| /* |
| * libslirp glue |
| * |
| * Copyright (c) 2004-2008 Fabrice Bellard |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| #include "qemu/osdep.h" |
| #include "qemu-common.h" |
| #include "qemu/timer.h" |
| #include "qemu/error-report.h" |
| #include "sysemu/char.h" |
| #include "slirp.h" |
| #include "hw/hw.h" |
| #include "qemu/cutils.h" |
| |
| #ifndef _WIN32 |
| #include <net/if.h> |
| #endif |
| |
| /* host loopback address */ |
| struct in_addr loopback_addr; |
| /* host loopback network mask */ |
| unsigned long loopback_mask; |
| |
| /* emulated hosts use the MAC addr 52:55:IP:IP:IP:IP */ |
| static const uint8_t special_ethaddr[ETH_ALEN] = { |
| 0x52, 0x55, 0x00, 0x00, 0x00, 0x00 |
| }; |
| |
| u_int curtime; |
| |
| static QTAILQ_HEAD(slirp_instances, Slirp) slirp_instances = |
| QTAILQ_HEAD_INITIALIZER(slirp_instances); |
| |
| static struct in_addr dns_addr; |
| #ifndef _WIN32 |
| static struct in6_addr dns6_addr; |
| #endif |
| static u_int dns_addr_time; |
| #ifndef _WIN32 |
| static u_int dns6_addr_time; |
| #endif |
| |
| #define TIMEOUT_FAST 2 /* milliseconds */ |
| #define TIMEOUT_SLOW 499 /* milliseconds */ |
| /* for the aging of certain requests like DNS */ |
| #define TIMEOUT_DEFAULT 1000 /* milliseconds */ |
| |
| #ifdef _WIN32 |
| |
| int get_dns_addr(struct in_addr *pdns_addr) |
| { |
| FIXED_INFO *FixedInfo=NULL; |
| ULONG BufLen; |
| DWORD ret; |
| IP_ADDR_STRING *pIPAddr; |
| struct in_addr tmp_addr; |
| |
| if (dns_addr.s_addr != 0 && (curtime - dns_addr_time) < TIMEOUT_DEFAULT) { |
| *pdns_addr = dns_addr; |
| return 0; |
| } |
| |
| FixedInfo = (FIXED_INFO *)GlobalAlloc(GPTR, sizeof(FIXED_INFO)); |
| BufLen = sizeof(FIXED_INFO); |
| |
| if (ERROR_BUFFER_OVERFLOW == GetNetworkParams(FixedInfo, &BufLen)) { |
| if (FixedInfo) { |
| GlobalFree(FixedInfo); |
| FixedInfo = NULL; |
| } |
| FixedInfo = GlobalAlloc(GPTR, BufLen); |
| } |
| |
| if ((ret = GetNetworkParams(FixedInfo, &BufLen)) != ERROR_SUCCESS) { |
| printf("GetNetworkParams failed. ret = %08x\n", (u_int)ret ); |
| if (FixedInfo) { |
| GlobalFree(FixedInfo); |
| FixedInfo = NULL; |
| } |
| return -1; |
| } |
| |
| pIPAddr = &(FixedInfo->DnsServerList); |
| inet_aton(pIPAddr->IpAddress.String, &tmp_addr); |
| *pdns_addr = tmp_addr; |
| dns_addr = tmp_addr; |
| dns_addr_time = curtime; |
| if (FixedInfo) { |
| GlobalFree(FixedInfo); |
| FixedInfo = NULL; |
| } |
| return 0; |
| } |
| |
| int get_dns6_addr(struct in6_addr *pdns6_addr, uint32_t *scope_id) |
| { |
| return -1; |
| } |
| |
| static void winsock_cleanup(void) |
| { |
| WSACleanup(); |
| } |
| |
| #else |
| |
| static int get_dns_addr_cached(void *pdns_addr, void *cached_addr, |
| socklen_t addrlen, |
| struct stat *cached_stat, u_int *cached_time) |
| { |
| struct stat old_stat; |
| if (curtime - *cached_time < TIMEOUT_DEFAULT) { |
| memcpy(pdns_addr, cached_addr, addrlen); |
| return 0; |
| } |
| old_stat = *cached_stat; |
| if (stat("/etc/resolv.conf", cached_stat) != 0) { |
| return -1; |
| } |
| if (cached_stat->st_dev == old_stat.st_dev |
| && cached_stat->st_ino == old_stat.st_ino |
| && cached_stat->st_size == old_stat.st_size |
| && cached_stat->st_mtime == old_stat.st_mtime) { |
| memcpy(pdns_addr, cached_addr, addrlen); |
| return 0; |
| } |
| return 1; |
| } |
| |
| static int get_dns_addr_resolv_conf(int af, void *pdns_addr, void *cached_addr, |
| socklen_t addrlen, uint32_t *scope_id, |
| u_int *cached_time) |
| { |
| char buff[512]; |
| char buff2[257]; |
| FILE *f; |
| int found = 0; |
| void *tmp_addr = alloca(addrlen); |
| unsigned if_index; |
| |
| f = fopen("/etc/resolv.conf", "r"); |
| if (!f) |
| return -1; |
| |
| #ifdef DEBUG |
| fprintf(stderr, "IP address of your DNS(s): "); |
| #endif |
| while (fgets(buff, 512, f) != NULL) { |
| if (sscanf(buff, "nameserver%*[ \t]%256s", buff2) == 1) { |
| char *c = strchr(buff2, '%'); |
| if (c) { |
| if_index = if_nametoindex(c + 1); |
| *c = '\0'; |
| } else { |
| if_index = 0; |
| } |
| |
| if (!inet_pton(af, buff2, tmp_addr)) { |
| continue; |
| } |
| /* If it's the first one, set it to dns_addr */ |
| if (!found) { |
| memcpy(pdns_addr, tmp_addr, addrlen); |
| memcpy(cached_addr, tmp_addr, addrlen); |
| if (scope_id) { |
| *scope_id = if_index; |
| } |
| *cached_time = curtime; |
| } |
| #ifdef DEBUG |
| else |
| fprintf(stderr, ", "); |
| #endif |
| if (++found > 3) { |
| #ifdef DEBUG |
| fprintf(stderr, "(more)"); |
| #endif |
| break; |
| } |
| #ifdef DEBUG |
| else { |
| char s[INET6_ADDRSTRLEN]; |
| char *res = inet_ntop(af, tmp_addr, s, sizeof(s)); |
| if (!res) { |
| res = "(string conversion error)"; |
| } |
| fprintf(stderr, "%s", res); |
| } |
| #endif |
| } |
| } |
| fclose(f); |
| if (!found) |
| return -1; |
| return 0; |
| } |
| |
| int get_dns_addr(struct in_addr *pdns_addr) |
| { |
| static struct stat dns_addr_stat; |
| |
| if (dns_addr.s_addr != 0) { |
| int ret; |
| ret = get_dns_addr_cached(pdns_addr, &dns_addr, sizeof(dns_addr), |
| &dns_addr_stat, &dns_addr_time); |
| if (ret <= 0) { |
| return ret; |
| } |
| } |
| return get_dns_addr_resolv_conf(AF_INET, pdns_addr, &dns_addr, |
| sizeof(dns_addr), NULL, &dns_addr_time); |
| } |
| |
| int get_dns6_addr(struct in6_addr *pdns6_addr, uint32_t *scope_id) |
| { |
| static struct stat dns6_addr_stat; |
| |
| if (!in6_zero(&dns6_addr)) { |
| int ret; |
| ret = get_dns_addr_cached(pdns6_addr, &dns6_addr, sizeof(dns6_addr), |
| &dns6_addr_stat, &dns6_addr_time); |
| if (ret <= 0) { |
| return ret; |
| } |
| } |
| return get_dns_addr_resolv_conf(AF_INET6, pdns6_addr, &dns6_addr, |
| sizeof(dns6_addr), |
| scope_id, &dns6_addr_time); |
| } |
| |
| #endif |
| |
| static void slirp_init_once(void) |
| { |
| static int initialized; |
| #ifdef _WIN32 |
| WSADATA Data; |
| #endif |
| |
| if (initialized) { |
| return; |
| } |
| initialized = 1; |
| |
| #ifdef _WIN32 |
| WSAStartup(MAKEWORD(2,0), &Data); |
| atexit(winsock_cleanup); |
| #endif |
| |
| loopback_addr.s_addr = htonl(INADDR_LOOPBACK); |
| loopback_mask = htonl(IN_CLASSA_NET); |
| } |
| |
| static void slirp_state_save(QEMUFile *f, void *opaque); |
| static int slirp_state_load(QEMUFile *f, void *opaque, int version_id); |
| |
| Slirp *slirp_init(int restricted, bool in_enabled, struct in_addr vnetwork, |
| struct in_addr vnetmask, struct in_addr vhost, |
| bool in6_enabled, |
| struct in6_addr vprefix_addr6, uint8_t vprefix_len, |
| struct in6_addr vhost6, const char *vhostname, |
| const char *tftp_path, const char *bootfile, |
| struct in_addr vdhcp_start, struct in_addr vnameserver, |
| struct in6_addr vnameserver6, const char **vdnssearch, |
| void *opaque) |
| { |
| Slirp *slirp = g_malloc0(sizeof(Slirp)); |
| |
| slirp_init_once(); |
| |
| slirp->grand = g_rand_new(); |
| slirp->restricted = restricted; |
| |
| slirp->in_enabled = in_enabled; |
| slirp->in6_enabled = in6_enabled; |
| |
| if_init(slirp); |
| ip_init(slirp); |
| ip6_init(slirp); |
| |
| /* Initialise mbufs *after* setting the MTU */ |
| m_init(slirp); |
| |
| slirp->vnetwork_addr = vnetwork; |
| slirp->vnetwork_mask = vnetmask; |
| slirp->vhost_addr = vhost; |
| slirp->vprefix_addr6 = vprefix_addr6; |
| slirp->vprefix_len = vprefix_len; |
| slirp->vhost_addr6 = vhost6; |
| if (vhostname) { |
| pstrcpy(slirp->client_hostname, sizeof(slirp->client_hostname), |
| vhostname); |
| } |
| slirp->tftp_prefix = g_strdup(tftp_path); |
| slirp->bootp_filename = g_strdup(bootfile); |
| slirp->vdhcp_startaddr = vdhcp_start; |
| slirp->vnameserver_addr = vnameserver; |
| slirp->vnameserver_addr6 = vnameserver6; |
| |
| if (vdnssearch) { |
| translate_dnssearch(slirp, vdnssearch); |
| } |
| |
| slirp->opaque = opaque; |
| |
| register_savevm(NULL, "slirp", 0, 4, |
| slirp_state_save, slirp_state_load, slirp); |
| |
| QTAILQ_INSERT_TAIL(&slirp_instances, slirp, entry); |
| |
| return slirp; |
| } |
| |
| void slirp_cleanup(Slirp *slirp) |
| { |
| QTAILQ_REMOVE(&slirp_instances, slirp, entry); |
| |
| unregister_savevm(NULL, "slirp", slirp); |
| |
| ip_cleanup(slirp); |
| ip6_cleanup(slirp); |
| m_cleanup(slirp); |
| |
| g_rand_free(slirp->grand); |
| |
| g_free(slirp->vdnssearch); |
| g_free(slirp->tftp_prefix); |
| g_free(slirp->bootp_filename); |
| g_free(slirp); |
| } |
| |
| #define CONN_CANFSEND(so) (((so)->so_state & (SS_FCANTSENDMORE|SS_ISFCONNECTED)) == SS_ISFCONNECTED) |
| #define CONN_CANFRCV(so) (((so)->so_state & (SS_FCANTRCVMORE|SS_ISFCONNECTED)) == SS_ISFCONNECTED) |
| |
| static void slirp_update_timeout(uint32_t *timeout) |
| { |
| Slirp *slirp; |
| uint32_t t; |
| |
| if (*timeout <= TIMEOUT_FAST) { |
| return; |
| } |
| |
| t = MIN(1000, *timeout); |
| |
| /* If we have tcp timeout with slirp, then we will fill @timeout with |
| * more precise value. |
| */ |
| QTAILQ_FOREACH(slirp, &slirp_instances, entry) { |
| if (slirp->time_fasttimo) { |
| *timeout = TIMEOUT_FAST; |
| return; |
| } |
| if (slirp->do_slowtimo) { |
| t = MIN(TIMEOUT_SLOW, t); |
| } |
| } |
| *timeout = t; |
| } |
| |
| void slirp_pollfds_fill(GArray *pollfds, uint32_t *timeout) |
| { |
| Slirp *slirp; |
| struct socket *so, *so_next; |
| |
| if (QTAILQ_EMPTY(&slirp_instances)) { |
| return; |
| } |
| |
| /* |
| * First, TCP sockets |
| */ |
| |
| QTAILQ_FOREACH(slirp, &slirp_instances, entry) { |
| /* |
| * *_slowtimo needs calling if there are IP fragments |
| * in the fragment queue, or there are TCP connections active |
| */ |
| slirp->do_slowtimo = ((slirp->tcb.so_next != &slirp->tcb) || |
| (&slirp->ipq.ip_link != slirp->ipq.ip_link.next)); |
| |
| for (so = slirp->tcb.so_next; so != &slirp->tcb; |
| so = so_next) { |
| int events = 0; |
| |
| so_next = so->so_next; |
| |
| so->pollfds_idx = -1; |
| |
| /* |
| * See if we need a tcp_fasttimo |
| */ |
| if (slirp->time_fasttimo == 0 && |
| so->so_tcpcb->t_flags & TF_DELACK) { |
| slirp->time_fasttimo = curtime; /* Flag when want a fasttimo */ |
| } |
| |
| /* |
| * NOFDREF can include still connecting to local-host, |
| * newly socreated() sockets etc. Don't want to select these. |
| */ |
| if (so->so_state & SS_NOFDREF || so->s == -1) { |
| continue; |
| } |
| |
| /* |
| * Set for reading sockets which are accepting |
| */ |
| if (so->so_state & SS_FACCEPTCONN) { |
| GPollFD pfd = { |
| .fd = so->s, |
| .events = G_IO_IN | G_IO_HUP | G_IO_ERR, |
| }; |
| so->pollfds_idx = pollfds->len; |
| g_array_append_val(pollfds, pfd); |
| continue; |
| } |
| |
| /* |
| * Set for writing sockets which are connecting |
| */ |
| if (so->so_state & SS_ISFCONNECTING) { |
| GPollFD pfd = { |
| .fd = so->s, |
| .events = G_IO_OUT | G_IO_ERR, |
| }; |
| so->pollfds_idx = pollfds->len; |
| g_array_append_val(pollfds, pfd); |
| continue; |
| } |
| |
| /* |
| * Set for writing if we are connected, can send more, and |
| * we have something to send |
| */ |
| if (CONN_CANFSEND(so) && so->so_rcv.sb_cc) { |
| events |= G_IO_OUT | G_IO_ERR; |
| } |
| |
| /* |
| * Set for reading (and urgent data) if we are connected, can |
| * receive more, and we have room for it XXX /2 ? |
| */ |
| if (CONN_CANFRCV(so) && |
| (so->so_snd.sb_cc < (so->so_snd.sb_datalen/2))) { |
| events |= G_IO_IN | G_IO_HUP | G_IO_ERR | G_IO_PRI; |
| } |
| |
| if (events) { |
| GPollFD pfd = { |
| .fd = so->s, |
| .events = events, |
| }; |
| so->pollfds_idx = pollfds->len; |
| g_array_append_val(pollfds, pfd); |
| } |
| } |
| |
| /* |
| * UDP sockets |
| */ |
| for (so = slirp->udb.so_next; so != &slirp->udb; |
| so = so_next) { |
| so_next = so->so_next; |
| |
| so->pollfds_idx = -1; |
| |
| /* |
| * See if it's timed out |
| */ |
| if (so->so_expire) { |
| if (so->so_expire <= curtime) { |
| udp_detach(so); |
| continue; |
| } else { |
| slirp->do_slowtimo = true; /* Let socket expire */ |
| } |
| } |
| |
| /* |
| * When UDP packets are received from over the |
| * link, they're sendto()'d straight away, so |
| * no need for setting for writing |
| * Limit the number of packets queued by this session |
| * to 4. Note that even though we try and limit this |
| * to 4 packets, the session could have more queued |
| * if the packets needed to be fragmented |
| * (XXX <= 4 ?) |
| */ |
| if ((so->so_state & SS_ISFCONNECTED) && so->so_queued <= 4) { |
| GPollFD pfd = { |
| .fd = so->s, |
| .events = G_IO_IN | G_IO_HUP | G_IO_ERR, |
| }; |
| so->pollfds_idx = pollfds->len; |
| g_array_append_val(pollfds, pfd); |
| } |
| } |
| |
| /* |
| * ICMP sockets |
| */ |
| for (so = slirp->icmp.so_next; so != &slirp->icmp; |
| so = so_next) { |
| so_next = so->so_next; |
| |
| so->pollfds_idx = -1; |
| |
| /* |
| * See if it's timed out |
| */ |
| if (so->so_expire) { |
| if (so->so_expire <= curtime) { |
| icmp_detach(so); |
| continue; |
| } else { |
| slirp->do_slowtimo = true; /* Let socket expire */ |
| } |
| } |
| |
| if (so->so_state & SS_ISFCONNECTED) { |
| GPollFD pfd = { |
| .fd = so->s, |
| .events = G_IO_IN | G_IO_HUP | G_IO_ERR, |
| }; |
| so->pollfds_idx = pollfds->len; |
| g_array_append_val(pollfds, pfd); |
| } |
| } |
| } |
| slirp_update_timeout(timeout); |
| } |
| |
| void slirp_pollfds_poll(GArray *pollfds, int select_error) |
| { |
| Slirp *slirp; |
| struct socket *so, *so_next; |
| int ret; |
| |
| if (QTAILQ_EMPTY(&slirp_instances)) { |
| return; |
| } |
| |
| curtime = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); |
| |
| QTAILQ_FOREACH(slirp, &slirp_instances, entry) { |
| /* |
| * See if anything has timed out |
| */ |
| if (slirp->time_fasttimo && |
| ((curtime - slirp->time_fasttimo) >= TIMEOUT_FAST)) { |
| tcp_fasttimo(slirp); |
| slirp->time_fasttimo = 0; |
| } |
| if (slirp->do_slowtimo && |
| ((curtime - slirp->last_slowtimo) >= TIMEOUT_SLOW)) { |
| ip_slowtimo(slirp); |
| tcp_slowtimo(slirp); |
| slirp->last_slowtimo = curtime; |
| } |
| |
| /* |
| * Check sockets |
| */ |
| if (!select_error) { |
| /* |
| * Check TCP sockets |
| */ |
| for (so = slirp->tcb.so_next; so != &slirp->tcb; |
| so = so_next) { |
| int revents; |
| |
| so_next = so->so_next; |
| |
| revents = 0; |
| if (so->pollfds_idx != -1) { |
| revents = g_array_index(pollfds, GPollFD, |
| so->pollfds_idx).revents; |
| } |
| |
| if (so->so_state & SS_NOFDREF || so->s == -1) { |
| continue; |
| } |
| |
| /* |
| * Check for URG data |
| * This will soread as well, so no need to |
| * test for G_IO_IN below if this succeeds |
| */ |
| if (revents & G_IO_PRI) { |
| ret = sorecvoob(so); |
| if (ret < 0) { |
| /* Socket error might have resulted in the socket being |
| * removed, do not try to do anything more with it. */ |
| continue; |
| } |
| } |
| /* |
| * Check sockets for reading |
| */ |
| else if (revents & (G_IO_IN | G_IO_HUP | G_IO_ERR)) { |
| /* |
| * Check for incoming connections |
| */ |
| if (so->so_state & SS_FACCEPTCONN) { |
| tcp_connect(so); |
| continue; |
| } /* else */ |
| ret = soread(so); |
| |
| /* Output it if we read something */ |
| if (ret > 0) { |
| tcp_output(sototcpcb(so)); |
| } |
| if (ret < 0) { |
| /* Socket error might have resulted in the socket being |
| * removed, do not try to do anything more with it. */ |
| continue; |
| } |
| } |
| |
| /* |
| * Check sockets for writing |
| */ |
| if (!(so->so_state & SS_NOFDREF) && |
| (revents & (G_IO_OUT | G_IO_ERR))) { |
| /* |
| * Check for non-blocking, still-connecting sockets |
| */ |
| if (so->so_state & SS_ISFCONNECTING) { |
| /* Connected */ |
| so->so_state &= ~SS_ISFCONNECTING; |
| |
| ret = send(so->s, (const void *) &ret, 0, 0); |
| if (ret < 0) { |
| /* XXXXX Must fix, zero bytes is a NOP */ |
| if (errno == EAGAIN || errno == EWOULDBLOCK || |
| errno == EINPROGRESS || errno == ENOTCONN) { |
| continue; |
| } |
| |
| /* else failed */ |
| so->so_state &= SS_PERSISTENT_MASK; |
| so->so_state |= SS_NOFDREF; |
| } |
| /* else so->so_state &= ~SS_ISFCONNECTING; */ |
| |
| /* |
| * Continue tcp_input |
| */ |
| tcp_input((struct mbuf *)NULL, sizeof(struct ip), so, |
| so->so_ffamily); |
| /* continue; */ |
| } else { |
| ret = sowrite(so); |
| } |
| /* |
| * XXXXX If we wrote something (a lot), there |
| * could be a need for a window update. |
| * In the worst case, the remote will send |
| * a window probe to get things going again |
| */ |
| } |
| |
| /* |
| * Probe a still-connecting, non-blocking socket |
| * to check if it's still alive |
| */ |
| #ifdef PROBE_CONN |
| if (so->so_state & SS_ISFCONNECTING) { |
| ret = qemu_recv(so->s, &ret, 0, 0); |
| |
| if (ret < 0) { |
| /* XXX */ |
| if (errno == EAGAIN || errno == EWOULDBLOCK || |
| errno == EINPROGRESS || errno == ENOTCONN) { |
| continue; /* Still connecting, continue */ |
| } |
| |
| /* else failed */ |
| so->so_state &= SS_PERSISTENT_MASK; |
| so->so_state |= SS_NOFDREF; |
| |
| /* tcp_input will take care of it */ |
| } else { |
| ret = send(so->s, &ret, 0, 0); |
| if (ret < 0) { |
| /* XXX */ |
| if (errno == EAGAIN || errno == EWOULDBLOCK || |
| errno == EINPROGRESS || errno == ENOTCONN) { |
| continue; |
| } |
| /* else failed */ |
| so->so_state &= SS_PERSISTENT_MASK; |
| so->so_state |= SS_NOFDREF; |
| } else { |
| so->so_state &= ~SS_ISFCONNECTING; |
| } |
| |
| } |
| tcp_input((struct mbuf *)NULL, sizeof(struct ip), so, |
| so->so_ffamily); |
| } /* SS_ISFCONNECTING */ |
| #endif |
| } |
| |
| /* |
| * Now UDP sockets. |
| * Incoming packets are sent straight away, they're not buffered. |
| * Incoming UDP data isn't buffered either. |
| */ |
| for (so = slirp->udb.so_next; so != &slirp->udb; |
| so = so_next) { |
| int revents; |
| |
| so_next = so->so_next; |
| |
| revents = 0; |
| if (so->pollfds_idx != -1) { |
| revents = g_array_index(pollfds, GPollFD, |
| so->pollfds_idx).revents; |
| } |
| |
| if (so->s != -1 && |
| (revents & (G_IO_IN | G_IO_HUP | G_IO_ERR))) { |
| sorecvfrom(so); |
| } |
| } |
| |
| /* |
| * Check incoming ICMP relies. |
| */ |
| for (so = slirp->icmp.so_next; so != &slirp->icmp; |
| so = so_next) { |
| int revents; |
| |
| so_next = so->so_next; |
| |
| revents = 0; |
| if (so->pollfds_idx != -1) { |
| revents = g_array_index(pollfds, GPollFD, |
| so->pollfds_idx).revents; |
| } |
| |
| if (so->s != -1 && |
| (revents & (G_IO_IN | G_IO_HUP | G_IO_ERR))) { |
| icmp_receive(so); |
| } |
| } |
| } |
| |
| if_start(slirp); |
| } |
| } |
| |
| static void arp_input(Slirp *slirp, const uint8_t *pkt, int pkt_len) |
| { |
| struct slirp_arphdr *ah = (struct slirp_arphdr *)(pkt + ETH_HLEN); |
| uint8_t arp_reply[MAX(ETH_HLEN + sizeof(struct slirp_arphdr), 64)]; |
| struct ethhdr *reh = (struct ethhdr *)arp_reply; |
| struct slirp_arphdr *rah = (struct slirp_arphdr *)(arp_reply + ETH_HLEN); |
| int ar_op; |
| struct ex_list *ex_ptr; |
| |
| if (!slirp->in_enabled) { |
| return; |
| } |
| |
| ar_op = ntohs(ah->ar_op); |
| switch(ar_op) { |
| case ARPOP_REQUEST: |
| if (ah->ar_tip == ah->ar_sip) { |
| /* Gratuitous ARP */ |
| arp_table_add(slirp, ah->ar_sip, ah->ar_sha); |
| return; |
| } |
| |
| if ((ah->ar_tip & slirp->vnetwork_mask.s_addr) == |
| slirp->vnetwork_addr.s_addr) { |
| if (ah->ar_tip == slirp->vnameserver_addr.s_addr || |
| ah->ar_tip == slirp->vhost_addr.s_addr) |
| goto arp_ok; |
| for (ex_ptr = slirp->exec_list; ex_ptr; ex_ptr = ex_ptr->ex_next) { |
| if (ex_ptr->ex_addr.s_addr == ah->ar_tip) |
| goto arp_ok; |
| } |
| return; |
| arp_ok: |
| memset(arp_reply, 0, sizeof(arp_reply)); |
| |
| arp_table_add(slirp, ah->ar_sip, ah->ar_sha); |
| |
| /* ARP request for alias/dns mac address */ |
| memcpy(reh->h_dest, pkt + ETH_ALEN, ETH_ALEN); |
| memcpy(reh->h_source, special_ethaddr, ETH_ALEN - 4); |
| memcpy(&reh->h_source[2], &ah->ar_tip, 4); |
| reh->h_proto = htons(ETH_P_ARP); |
| |
| rah->ar_hrd = htons(1); |
| rah->ar_pro = htons(ETH_P_IP); |
| rah->ar_hln = ETH_ALEN; |
| rah->ar_pln = 4; |
| rah->ar_op = htons(ARPOP_REPLY); |
| memcpy(rah->ar_sha, reh->h_source, ETH_ALEN); |
| rah->ar_sip = ah->ar_tip; |
| memcpy(rah->ar_tha, ah->ar_sha, ETH_ALEN); |
| rah->ar_tip = ah->ar_sip; |
| slirp_output(slirp->opaque, arp_reply, sizeof(arp_reply)); |
| } |
| break; |
| case ARPOP_REPLY: |
| arp_table_add(slirp, ah->ar_sip, ah->ar_sha); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| void slirp_input(Slirp *slirp, const uint8_t *pkt, int pkt_len) |
| { |
| struct mbuf *m; |
| int proto; |
| |
| if (pkt_len < ETH_HLEN) |
| return; |
| |
| proto = ntohs(*(uint16_t *)(pkt + 12)); |
| switch(proto) { |
| case ETH_P_ARP: |
| arp_input(slirp, pkt, pkt_len); |
| break; |
| case ETH_P_IP: |
| case ETH_P_IPV6: |
| m = m_get(slirp); |
| if (!m) |
| return; |
| /* Note: we add 2 to align the IP header on 4 bytes, |
| * and add the margin for the tcpiphdr overhead */ |
| if (M_FREEROOM(m) < pkt_len + TCPIPHDR_DELTA + 2) { |
| m_inc(m, pkt_len + TCPIPHDR_DELTA + 2); |
| } |
| m->m_len = pkt_len + TCPIPHDR_DELTA + 2; |
| memcpy(m->m_data + TCPIPHDR_DELTA + 2, pkt, pkt_len); |
| |
| m->m_data += TCPIPHDR_DELTA + 2 + ETH_HLEN; |
| m->m_len -= TCPIPHDR_DELTA + 2 + ETH_HLEN; |
| |
| if (proto == ETH_P_IP) { |
| ip_input(m); |
| } else if (proto == ETH_P_IPV6) { |
| ip6_input(m); |
| } |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| /* Prepare the IPv4 packet to be sent to the ethernet device. Returns 1 if no |
| * packet should be sent, 0 if the packet must be re-queued, 2 if the packet |
| * is ready to go. |
| */ |
| static int if_encap4(Slirp *slirp, struct mbuf *ifm, struct ethhdr *eh, |
| uint8_t ethaddr[ETH_ALEN]) |
| { |
| const struct ip *iph = (const struct ip *)ifm->m_data; |
| |
| if (iph->ip_dst.s_addr == 0) { |
| /* 0.0.0.0 can not be a destination address, something went wrong, |
| * avoid making it worse */ |
| return 1; |
| } |
| if (!arp_table_search(slirp, iph->ip_dst.s_addr, ethaddr)) { |
| uint8_t arp_req[ETH_HLEN + sizeof(struct slirp_arphdr)]; |
| struct ethhdr *reh = (struct ethhdr *)arp_req; |
| struct slirp_arphdr *rah = (struct slirp_arphdr *)(arp_req + ETH_HLEN); |
| |
| if (!ifm->resolution_requested) { |
| /* If the client addr is not known, send an ARP request */ |
| memset(reh->h_dest, 0xff, ETH_ALEN); |
| memcpy(reh->h_source, special_ethaddr, ETH_ALEN - 4); |
| memcpy(&reh->h_source[2], &slirp->vhost_addr, 4); |
| reh->h_proto = htons(ETH_P_ARP); |
| rah->ar_hrd = htons(1); |
| rah->ar_pro = htons(ETH_P_IP); |
| rah->ar_hln = ETH_ALEN; |
| rah->ar_pln = 4; |
| rah->ar_op = htons(ARPOP_REQUEST); |
| |
| /* source hw addr */ |
| memcpy(rah->ar_sha, special_ethaddr, ETH_ALEN - 4); |
| memcpy(&rah->ar_sha[2], &slirp->vhost_addr, 4); |
| |
| /* source IP */ |
| rah->ar_sip = slirp->vhost_addr.s_addr; |
| |
| /* target hw addr (none) */ |
| memset(rah->ar_tha, 0, ETH_ALEN); |
| |
| /* target IP */ |
| rah->ar_tip = iph->ip_dst.s_addr; |
| slirp->client_ipaddr = iph->ip_dst; |
| slirp_output(slirp->opaque, arp_req, sizeof(arp_req)); |
| ifm->resolution_requested = true; |
| |
| /* Expire request and drop outgoing packet after 1 second */ |
| ifm->expiration_date = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + 1000000000ULL; |
| } |
| return 0; |
| } else { |
| memcpy(eh->h_source, special_ethaddr, ETH_ALEN - 4); |
| /* XXX: not correct */ |
| memcpy(&eh->h_source[2], &slirp->vhost_addr, 4); |
| eh->h_proto = htons(ETH_P_IP); |
| |
| /* Send this */ |
| return 2; |
| } |
| } |
| |
| /* Prepare the IPv6 packet to be sent to the ethernet device. Returns 1 if no |
| * packet should be sent, 0 if the packet must be re-queued, 2 if the packet |
| * is ready to go. |
| */ |
| static int if_encap6(Slirp *slirp, struct mbuf *ifm, struct ethhdr *eh, |
| uint8_t ethaddr[ETH_ALEN]) |
| { |
| const struct ip6 *ip6h = mtod(ifm, const struct ip6 *); |
| if (!ndp_table_search(slirp, ip6h->ip_dst, ethaddr)) { |
| if (!ifm->resolution_requested) { |
| ndp_send_ns(slirp, ip6h->ip_dst); |
| ifm->resolution_requested = true; |
| ifm->expiration_date = |
| qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + 1000000000ULL; |
| } |
| return 0; |
| } else { |
| eh->h_proto = htons(ETH_P_IPV6); |
| in6_compute_ethaddr(ip6h->ip_src, eh->h_source); |
| |
| /* Send this */ |
| return 2; |
| } |
| } |
| |
| /* Output the IP packet to the ethernet device. Returns 0 if the packet must be |
| * re-queued. |
| */ |
| int if_encap(Slirp *slirp, struct mbuf *ifm) |
| { |
| uint8_t buf[1600]; |
| struct ethhdr *eh = (struct ethhdr *)buf; |
| uint8_t ethaddr[ETH_ALEN]; |
| const struct ip *iph = (const struct ip *)ifm->m_data; |
| int ret; |
| |
| if (ifm->m_len + ETH_HLEN > sizeof(buf)) { |
| return 1; |
| } |
| |
| switch (iph->ip_v) { |
| case IPVERSION: |
| ret = if_encap4(slirp, ifm, eh, ethaddr); |
| if (ret < 2) { |
| return ret; |
| } |
| break; |
| |
| case IP6VERSION: |
| ret = if_encap6(slirp, ifm, eh, ethaddr); |
| if (ret < 2) { |
| return ret; |
| } |
| break; |
| |
| default: |
| g_assert_not_reached(); |
| break; |
| } |
| |
| memcpy(eh->h_dest, ethaddr, ETH_ALEN); |
| DEBUG_ARGS((dfd, " src = %02x:%02x:%02x:%02x:%02x:%02x\n", |
| eh->h_source[0], eh->h_source[1], eh->h_source[2], |
| eh->h_source[3], eh->h_source[4], eh->h_source[5])); |
| DEBUG_ARGS((dfd, " dst = %02x:%02x:%02x:%02x:%02x:%02x\n", |
| eh->h_dest[0], eh->h_dest[1], eh->h_dest[2], |
| eh->h_dest[3], eh->h_dest[4], eh->h_dest[5])); |
| memcpy(buf + sizeof(struct ethhdr), ifm->m_data, ifm->m_len); |
| slirp_output(slirp->opaque, buf, ifm->m_len + ETH_HLEN); |
| return 1; |
| } |
| |
| /* Drop host forwarding rule, return 0 if found. */ |
| int slirp_remove_hostfwd(Slirp *slirp, int is_udp, struct in_addr host_addr, |
| int host_port) |
| { |
| struct socket *so; |
| struct socket *head = (is_udp ? &slirp->udb : &slirp->tcb); |
| struct sockaddr_in addr; |
| int port = htons(host_port); |
| socklen_t addr_len; |
| |
| for (so = head->so_next; so != head; so = so->so_next) { |
| addr_len = sizeof(addr); |
| if ((so->so_state & SS_HOSTFWD) && |
| getsockname(so->s, (struct sockaddr *)&addr, &addr_len) == 0 && |
| addr.sin_addr.s_addr == host_addr.s_addr && |
| addr.sin_port == port) { |
| close(so->s); |
| sofree(so); |
| return 0; |
| } |
| } |
| |
| return -1; |
| } |
| |
| int slirp_add_hostfwd(Slirp *slirp, int is_udp, struct in_addr host_addr, |
| int host_port, struct in_addr guest_addr, int guest_port) |
| { |
| if (!guest_addr.s_addr) { |
| guest_addr = slirp->vdhcp_startaddr; |
| } |
| if (is_udp) { |
| if (!udp_listen(slirp, host_addr.s_addr, htons(host_port), |
| guest_addr.s_addr, htons(guest_port), SS_HOSTFWD)) |
| return -1; |
| } else { |
| if (!tcp_listen(slirp, host_addr.s_addr, htons(host_port), |
| guest_addr.s_addr, htons(guest_port), SS_HOSTFWD)) |
| return -1; |
| } |
| return 0; |
| } |
| |
| int slirp_add_exec(Slirp *slirp, int do_pty, const void *args, |
| struct in_addr *guest_addr, int guest_port) |
| { |
| if (!guest_addr->s_addr) { |
| guest_addr->s_addr = slirp->vnetwork_addr.s_addr | |
| (htonl(0x0204) & ~slirp->vnetwork_mask.s_addr); |
| } |
| if ((guest_addr->s_addr & slirp->vnetwork_mask.s_addr) != |
| slirp->vnetwork_addr.s_addr || |
| guest_addr->s_addr == slirp->vhost_addr.s_addr || |
| guest_addr->s_addr == slirp->vnameserver_addr.s_addr) { |
| return -1; |
| } |
| return add_exec(&slirp->exec_list, do_pty, (char *)args, *guest_addr, |
| htons(guest_port)); |
| } |
| |
| ssize_t slirp_send(struct socket *so, const void *buf, size_t len, int flags) |
| { |
| if (so->s == -1 && so->extra) { |
| /* XXX this blocks entire thread. Rewrite to use |
| * qemu_chr_fe_write and background I/O callbacks */ |
| qemu_chr_fe_write_all(so->extra, buf, len); |
| return len; |
| } |
| |
| return send(so->s, buf, len, flags); |
| } |
| |
| static struct socket * |
| slirp_find_ctl_socket(Slirp *slirp, struct in_addr guest_addr, int guest_port) |
| { |
| struct socket *so; |
| |
| for (so = slirp->tcb.so_next; so != &slirp->tcb; so = so->so_next) { |
| if (so->so_faddr.s_addr == guest_addr.s_addr && |
| htons(so->so_fport) == guest_port) { |
| return so; |
| } |
| } |
| return NULL; |
| } |
| |
| size_t slirp_socket_can_recv(Slirp *slirp, struct in_addr guest_addr, |
| int guest_port) |
| { |
| struct iovec iov[2]; |
| struct socket *so; |
| |
| so = slirp_find_ctl_socket(slirp, guest_addr, guest_port); |
| |
| if (!so || so->so_state & SS_NOFDREF) { |
| return 0; |
| } |
| |
| if (!CONN_CANFRCV(so) || so->so_snd.sb_cc >= (so->so_snd.sb_datalen/2)) { |
| return 0; |
| } |
| |
| return sopreprbuf(so, iov, NULL); |
| } |
| |
| void slirp_socket_recv(Slirp *slirp, struct in_addr guest_addr, int guest_port, |
| const uint8_t *buf, int size) |
| { |
| int ret; |
| struct socket *so = slirp_find_ctl_socket(slirp, guest_addr, guest_port); |
| |
| if (!so) |
| return; |
| |
| ret = soreadbuf(so, (const char *)buf, size); |
| |
| if (ret > 0) |
| tcp_output(sototcpcb(so)); |
| } |
| |
| static void slirp_tcp_save(QEMUFile *f, struct tcpcb *tp) |
| { |
| int i; |
| |
| qemu_put_sbe16(f, tp->t_state); |
| for (i = 0; i < TCPT_NTIMERS; i++) |
| qemu_put_sbe16(f, tp->t_timer[i]); |
| qemu_put_sbe16(f, tp->t_rxtshift); |
| qemu_put_sbe16(f, tp->t_rxtcur); |
| qemu_put_sbe16(f, tp->t_dupacks); |
| qemu_put_be16(f, tp->t_maxseg); |
| qemu_put_sbyte(f, tp->t_force); |
| qemu_put_be16(f, tp->t_flags); |
| qemu_put_be32(f, tp->snd_una); |
| qemu_put_be32(f, tp->snd_nxt); |
| qemu_put_be32(f, tp->snd_up); |
| qemu_put_be32(f, tp->snd_wl1); |
| qemu_put_be32(f, tp->snd_wl2); |
| qemu_put_be32(f, tp->iss); |
| qemu_put_be32(f, tp->snd_wnd); |
| qemu_put_be32(f, tp->rcv_wnd); |
| qemu_put_be32(f, tp->rcv_nxt); |
| qemu_put_be32(f, tp->rcv_up); |
| qemu_put_be32(f, tp->irs); |
| qemu_put_be32(f, tp->rcv_adv); |
| qemu_put_be32(f, tp->snd_max); |
| qemu_put_be32(f, tp->snd_cwnd); |
| qemu_put_be32(f, tp->snd_ssthresh); |
| qemu_put_sbe16(f, tp->t_idle); |
| qemu_put_sbe16(f, tp->t_rtt); |
| qemu_put_be32(f, tp->t_rtseq); |
| qemu_put_sbe16(f, tp->t_srtt); |
| qemu_put_sbe16(f, tp->t_rttvar); |
| qemu_put_be16(f, tp->t_rttmin); |
| qemu_put_be32(f, tp->max_sndwnd); |
| qemu_put_byte(f, tp->t_oobflags); |
| qemu_put_byte(f, tp->t_iobc); |
| qemu_put_sbe16(f, tp->t_softerror); |
| qemu_put_byte(f, tp->snd_scale); |
| qemu_put_byte(f, tp->rcv_scale); |
| qemu_put_byte(f, tp->request_r_scale); |
| qemu_put_byte(f, tp->requested_s_scale); |
| qemu_put_be32(f, tp->ts_recent); |
| qemu_put_be32(f, tp->ts_recent_age); |
| qemu_put_be32(f, tp->last_ack_sent); |
| } |
| |
| static void slirp_sbuf_save(QEMUFile *f, struct sbuf *sbuf) |
| { |
| uint32_t off; |
| |
| qemu_put_be32(f, sbuf->sb_cc); |
| qemu_put_be32(f, sbuf->sb_datalen); |
| off = (uint32_t)(sbuf->sb_wptr - sbuf->sb_data); |
| qemu_put_sbe32(f, off); |
| off = (uint32_t)(sbuf->sb_rptr - sbuf->sb_data); |
| qemu_put_sbe32(f, off); |
| qemu_put_buffer(f, (unsigned char*)sbuf->sb_data, sbuf->sb_datalen); |
| } |
| |
| static void slirp_socket_save(QEMUFile *f, struct socket *so) |
| { |
| qemu_put_be32(f, so->so_urgc); |
| qemu_put_be16(f, so->so_ffamily); |
| switch (so->so_ffamily) { |
| case AF_INET: |
| qemu_put_be32(f, so->so_faddr.s_addr); |
| qemu_put_be16(f, so->so_fport); |
| break; |
| default: |
| error_report("so_ffamily unknown, unable to save so_faddr and" |
| " so_fport"); |
| } |
| qemu_put_be16(f, so->so_lfamily); |
| switch (so->so_lfamily) { |
| case AF_INET: |
| qemu_put_be32(f, so->so_laddr.s_addr); |
| qemu_put_be16(f, so->so_lport); |
| break; |
| default: |
| error_report("so_ffamily unknown, unable to save so_laddr and" |
| " so_lport"); |
| } |
| qemu_put_byte(f, so->so_iptos); |
| qemu_put_byte(f, so->so_emu); |
| qemu_put_byte(f, so->so_type); |
| qemu_put_be32(f, so->so_state); |
| slirp_sbuf_save(f, &so->so_rcv); |
| slirp_sbuf_save(f, &so->so_snd); |
| slirp_tcp_save(f, so->so_tcpcb); |
| } |
| |
| static void slirp_bootp_save(QEMUFile *f, Slirp *slirp) |
| { |
| int i; |
| |
| for (i = 0; i < NB_BOOTP_CLIENTS; i++) { |
| qemu_put_be16(f, slirp->bootp_clients[i].allocated); |
| qemu_put_buffer(f, slirp->bootp_clients[i].macaddr, 6); |
| } |
| } |
| |
| static void slirp_state_save(QEMUFile *f, void *opaque) |
| { |
| Slirp *slirp = opaque; |
| struct ex_list *ex_ptr; |
| |
| for (ex_ptr = slirp->exec_list; ex_ptr; ex_ptr = ex_ptr->ex_next) |
| if (ex_ptr->ex_pty == 3) { |
| struct socket *so; |
| so = slirp_find_ctl_socket(slirp, ex_ptr->ex_addr, |
| ntohs(ex_ptr->ex_fport)); |
| if (!so) |
| continue; |
| |
| qemu_put_byte(f, 42); |
| slirp_socket_save(f, so); |
| } |
| qemu_put_byte(f, 0); |
| |
| qemu_put_be16(f, slirp->ip_id); |
| |
| slirp_bootp_save(f, slirp); |
| } |
| |
| static void slirp_tcp_load(QEMUFile *f, struct tcpcb *tp) |
| { |
| int i; |
| |
| tp->t_state = qemu_get_sbe16(f); |
| for (i = 0; i < TCPT_NTIMERS; i++) |
| tp->t_timer[i] = qemu_get_sbe16(f); |
| tp->t_rxtshift = qemu_get_sbe16(f); |
| tp->t_rxtcur = qemu_get_sbe16(f); |
| tp->t_dupacks = qemu_get_sbe16(f); |
| tp->t_maxseg = qemu_get_be16(f); |
| tp->t_force = qemu_get_sbyte(f); |
| tp->t_flags = qemu_get_be16(f); |
| tp->snd_una = qemu_get_be32(f); |
| tp->snd_nxt = qemu_get_be32(f); |
| tp->snd_up = qemu_get_be32(f); |
| tp->snd_wl1 = qemu_get_be32(f); |
| tp->snd_wl2 = qemu_get_be32(f); |
| tp->iss = qemu_get_be32(f); |
| tp->snd_wnd = qemu_get_be32(f); |
| tp->rcv_wnd = qemu_get_be32(f); |
| tp->rcv_nxt = qemu_get_be32(f); |
| tp->rcv_up = qemu_get_be32(f); |
| tp->irs = qemu_get_be32(f); |
| tp->rcv_adv = qemu_get_be32(f); |
| tp->snd_max = qemu_get_be32(f); |
| tp->snd_cwnd = qemu_get_be32(f); |
| tp->snd_ssthresh = qemu_get_be32(f); |
| tp->t_idle = qemu_get_sbe16(f); |
| tp->t_rtt = qemu_get_sbe16(f); |
| tp->t_rtseq = qemu_get_be32(f); |
| tp->t_srtt = qemu_get_sbe16(f); |
| tp->t_rttvar = qemu_get_sbe16(f); |
| tp->t_rttmin = qemu_get_be16(f); |
| tp->max_sndwnd = qemu_get_be32(f); |
| tp->t_oobflags = qemu_get_byte(f); |
| tp->t_iobc = qemu_get_byte(f); |
| tp->t_softerror = qemu_get_sbe16(f); |
| tp->snd_scale = qemu_get_byte(f); |
| tp->rcv_scale = qemu_get_byte(f); |
| tp->request_r_scale = qemu_get_byte(f); |
| tp->requested_s_scale = qemu_get_byte(f); |
| tp->ts_recent = qemu_get_be32(f); |
| tp->ts_recent_age = qemu_get_be32(f); |
| tp->last_ack_sent = qemu_get_be32(f); |
| tcp_template(tp); |
| } |
| |
| static int slirp_sbuf_load(QEMUFile *f, struct sbuf *sbuf) |
| { |
| uint32_t off, sb_cc, sb_datalen; |
| |
| sb_cc = qemu_get_be32(f); |
| sb_datalen = qemu_get_be32(f); |
| |
| sbreserve(sbuf, sb_datalen); |
| |
| if (sbuf->sb_datalen != sb_datalen) |
| return -ENOMEM; |
| |
| sbuf->sb_cc = sb_cc; |
| |
| off = qemu_get_sbe32(f); |
| sbuf->sb_wptr = sbuf->sb_data + off; |
| off = qemu_get_sbe32(f); |
| sbuf->sb_rptr = sbuf->sb_data + off; |
| qemu_get_buffer(f, (unsigned char*)sbuf->sb_data, sbuf->sb_datalen); |
| |
| return 0; |
| } |
| |
| static int slirp_socket_load(QEMUFile *f, struct socket *so, int version_id) |
| { |
| if (tcp_attach(so) < 0) |
| return -ENOMEM; |
| |
| so->so_urgc = qemu_get_be32(f); |
| if (version_id <= 3) { |
| so->so_ffamily = AF_INET; |
| so->so_faddr.s_addr = qemu_get_be32(f); |
| so->so_laddr.s_addr = qemu_get_be32(f); |
| so->so_fport = qemu_get_be16(f); |
| so->so_lport = qemu_get_be16(f); |
| } else { |
| so->so_ffamily = qemu_get_be16(f); |
| switch (so->so_ffamily) { |
| case AF_INET: |
| so->so_faddr.s_addr = qemu_get_be32(f); |
| so->so_fport = qemu_get_be16(f); |
| break; |
| default: |
| error_report( |
| "so_ffamily unknown, unable to restore so_faddr and so_lport"); |
| } |
| so->so_lfamily = qemu_get_be16(f); |
| switch (so->so_lfamily) { |
| case AF_INET: |
| so->so_laddr.s_addr = qemu_get_be32(f); |
| so->so_lport = qemu_get_be16(f); |
| break; |
| default: |
| error_report( |
| "so_ffamily unknown, unable to restore so_laddr and so_lport"); |
| } |
| } |
| so->so_iptos = qemu_get_byte(f); |
| so->so_emu = qemu_get_byte(f); |
| so->so_type = qemu_get_byte(f); |
| so->so_state = qemu_get_be32(f); |
| if (slirp_sbuf_load(f, &so->so_rcv) < 0) |
| return -ENOMEM; |
| if (slirp_sbuf_load(f, &so->so_snd) < 0) |
| return -ENOMEM; |
| slirp_tcp_load(f, so->so_tcpcb); |
| |
| return 0; |
| } |
| |
| static void slirp_bootp_load(QEMUFile *f, Slirp *slirp) |
| { |
| int i; |
| |
| for (i = 0; i < NB_BOOTP_CLIENTS; i++) { |
| slirp->bootp_clients[i].allocated = qemu_get_be16(f); |
| qemu_get_buffer(f, slirp->bootp_clients[i].macaddr, 6); |
| } |
| } |
| |
| static int slirp_state_load(QEMUFile *f, void *opaque, int version_id) |
| { |
| Slirp *slirp = opaque; |
| struct ex_list *ex_ptr; |
| |
| while (qemu_get_byte(f)) { |
| int ret; |
| struct socket *so = socreate(slirp); |
| |
| if (!so) |
| return -ENOMEM; |
| |
| ret = slirp_socket_load(f, so, version_id); |
| |
| if (ret < 0) |
| return ret; |
| |
| if ((so->so_faddr.s_addr & slirp->vnetwork_mask.s_addr) != |
| slirp->vnetwork_addr.s_addr) { |
| return -EINVAL; |
| } |
| for (ex_ptr = slirp->exec_list; ex_ptr; ex_ptr = ex_ptr->ex_next) { |
| if (ex_ptr->ex_pty == 3 && |
| so->so_faddr.s_addr == ex_ptr->ex_addr.s_addr && |
| so->so_fport == ex_ptr->ex_fport) { |
| break; |
| } |
| } |
| if (!ex_ptr) |
| return -EINVAL; |
| |
| so->extra = (void *)ex_ptr->ex_exec; |
| } |
| |
| if (version_id >= 2) { |
| slirp->ip_id = qemu_get_be16(f); |
| } |
| |
| if (version_id >= 3) { |
| slirp_bootp_load(f, slirp); |
| } |
| |
| return 0; |
| } |