| env->PSW_USB_V = (1 << 31); |
| env->PSW_USB_SV = (1 << 31); |
| /* ext_ret > MAX_INT */ |
| if (mul < 0) { |
| result = INT64_MAX; |
| /* ext_ret < MIN_INT */ |
| } else { |
| result = INT64_MIN; |
| } |
| } else { |
| env->PSW_USB_V = 0; |
| } |
| } else { |
| if (ovf < 0) { |
| env->PSW_USB_V = (1 << 31); |
| env->PSW_USB_SV = (1 << 31); |
| /* ext_ret > MAX_INT */ |
| if (mul >= 0) { |
| result = INT64_MAX; |
| /* ext_ret < MIN_INT */ |
| } else { |
| result = INT64_MIN; |
| } |
| } else { |
| env->PSW_USB_V = 0; |
| } |
| } |
| return (uint64_t)result; |
| } |
| |
| uint32_t helper_maddr_q_ssov(CPUTriCoreState *env, uint32_t r1, uint32_t r2, |
| uint32_t r3, uint32_t n) |
| { |
| int64_t t1 = sextract64(r1, 0, 32); |
| int64_t t2 = sextract64(r2, 0, 32); |
| int64_t t3 = sextract64(r3, 0, 32); |
| int64_t mul, ret; |
| |
| if ((t2 == -0x8000ll) && (t3 == -0x8000ll) && (n == 1)) { |
| mul = 0x7fffffff; |
| } else { |
| mul = (t2 * t3) << n; |
| } |
| |
| ret = t1 + mul + 0x8000; |
| |
| env->PSW_USB_AV = ret ^ ret * 2u; |
| env->PSW_USB_SAV |= env->PSW_USB_AV; |
| |
| if (ret > 0x7fffffffll) { |
| env->PSW_USB_V = (1 << 31); |
| env->PSW_USB_SV |= env->PSW_USB_V; |
| ret = INT32_MAX; |
| } else if (ret < -0x80000000ll) { |
| env->PSW_USB_V = (1 << 31); |
| env->PSW_USB_SV |= env->PSW_USB_V; |
| ret = INT32_MIN; |
| } else { |
| env->PSW_USB_V = 0; |
| } |
| return ret & 0xffff0000ll; |
| } |
| |
| uint64_t helper_madd64_suov(CPUTriCoreState *env, target_ulong r1, |
| uint64_t r2, target_ulong r3) |
| { |
| uint64_t ret, mul; |
| uint64_t t1 = extract64(r1, 0, 32); |
| uint64_t t3 = extract64(r3, 0, 32); |
| |
| mul = t1 * t3; |
| ret = mul + r2; |
| |
| t1 = ret >> 32; |
| env->PSW_USB_AV = t1 ^ t1 * 2u; |
| env->PSW_USB_SAV |= env->PSW_USB_AV; |
| |
| if (ret < r2) { |
| env->PSW_USB_V = (1 << 31); |
| env->PSW_USB_SV = (1 << 31); |
| /* saturate */ |
| ret = UINT64_MAX; |
| } else { |
| env->PSW_USB_V = 0; |
| } |
| return ret; |
| } |
| |
| target_ulong helper_msub32_ssov(CPUTriCoreState *env, target_ulong r1, |
| target_ulong r2, target_ulong r3) |
| { |
| int64_t t1 = sextract64(r1, 0, 32); |
| int64_t t2 = sextract64(r2, 0, 32); |
| int64_t t3 = sextract64(r3, 0, 32); |
| int64_t result; |
| |
| result = t2 - (t1 * t3); |
| return ssov32(env, result); |
| } |
| |
| target_ulong helper_msub32_suov(CPUTriCoreState *env, target_ulong r1, |
| target_ulong r2, target_ulong r3) |
| { |
| uint64_t t1 = extract64(r1, 0, 32); |
| uint64_t t2 = extract64(r2, 0, 32); |
| uint64_t t3 = extract64(r3, 0, 32); |
| uint64_t result; |
| uint64_t mul; |
| |
| mul = (t1 * t3); |
| result = t2 - mul; |
| |
| env->PSW_USB_AV = result ^ result * 2u; |
| env->PSW_USB_SAV |= env->PSW_USB_AV; |
| /* we calculate ovf by hand here, because the multiplication can overflow on |
| the host, which would give false results if we compare to less than |
| zero */ |
| if (mul > t2) { |
| env->PSW_USB_V = (1 << 31); |
| env->PSW_USB_SV = (1 << 31); |
| result = 0; |
| } else { |
| env->PSW_USB_V = 0; |
| } |
| return result; |
| } |
| |
| uint64_t helper_msub64_ssov(CPUTriCoreState *env, target_ulong r1, |
| uint64_t r2, target_ulong r3) |
| { |
| uint64_t ret, ovf; |
| int64_t t1 = sextract64(r1, 0, 32); |
| int64_t t3 = sextract64(r3, 0, 32); |
| int64_t mul; |
| |
| mul = t1 * t3; |
| ret = r2 - mul; |
| ovf = (ret ^ r2) & (mul ^ r2); |
| |
| t1 = ret >> 32; |
| env->PSW_USB_AV = t1 ^ t1 * 2u; |
| env->PSW_USB_SAV |= env->PSW_USB_AV; |
| |
| if ((int64_t)ovf < 0) { |
| env->PSW_USB_V = (1 << 31); |
| env->PSW_USB_SV = (1 << 31); |
| /* ext_ret > MAX_INT */ |
| if (mul < 0) { |
| ret = INT64_MAX; |
| /* ext_ret < MIN_INT */ |
| } else { |
| ret = INT64_MIN; |
| } |
| } else { |
| env->PSW_USB_V = 0; |
| } |
| return ret; |
| } |
| |
| uint64_t helper_msub64_suov(CPUTriCoreState *env, target_ulong r1, |
| uint64_t r2, target_ulong r3) |
| { |
| uint64_t ret, mul; |
| uint64_t t1 = extract64(r1, 0, 32); |
| uint64_t t3 = extract64(r3, 0, 32); |
| |
| mul = t1 * t3; |
| ret = r2 - mul; |
| |
| t1 = ret >> 32; |
| env->PSW_USB_AV = t1 ^ t1 * 2u; |
| env->PSW_USB_SAV |= env->PSW_USB_AV; |
| |
| if (ret > r2) { |
| env->PSW_USB_V = (1 << 31); |
| env->PSW_USB_SV = (1 << 31); |
| /* saturate */ |
| ret = 0; |
| } else { |
| env->PSW_USB_V = 0; |
| } |
| return ret; |
| } |
| |
| uint32_t |
| helper_msub32_q_sub_ssov(CPUTriCoreState *env, uint64_t r1, uint64_t r2) |
| { |
| int64_t result; |
| int64_t t1 = (int64_t)r1; |
| int64_t t2 = (int64_t)r2; |
| |
| result = t1 - t2; |
| |
| env->PSW_USB_AV = (result ^ result * 2u); |
| env->PSW_USB_SAV |= env->PSW_USB_AV; |
| |
| /* we do the saturation by hand, since we produce an overflow on the host |
| if the mul before was (0x80000000 * 0x80000000) << 1). If this is the |
| case, we flip the saturated value. */ |
| if (r2 == 0x8000000000000000LL) { |
| if (result > 0x7fffffffLL) { |
| env->PSW_USB_V = (1 << 31); |
| env->PSW_USB_SV = (1 << 31); |
| result = INT32_MIN; |
| } else if (result < -0x80000000LL) { |
| env->PSW_USB_V = (1 << 31); |
| env->PSW_USB_SV = (1 << 31); |
| result = INT32_MAX; |
| } else { |
| env->PSW_USB_V = 0; |
| } |
| } else { |
| if (result > 0x7fffffffLL) { |
| env->PSW_USB_V = (1 << 31); |
| env->PSW_USB_SV = (1 << 31); |
| result = INT32_MAX; |
| } else if (result < -0x80000000LL) { |
| env->PSW_USB_V = (1 << 31); |
| env->PSW_USB_SV = (1 << 31); |
| result = INT32_MIN; |
| } else { |
| env->PSW_USB_V = 0; |
| } |
| } |
| return (uint32_t)result; |
| } |
| |
| uint64_t helper_msub64_q_ssov(CPUTriCoreState *env, uint64_t r1, uint32_t r2, |
| uint32_t r3, uint32_t n) |
| { |
| int64_t t1 = (int64_t)r1; |
| int64_t t2 = sextract64(r2, 0, 32); |
| int64_t t3 = sextract64(r3, 0, 32); |
| int64_t result, mul; |
| int64_t ovf; |
| |
| mul = (t2 * t3) << n; |
| result = t1 - mul; |
| |
| env->PSW_USB_AV = (result ^ result * 2u) >> 32; |
| env->PSW_USB_SAV |= env->PSW_USB_AV; |
| |
| ovf = (result ^ t1) & (t1 ^ mul); |
| /* we do the saturation by hand, since we produce an overflow on the host |
| if the mul before was (0x80000000 * 0x80000000) << 1). If this is the |
| case, we flip the saturated value. */ |
| if (mul == 0x8000000000000000LL) { |
| if (ovf >= 0) { |
| env->PSW_USB_V = (1 << 31); |
| env->PSW_USB_SV = (1 << 31); |
| /* ext_ret > MAX_INT */ |
| if (mul >= 0) { |
| result = INT64_MAX; |
| /* ext_ret < MIN_INT */ |
| } else { |
| result = INT64_MIN; |
| } |
| } else { |
| env->PSW_USB_V = 0; |
| } |
| } else { |
| if (ovf < 0) { |
| env->PSW_USB_V = (1 << 31); |
| env->PSW_USB_SV = (1 << 31); |
| /* ext_ret > MAX_INT */ |
| if (mul < 0) { |
| result = INT64_MAX; |
| /* ext_ret < MIN_INT */ |
| } else { |
| result = INT64_MIN; |
| } |
| } else { |
| env->PSW_USB_V = 0; |
| } |
| } |
| |
| return (uint64_t)result; |
| } |
| |
| uint32_t helper_msubr_q_ssov(CPUTriCoreState *env, uint32_t r1, uint32_t r2, |
| uint32_t r3, uint32_t n) |
| { |
| int64_t t1 = sextract64(r1, 0, 32); |
| int64_t t2 = sextract64(r2, 0, 32); |
| int64_t t3 = sextract64(r3, 0, 32); |
| int64_t mul, ret; |
| |
| if ((t2 == -0x8000ll) && (t3 == -0x8000ll) && (n == 1)) { |
| mul = 0x7fffffff; |
| } else { |
| mul = (t2 * t3) << n; |
| } |
| |
| ret = t1 - mul + 0x8000; |
| |
| env->PSW_USB_AV = ret ^ ret * 2u; |
| env->PSW_USB_SAV |= env->PSW_USB_AV; |
| |
| if (ret > 0x7fffffffll) { |
| env->PSW_USB_V = (1 << 31); |
| env->PSW_USB_SV |= env->PSW_USB_V; |
| ret = INT32_MAX; |
| } else if (ret < -0x80000000ll) { |
| env->PSW_USB_V = (1 << 31); |
| env->PSW_USB_SV |= env->PSW_USB_V; |
| ret = INT32_MIN; |
| } else { |
| env->PSW_USB_V = 0; |
| } |
| return ret & 0xffff0000ll; |
| } |
| |
| uint32_t helper_abs_b(CPUTriCoreState *env, target_ulong arg) |
| { |
| int32_t b, i; |
| int32_t ovf = 0; |
| int32_t avf = 0; |
| int32_t ret = 0; |
| |
| for (i = 0; i < 4; i++) { |
| b = sextract32(arg, i * 8, 8); |
| b = (b >= 0) ? b : (0 - b); |
| ovf |= (b > 0x7F) || (b < -0x80); |
| avf |= b ^ b * 2u; |
| ret |= (b & 0xff) << (i * 8); |
| } |
| |
| env->PSW_USB_V = ovf << 31; |
| env->PSW_USB_SV |= env->PSW_USB_V; |
| env->PSW_USB_AV = avf << 24; |
| env->PSW_USB_SAV |= env->PSW_USB_AV; |
| |
| return ret; |
| } |
| |
| uint32_t helper_abs_h(CPUTriCoreState *env, target_ulong arg) |
| { |
| int32_t h, i; |
| int32_t ovf = 0; |
| int32_t avf = 0; |
| int32_t ret = 0; |
| |
| for (i = 0; i < 2; i++) { |
| h = sextract32(arg, i * 16, 16); |
| h = (h >= 0) ? h : (0 - h); |
| ovf |= (h > 0x7FFF) || (h < -0x8000); |
| avf |= h ^ h * 2u; |
| ret |= (h & 0xffff) << (i * 16); |
| } |
| |
| env->PSW_USB_V = ovf << 31; |
| env->PSW_USB_SV |= env->PSW_USB_V; |
| env->PSW_USB_AV = avf << 16; |
| env->PSW_USB_SAV |= env->PSW_USB_AV; |
| |
| return ret; |
| } |
| |
| uint32_t helper_absdif_b(CPUTriCoreState *env, target_ulong r1, target_ulong r2) |
| { |
| int32_t b, i; |
| int32_t extr_r2; |
| int32_t ovf = 0; |
| int32_t avf = 0; |
| int32_t ret = 0; |
| |
| for (i = 0; i < 4; i++) { |
| extr_r2 = sextract32(r2, i * 8, 8); |
| b = sextract32(r1, i * 8, 8); |
| b = (b > extr_r2) ? (b - extr_r2) : (extr_r2 - b); |
| ovf |= (b > 0x7F) || (b < -0x80); |
| avf |= b ^ b * 2u; |
| ret |= (b & 0xff) << (i * 8); |
| } |
| |
| env->PSW_USB_V = ovf << 31; |
| env->PSW_USB_SV |= env->PSW_USB_V; |
| env->PSW_USB_AV = avf << 24; |
| env->PSW_USB_SAV |= env->PSW_USB_AV; |
| return ret; |
| } |
| |
| uint32_t helper_absdif_h(CPUTriCoreState *env, target_ulong r1, target_ulong r2) |
| { |
| int32_t h, i; |
| int32_t extr_r2; |
| int32_t ovf = 0; |
| int32_t avf = 0; |
| int32_t ret = 0; |
| |
| for (i = 0; i < 2; i++) { |
| extr_r2 = sextract32(r2, i * 16, 16); |
| h = sextract32(r1, i * 16, 16); |
| h = (h > extr_r2) ? (h - extr_r2) : (extr_r2 - h); |
| ovf |= (h > 0x7FFF) || (h < -0x8000); |
| avf |= h ^ h * 2u; |
| ret |= (h & 0xffff) << (i * 16); |
| } |
| |
| env->PSW_USB_V = ovf << 31; |
| env->PSW_USB_SV |= env->PSW_USB_V; |
| env->PSW_USB_AV = avf << 16; |
| env->PSW_USB_SAV |= env->PSW_USB_AV; |
| |
| return ret; |
| } |
| |
| uint32_t helper_addr_h(CPUTriCoreState *env, uint64_t r1, uint32_t r2_l, |
| uint32_t r2_h) |
| { |
| int64_t mul_res0 = sextract64(r1, 0, 32); |
| int64_t mul_res1 = sextract64(r1, 32, 32); |
| int64_t r2_low = sextract64(r2_l, 0, 32); |
| int64_t r2_high = sextract64(r2_h, 0, 32); |
| int64_t result0, result1; |
| uint32_t ovf0, ovf1; |
| uint32_t avf0, avf1; |
| |
| ovf0 = ovf1 = 0; |
| |
| result0 = r2_low + mul_res0 + 0x8000; |
| result1 = r2_high + mul_res1 + 0x8000; |
| |
| if ((result0 > INT32_MAX) || (result0 < INT32_MIN)) { |
| ovf0 = (1 << 31); |
| } |
| |
| if ((result1 > INT32_MAX) || (result1 < INT32_MIN)) { |
| ovf1 = (1 << 31); |
| } |
| |
| env->PSW_USB_V = ovf0 | ovf1; |
| env->PSW_USB_SV |= env->PSW_USB_V; |
| |
| avf0 = result0 * 2u; |
| avf0 = result0 ^ avf0; |
| avf1 = result1 * 2u; |
| avf1 = result1 ^ avf1; |
| |
| env->PSW_USB_AV = avf0 | avf1; |
| env->PSW_USB_SAV |= env->PSW_USB_AV; |
| |
| return (result1 & 0xffff0000ULL) | ((result0 >> 16) & 0xffffULL); |
| } |
| |
| uint32_t helper_addsur_h(CPUTriCoreState *env, uint64_t r1, uint32_t r2_l, |
| uint32_t r2_h) |
| { |
| int64_t mul_res0 = sextract64(r1, 0, 32); |
| int64_t mul_res1 = sextract64(r1, 32, 32); |
| int64_t r2_low = sextract64(r2_l, 0, 32); |
| int64_t r2_high = sextract64(r2_h, 0, 32); |
| int64_t result0, result1; |
| uint32_t ovf0, ovf1; |
| uint32_t avf0, avf1; |
| |
| ovf0 = ovf1 = 0; |
| |
| result0 = r2_low - mul_res0 + 0x8000; |
| result1 = r2_high + mul_res1 + 0x8000; |
| |
| if ((result0 > INT32_MAX) || (result0 < INT32_MIN)) { |
| ovf0 = (1 << 31); |
| } |
| |
| if ((result1 > INT32_MAX) || (result1 < INT32_MIN)) { |
| ovf1 = (1 << 31); |
| } |
| |
| env->PSW_USB_V = ovf0 | ovf1; |
| env->PSW_USB_SV |= env->PSW_USB_V; |
| |
| avf0 = result0 * 2u; |
| avf0 = result0 ^ avf0; |
| avf1 = result1 * 2u; |
| avf1 = result1 ^ avf1; |
| |
| env->PSW_USB_AV = avf0 | avf1; |
| env->PSW_USB_SAV |= env->PSW_USB_AV; |
| |
| return (result1 & 0xffff0000ULL) | ((result0 >> 16) & 0xffffULL); |
| } |
| |
| uint32_t helper_maddr_q(CPUTriCoreState *env, uint32_t r1, uint32_t r2, |
| uint32_t r3, uint32_t n) |
| { |
| int64_t t1 = sextract64(r1, 0, 32); |
| int64_t t2 = sextract64(r2, 0, 32); |
| int64_t t3 = sextract64(r3, 0, 32); |
| int64_t mul, ret; |
| |
| if ((t2 == -0x8000ll) && (t3 == -0x8000ll) && (n == 1)) { |
| mul = 0x7fffffff; |
| } else { |
| mul = (t2 * t3) << n; |
| } |
| |
| ret = t1 + mul + 0x8000; |
| |
| if ((ret > 0x7fffffffll) || (ret < -0x80000000ll)) { |
| env->PSW_USB_V = (1 << 31); |
| env->PSW_USB_SV |= env->PSW_USB_V; |
| } else { |
| env->PSW_USB_V = 0; |
| } |
| env->PSW_USB_AV = ret ^ ret * 2u; |
| env->PSW_USB_SAV |= env->PSW_USB_AV; |
| |
| return ret & 0xffff0000ll; |
| } |
| |
| uint32_t helper_add_b(CPUTriCoreState *env, target_ulong r1, target_ulong r2) |
| { |
| int32_t b, i; |
| int32_t extr_r1, extr_r2; |
| int32_t ovf = 0; |
| int32_t avf = 0; |
| uint32_t ret = 0; |
| |
| for (i = 0; i < 4; i++) { |
| extr_r1 = sextract32(r1, i * 8, 8); |
| extr_r2 = sextract32(r2, i * 8, 8); |
| |
| b = extr_r1 + extr_r2; |
| ovf |= ((b > 0x7f) || (b < -0x80)); |
| avf |= b ^ b * 2u; |
| ret |= ((b & 0xff) << (i*8)); |
| } |
| |
| env->PSW_USB_V = (ovf << 31); |
| env->PSW_USB_SV |= env->PSW_USB_V; |
| env->PSW_USB_AV = avf << 24; |
| env->PSW_USB_SAV |= env->PSW_USB_AV; |
| |
| return ret; |
| } |
| |
| uint32_t helper_add_h(CPUTriCoreState *env, target_ulong r1, target_ulong r2) |
| { |
| int32_t h, i; |
| int32_t extr_r1, extr_r2; |
| int32_t ovf = 0; |
| int32_t avf = 0; |
| int32_t ret = 0; |
| |
| for (i = 0; i < 2; i++) { |
| extr_r1 = sextract32(r1, i * 16, 16); |
| extr_r2 = sextract32(r2, i * 16, 16); |
| h = extr_r1 + extr_r2; |
| ovf |= ((h > 0x7fff) || (h < -0x8000)); |
| avf |= h ^ h * 2u; |
| ret |= (h & 0xffff) << (i * 16); |
| } |
| |
| env->PSW_USB_V = (ovf << 31); |
| env->PSW_USB_SV |= env->PSW_USB_V; |
| env->PSW_USB_AV = (avf << 16); |
| env->PSW_USB_SAV |= env->PSW_USB_AV; |
| |
| return ret; |
| } |
| |
| uint32_t helper_subr_h(CPUTriCoreState *env, uint64_t r1, uint32_t r2_l, |
| uint32_t r2_h) |
| { |
| int64_t mul_res0 = sextract64(r1, 0, 32); |
| int64_t mul_res1 = sextract64(r1, 32, 32); |
| int64_t r2_low = sextract64(r2_l, 0, 32); |
| int64_t r2_high = sextract64(r2_h, 0, 32); |
| int64_t result0, result1; |
| uint32_t ovf0, ovf1; |
| uint32_t avf0, avf1; |
| |
| ovf0 = ovf1 = 0; |
| |
| result0 = r2_low - mul_res0 + 0x8000; |
| result1 = r2_high - mul_res1 + 0x8000; |
| |
| if ((result0 > INT32_MAX) || (result0 < INT32_MIN)) { |
| ovf0 = (1 << 31); |
| } |
| |
| if ((result1 > INT32_MAX) || (result1 < INT32_MIN)) { |
| ovf1 = (1 << 31); |
| } |
| |
| env->PSW_USB_V = ovf0 | ovf1; |
| env->PSW_USB_SV |= env->PSW_USB_V; |
| |
| avf0 = result0 * 2u; |
| avf0 = result0 ^ avf0; |
| avf1 = result1 * 2u; |
| avf1 = result1 ^ avf1; |
| |
| env->PSW_USB_AV = avf0 | avf1; |
| env->PSW_USB_SAV |= env->PSW_USB_AV; |
| |
| return (result1 & 0xffff0000ULL) | ((result0 >> 16) & 0xffffULL); |
| } |
| |
| uint32_t helper_subadr_h(CPUTriCoreState *env, uint64_t r1, uint32_t r2_l, |
| uint32_t r2_h) |
| { |
| int64_t mul_res0 = sextract64(r1, 0, 32); |
| int64_t mul_res1 = sextract64(r1, 32, 32); |
| int64_t r2_low = sextract64(r2_l, 0, 32); |
| int64_t r2_high = sextract64(r2_h, 0, 32); |
| int64_t result0, result1; |
| uint32_t ovf0, ovf1; |
| uint32_t avf0, avf1; |
| |
| ovf0 = ovf1 = 0; |
| |
| result0 = r2_low + mul_res0 + 0x8000; |
| result1 = r2_high - mul_res1 + 0x8000; |
| |
| if ((result0 > INT32_MAX) || (result0 < INT32_MIN)) { |
| ovf0 = (1 << 31); |
| } |
| |
| if ((result1 > INT32_MAX) || (result1 < INT32_MIN)) { |
| ovf1 = (1 << 31); |
| } |
| |
| env->PSW_USB_V = ovf0 | ovf1; |
| env->PSW_USB_SV |= env->PSW_USB_V; |
| |
| avf0 = result0 * 2u; |
| avf0 = result0 ^ avf0; |
| avf1 = result1 * 2u; |
| avf1 = result1 ^ avf1; |
| |
| env->PSW_USB_AV = avf0 | avf1; |
| env->PSW_USB_SAV |= env->PSW_USB_AV; |
| |
| return (result1 & 0xffff0000ULL) | ((result0 >> 16) & 0xffffULL); |
| } |
| |
| uint32_t helper_msubr_q(CPUTriCoreState *env, uint32_t r1, uint32_t r2, |
| uint32_t r3, uint32_t n) |
| { |
| int64_t t1 = sextract64(r1, 0, 32); |
| int64_t t2 = sextract64(r2, 0, 32); |
| int64_t t3 = sextract64(r3, 0, 32); |
| int64_t mul, ret; |
| |
| if ((t2 == -0x8000ll) && (t3 == -0x8000ll) && (n == 1)) { |
| mul = 0x7fffffff; |
| } else { |
| mul = (t2 * t3) << n; |
| } |
| |
| ret = t1 - mul + 0x8000; |
| |
| if ((ret > 0x7fffffffll) || (ret < -0x80000000ll)) { |
| env->PSW_USB_V = (1 << 31); |
| env->PSW_USB_SV |= env->PSW_USB_V; |
| } else { |
| env->PSW_USB_V = 0; |
| } |
| env->PSW_USB_AV = ret ^ ret * 2u; |
| env->PSW_USB_SAV |= env->PSW_USB_AV; |
| |
| return ret & 0xffff0000ll; |
| } |
| |
| uint32_t helper_sub_b(CPUTriCoreState *env, target_ulong r1, target_ulong r2) |
| { |
| int32_t b, i; |
| int32_t extr_r1, extr_r2; |
| int32_t ovf = 0; |
| int32_t avf = 0; |
| uint32_t ret = 0; |
| |
| for (i = 0; i < 4; i++) { |
| extr_r1 = sextract32(r1, i * 8, 8); |
| extr_r2 = sextract32(r2, i * 8, 8); |
| |
| b = extr_r1 - extr_r2; |
| ovf |= ((b > 0x7f) || (b < -0x80)); |
| avf |= b ^ b * 2u; |
| ret |= ((b & 0xff) << (i*8)); |
| } |
| |
| env->PSW_USB_V = (ovf << 31); |
| env->PSW_USB_SV |= env->PSW_USB_V; |
| env->PSW_USB_AV = avf << 24; |
| env->PSW_USB_SAV |= env->PSW_USB_AV; |
| |
| return ret; |
| } |
| |
| uint32_t helper_sub_h(CPUTriCoreState *env, target_ulong r1, target_ulong r2) |
| { |
| int32_t h, i; |
| int32_t extr_r1, extr_r2; |
| int32_t ovf = 0; |
| int32_t avf = 0; |
| int32_t ret = 0; |
| |
| for (i = 0; i < 2; i++) { |
| extr_r1 = sextract32(r1, i * 16, 16); |
| extr_r2 = sextract32(r2, i * 16, 16); |
| h = extr_r1 - extr_r2; |
| ovf |= ((h > 0x7fff) || (h < -0x8000)); |
| avf |= h ^ h * 2u; |
| ret |= (h & 0xffff) << (i * 16); |
| } |
| |
| env->PSW_USB_V = (ovf << 31); |
| env->PSW_USB_SV |= env->PSW_USB_V; |
| env->PSW_USB_AV = avf << 16; |
| env->PSW_USB_SAV |= env->PSW_USB_AV; |
| |
| return ret; |
| } |
| |
| uint32_t helper_eq_b(target_ulong r1, target_ulong r2) |
| { |
| uint32_t ret, msk; |
| int32_t i; |
| |
| ret = 0; |
| msk = 0xff; |
| for (i = 0; i < 4; i++) { |
| if ((r1 & msk) == (r2 & msk)) { |
| ret |= msk; |
| } |
| msk = msk << 8; |
| } |
| |
| return ret; |
| } |
| |
| uint32_t helper_eq_h(target_ulong r1, target_ulong r2) |
| { |
| int32_t ret = 0; |
| |
| if ((r1 & 0xffff) == (r2 & 0xffff)) { |
| ret = 0xffff; |
| } |
| |
| if ((r1 & 0xffff0000) == (r2 & 0xffff0000)) { |
| ret |= 0xffff0000; |
| } |
| |
| return ret; |
| } |
| |
| uint32_t helper_eqany_b(target_ulong r1, target_ulong r2) |
| { |
| int32_t i; |
| uint32_t ret = 0; |
| |
| for (i = 0; i < 4; i++) { |
| ret |= (sextract32(r1, i * 8, 8) == sextract32(r2, i * 8, 8)); |
| } |
| |
| return ret; |
| } |
| |
| uint32_t helper_eqany_h(target_ulong r1, target_ulong r2) |
| { |
| uint32_t ret; |
| |
| ret = (sextract32(r1, 0, 16) == sextract32(r2, 0, 16)); |
| ret |= (sextract32(r1, 16, 16) == sextract32(r2, 16, 16)); |
| |
| return ret; |
| } |
| |
| uint32_t helper_lt_b(target_ulong r1, target_ulong r2) |
| { |
| int32_t i; |
| uint32_t ret = 0; |
| |
| for (i = 0; i < 4; i++) { |
| if (sextract32(r1, i * 8, 8) < sextract32(r2, i * 8, 8)) { |
| ret |= (0xff << (i * 8)); |
| } |
| } |
| |
| return ret; |
| } |
| |
| uint32_t helper_lt_bu(target_ulong r1, target_ulong r2) |
| { |
| int32_t i; |
| uint32_t ret = 0; |
| |
| for (i = 0; i < 4; i++) { |
| if (extract32(r1, i * 8, 8) < extract32(r2, i * 8, 8)) { |
| ret |= (0xff << (i * 8)); |
| } |
| } |
| |
| return ret; |
| } |
| |
| uint32_t helper_lt_h(target_ulong r1, target_ulong r2) |
| { |
| uint32_t ret = 0; |
| |
| if (sextract32(r1, 0, 16) < sextract32(r2, 0, 16)) { |
| ret |= 0xffff; |
| } |
| |
| if (sextract32(r1, 16, 16) < sextract32(r2, 16, 16)) { |
| ret |= 0xffff0000; |
| } |
| |
| return ret; |
| } |
| |
| uint32_t helper_lt_hu(target_ulong r1, target_ulong r2) |
| { |
| uint32_t ret = 0; |
| |
| if (extract32(r1, 0, 16) < extract32(r2, 0, 16)) { |
| ret |= 0xffff; |
| } |
| |
| if (extract32(r1, 16, 16) < extract32(r2, 16, 16)) { |
| ret |= 0xffff0000; |
| } |
| |
| return ret; |
| } |
| |
| #define EXTREMA_H_B(name, op) \ |
| uint32_t helper_##name ##_b(target_ulong r1, target_ulong r2) \ |
| { \ |
| int32_t i, extr_r1, extr_r2; \ |
| uint32_t ret = 0; \ |
| \ |
| for (i = 0; i < 4; i++) { \ |
| extr_r1 = sextract32(r1, i * 8, 8); \ |
| extr_r2 = sextract32(r2, i * 8, 8); \ |
| extr_r1 = (extr_r1 op extr_r2) ? extr_r1 : extr_r2; \ |
| ret |= (extr_r1 & 0xff) << (i * 8); \ |
| } \ |
| return ret; \ |
| } \ |
| \ |
| uint32_t helper_##name ##_bu(target_ulong r1, target_ulong r2)\ |
| { \ |
| int32_t i; \ |
| uint32_t extr_r1, extr_r2; \ |
| uint32_t ret = 0; \ |
| \ |
| for (i = 0; i < 4; i++) { \ |
| extr_r1 = extract32(r1, i * 8, 8); \ |
| extr_r2 = extract32(r2, i * 8, 8); \ |
| extr_r1 = (extr_r1 op extr_r2) ? extr_r1 : extr_r2; \ |
| ret |= (extr_r1 & 0xff) << (i * 8); \ |
| } \ |
| return ret; \ |
| } \ |
| \ |
| uint32_t helper_##name ##_h(target_ulong r1, target_ulong r2) \ |
| { \ |
| int32_t extr_r1, extr_r2; \ |
| uint32_t ret = 0; \ |
| \ |
| extr_r1 = sextract32(r1, 0, 16); \ |
| extr_r2 = sextract32(r2, 0, 16); \ |
| ret = (extr_r1 op extr_r2) ? extr_r1 : extr_r2; \ |
| ret = ret & 0xffff; \ |
| \ |
| extr_r1 = sextract32(r1, 16, 16); \ |
| extr_r2 = sextract32(r2, 16, 16); \ |
| extr_r1 = (extr_r1 op extr_r2) ? extr_r1 : extr_r2; \ |
| ret |= extr_r1 << 16; \ |
| \ |
| return ret; \ |
| } \ |
| \ |
| uint32_t helper_##name ##_hu(target_ulong r1, target_ulong r2)\ |
| { \ |
| uint32_t extr_r1, extr_r2; \ |
| uint32_t ret = 0; \ |
| \ |
| extr_r1 = extract32(r1, 0, 16); \ |
| extr_r2 = extract32(r2, 0, 16); \ |
| ret = (extr_r1 op extr_r2) ? extr_r1 : extr_r2; \ |
| ret = ret & 0xffff; \ |
| \ |
| extr_r1 = extract32(r1, 16, 16); \ |
| extr_r2 = extract32(r2, 16, 16); \ |
| extr_r1 = (extr_r1 op extr_r2) ? extr_r1 : extr_r2; \ |
| ret |= extr_r1 << (16); \ |
| \ |
| return ret; \ |
| } \ |
| \ |
| uint64_t helper_ix##name(uint64_t r1, uint32_t r2) \ |
| { \ |
| int64_t r2l, r2h, r1hl; \ |
| uint64_t ret = 0; \ |
| \ |
| ret = ((r1 + 2) & 0xffff); \ |
| r2l = sextract64(r2, 0, 16); \ |
| r2h = sextract64(r2, 16, 16); \ |
| r1hl = sextract64(r1, 32, 16); \ |
| \ |
| if ((r2l op ## = r2h) && (r2l op r1hl)) { \ |
| ret |= (r2l & 0xffff) << 32; \ |
| ret |= extract64(r1, 0, 16) << 16; \ |
| } else if ((r2h op r2l) && (r2h op r1hl)) { \ |
| ret |= extract64(r2, 16, 16) << 32; \ |
| ret |= extract64(r1 + 1, 0, 16) << 16; \ |
| } else { \ |
| ret |= r1 & 0xffffffff0000ull; \ |
| } \ |
| return ret; \ |
| } \ |
| \ |
| uint64_t helper_ix##name ##_u(uint64_t r1, uint32_t r2) \ |
| { \ |
| int64_t r2l, r2h, r1hl; \ |
| uint64_t ret = 0; \ |
| \ |
| ret = ((r1 + 2) & 0xffff); \ |
| r2l = extract64(r2, 0, 16); \ |
| r2h = extract64(r2, 16, 16); \ |
| r1hl = extract64(r1, 32, 16); \ |
| \ |
| if ((r2l op ## = r2h) && (r2l op r1hl)) { \ |
| ret |= (r2l & 0xffff) << 32; \ |
| ret |= extract64(r1, 0, 16) << 16; \ |
| } else if ((r2h op r2l) && (r2h op r1hl)) { \ |
| ret |= extract64(r2, 16, 16) << 32; \ |
| ret |= extract64(r1 + 1, 0, 16) << 16; \ |
| } else { \ |
| ret |= r1 & 0xffffffff0000ull; \ |
| } \ |
| return ret; \ |
| } |
| |
| EXTREMA_H_B(max, >) |
| EXTREMA_H_B(min, <) |
| |
| #undef EXTREMA_H_B |
| |
| uint32_t helper_clo_h(target_ulong r1) |
| { |
| uint32_t ret_hw0 = extract32(r1, 0, 16); |
| uint32_t ret_hw1 = extract32(r1, 16, 16); |
| |
| ret_hw0 = clo32(ret_hw0 << 16); |
| ret_hw1 = clo32(ret_hw1 << 16); |
| |
| if (ret_hw0 > 16) { |
| ret_hw0 = 16; |
| } |
| if (ret_hw1 > 16) { |
| ret_hw1 = 16; |
| } |
| |
| return ret_hw0 | (ret_hw1 << 16); |
| } |
| |
| uint32_t helper_clz_h(target_ulong r1) |
| { |
| uint32_t ret_hw0 = extract32(r1, 0, 16); |
| uint32_t ret_hw1 = extract32(r1, 16, 16); |
| |
| ret_hw0 = clz32(ret_hw0 << 16); |
| ret_hw1 = clz32(ret_hw1 << 16); |
| |
| if (ret_hw0 > 16) { |
| ret_hw0 = 16; |
| } |
| if (ret_hw1 > 16) { |
| ret_hw1 = 16; |
| } |
| |
| return ret_hw0 | (ret_hw1 << 16); |
| } |
| |
| uint32_t helper_cls_h(target_ulong r1) |
| { |
| uint32_t ret_hw0 = extract32(r1, 0, 16); |
| uint32_t ret_hw1 = extract32(r1, 16, 16); |
| |
| ret_hw0 = clrsb32(ret_hw0 << 16); |
| ret_hw1 = clrsb32(ret_hw1 << 16); |
| |
| if (ret_hw0 > 15) { |
| ret_hw0 = 15; |
| } |
| if (ret_hw1 > 15) { |
| ret_hw1 = 15; |
| } |
| |
| return ret_hw0 | (ret_hw1 << 16); |
| } |
| |
| uint32_t helper_sh(target_ulong r1, target_ulong r2) |
| { |
| int32_t shift_count = sextract32(r2, 0, 6); |
| |
| if (shift_count == -32) { |
| return 0; |
| } else if (shift_count < 0) { |
| return r1 >> -shift_count; |
| } else { |
| return r1 << shift_count; |
| } |
| } |
| |
| uint32_t helper_sh_h(target_ulong r1, target_ulong r2) |
| { |
| int32_t ret_hw0, ret_hw1; |
| int32_t shift_count; |
| |
| shift_count = sextract32(r2, 0, 5); |
| |
| if (shift_count == -16) { |
| return 0; |
| } else if (shift_count < 0) { |
| ret_hw0 = extract32(r1, 0, 16) >> -shift_count; |
| ret_hw1 = extract32(r1, 16, 16) >> -shift_count; |
| return (ret_hw0 & 0xffff) | (ret_hw1 << 16); |
| } else { |
| ret_hw0 = extract32(r1, 0, 16) << shift_count; |
| ret_hw1 = extract32(r1, 16, 16) << shift_count; |
| return (ret_hw0 & 0xffff) | (ret_hw1 << 16); |
| } |
| } |
| |
| uint32_t helper_sha(CPUTriCoreState *env, target_ulong r1, target_ulong r2) |
| { |
| int32_t shift_count; |
| int64_t result, t1; |
| uint32_t ret; |
| |
| shift_count = sextract32(r2, 0, 6); |
| t1 = sextract32(r1, 0, 32); |
| |
| if (shift_count == 0) { |
| env->PSW_USB_C = env->PSW_USB_V = 0; |
| ret = r1; |
| } else if (shift_count == -32) { |
| env->PSW_USB_C = r1; |
| env->PSW_USB_V = 0; |
| ret = t1 >> 31; |
| } else if (shift_count > 0) { |
| result = t1 << shift_count; |
| /* calc carry */ |
| env->PSW_USB_C = ((result & 0xffffffff00000000ULL) != 0); |
| /* calc v */ |
| env->PSW_USB_V = (((result > 0x7fffffffLL) || |
| (result < -0x80000000LL)) << 31); |
| /* calc sv */ |
| env->PSW_USB_SV |= env->PSW_USB_V; |
| ret = (uint32_t)result; |
| } else { |
| env->PSW_USB_V = 0; |
| env->PSW_USB_C = (r1 & ((1 << -shift_count) - 1)); |
| ret = t1 >> -shift_count; |
| } |
| |
| env->PSW_USB_AV = ret ^ ret * 2u; |
| env->PSW_USB_SAV |= env->PSW_USB_AV; |
| |
| return ret; |
| } |
| |
| uint32_t helper_sha_h(target_ulong r1, target_ulong r2) |
| { |
| int32_t shift_count; |
| int32_t ret_hw0, ret_hw1; |
| |
| shift_count = sextract32(r2, 0, 5); |
| |
| if (shift_count == 0) { |
| return r1; |
| } else if (shift_count < 0) { |
| ret_hw0 = sextract32(r1, 0, 16) >> -shift_count; |
| ret_hw1 = sextract32(r1, 16, 16) >> -shift_count; |
| return (ret_hw0 & 0xffff) | (ret_hw1 << 16); |
| } else { |
| ret_hw0 = sextract32(r1, 0, 16) << shift_count; |
| ret_hw1 = sextract32(r1, 16, 16) << shift_count; |
| return (ret_hw0 & 0xffff) | (ret_hw1 << 16); |
| } |
| } |
| |
| uint32_t helper_bmerge(target_ulong r1, target_ulong r2) |
| { |
| uint32_t i, ret; |
| |
| ret = 0; |
| for (i = 0; i < 16; i++) { |
| ret |= (r1 & 1) << (2 * i + 1); |
| ret |= (r2 & 1) << (2 * i); |
| r1 = r1 >> 1; |
| r2 = r2 >> 1; |
| } |
| return ret; |
| } |
| |
| uint64_t helper_bsplit(uint32_t r1) |
| { |
| int32_t i; |
| uint64_t ret; |
| |
| ret = 0; |
| for (i = 0; i < 32; i = i + 2) { |
| /* even */ |
| ret |= (r1 & 1) << (i/2); |
| r1 = r1 >> 1; |
| /* odd */ |
| ret |= (uint64_t)(r1 & 1) << (i/2 + 32); |
| r1 = r1 >> 1; |
| } |
| return ret; |
| } |
| |
| uint32_t helper_parity(target_ulong r1) |
| { |
| uint32_t ret; |
| uint32_t nOnes, i; |
| |
| ret = 0; |
| nOnes = 0; |
| for (i = 0; i < 8; i++) { |
| ret ^= (r1 & 1); |
| r1 = r1 >> 1; |
| } |
| /* second byte */ |
| nOnes = 0; |
| for (i = 0; i < 8; i++) { |
| nOnes ^= (r1 & 1); |
| r1 = r1 >> 1; |
| } |
| ret |= nOnes << 8; |
| /* third byte */ |
| nOnes = 0; |
| for (i = 0; i < 8; i++) { |
| nOnes ^= (r1 & 1); |
| r1 = r1 >> 1; |
| } |
| ret |= nOnes << 16; |
| /* fourth byte */ |
| nOnes = 0; |
| for (i = 0; i < 8; i++) { |
| nOnes ^= (r1 & 1); |
| r1 = r1 >> 1; |
| } |
| ret |= nOnes << 24; |
| |
| return ret; |
| } |
| |
| uint32_t helper_pack(uint32_t carry, uint32_t r1_low, uint32_t r1_high, |
| target_ulong r2) |
| { |
| uint32_t ret; |
| int32_t fp_exp, fp_frac, temp_exp, fp_exp_frac; |
| int32_t int_exp = r1_high; |
| int32_t int_mant = r1_low; |
| uint32_t flag_rnd = (int_mant & (1 << 7)) && ( |
| (int_mant & (1 << 8)) || |
| (int_mant & 0x7f) || |
| (carry != 0)); |
| if (((int_mant & (1<<31)) == 0) && (int_exp == 255)) { |
| fp_exp = 255; |
| fp_frac = extract32(int_mant, 8, 23); |
| } else if ((int_mant & (1<<31)) && (int_exp >= 127)) { |
| fp_exp = 255; |
| fp_frac = 0; |
| } else if ((int_mant & (1<<31)) && (int_exp <= -128)) { |
| fp_exp = 0; |
| fp_frac = 0; |
| } else if (int_mant == 0) { |
| fp_exp = 0; |
| fp_frac = 0; |
| } else { |
| if (((int_mant & (1 << 31)) == 0)) { |
| temp_exp = 0; |
| } else { |
| temp_exp = int_exp + 128; |
| } |
| fp_exp_frac = (((temp_exp & 0xff) << 23) | |
| extract32(int_mant, 8, 23)) |
| + flag_rnd; |
| fp_exp = extract32(fp_exp_frac, 23, 8); |
| fp_frac = extract32(fp_exp_frac, 0, 23); |
| } |
| ret = r2 & (1 << 31); |
| ret = ret + (fp_exp << 23); |
| ret = ret + (fp_frac & 0x7fffff); |
| |
| return ret; |
| } |
| |
| uint64_t helper_unpack(target_ulong arg1) |
| { |
| int32_t fp_exp = extract32(arg1, 23, 8); |
| int32_t fp_frac = extract32(arg1, 0, 23); |
| uint64_t ret; |
| int32_t int_exp, int_mant; |
| |
| if (fp_exp == 255) { |
| int_exp = 255; |
| int_mant = (fp_frac << 7); |
| } else if ((fp_exp == 0) && (fp_frac == 0)) { |
| int_exp = -127; |
| int_mant = 0; |
| } else if ((fp_exp == 0) && (fp_frac != 0)) { |
| int_exp = -126; |
| int_mant = (fp_frac << 7); |
| } else { |
| int_exp = fp_exp - 127; |
| int_mant = (fp_frac << 7); |
| int_mant |= (1 << 30); |
| } |
| ret = int_exp; |
| ret = ret << 32; |
| ret |= int_mant; |
| |
| return ret; |
| } |
| |
| uint64_t helper_dvinit_b_13(CPUTriCoreState *env, uint32_t r1, uint32_t r2) |
| { |
| uint64_t ret; |
| int32_t abs_sig_dividend, abs_divisor; |
| |
| ret = sextract32(r1, 0, 32); |
| ret = ret << 24; |
| if (!((r1 & 0x80000000) == (r2 & 0x80000000))) { |
| ret |= 0xffffff; |
| } |
| |
| abs_sig_dividend = abs((int32_t)r1) >> 8; |
| abs_divisor = abs((int32_t)r2); |
| /* calc overflow |
| ofv if (a/b >= 255) <=> (a/255 >= b) */ |
| env->PSW_USB_V = (abs_sig_dividend >= abs_divisor) << 31; |
| env->PSW_USB_V = env->PSW_USB_V << 31; |
| env->PSW_USB_SV |= env->PSW_USB_V; |
| env->PSW_USB_AV = 0; |
| |
| return ret; |
| } |
| |
| uint64_t helper_dvinit_b_131(CPUTriCoreState *env, uint32_t r1, uint32_t r2) |
| { |
| uint64_t ret = sextract32(r1, 0, 32); |
| |
| ret = ret << 24; |
| if (!((r1 & 0x80000000) == (r2 & 0x80000000))) { |
| ret |= 0xffffff; |
| } |
| /* calc overflow */ |
| env->PSW_USB_V = ((r2 == 0) || ((r2 == 0xffffffff) && (r1 == 0xffffff80))); |
| env->PSW_USB_V = env->PSW_USB_V << 31; |
| env->PSW_USB_SV |= env->PSW_USB_V; |
| env->PSW_USB_AV = 0; |
| |
| return ret; |
| } |
| |
| uint64_t helper_dvinit_h_13(CPUTriCoreState *env, uint32_t r1, uint32_t r2) |
| { |
| uint64_t ret; |
| int32_t abs_sig_dividend, abs_divisor; |
| |
| ret = sextract32(r1, 0, 32); |
| ret = ret << 16; |
| if (!((r1 & 0x80000000) == (r2 & 0x80000000))) { |
| ret |= 0xffff; |
| } |
| |
| abs_sig_dividend = abs((int32_t)r1) >> 16; |
| abs_divisor = abs((int32_t)r2); |
| /* calc overflow |
| ofv if (a/b >= 0xffff) <=> (a/0xffff >= b) */ |
| env->PSW_USB_V = (abs_sig_dividend >= abs_divisor) << 31; |
| env->PSW_USB_V = env->PSW_USB_V << 31; |
| env->PSW_USB_SV |= env->PSW_USB_V; |
| env->PSW_USB_AV = 0; |
| |
| return ret; |
| } |
| |
| uint64_t helper_dvinit_h_131(CPUTriCoreState *env, uint32_t r1, uint32_t r2) |
| { |
| uint64_t ret = sextract32(r1, 0, 32); |
| |
| ret = ret << 16; |
| if (!((r1 & 0x80000000) == (r2 & 0x80000000))) { |
| ret |= 0xffff; |
| } |
| /* calc overflow */ |
| env->PSW_USB_V = ((r2 == 0) || ((r2 == 0xffffffff) && (r1 == 0xffff8000))); |
| env->PSW_USB_V = env->PSW_USB_V << 31; |
| env->PSW_USB_SV |= env->PSW_USB_V; |
| env->PSW_USB_AV = 0; |
| |
| return ret; |
| } |
| |
| uint64_t helper_dvadj(uint64_t r1, uint32_t r2) |
| { |
| int32_t x_sign = (r1 >> 63); |
| int32_t q_sign = x_sign ^ (r2 >> 31); |
| int32_t eq_pos = x_sign & ((r1 >> 32) == r2); |
| int32_t eq_neg = x_sign & ((r1 >> 32) == -r2); |
| uint32_t quotient; |
| uint64_t remainder; |
| |
| if ((q_sign & ~eq_neg) | eq_pos) { |
| quotient = (r1 + 1) & 0xffffffff; |
| } else { |
| quotient = r1 & 0xffffffff; |
| } |
| |
| if (eq_pos | eq_neg) { |
| remainder = 0; |
| } else { |
| remainder = (r1 & 0xffffffff00000000ull); |
| } |
| return remainder | quotient; |
| } |
| |
| uint64_t helper_dvstep(uint64_t r1, uint32_t r2) |
| { |
| int32_t dividend_sign = extract64(r1, 63, 1); |
| int32_t divisor_sign = extract32(r2, 31, 1); |
| int32_t quotient_sign = (dividend_sign != divisor_sign); |
| int32_t addend, dividend_quotient, remainder; |
| int32_t i, temp; |
| |
| if (quotient_sign) { |
| addend = r2; |
| } else { |
| addend = -r2; |
| } |
| dividend_quotient = (int32_t)r1; |
| remainder = (int32_t)(r1 >> 32); |
| |
| for (i = 0; i < 8; i++) { |
| remainder = (remainder << 1) | extract32(dividend_quotient, 31, 1); |
| dividend_quotient <<= 1; |
| temp = remainder + addend; |
| if ((temp < 0) == dividend_sign) { |
| remainder = temp; |
| } |
| if (((temp < 0) == dividend_sign)) { |
| dividend_quotient = dividend_quotient | !quotient_sign; |
| } else { |
| dividend_quotient = dividend_quotient | quotient_sign; |
| } |
| } |
| return ((uint64_t)remainder << 32) | (uint32_t)dividend_quotient; |
| } |
| |
| uint64_t helper_dvstep_u(uint64_t r1, uint32_t r2) |
| { |
| int32_t dividend_quotient = extract64(r1, 0, 32); |
| int64_t remainder = extract64(r1, 32, 32); |
| int32_t i; |
| int64_t temp; |
| for (i = 0; i < 8; i++) { |
| remainder = (remainder << 1) | extract32(dividend_quotient, 31, 1); |
| dividend_quotient <<= 1; |
| temp = (remainder & 0xffffffff) - r2; |
| if (temp >= 0) { |
| remainder = temp; |
| } |
| dividend_quotient = dividend_quotient | !(temp < 0); |
| } |
| return ((uint64_t)remainder << 32) | (uint32_t)dividend_quotient; |
| } |
| |
| uint64_t helper_divide(CPUTriCoreState *env, uint32_t r1, uint32_t r2) |
| { |
| int32_t quotient, remainder; |
| int32_t dividend = (int32_t)r1; |
| int32_t divisor = (int32_t)r2; |
| |
| if (divisor == 0) { |
| if (dividend >= 0) { |
| quotient = 0x7fffffff; |
| remainder = 0; |
| } else { |
| quotient = 0x80000000; |
| remainder = 0; |
| } |
| env->PSW_USB_V = (1 << 31); |
| } else if ((divisor == 0xffffffff) && (dividend == 0x80000000)) { |
| quotient = 0x7fffffff; |
| remainder = 0; |
| env->PSW_USB_V = (1 << 31); |
| } else { |
| remainder = dividend % divisor; |
| quotient = (dividend - remainder)/divisor; |
| env->PSW_USB_V = 0; |
| } |
| env->PSW_USB_SV |= env->PSW_USB_V; |
| env->PSW_USB_AV = 0; |
| return ((uint64_t)remainder << 32) | (uint32_t)quotient; |
| } |
| |
| uint64_t helper_divide_u(CPUTriCoreState *env, uint32_t r1, uint32_t r2) |
| { |
| uint32_t quotient, remainder; |
| uint32_t dividend = r1; |
| uint32_t divisor = r2; |
| |
| if (divisor == 0) { |
| quotient = 0xffffffff; |
| remainder = 0; |
| env->PSW_USB_V = (1 << 31); |
| } else { |
| remainder = dividend % divisor; |
| quotient = (dividend - remainder)/divisor; |
| env->PSW_USB_V = 0; |
| } |
| env->PSW_USB_SV |= env->PSW_USB_V; |
| env->PSW_USB_AV = 0; |
| return ((uint64_t)remainder << 32) | quotient; |
| } |
| |
| uint64_t helper_mul_h(uint32_t arg00, uint32_t arg01, |
| uint32_t arg10, uint32_t arg11, uint32_t n) |
| { |
| uint32_t result0, result1; |
| |
| int32_t sc1 = ((arg00 & 0xffff) == 0x8000) && |
| ((arg10 & 0xffff) == 0x8000) && (n == 1); |
| int32_t sc0 = ((arg01 & 0xffff) == 0x8000) && |
| ((arg11 & 0xffff) == 0x8000) && (n == 1); |
| if (sc1) { |
| result1 = 0x7fffffff; |
| } else { |
| result1 = (((uint32_t)(arg00 * arg10)) << n); |
| } |
| if (sc0) { |
| result0 = 0x7fffffff; |
| } else { |
| result0 = (((uint32_t)(arg01 * arg11)) << n); |
| } |
| return (((uint64_t)result1 << 32)) | result0; |
| } |
| |
| uint64_t helper_mulm_h(uint32_t arg00, uint32_t arg01, |
| uint32_t arg10, uint32_t arg11, uint32_t n) |
| { |
| uint64_t ret; |
| int64_t result0, result1; |
| |
| int32_t sc1 = ((arg00 & 0xffff) == 0x8000) && |
| ((arg10 & 0xffff) == 0x8000) && (n == 1); |
| int32_t sc0 = ((arg01 & 0xffff) == 0x8000) && |
| ((arg11 & 0xffff) == 0x8000) && (n == 1); |
| |
| if (sc1) { |
| result1 = 0x7fffffff; |
| } else { |
| result1 = (((int32_t)arg00 * (int32_t)arg10) << n); |
| } |
| if (sc0) { |
| result0 = 0x7fffffff; |
| } else { |
| result0 = (((int32_t)arg01 * (int32_t)arg11) << n); |
| } |
| ret = (result1 + result0); |
| ret = ret << 16; |
| return ret; |
| } |
| uint32_t helper_mulr_h(uint32_t arg00, uint32_t arg01, |
| uint32_t arg10, uint32_t arg11, uint32_t n) |
| { |
| uint32_t result0, result1; |
| |
| int32_t sc1 = ((arg00 & 0xffff) == 0x8000) && |
| ((arg10 & 0xffff) == 0x8000) && (n == 1); |
| int32_t sc0 = ((arg01 & 0xffff) == 0x8000) && |
| ((arg11 & 0xffff) == 0x8000) && (n == 1); |
| |
| if (sc1) { |
| result1 = 0x7fffffff; |
| } else { |
| result1 = ((arg00 * arg10) << n) + 0x8000; |
| } |
| if (sc0) { |
| result0 = 0x7fffffff; |
| } else { |
| result0 = ((arg01 * arg11) << n) + 0x8000; |
| } |
| return (result1 & 0xffff0000) | (result0 >> 16); |
| } |
| |
| uint32_t helper_crc32b(uint32_t arg0, uint32_t arg1) |
| { |
| uint8_t buf[1] = { arg0 & 0xff }; |
| |
| return crc32(arg1, buf, 1); |
| } |
| |
| |
| uint32_t helper_crc32_be(uint32_t arg0, uint32_t arg1) |
| { |
| uint8_t buf[4]; |
| stl_be_p(buf, arg0); |
| |
| return crc32(arg1, buf, 4); |
| } |
| |
| uint32_t helper_crc32_le(uint32_t arg0, uint32_t arg1) |
| { |
| uint8_t buf[4]; |
| stl_le_p(buf, arg0); |
| |
| return crc32(arg1, buf, 4); |
| } |
| |
| static uint32_t crc_div(uint32_t crc_in, uint32_t data, uint32_t gen, |
| uint32_t n, uint32_t m) |
| { |
| uint32_t i; |
| |
| data = data << n; |
| for (i = 0; i < m; i++) { |
| if (crc_in & (1u << (n - 1))) { |
| crc_in <<= 1; |
| if (data & (1u << (m - 1))) { |
| crc_in++; |
| } |
| crc_in ^= gen; |
| } else { |
| crc_in <<= 1; |
| if (data & (1u << (m - 1))) { |
| crc_in++; |
| } |
| } |
| data <<= 1; |
| } |
| |
| return crc_in; |
| } |
| |
| uint32_t helper_crcn(uint32_t arg0, uint32_t arg1, uint32_t arg2) |
| { |
| uint32_t crc_out, crc_in; |
| uint32_t n = extract32(arg0, 12, 4) + 1; |
| uint32_t gen = extract32(arg0, 16, n); |
| uint32_t inv = extract32(arg0, 9, 1); |
| uint32_t le = extract32(arg0, 8, 1); |
| uint32_t m = extract32(arg0, 0, 3) + 1; |
| uint32_t data = extract32(arg1, 0, m); |
| uint32_t seed = extract32(arg2, 0, n); |
| |
| if (le == 1) { |
| if (m == 0) { |
| data = 0; |
| } else { |
| data = revbit32(data) >> (32 - m); |
| } |
| } |
| |
| if (inv == 1) { |
| seed = ~seed; |
| } |
| |
| if (m > n) { |
| crc_in = (data >> (m - n)) ^ seed; |
| } else { |
| crc_in = (data << (n - m)) ^ seed; |
| } |
| |
| crc_out = crc_div(crc_in, data, gen, n, m); |
| |
| if (inv) { |
| crc_out = ~crc_out; |
| } |
| |
| return extract32(crc_out, 0, n); |
| } |
| |
| uint32_t helper_shuffle(uint32_t arg0, uint32_t arg1) |
| { |
| uint32_t resb; |
| uint32_t byte_select; |
| uint32_t res = 0; |
| |
| byte_select = arg1 & 0x3; |
| resb = extract32(arg0, byte_select * 8, 8); |
| res |= resb << 0; |
| |
| byte_select = (arg1 >> 2) & 0x3; |
| resb = extract32(arg0, byte_select * 8, 8); |
| res |= resb << 8; |
| |
| byte_select = (arg1 >> 4) & 0x3; |
| resb = extract32(arg0, byte_select * 8, 8); |
| res |= resb << 16; |
| |
| byte_select = (arg1 >> 6) & 0x3; |
| resb = extract32(arg0, byte_select * 8, 8); |
| res |= resb << 24; |
| |
| if (arg1 & 0x100) { |
| /* Assign the correct nibble position. */ |
| res = ((res & 0xf0f0f0f0) >> 4) |
| | ((res & 0x0f0f0f0f) << 4); |
| /* Assign the correct bit position. */ |
| res = ((res & 0x88888888) >> 3) |
| | ((res & 0x44444444) >> 1) |
| | ((res & 0x22222222) << 1) |
| | ((res & 0x11111111) << 3); |
| } |
| |
| return res; |
| } |
| |
| /* context save area (CSA) related helpers */ |
| |
| static int cdc_increment(target_ulong *psw) |
| { |
| if ((*psw & MASK_PSW_CDC) == 0x7f) { |
| return 0; |
| } |
| |
| (*psw)++; |
| /* check for overflow */ |
| int lo = clo32((*psw & MASK_PSW_CDC) << (32 - 7)); |
| int mask = (1u << (7 - lo)) - 1; |
| int count = *psw & mask; |
| if (count == 0) { |
| (*psw)--; |
| return 1; |
| } |
| return 0; |
| } |
| |
| static int cdc_decrement(target_ulong *psw) |
| { |
| if ((*psw & MASK_PSW_CDC) == 0x7f) { |
| return 0; |
| } |
| /* check for underflow */ |
| int lo = clo32((*psw & MASK_PSW_CDC) << (32 - 7)); |
| int mask = (1u << (7 - lo)) - 1; |
| int count = *psw & mask; |
| if (count == 0) { |
| return 1; |
| } |
| (*psw)--; |
| return 0; |
| } |
| |
| static bool cdc_zero(target_ulong *psw) |
| { |
| int cdc = *psw & MASK_PSW_CDC; |
| /* Returns TRUE if PSW.CDC.COUNT == 0 or if PSW.CDC == |
| 7'b1111111, otherwise returns FALSE. */ |
| if (cdc == 0x7f) { |
| return true; |
| } |
| /* find CDC.COUNT */ |
| int lo = clo32((*psw & MASK_PSW_CDC) << (32 - 7)); |
| int mask = (1u << (7 - lo)) - 1; |
| int count = *psw & mask; |
| return count == 0; |
| } |
| |
| static void save_context_upper(CPUTriCoreState *env, target_ulong ea) |
| { |
| cpu_stl_data(env, ea, env->PCXI); |
| cpu_stl_data(env, ea+4, psw_read(env)); |
| cpu_stl_data(env, ea+8, env->gpr_a[10]); |
| cpu_stl_data(env, ea+12, env->gpr_a[11]); |
| cpu_stl_data(env, ea+16, env->gpr_d[8]); |
| cpu_stl_data(env, ea+20, env->gpr_d[9]); |
| cpu_stl_data(env, ea+24, env->gpr_d[10]); |
| cpu_stl_data(env, ea+28, env->gpr_d[11]); |
| cpu_stl_data(env, ea+32, env->gpr_a[12]); |
| cpu_stl_data(env, ea+36, env->gpr_a[13]); |
| cpu_stl_data(env, ea+40, env->gpr_a[14]); |
| cpu_stl_data(env, ea+44, env->gpr_a[15]); |
| cpu_stl_data(env, ea+48, env->gpr_d[12]); |
| cpu_stl_data(env, ea+52, env->gpr_d[13]); |
| cpu_stl_data(env, ea+56, env->gpr_d[14]); |
| cpu_stl_data(env, ea+60, env->gpr_d[15]); |
| } |
| |
| static void save_context_lower(CPUTriCoreState *env, target_ulong ea) |
| { |
| cpu_stl_data(env, ea, env->PCXI); |
| cpu_stl_data(env, ea+4, env->gpr_a[11]); |
| cpu_stl_data(env, ea+8, env->gpr_a[2]); |
| cpu_stl_data(env, ea+12, env->gpr_a[3]); |
| cpu_stl_data(env, ea+16, env->gpr_d[0]); |
| cpu_stl_data(env, ea+20, env->gpr_d[1]); |
| cpu_stl_data(env, ea+24, env->gpr_d[2]); |
| cpu_stl_data(env, ea+28, env->gpr_d[3]); |
| cpu_stl_data(env, ea+32, env->gpr_a[4]); |
| cpu_stl_data(env, ea+36, env->gpr_a[5]); |
| cpu_stl_data(env, ea+40, env->gpr_a[6]); |
| cpu_stl_data(env, ea+44, env->gpr_a[7]); |
| cpu_stl_data(env, ea+48, env->gpr_d[4]); |
| cpu_stl_data(env, ea+52, env->gpr_d[5]); |
| cpu_stl_data(env, ea+56, env->gpr_d[6]); |
| cpu_stl_data(env, ea+60, env->gpr_d[7]); |
| } |
| |
| static void restore_context_upper(CPUTriCoreState *env, target_ulong ea, |
| target_ulong *new_PCXI, target_ulong *new_PSW) |
| { |
| *new_PCXI = cpu_ldl_data(env, ea); |
| *new_PSW = cpu_ldl_data(env, ea+4); |
| env->gpr_a[10] = cpu_ldl_data(env, ea+8); |
| env->gpr_a[11] = cpu_ldl_data(env, ea+12); |
| env->gpr_d[8] = cpu_ldl_data(env, ea+16); |
| env->gpr_d[9] = cpu_ldl_data(env, ea+20); |
| env->gpr_d[10] = cpu_ldl_data(env, ea+24); |
| env->gpr_d[11] = cpu_ldl_data(env, ea+28); |
| env->gpr_a[12] = cpu_ldl_data(env, ea+32); |
| env->gpr_a[13] = cpu_ldl_data(env, ea+36); |
| env->gpr_a[14] = cpu_ldl_data(env, ea+40); |
| env->gpr_a[15] = cpu_ldl_data(env, ea+44); |
| env->gpr_d[12] = cpu_ldl_data(env, ea+48); |
| env->gpr_d[13] = cpu_ldl_data(env, ea+52); |
| env->gpr_d[14] = cpu_ldl_data(env, ea+56); |
| env->gpr_d[15] = cpu_ldl_data(env, ea+60); |
| } |
| |
| static void restore_context_lower(CPUTriCoreState *env, target_ulong ea, |
| target_ulong *ra, target_ulong *pcxi) |
| { |
| *pcxi = cpu_ldl_data(env, ea); |
| *ra = cpu_ldl_data(env, ea+4); |
| env->gpr_a[2] = cpu_ldl_data(env, ea+8); |
| env->gpr_a[3] = cpu_ldl_data(env, ea+12); |
| env->gpr_d[0] = cpu_ldl_data(env, ea+16); |
| env->gpr_d[1] = cpu_ldl_data(env, ea+20); |
| env->gpr_d[2] = cpu_ldl_data(env, ea+24); |
| env->gpr_d[3] = cpu_ldl_data(env, ea+28); |
| env->gpr_a[4] = cpu_ldl_data(env, ea+32); |
| env->gpr_a[5] = cpu_ldl_data(env, ea+36); |
| env->gpr_a[6] = cpu_ldl_data(env, ea+40); |
| env->gpr_a[7] = cpu_ldl_data(env, ea+44); |
| env->gpr_d[4] = cpu_ldl_data(env, ea+48); |
| env->gpr_d[5] = cpu_ldl_data(env, ea+52); |
| env->gpr_d[6] = cpu_ldl_data(env, ea+56); |
| env->gpr_d[7] = cpu_ldl_data(env, ea+60); |
| } |
| |
| void helper_call(CPUTriCoreState *env, uint32_t next_pc) |
| { |
| target_ulong tmp_FCX; |
| target_ulong ea; |
| target_ulong new_FCX; |
| target_ulong psw; |
| |
| psw = psw_read(env); |
| /* if (FCX == 0) trap(FCU); */ |
| if (env->FCX == 0) { |
| /* FCU trap */ |
| raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_FCU, GETPC()); |
| } |
| /* if (PSW.CDE) then if (cdc_increment()) then trap(CDO); */ |
| if (psw & MASK_PSW_CDE) { |
| if (cdc_increment(&psw)) { |
| /* CDO trap */ |
| raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_CDO, GETPC()); |
| } |
| } |
| /* PSW.CDE = 1;*/ |
| psw |= MASK_PSW_CDE; |
| /* |
| * we need to save PSW.CDE and not PSW.CDC into the CSAs. psw already |
| * contains the CDC from cdc_increment(), so we cannot call psw_write() |
| * here. |
| */ |
| env->PSW |= MASK_PSW_CDE; |
| |
| /* tmp_FCX = FCX; */ |
| tmp_FCX = env->FCX; |
| /* EA = {FCX.FCXS, 6'b0, FCX.FCXO, 6'b0}; */ |
| ea = ((env->FCX & MASK_FCX_FCXS) << 12) + |
| ((env->FCX & MASK_FCX_FCXO) << 6); |
| /* new_FCX = M(EA, word); */ |
| new_FCX = cpu_ldl_data(env, ea); |
| /* M(EA, 16 * word) = {PCXI, PSW, A[10], A[11], D[8], D[9], D[10], D[11], |
| A[12], A[13], A[14], A[15], D[12], D[13], D[14], |
| D[15]}; */ |
| save_context_upper(env, ea); |
| |
| /* PCXI.PCPN = ICR.CCPN; */ |
| pcxi_set_pcpn(env, icr_get_ccpn(env)); |
| /* PCXI.PIE = ICR.IE; */ |
| pcxi_set_pie(env, icr_get_ie(env)); |
| /* PCXI.UL = 1; */ |
| pcxi_set_ul(env, 1); |
| |
| /* PCXI[19: 0] = FCX[19: 0]; */ |
| env->PCXI = (env->PCXI & 0xfff00000) + (env->FCX & 0xfffff); |
| /* FCX[19: 0] = new_FCX[19: 0]; */ |
| env->FCX = (env->FCX & 0xfff00000) + (new_FCX & 0xfffff); |
| /* A[11] = next_pc[31: 0]; */ |
| env->gpr_a[11] = next_pc; |
| |
| /* if (tmp_FCX == LCX) trap(FCD);*/ |
| if (tmp_FCX == env->LCX) { |
| /* FCD trap */ |
| raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_FCD, GETPC()); |
| } |
| psw_write(env, psw); |
| } |
| |
| void helper_ret(CPUTriCoreState *env) |
| { |
| target_ulong ea; |
| target_ulong new_PCXI; |
| target_ulong new_PSW, psw; |
| |
| psw = psw_read(env); |
| /* if (PSW.CDE) then if (cdc_decrement()) then trap(CDU);*/ |
| if (psw & MASK_PSW_CDE) { |
| if (cdc_decrement(&psw)) { |
| /* CDU trap */ |
| psw_write(env, psw); |
| raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_CDU, GETPC()); |
| } |
| } |
| /* if (PCXI[19: 0] == 0) then trap(CSU); */ |
| if ((env->PCXI & 0xfffff) == 0) { |
| /* CSU trap */ |
| psw_write(env, psw); |
| raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_CSU, GETPC()); |
| } |
| /* if (PCXI.UL == 0) then trap(CTYP); */ |
| if (pcxi_get_ul(env) == 0) { |
| /* CTYP trap */ |
| cdc_increment(&psw); /* restore to the start of helper */ |
| psw_write(env, psw); |
| raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_CTYP, GETPC()); |
| } |
| /* PC = {A11 [31: 1], 1’b0}; */ |
| env->PC = env->gpr_a[11] & 0xfffffffe; |
| |
| /* EA = {PCXI.PCXS, 6'b0, PCXI.PCXO, 6'b0}; */ |
| ea = (pcxi_get_pcxs(env) << 28) | |
| (pcxi_get_pcxo(env) << 6); |
| /* {new_PCXI, new_PSW, A[10], A[11], D[8], D[9], D[10], D[11], A[12], |
| A[13], A[14], A[15], D[12], D[13], D[14], D[15]} = M(EA, 16 * word); */ |
| restore_context_upper(env, ea, &new_PCXI, &new_PSW); |
| /* M(EA, word) = FCX; */ |
| cpu_stl_data(env, ea, env->FCX); |
| /* FCX[19: 0] = PCXI[19: 0]; */ |
| env->FCX = (env->FCX & 0xfff00000) + (env->PCXI & 0x000fffff); |
| /* PCXI = new_PCXI; */ |
| env->PCXI = new_PCXI; |
| |
| if (tricore_has_feature(env, TRICORE_FEATURE_131)) { |
| /* PSW = {new_PSW[31:26], PSW[25:24], new_PSW[23:0]}; */ |
| psw_write(env, (new_PSW & ~(0x3000000)) + (psw & (0x3000000))); |
| } else { /* TRICORE_FEATURE_13 only */ |
| /* PSW = new_PSW */ |
| psw_write(env, new_PSW); |
| } |
| } |
| |
| void helper_bisr(CPUTriCoreState *env, uint32_t const9) |
| { |
| target_ulong tmp_FCX; |
| target_ulong ea; |
| target_ulong new_FCX; |
| |
| if (env->FCX == 0) { |
| /* FCU trap */ |
| raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_FCU, GETPC()); |
| } |
| |
| tmp_FCX = env->FCX; |
| ea = ((env->FCX & 0xf0000) << 12) + ((env->FCX & 0xffff) << 6); |
| |
| /* new_FCX = M(EA, word); */ |
| new_FCX = cpu_ldl_data(env, ea); |
| /* M(EA, 16 * word) = {PCXI, A[11], A[2], A[3], D[0], D[1], D[2], D[3], A[4] |
| , A[5], A[6], A[7], D[4], D[5], D[6], D[7]}; */ |
| save_context_lower(env, ea); |
| |
| |
| /* PCXI.PCPN = ICR.CCPN */ |
| pcxi_set_pcpn(env, icr_get_ccpn(env)); |
| /* PCXI.PIE = ICR.IE */ |
| pcxi_set_pie(env, icr_get_ie(env)); |
| /* PCXI.UL = 0 */ |
| pcxi_set_ul(env, 0); |
| |
| /* PCXI[19: 0] = FCX[19: 0] */ |
| env->PCXI = (env->PCXI & 0xfff00000) + (env->FCX & 0xfffff); |
| /* FXC[19: 0] = new_FCX[19: 0] */ |
| env->FCX = (env->FCX & 0xfff00000) + (new_FCX & 0xfffff); |
| |
| /* ICR.IE = 1 */ |
| icr_set_ie(env, 1); |
| |
| icr_set_ccpn(env, const9); |
| |
| if (tmp_FCX == env->LCX) { |
| /* FCD trap */ |
| raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_FCD, GETPC()); |
| } |
| } |
| |
| void helper_rfe(CPUTriCoreState *env) |
| { |
| target_ulong ea; |
| target_ulong new_PCXI; |
| target_ulong new_PSW; |
| /* if (PCXI[19: 0] == 0) then trap(CSU); */ |
| if ((env->PCXI & 0xfffff) == 0) { |
| /* raise csu trap */ |
| raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_CSU, GETPC()); |
| } |
| /* if (PCXI.UL == 0) then trap(CTYP); */ |
| if (pcxi_get_ul(env) == 0) { |
| /* raise CTYP trap */ |
| raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_CTYP, GETPC()); |
| } |
| /* if (!cdc_zero() AND PSW.CDE) then trap(NEST); */ |
| if (!cdc_zero(&(env->PSW)) && (env->PSW & MASK_PSW_CDE)) { |
| /* raise NEST trap */ |
| raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_NEST, GETPC()); |
| } |
| env->PC = env->gpr_a[11] & ~0x1; |
| /* ICR.IE = PCXI.PIE; */ |
| icr_set_ie(env, pcxi_get_pie(env)); |
| |
| /* ICR.CCPN = PCXI.PCPN; */ |
| icr_set_ccpn(env, pcxi_get_pcpn(env)); |
| |
| /*EA = {PCXI.PCXS, 6'b0, PCXI.PCXO, 6'b0};*/ |
| ea = (pcxi_get_pcxs(env) << 28) | |
| (pcxi_get_pcxo(env) << 6); |
| |
| /*{new_PCXI, PSW, A[10], A[11], D[8], D[9], D[10], D[11], A[12], |
| A[13], A[14], A[15], D[12], D[13], D[14], D[15]} = M(EA, 16 * word); */ |
| restore_context_upper(env, ea, &new_PCXI, &new_PSW); |
| /* M(EA, word) = FCX;*/ |
| cpu_stl_data(env, ea, env->FCX); |
| /* FCX[19: 0] = PCXI[19: 0]; */ |
| env->FCX = (env->FCX & 0xfff00000) + (env->PCXI & 0x000fffff); |
| /* PCXI = new_PCXI; */ |
| env->PCXI = new_PCXI; |
| /* write psw */ |
| psw_write(env, new_PSW); |
| } |
| |
| void helper_rfm(CPUTriCoreState *env) |
| { |
| env->PC = (env->gpr_a[11] & ~0x1); |
| /* ICR.IE = PCXI.PIE; */ |
| icr_set_ie(env, pcxi_get_pie(env)); |
| /* ICR.CCPN = PCXI.PCPN; */ |
| icr_set_ccpn(env, pcxi_get_pcpn(env)); |
| |
| /* {PCXI, PSW, A[10], A[11]} = M(DCX, 4 * word); */ |
| env->PCXI = cpu_ldl_data(env, env->DCX); |
| psw_write(env, cpu_ldl_data(env, env->DCX+4)); |
| env->gpr_a[10] = cpu_ldl_data(env, env->DCX+8); |
| env->gpr_a[11] = cpu_ldl_data(env, env->DCX+12); |
| |
| if (tricore_has_feature(env, TRICORE_FEATURE_131)) { |
| env->DBGTCR = 0; |
| } |
| } |
| |
| void helper_ldlcx(CPUTriCoreState *env, target_ulong ea) |
| { |
| uint32_t dummy; |
| /* insn doesn't load PCXI and RA */ |
| restore_context_lower(env, ea, &dummy, &dummy); |
| } |
| |
| void helper_lducx(CPUTriCoreState *env, target_ulong ea) |
| { |
| uint32_t dummy; |
| /* insn doesn't load PCXI and PSW */ |
| restore_context_upper(env, ea, &dummy, &dummy); |
| } |
| |
| void helper_stlcx(CPUTriCoreState *env, target_ulong ea) |
| { |
| save_context_lower(env, ea); |
| } |
| |
| void helper_stucx(CPUTriCoreState *env, target_ulong ea) |
| { |
| save_context_upper(env, ea); |
| } |
| |
| void helper_svlcx(CPUTriCoreState *env) |
| { |
| target_ulong tmp_FCX; |
| target_ulong ea; |
| target_ulong new_FCX; |
| |
| if (env->FCX == 0) { |
| /* FCU trap */ |
| raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_FCU, GETPC()); |
| } |
| /* tmp_FCX = FCX; */ |
| tmp_FCX = env->FCX; |
| /* EA = {FCX.FCXS, 6'b0, FCX.FCXO, 6'b0}; */ |
| ea = ((env->FCX & MASK_FCX_FCXS) << 12) + |
| ((env->FCX & MASK_FCX_FCXO) << 6); |
| /* new_FCX = M(EA, word); */ |
| new_FCX = cpu_ldl_data(env, ea); |
| /* M(EA, 16 * word) = {PCXI, PSW, A[10], A[11], D[8], D[9], D[10], D[11], |
| A[12], A[13], A[14], A[15], D[12], D[13], D[14], |
| D[15]}; */ |
| save_context_lower(env, ea); |
| |
| /* PCXI.PCPN = ICR.CCPN; */ |
| pcxi_set_pcpn(env, icr_get_ccpn(env)); |
| |
| /* PCXI.PIE = ICR.IE; */ |
| pcxi_set_pie(env, icr_get_ie(env)); |
| |
| /* PCXI.UL = 0; */ |
| pcxi_set_ul(env, 0); |
| |
| /* PCXI[19: 0] = FCX[19: 0]; */ |
| env->PCXI = (env->PCXI & 0xfff00000) + (env->FCX & 0xfffff); |
| /* FCX[19: 0] = new_FCX[19: 0]; */ |
| env->FCX = (env->FCX & 0xfff00000) + (new_FCX & 0xfffff); |
| |
| /* if (tmp_FCX == LCX) trap(FCD);*/ |
| if (tmp_FCX == env->LCX) { |
| /* FCD trap */ |
| raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_FCD, GETPC()); |
| } |
| } |
| |
| void helper_svucx(CPUTriCoreState *env) |
| { |
| target_ulong tmp_FCX; |
| target_ulong ea; |
| target_ulong new_FCX; |
| |
| if (env->FCX == 0) { |
| /* FCU trap */ |
| raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_FCU, GETPC()); |
| } |
| /* tmp_FCX = FCX; */ |
| tmp_FCX = env->FCX; |
| /* EA = {FCX.FCXS, 6'b0, FCX.FCXO, 6'b0}; */ |
| ea = ((env->FCX & MASK_FCX_FCXS) << 12) + |
| ((env->FCX & MASK_FCX_FCXO) << 6); |
| /* new_FCX = M(EA, word); */ |
| new_FCX = cpu_ldl_data(env, ea); |
| /* M(EA, 16 * word) = {PCXI, PSW, A[10], A[11], D[8], D[9], D[10], D[11], |
| A[12], A[13], A[14], A[15], D[12], D[13], D[14], |
| D[15]}; */ |
| save_context_upper(env, ea); |
| |
| /* PCXI.PCPN = ICR.CCPN; */ |
| pcxi_set_pcpn(env, icr_get_ccpn(env)); |
| |
| /* PCXI.PIE = ICR.IE; */ |
| pcxi_set_pie(env, icr_get_ie(env)); |
| |
| /* PCXI.UL = 1; */ |
| pcxi_set_ul(env, 1); |
| |
| /* PCXI[19: 0] = FCX[19: 0]; */ |
| env->PCXI = (env->PCXI & 0xfff00000) + (env->FCX & 0xfffff); |
| /* FCX[19: 0] = new_FCX[19: 0]; */ |
| env->FCX = (env->FCX & 0xfff00000) + (new_FCX & 0xfffff); |
| |
| /* if (tmp_FCX == LCX) trap(FCD);*/ |
| if (tmp_FCX == env->LCX) { |
| /* FCD trap */ |
| raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_FCD, GETPC()); |
| } |
| } |
| |
| void helper_rslcx(CPUTriCoreState *env) |
| { |
| target_ulong ea; |
| target_ulong new_PCXI; |
| /* if (PCXI[19: 0] == 0) then trap(CSU); */ |
| if ((env->PCXI & 0xfffff) == 0) { |
| /* CSU trap */ |
| raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_CSU, GETPC()); |
| } |
| /* if (PCXI.UL == 1) then trap(CTYP); */ |
| if (pcxi_get_ul(env) == 1) { |
| /* CTYP trap */ |
| raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_CTYP, GETPC()); |
| } |
| /* EA = {PCXI.PCXS, 6'b0, PCXI.PCXO, 6'b0}; */ |
| /* EA = {PCXI.PCXS, 6'b0, PCXI.PCXO, 6'b0}; */ |
| ea = (pcxi_get_pcxs(env) << 28) | |
| (pcxi_get_pcxo(env) << 6); |
| |
| /* {new_PCXI, A[11], A[10], A[11], D[8], D[9], D[10], D[11], A[12], |
| A[13], A[14], A[15], D[12], D[13], D[14], D[15]} = M(EA, 16 * word); */ |
| restore_context_lower(env, ea, &env->gpr_a[11], &new_PCXI); |
| /* M(EA, word) = FCX; */ |
| cpu_stl_data(env, ea, env->FCX); |
| /* M(EA, word) = FCX; */ |
| cpu_stl_data(env, ea, env->FCX); |
| /* FCX[19: 0] = PCXI[19: 0]; */ |
| env->FCX = (env->FCX & 0xfff00000) + (env->PCXI & 0x000fffff); |
| /* PCXI = new_PCXI; */ |
| env->PCXI = new_PCXI; |
| } |
| |
| void helper_psw_write(CPUTriCoreState *env, uint32_t arg) |
| { |
| psw_write(env, arg); |
| } |
| |
| uint32_t helper_psw_read(CPUTriCoreState *env) |
| { |
| return psw_read(env); |
| } |