| /* |
| * NUMA parameter parsing routines |
| * |
| * Copyright (c) 2014 Fujitsu Ltd. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "sysemu/numa.h" |
| #include "exec/cpu-common.h" |
| #include "qemu/bitmap.h" |
| #include "qom/cpu.h" |
| #include "qemu/error-report.h" |
| #include "include/exec/cpu-common.h" /* for RAM_ADDR_FMT */ |
| #include "qapi-visit.h" |
| #include "qapi/opts-visitor.h" |
| #include "hw/boards.h" |
| #include "sysemu/hostmem.h" |
| #include "qmp-commands.h" |
| #include "hw/mem/pc-dimm.h" |
| #include "qemu/option.h" |
| #include "qemu/config-file.h" |
| |
| QemuOptsList qemu_numa_opts = { |
| .name = "numa", |
| .implied_opt_name = "type", |
| .head = QTAILQ_HEAD_INITIALIZER(qemu_numa_opts.head), |
| .desc = { { 0 } } /* validated with OptsVisitor */ |
| }; |
| |
| static int have_memdevs = -1; |
| static int max_numa_nodeid; /* Highest specified NUMA node ID, plus one. |
| * For all nodes, nodeid < max_numa_nodeid |
| */ |
| int nb_numa_nodes; |
| NodeInfo numa_info[MAX_NODES]; |
| |
| void numa_set_mem_node_id(ram_addr_t addr, uint64_t size, uint32_t node) |
| { |
| struct numa_addr_range *range; |
| |
| /* |
| * Memory-less nodes can come here with 0 size in which case, |
| * there is nothing to do. |
| */ |
| if (!size) { |
| return; |
| } |
| |
| range = g_malloc0(sizeof(*range)); |
| range->mem_start = addr; |
| range->mem_end = addr + size - 1; |
| QLIST_INSERT_HEAD(&numa_info[node].addr, range, entry); |
| } |
| |
| void numa_unset_mem_node_id(ram_addr_t addr, uint64_t size, uint32_t node) |
| { |
| struct numa_addr_range *range, *next; |
| |
| QLIST_FOREACH_SAFE(range, &numa_info[node].addr, entry, next) { |
| if (addr == range->mem_start && (addr + size - 1) == range->mem_end) { |
| QLIST_REMOVE(range, entry); |
| g_free(range); |
| return; |
| } |
| } |
| } |
| |
| static void numa_set_mem_ranges(void) |
| { |
| int i; |
| ram_addr_t mem_start = 0; |
| |
| /* |
| * Deduce start address of each node and use it to store |
| * the address range info in numa_info address range list |
| */ |
| for (i = 0; i < nb_numa_nodes; i++) { |
| numa_set_mem_node_id(mem_start, numa_info[i].node_mem, i); |
| mem_start += numa_info[i].node_mem; |
| } |
| } |
| |
| /* |
| * Check if @addr falls under NUMA @node. |
| */ |
| static bool numa_addr_belongs_to_node(ram_addr_t addr, uint32_t node) |
| { |
| struct numa_addr_range *range; |
| |
| QLIST_FOREACH(range, &numa_info[node].addr, entry) { |
| if (addr >= range->mem_start && addr <= range->mem_end) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /* |
| * Given an address, return the index of the NUMA node to which the |
| * address belongs to. |
| */ |
| uint32_t numa_get_node(ram_addr_t addr, Error **errp) |
| { |
| uint32_t i; |
| |
| /* For non NUMA configurations, check if the addr falls under node 0 */ |
| if (!nb_numa_nodes) { |
| if (numa_addr_belongs_to_node(addr, 0)) { |
| return 0; |
| } |
| } |
| |
| for (i = 0; i < nb_numa_nodes; i++) { |
| if (numa_addr_belongs_to_node(addr, i)) { |
| return i; |
| } |
| } |
| |
| error_setg(errp, "Address 0x" RAM_ADDR_FMT " doesn't belong to any " |
| "NUMA node", addr); |
| return -1; |
| } |
| |
| static void numa_node_parse(NumaNodeOptions *node, QemuOpts *opts, Error **errp) |
| { |
| uint16_t nodenr; |
| uint16List *cpus = NULL; |
| |
| if (node->has_nodeid) { |
| nodenr = node->nodeid; |
| } else { |
| nodenr = nb_numa_nodes; |
| } |
| |
| if (nodenr >= MAX_NODES) { |
| error_setg(errp, "Max number of NUMA nodes reached: %" |
| PRIu16 "", nodenr); |
| return; |
| } |
| |
| if (numa_info[nodenr].present) { |
| error_setg(errp, "Duplicate NUMA nodeid: %" PRIu16, nodenr); |
| return; |
| } |
| |
| for (cpus = node->cpus; cpus; cpus = cpus->next) { |
| if (cpus->value >= max_cpus) { |
| error_setg(errp, |
| "CPU index (%" PRIu16 ")" |
| " should be smaller than maxcpus (%d)", |
| cpus->value, max_cpus); |
| return; |
| } |
| bitmap_set(numa_info[nodenr].node_cpu, cpus->value, 1); |
| } |
| |
| if (node->has_mem && node->has_memdev) { |
| error_setg(errp, "qemu: cannot specify both mem= and memdev="); |
| return; |
| } |
| |
| if (have_memdevs == -1) { |
| have_memdevs = node->has_memdev; |
| } |
| if (node->has_memdev != have_memdevs) { |
| error_setg(errp, "qemu: memdev option must be specified for either " |
| "all or no nodes"); |
| return; |
| } |
| |
| if (node->has_mem) { |
| uint64_t mem_size = node->mem; |
| const char *mem_str = qemu_opt_get(opts, "mem"); |
| /* Fix up legacy suffix-less format */ |
| if (g_ascii_isdigit(mem_str[strlen(mem_str) - 1])) { |
| mem_size <<= 20; |
| } |
| numa_info[nodenr].node_mem = mem_size; |
| } |
| if (node->has_memdev) { |
| Object *o; |
| o = object_resolve_path_type(node->memdev, TYPE_MEMORY_BACKEND, NULL); |
| if (!o) { |
| error_setg(errp, "memdev=%s is ambiguous", node->memdev); |
| return; |
| } |
| |
| object_ref(o); |
| numa_info[nodenr].node_mem = object_property_get_int(o, "size", NULL); |
| numa_info[nodenr].node_memdev = MEMORY_BACKEND(o); |
| } |
| numa_info[nodenr].present = true; |
| max_numa_nodeid = MAX(max_numa_nodeid, nodenr + 1); |
| } |
| |
| static int parse_numa(void *opaque, QemuOpts *opts, Error **errp) |
| { |
| NumaOptions *object = NULL; |
| Error *err = NULL; |
| |
| { |
| Visitor *v = opts_visitor_new(opts); |
| visit_type_NumaOptions(v, NULL, &object, &err); |
| visit_free(v); |
| } |
| |
| if (err) { |
| goto end; |
| } |
| |
| switch (object->type) { |
| case NUMA_OPTIONS_KIND_NODE: |
| numa_node_parse(object->u.node.data, opts, &err); |
| if (err) { |
| goto end; |
| } |
| nb_numa_nodes++; |
| break; |
| default: |
| abort(); |
| } |
| |
| end: |
| qapi_free_NumaOptions(object); |
| if (err) { |
| error_report_err(err); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static char *enumerate_cpus(unsigned long *cpus, int max_cpus) |
| { |
| int cpu; |
| bool first = true; |
| GString *s = g_string_new(NULL); |
| |
| for (cpu = find_first_bit(cpus, max_cpus); |
| cpu < max_cpus; |
| cpu = find_next_bit(cpus, max_cpus, cpu + 1)) { |
| g_string_append_printf(s, "%s%d", first ? "" : " ", cpu); |
| first = false; |
| } |
| return g_string_free(s, FALSE); |
| } |
| |
| static void validate_numa_cpus(void) |
| { |
| int i; |
| DECLARE_BITMAP(seen_cpus, MAX_CPUMASK_BITS); |
| |
| bitmap_zero(seen_cpus, MAX_CPUMASK_BITS); |
| for (i = 0; i < nb_numa_nodes; i++) { |
| if (bitmap_intersects(seen_cpus, numa_info[i].node_cpu, |
| MAX_CPUMASK_BITS)) { |
| bitmap_and(seen_cpus, seen_cpus, |
| numa_info[i].node_cpu, MAX_CPUMASK_BITS); |
| error_report("CPU(s) present in multiple NUMA nodes: %s", |
| enumerate_cpus(seen_cpus, max_cpus)); |
| exit(EXIT_FAILURE); |
| } |
| bitmap_or(seen_cpus, seen_cpus, |
| numa_info[i].node_cpu, MAX_CPUMASK_BITS); |
| } |
| |
| if (!bitmap_full(seen_cpus, max_cpus)) { |
| char *msg; |
| bitmap_complement(seen_cpus, seen_cpus, max_cpus); |
| msg = enumerate_cpus(seen_cpus, max_cpus); |
| error_report("warning: CPU(s) not present in any NUMA nodes: %s", msg); |
| error_report("warning: All CPU(s) up to maxcpus should be described " |
| "in NUMA config"); |
| g_free(msg); |
| } |
| } |
| |
| void parse_numa_opts(MachineClass *mc) |
| { |
| int i; |
| |
| if (qemu_opts_foreach(qemu_find_opts("numa"), parse_numa, NULL, NULL)) { |
| exit(1); |
| } |
| |
| assert(max_numa_nodeid <= MAX_NODES); |
| |
| /* No support for sparse NUMA node IDs yet: */ |
| for (i = max_numa_nodeid - 1; i >= 0; i--) { |
| /* Report large node IDs first, to make mistakes easier to spot */ |
| if (!numa_info[i].present) { |
| error_report("numa: Node ID missing: %d", i); |
| exit(1); |
| } |
| } |
| |
| /* This must be always true if all nodes are present: */ |
| assert(nb_numa_nodes == max_numa_nodeid); |
| |
| if (nb_numa_nodes > 0) { |
| uint64_t numa_total; |
| |
| if (nb_numa_nodes > MAX_NODES) { |
| nb_numa_nodes = MAX_NODES; |
| } |
| |
| /* If no memory size is given for any node, assume the default case |
| * and distribute the available memory equally across all nodes |
| */ |
| for (i = 0; i < nb_numa_nodes; i++) { |
| if (numa_info[i].node_mem != 0) { |
| break; |
| } |
| } |
| if (i == nb_numa_nodes) { |
| uint64_t usedmem = 0; |
| |
| /* On Linux, each node's border has to be 8MB aligned, |
| * the final node gets the rest. |
| */ |
| for (i = 0; i < nb_numa_nodes - 1; i++) { |
| numa_info[i].node_mem = (ram_size / nb_numa_nodes) & |
| ~((1 << 23UL) - 1); |
| usedmem += numa_info[i].node_mem; |
| } |
| numa_info[i].node_mem = ram_size - usedmem; |
| } |
| |
| numa_total = 0; |
| for (i = 0; i < nb_numa_nodes; i++) { |
| numa_total += numa_info[i].node_mem; |
| } |
| if (numa_total != ram_size) { |
| error_report("total memory for NUMA nodes (0x%" PRIx64 ")" |
| " should equal RAM size (0x" RAM_ADDR_FMT ")", |
| numa_total, ram_size); |
| exit(1); |
| } |
| |
| for (i = 0; i < nb_numa_nodes; i++) { |
| QLIST_INIT(&numa_info[i].addr); |
| } |
| |
| numa_set_mem_ranges(); |
| |
| for (i = 0; i < nb_numa_nodes; i++) { |
| if (!bitmap_empty(numa_info[i].node_cpu, MAX_CPUMASK_BITS)) { |
| break; |
| } |
| } |
| /* Historically VCPUs were assigned in round-robin order to NUMA |
| * nodes. However it causes issues with guest not handling it nice |
| * in case where cores/threads from a multicore CPU appear on |
| * different nodes. So allow boards to override default distribution |
| * rule grouping VCPUs by socket so that VCPUs from the same socket |
| * would be on the same node. |
| */ |
| if (i == nb_numa_nodes) { |
| for (i = 0; i < max_cpus; i++) { |
| unsigned node_id = i % nb_numa_nodes; |
| if (mc->cpu_index_to_socket_id) { |
| node_id = mc->cpu_index_to_socket_id(i) % nb_numa_nodes; |
| } |
| |
| set_bit(i, numa_info[node_id].node_cpu); |
| } |
| } |
| |
| validate_numa_cpus(); |
| } else { |
| numa_set_mem_node_id(0, ram_size, 0); |
| } |
| } |
| |
| void numa_post_machine_init(void) |
| { |
| CPUState *cpu; |
| int i; |
| |
| CPU_FOREACH(cpu) { |
| for (i = 0; i < nb_numa_nodes; i++) { |
| if (test_bit(cpu->cpu_index, numa_info[i].node_cpu)) { |
| cpu->numa_node = i; |
| } |
| } |
| } |
| } |
| |
| static void allocate_system_memory_nonnuma(MemoryRegion *mr, Object *owner, |
| const char *name, |
| uint64_t ram_size) |
| { |
| if (mem_path) { |
| #ifdef __linux__ |
| Error *err = NULL; |
| memory_region_init_ram_from_file(mr, owner, name, ram_size, false, |
| mem_path, &err); |
| if (err) { |
| error_report_err(err); |
| if (mem_prealloc) { |
| exit(1); |
| } |
| |
| /* Legacy behavior: if allocation failed, fall back to |
| * regular RAM allocation. |
| */ |
| memory_region_init_ram(mr, owner, name, ram_size, &error_fatal); |
| } |
| #else |
| fprintf(stderr, "-mem-path not supported on this host\n"); |
| exit(1); |
| #endif |
| } else { |
| memory_region_init_ram(mr, owner, name, ram_size, &error_fatal); |
| } |
| vmstate_register_ram_global(mr); |
| } |
| |
| void memory_region_allocate_system_memory(MemoryRegion *mr, Object *owner, |
| const char *name, |
| uint64_t ram_size) |
| { |
| uint64_t addr = 0; |
| int i; |
| |
| if (nb_numa_nodes == 0 || !have_memdevs) { |
| allocate_system_memory_nonnuma(mr, owner, name, ram_size); |
| return; |
| } |
| |
| memory_region_init(mr, owner, name, ram_size); |
| for (i = 0; i < MAX_NODES; i++) { |
| uint64_t size = numa_info[i].node_mem; |
| HostMemoryBackend *backend = numa_info[i].node_memdev; |
| if (!backend) { |
| continue; |
| } |
| MemoryRegion *seg = host_memory_backend_get_memory(backend, |
| &error_fatal); |
| |
| if (memory_region_is_mapped(seg)) { |
| char *path = object_get_canonical_path_component(OBJECT(backend)); |
| error_report("memory backend %s is used multiple times. Each " |
| "-numa option must use a different memdev value.", |
| path); |
| exit(1); |
| } |
| |
| host_memory_backend_set_mapped(backend, true); |
| memory_region_add_subregion(mr, addr, seg); |
| vmstate_register_ram_global(seg); |
| addr += size; |
| } |
| } |
| |
| static void numa_stat_memory_devices(uint64_t node_mem[]) |
| { |
| MemoryDeviceInfoList *info_list = NULL; |
| MemoryDeviceInfoList **prev = &info_list; |
| MemoryDeviceInfoList *info; |
| |
| qmp_pc_dimm_device_list(qdev_get_machine(), &prev); |
| for (info = info_list; info; info = info->next) { |
| MemoryDeviceInfo *value = info->value; |
| |
| if (value) { |
| switch (value->type) { |
| case MEMORY_DEVICE_INFO_KIND_DIMM: |
| node_mem[value->u.dimm.data->node] += value->u.dimm.data->size; |
| break; |
| default: |
| break; |
| } |
| } |
| } |
| qapi_free_MemoryDeviceInfoList(info_list); |
| } |
| |
| void query_numa_node_mem(uint64_t node_mem[]) |
| { |
| int i; |
| |
| if (nb_numa_nodes <= 0) { |
| return; |
| } |
| |
| numa_stat_memory_devices(node_mem); |
| for (i = 0; i < nb_numa_nodes; i++) { |
| node_mem[i] += numa_info[i].node_mem; |
| } |
| } |
| |
| static int query_memdev(Object *obj, void *opaque) |
| { |
| MemdevList **list = opaque; |
| MemdevList *m = NULL; |
| |
| if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { |
| m = g_malloc0(sizeof(*m)); |
| |
| m->value = g_malloc0(sizeof(*m->value)); |
| |
| m->value->id = object_property_get_str(obj, "id", NULL); |
| m->value->has_id = !!m->value->id; |
| |
| m->value->size = object_property_get_int(obj, "size", |
| &error_abort); |
| m->value->merge = object_property_get_bool(obj, "merge", |
| &error_abort); |
| m->value->dump = object_property_get_bool(obj, "dump", |
| &error_abort); |
| m->value->prealloc = object_property_get_bool(obj, |
| "prealloc", |
| &error_abort); |
| m->value->policy = object_property_get_enum(obj, |
| "policy", |
| "HostMemPolicy", |
| &error_abort); |
| object_property_get_uint16List(obj, "host-nodes", |
| &m->value->host_nodes, |
| &error_abort); |
| |
| m->next = *list; |
| *list = m; |
| } |
| |
| return 0; |
| } |
| |
| MemdevList *qmp_query_memdev(Error **errp) |
| { |
| Object *obj = object_get_objects_root(); |
| MemdevList *list = NULL; |
| |
| object_child_foreach(obj, query_memdev, &list); |
| return list; |
| } |
| |
| int numa_get_node_for_cpu(int idx) |
| { |
| int i; |
| |
| for (i = 0; i < nb_numa_nodes; i++) { |
| if (test_bit(idx, numa_info[i].node_cpu)) { |
| break; |
| } |
| } |
| return i; |
| } |