| /* |
| * PowerPC MMU, TLB, SLB and BAT emulation helpers for QEMU. |
| * |
| * Copyright (c) 2003-2007 Jocelyn Mayer |
| * Copyright (c) 2013 David Gibson, IBM Corporation |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| #include "cpu.h" |
| #include "helper.h" |
| #include "sysemu/kvm.h" |
| #include "kvm_ppc.h" |
| #include "mmu-hash64.h" |
| |
| //#define DEBUG_MMU |
| //#define DEBUG_SLB |
| |
| #ifdef DEBUG_MMU |
| # define LOG_MMU(...) qemu_log(__VA_ARGS__) |
| # define LOG_MMU_STATE(env) log_cpu_state((env), 0) |
| #else |
| # define LOG_MMU(...) do { } while (0) |
| # define LOG_MMU_STATE(...) do { } while (0) |
| #endif |
| |
| #ifdef DEBUG_SLB |
| # define LOG_SLB(...) qemu_log(__VA_ARGS__) |
| #else |
| # define LOG_SLB(...) do { } while (0) |
| #endif |
| |
| struct mmu_ctx_hash64 { |
| hwaddr raddr; /* Real address */ |
| int prot; /* Protection bits */ |
| int key; /* Access key */ |
| }; |
| |
| /* |
| * SLB handling |
| */ |
| |
| static ppc_slb_t *slb_lookup(CPUPPCState *env, target_ulong eaddr) |
| { |
| uint64_t esid_256M, esid_1T; |
| int n; |
| |
| LOG_SLB("%s: eaddr " TARGET_FMT_lx "\n", __func__, eaddr); |
| |
| esid_256M = (eaddr & SEGMENT_MASK_256M) | SLB_ESID_V; |
| esid_1T = (eaddr & SEGMENT_MASK_1T) | SLB_ESID_V; |
| |
| for (n = 0; n < env->slb_nr; n++) { |
| ppc_slb_t *slb = &env->slb[n]; |
| |
| LOG_SLB("%s: slot %d %016" PRIx64 " %016" |
| PRIx64 "\n", __func__, n, slb->esid, slb->vsid); |
| /* We check for 1T matches on all MMUs here - if the MMU |
| * doesn't have 1T segment support, we will have prevented 1T |
| * entries from being inserted in the slbmte code. */ |
| if (((slb->esid == esid_256M) && |
| ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_256M)) |
| || ((slb->esid == esid_1T) && |
| ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_1T))) { |
| return slb; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| void dump_slb(FILE *f, fprintf_function cpu_fprintf, CPUPPCState *env) |
| { |
| int i; |
| uint64_t slbe, slbv; |
| |
| cpu_synchronize_state(env); |
| |
| cpu_fprintf(f, "SLB\tESID\t\t\tVSID\n"); |
| for (i = 0; i < env->slb_nr; i++) { |
| slbe = env->slb[i].esid; |
| slbv = env->slb[i].vsid; |
| if (slbe == 0 && slbv == 0) { |
| continue; |
| } |
| cpu_fprintf(f, "%d\t0x%016" PRIx64 "\t0x%016" PRIx64 "\n", |
| i, slbe, slbv); |
| } |
| } |
| |
| void helper_slbia(CPUPPCState *env) |
| { |
| int n, do_invalidate; |
| |
| do_invalidate = 0; |
| /* XXX: Warning: slbia never invalidates the first segment */ |
| for (n = 1; n < env->slb_nr; n++) { |
| ppc_slb_t *slb = &env->slb[n]; |
| |
| if (slb->esid & SLB_ESID_V) { |
| slb->esid &= ~SLB_ESID_V; |
| /* XXX: given the fact that segment size is 256 MB or 1TB, |
| * and we still don't have a tlb_flush_mask(env, n, mask) |
| * in QEMU, we just invalidate all TLBs |
| */ |
| do_invalidate = 1; |
| } |
| } |
| if (do_invalidate) { |
| tlb_flush(env, 1); |
| } |
| } |
| |
| void helper_slbie(CPUPPCState *env, target_ulong addr) |
| { |
| ppc_slb_t *slb; |
| |
| slb = slb_lookup(env, addr); |
| if (!slb) { |
| return; |
| } |
| |
| if (slb->esid & SLB_ESID_V) { |
| slb->esid &= ~SLB_ESID_V; |
| |
| /* XXX: given the fact that segment size is 256 MB or 1TB, |
| * and we still don't have a tlb_flush_mask(env, n, mask) |
| * in QEMU, we just invalidate all TLBs |
| */ |
| tlb_flush(env, 1); |
| } |
| } |
| |
| int ppc_store_slb(CPUPPCState *env, target_ulong rb, target_ulong rs) |
| { |
| int slot = rb & 0xfff; |
| ppc_slb_t *slb = &env->slb[slot]; |
| |
| if (rb & (0x1000 - env->slb_nr)) { |
| return -1; /* Reserved bits set or slot too high */ |
| } |
| if (rs & (SLB_VSID_B & ~SLB_VSID_B_1T)) { |
| return -1; /* Bad segment size */ |
| } |
| if ((rs & SLB_VSID_B) && !(env->mmu_model & POWERPC_MMU_1TSEG)) { |
| return -1; /* 1T segment on MMU that doesn't support it */ |
| } |
| |
| /* Mask out the slot number as we store the entry */ |
| slb->esid = rb & (SLB_ESID_ESID | SLB_ESID_V); |
| slb->vsid = rs; |
| |
| LOG_SLB("%s: %d " TARGET_FMT_lx " - " TARGET_FMT_lx " => %016" PRIx64 |
| " %016" PRIx64 "\n", __func__, slot, rb, rs, |
| slb->esid, slb->vsid); |
| |
| return 0; |
| } |
| |
| static int ppc_load_slb_esid(CPUPPCState *env, target_ulong rb, |
| target_ulong *rt) |
| { |
| int slot = rb & 0xfff; |
| ppc_slb_t *slb = &env->slb[slot]; |
| |
| if (slot >= env->slb_nr) { |
| return -1; |
| } |
| |
| *rt = slb->esid; |
| return 0; |
| } |
| |
| static int ppc_load_slb_vsid(CPUPPCState *env, target_ulong rb, |
| target_ulong *rt) |
| { |
| int slot = rb & 0xfff; |
| ppc_slb_t *slb = &env->slb[slot]; |
| |
| if (slot >= env->slb_nr) { |
| return -1; |
| } |
| |
| *rt = slb->vsid; |
| return 0; |
| } |
| |
| void helper_store_slb(CPUPPCState *env, target_ulong rb, target_ulong rs) |
| { |
| if (ppc_store_slb(env, rb, rs) < 0) { |
| helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM, |
| POWERPC_EXCP_INVAL); |
| } |
| } |
| |
| target_ulong helper_load_slb_esid(CPUPPCState *env, target_ulong rb) |
| { |
| target_ulong rt = 0; |
| |
| if (ppc_load_slb_esid(env, rb, &rt) < 0) { |
| helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM, |
| POWERPC_EXCP_INVAL); |
| } |
| return rt; |
| } |
| |
| target_ulong helper_load_slb_vsid(CPUPPCState *env, target_ulong rb) |
| { |
| target_ulong rt = 0; |
| |
| if (ppc_load_slb_vsid(env, rb, &rt) < 0) { |
| helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM, |
| POWERPC_EXCP_INVAL); |
| } |
| return rt; |
| } |
| |
| /* |
| * 64-bit hash table MMU handling |
| */ |
| |
| static int ppc_hash64_pp_check(int key, int pp, bool nx) |
| { |
| int access; |
| |
| /* Compute access rights */ |
| /* When pp is 4, 5 or 7, the result is undefined. Set it to noaccess */ |
| access = 0; |
| if (key == 0) { |
| switch (pp) { |
| case 0x0: |
| case 0x1: |
| case 0x2: |
| access |= PAGE_WRITE; |
| /* No break here */ |
| case 0x3: |
| case 0x6: |
| access |= PAGE_READ; |
| break; |
| } |
| } else { |
| switch (pp) { |
| case 0x0: |
| case 0x6: |
| access = 0; |
| break; |
| case 0x1: |
| case 0x3: |
| access = PAGE_READ; |
| break; |
| case 0x2: |
| access = PAGE_READ | PAGE_WRITE; |
| break; |
| } |
| } |
| if (!nx) { |
| access |= PAGE_EXEC; |
| } |
| |
| return access; |
| } |
| |
| static int ppc_hash64_check_prot(int prot, int rwx) |
| { |
| int ret; |
| |
| if (rwx == 2) { |
| if (prot & PAGE_EXEC) { |
| ret = 0; |
| } else { |
| ret = -2; |
| } |
| } else if (rwx == 1) { |
| if (prot & PAGE_WRITE) { |
| ret = 0; |
| } else { |
| ret = -2; |
| } |
| } else { |
| if (prot & PAGE_READ) { |
| ret = 0; |
| } else { |
| ret = -2; |
| } |
| } |
| |
| return ret; |
| } |
| |
| static int ppc_hash64_pte_update_flags(struct mmu_ctx_hash64 *ctx, |
| uint64_t *pte1p, int ret, int rw) |
| { |
| int store = 0; |
| |
| /* Update page flags */ |
| if (!(*pte1p & HPTE64_R_R)) { |
| /* Update accessed flag */ |
| *pte1p |= HPTE64_R_R; |
| store = 1; |
| } |
| if (!(*pte1p & HPTE64_R_C)) { |
| if (rw == 1 && ret == 0) { |
| /* Update changed flag */ |
| *pte1p |= HPTE64_R_C; |
| store = 1; |
| } else { |
| /* Force page fault for first write access */ |
| ctx->prot &= ~PAGE_WRITE; |
| } |
| } |
| |
| return store; |
| } |
| |
| static hwaddr ppc_hash64_pteg_search(CPUPPCState *env, hwaddr pteg_off, |
| bool secondary, target_ulong ptem, |
| ppc_hash_pte64_t *pte) |
| { |
| hwaddr pte_offset = pteg_off; |
| target_ulong pte0, pte1; |
| int i; |
| |
| for (i = 0; i < HPTES_PER_GROUP; i++) { |
| pte0 = ppc_hash64_load_hpte0(env, pte_offset); |
| pte1 = ppc_hash64_load_hpte1(env, pte_offset); |
| |
| if ((pte0 & HPTE64_V_VALID) |
| && (secondary == !!(pte0 & HPTE64_V_SECONDARY)) |
| && HPTE64_V_COMPARE(pte0, ptem)) { |
| pte->pte0 = pte0; |
| pte->pte1 = pte1; |
| return pte_offset; |
| } |
| |
| pte_offset += HASH_PTE_SIZE_64; |
| } |
| |
| return -1; |
| } |
| |
| static hwaddr ppc_hash64_htab_lookup(CPUPPCState *env, |
| ppc_slb_t *slb, target_ulong eaddr, |
| ppc_hash_pte64_t *pte) |
| { |
| hwaddr pteg_off, pte_offset; |
| hwaddr hash; |
| uint64_t vsid, epnshift, epnmask, epn, ptem; |
| |
| /* Page size according to the SLB, which we use to generate the |
| * EPN for hash table lookup.. When we implement more recent MMU |
| * extensions this might be different from the actual page size |
| * encoded in the PTE */ |
| epnshift = (slb->vsid & SLB_VSID_L) |
| ? TARGET_PAGE_BITS_16M : TARGET_PAGE_BITS; |
| epnmask = ~((1ULL << epnshift) - 1); |
| |
| if (slb->vsid & SLB_VSID_B) { |
| /* 1TB segment */ |
| vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT_1T; |
| epn = (eaddr & ~SEGMENT_MASK_1T) & epnmask; |
| hash = vsid ^ (vsid << 25) ^ (epn >> epnshift); |
| } else { |
| /* 256M segment */ |
| vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT; |
| epn = (eaddr & ~SEGMENT_MASK_256M) & epnmask; |
| hash = vsid ^ (epn >> epnshift); |
| } |
| ptem = (slb->vsid & SLB_VSID_PTEM) | ((epn >> 16) & HPTE64_V_AVPN); |
| |
| /* Page address translation */ |
| LOG_MMU("htab_base " TARGET_FMT_plx " htab_mask " TARGET_FMT_plx |
| " hash " TARGET_FMT_plx "\n", |
| env->htab_base, env->htab_mask, hash); |
| |
| /* Primary PTEG lookup */ |
| LOG_MMU("0 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx |
| " vsid=" TARGET_FMT_lx " ptem=" TARGET_FMT_lx |
| " hash=" TARGET_FMT_plx "\n", |
| env->htab_base, env->htab_mask, vsid, ptem, hash); |
| pteg_off = (hash * HASH_PTEG_SIZE_64) & env->htab_mask; |
| pte_offset = ppc_hash64_pteg_search(env, pteg_off, 0, ptem, pte); |
| |
| if (pte_offset == -1) { |
| /* Secondary PTEG lookup */ |
| LOG_MMU("1 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx |
| " vsid=" TARGET_FMT_lx " api=" TARGET_FMT_lx |
| " hash=" TARGET_FMT_plx "\n", env->htab_base, |
| env->htab_mask, vsid, ptem, ~hash); |
| |
| pteg_off = (~hash * HASH_PTEG_SIZE_64) & env->htab_mask; |
| pte_offset = ppc_hash64_pteg_search(env, pteg_off, 1, ptem, pte); |
| } |
| |
| return pte_offset; |
| } |
| |
| static int ppc_hash64_translate(CPUPPCState *env, struct mmu_ctx_hash64 *ctx, |
| target_ulong eaddr, int rwx) |
| { |
| int ret; |
| ppc_slb_t *slb; |
| hwaddr pte_offset; |
| ppc_hash_pte64_t pte; |
| int target_page_bits; |
| |
| assert((rwx == 0) || (rwx == 1) || (rwx == 2)); |
| |
| /* 1. Handle real mode accesses */ |
| if (((rwx == 2) && (msr_ir == 0)) || ((rwx != 2) && (msr_dr == 0))) { |
| /* Translation is off */ |
| /* In real mode the top 4 effective address bits are ignored */ |
| ctx->raddr = eaddr & 0x0FFFFFFFFFFFFFFFULL; |
| ctx->prot = PAGE_READ | PAGE_EXEC | PAGE_WRITE; |
| return 0; |
| } |
| |
| /* 2. Translation is on, so look up the SLB */ |
| slb = slb_lookup(env, eaddr); |
| |
| if (!slb) { |
| return -5; |
| } |
| |
| /* 3. Check for segment level no-execute violation */ |
| if ((rwx == 2) && (slb->vsid & SLB_VSID_N)) { |
| return -3; |
| } |
| |
| /* 4. Locate the PTE in the hash table */ |
| pte_offset = ppc_hash64_htab_lookup(env, slb, eaddr, &pte); |
| if (pte_offset == -1) { |
| return -1; |
| } |
| LOG_MMU("found PTE at offset %08" HWADDR_PRIx "\n", pte_offset); |
| |
| /* 5. Check access permissions */ |
| ctx->key = !!(msr_pr ? (slb->vsid & SLB_VSID_KP) |
| : (slb->vsid & SLB_VSID_KS)); |
| |
| |
| int access, pp; |
| bool nx; |
| |
| pp = (pte.pte1 & HPTE64_R_PP) | ((pte.pte1 & HPTE64_R_PP0) >> 61); |
| /* No execute if either noexec or guarded bits set */ |
| nx = (pte.pte1 & HPTE64_R_N) || (pte.pte1 & HPTE64_R_G); |
| /* Compute access rights */ |
| access = ppc_hash64_pp_check(ctx->key, pp, nx); |
| /* Keep the matching PTE informations */ |
| ctx->raddr = pte.pte1; |
| ctx->prot = access; |
| ret = ppc_hash64_check_prot(ctx->prot, rwx); |
| |
| if (ret) { |
| /* Access right violation */ |
| LOG_MMU("PTE access rejected\n"); |
| return ret; |
| } |
| |
| LOG_MMU("PTE access granted !\n"); |
| |
| /* 6. Update PTE referenced and changed bits if necessary */ |
| |
| if (ppc_hash64_pte_update_flags(ctx, &pte.pte1, ret, rwx) == 1) { |
| ppc_hash64_store_hpte1(env, pte_offset, pte.pte1); |
| } |
| |
| /* We have a TLB that saves 4K pages, so let's |
| * split a huge page to 4k chunks */ |
| target_page_bits = (slb->vsid & SLB_VSID_L) |
| ? TARGET_PAGE_BITS_16M : TARGET_PAGE_BITS; |
| if (target_page_bits != TARGET_PAGE_BITS) { |
| ctx->raddr |= (eaddr & ((1 << target_page_bits) - 1)) |
| & TARGET_PAGE_MASK; |
| } |
| return ret; |
| } |
| |
| hwaddr ppc_hash64_get_phys_page_debug(CPUPPCState *env, target_ulong addr) |
| { |
| struct mmu_ctx_hash64 ctx; |
| |
| if (unlikely(ppc_hash64_translate(env, &ctx, addr, 0) != 0)) { |
| return -1; |
| } |
| |
| return ctx.raddr & TARGET_PAGE_MASK; |
| } |
| |
| int ppc_hash64_handle_mmu_fault(CPUPPCState *env, target_ulong address, int rwx, |
| int mmu_idx) |
| { |
| struct mmu_ctx_hash64 ctx; |
| int ret = 0; |
| |
| ret = ppc_hash64_translate(env, &ctx, address, rwx); |
| if (ret == 0) { |
| tlb_set_page(env, address & TARGET_PAGE_MASK, |
| ctx.raddr & TARGET_PAGE_MASK, ctx.prot, |
| mmu_idx, TARGET_PAGE_SIZE); |
| ret = 0; |
| } else if (ret < 0) { |
| LOG_MMU_STATE(env); |
| if (rwx == 2) { |
| switch (ret) { |
| case -1: |
| env->exception_index = POWERPC_EXCP_ISI; |
| env->error_code = 0x40000000; |
| break; |
| case -2: |
| /* Access rights violation */ |
| env->exception_index = POWERPC_EXCP_ISI; |
| env->error_code = 0x08000000; |
| break; |
| case -3: |
| /* No execute protection violation */ |
| env->exception_index = POWERPC_EXCP_ISI; |
| env->error_code = 0x10000000; |
| break; |
| case -5: |
| /* No match in segment table */ |
| env->exception_index = POWERPC_EXCP_ISEG; |
| env->error_code = 0; |
| break; |
| } |
| } else { |
| switch (ret) { |
| case -1: |
| /* No matches in page tables or TLB */ |
| env->exception_index = POWERPC_EXCP_DSI; |
| env->error_code = 0; |
| env->spr[SPR_DAR] = address; |
| if (rwx == 1) { |
| env->spr[SPR_DSISR] = 0x42000000; |
| } else { |
| env->spr[SPR_DSISR] = 0x40000000; |
| } |
| break; |
| case -2: |
| /* Access rights violation */ |
| env->exception_index = POWERPC_EXCP_DSI; |
| env->error_code = 0; |
| env->spr[SPR_DAR] = address; |
| if (rwx == 1) { |
| env->spr[SPR_DSISR] = 0x0A000000; |
| } else { |
| env->spr[SPR_DSISR] = 0x08000000; |
| } |
| break; |
| case -5: |
| /* No match in segment table */ |
| env->exception_index = POWERPC_EXCP_DSEG; |
| env->error_code = 0; |
| env->spr[SPR_DAR] = address; |
| break; |
| } |
| } |
| #if 0 |
| printf("%s: set exception to %d %02x\n", __func__, |
| env->exception, env->error_code); |
| #endif |
| ret = 1; |
| } |
| |
| return ret; |
| } |