|  | /* | 
|  | * QEMU dump | 
|  | * | 
|  | * Copyright Fujitsu, Corp. 2011, 2012 | 
|  | * | 
|  | * Authors: | 
|  | *     Wen Congyang <wency@cn.fujitsu.com> | 
|  | * | 
|  | * This work is licensed under the terms of the GNU GPL, version 2 or later. | 
|  | * See the COPYING file in the top-level directory. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include "qemu/osdep.h" | 
|  | #include "qemu/cutils.h" | 
|  | #include "elf.h" | 
|  | #include "qemu/bswap.h" | 
|  | #include "exec/target_page.h" | 
|  | #include "monitor/monitor.h" | 
|  | #include "sysemu/dump.h" | 
|  | #include "sysemu/runstate.h" | 
|  | #include "sysemu/cpus.h" | 
|  | #include "qapi/error.h" | 
|  | #include "qapi/qapi-commands-dump.h" | 
|  | #include "qapi/qapi-events-dump.h" | 
|  | #include "qapi/qmp/qerror.h" | 
|  | #include "qemu/main-loop.h" | 
|  | #include "hw/misc/vmcoreinfo.h" | 
|  | #include "migration/blocker.h" | 
|  | #include "hw/core/cpu.h" | 
|  | #include "win_dump.h" | 
|  |  | 
|  | #include <zlib.h> | 
|  | #ifdef CONFIG_LZO | 
|  | #include <lzo/lzo1x.h> | 
|  | #endif | 
|  | #ifdef CONFIG_SNAPPY | 
|  | #include <snappy-c.h> | 
|  | #endif | 
|  | #ifndef ELF_MACHINE_UNAME | 
|  | #define ELF_MACHINE_UNAME "Unknown" | 
|  | #endif | 
|  |  | 
|  | #define MAX_GUEST_NOTE_SIZE (1 << 20) /* 1MB should be enough */ | 
|  |  | 
|  | static Error *dump_migration_blocker; | 
|  |  | 
|  | #define ELF_NOTE_SIZE(hdr_size, name_size, desc_size)   \ | 
|  | ((DIV_ROUND_UP((hdr_size), 4) +                     \ | 
|  | DIV_ROUND_UP((name_size), 4) +                    \ | 
|  | DIV_ROUND_UP((desc_size), 4)) * 4) | 
|  |  | 
|  | static inline bool dump_is_64bit(DumpState *s) | 
|  | { | 
|  | return s->dump_info.d_class == ELFCLASS64; | 
|  | } | 
|  |  | 
|  | static inline bool dump_has_filter(DumpState *s) | 
|  | { | 
|  | return s->filter_area_length > 0; | 
|  | } | 
|  |  | 
|  | uint16_t cpu_to_dump16(DumpState *s, uint16_t val) | 
|  | { | 
|  | if (s->dump_info.d_endian == ELFDATA2LSB) { | 
|  | val = cpu_to_le16(val); | 
|  | } else { | 
|  | val = cpu_to_be16(val); | 
|  | } | 
|  |  | 
|  | return val; | 
|  | } | 
|  |  | 
|  | uint32_t cpu_to_dump32(DumpState *s, uint32_t val) | 
|  | { | 
|  | if (s->dump_info.d_endian == ELFDATA2LSB) { | 
|  | val = cpu_to_le32(val); | 
|  | } else { | 
|  | val = cpu_to_be32(val); | 
|  | } | 
|  |  | 
|  | return val; | 
|  | } | 
|  |  | 
|  | uint64_t cpu_to_dump64(DumpState *s, uint64_t val) | 
|  | { | 
|  | if (s->dump_info.d_endian == ELFDATA2LSB) { | 
|  | val = cpu_to_le64(val); | 
|  | } else { | 
|  | val = cpu_to_be64(val); | 
|  | } | 
|  |  | 
|  | return val; | 
|  | } | 
|  |  | 
|  | static int dump_cleanup(DumpState *s) | 
|  | { | 
|  | guest_phys_blocks_free(&s->guest_phys_blocks); | 
|  | memory_mapping_list_free(&s->list); | 
|  | close(s->fd); | 
|  | g_free(s->guest_note); | 
|  | g_array_unref(s->string_table_buf); | 
|  | s->guest_note = NULL; | 
|  | if (s->resume) { | 
|  | if (s->detached) { | 
|  | qemu_mutex_lock_iothread(); | 
|  | } | 
|  | vm_start(); | 
|  | if (s->detached) { | 
|  | qemu_mutex_unlock_iothread(); | 
|  | } | 
|  | } | 
|  | migrate_del_blocker(dump_migration_blocker); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int fd_write_vmcore(const void *buf, size_t size, void *opaque) | 
|  | { | 
|  | DumpState *s = opaque; | 
|  | size_t written_size; | 
|  |  | 
|  | written_size = qemu_write_full(s->fd, buf, size); | 
|  | if (written_size != size) { | 
|  | return -errno; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void prepare_elf64_header(DumpState *s, Elf64_Ehdr *elf_header) | 
|  | { | 
|  | /* | 
|  | * phnum in the elf header is 16 bit, if we have more segments we | 
|  | * set phnum to PN_XNUM and write the real number of segments to a | 
|  | * special section. | 
|  | */ | 
|  | uint16_t phnum = MIN(s->phdr_num, PN_XNUM); | 
|  |  | 
|  | memset(elf_header, 0, sizeof(Elf64_Ehdr)); | 
|  | memcpy(elf_header, ELFMAG, SELFMAG); | 
|  | elf_header->e_ident[EI_CLASS] = ELFCLASS64; | 
|  | elf_header->e_ident[EI_DATA] = s->dump_info.d_endian; | 
|  | elf_header->e_ident[EI_VERSION] = EV_CURRENT; | 
|  | elf_header->e_type = cpu_to_dump16(s, ET_CORE); | 
|  | elf_header->e_machine = cpu_to_dump16(s, s->dump_info.d_machine); | 
|  | elf_header->e_version = cpu_to_dump32(s, EV_CURRENT); | 
|  | elf_header->e_ehsize = cpu_to_dump16(s, sizeof(elf_header)); | 
|  | elf_header->e_phoff = cpu_to_dump64(s, s->phdr_offset); | 
|  | elf_header->e_phentsize = cpu_to_dump16(s, sizeof(Elf64_Phdr)); | 
|  | elf_header->e_phnum = cpu_to_dump16(s, phnum); | 
|  | elf_header->e_shoff = cpu_to_dump64(s, s->shdr_offset); | 
|  | elf_header->e_shentsize = cpu_to_dump16(s, sizeof(Elf64_Shdr)); | 
|  | elf_header->e_shnum = cpu_to_dump16(s, s->shdr_num); | 
|  | elf_header->e_shstrndx = cpu_to_dump16(s, s->shdr_num - 1); | 
|  | } | 
|  |  | 
|  | static void prepare_elf32_header(DumpState *s, Elf32_Ehdr *elf_header) | 
|  | { | 
|  | /* | 
|  | * phnum in the elf header is 16 bit, if we have more segments we | 
|  | * set phnum to PN_XNUM and write the real number of segments to a | 
|  | * special section. | 
|  | */ | 
|  | uint16_t phnum = MIN(s->phdr_num, PN_XNUM); | 
|  |  | 
|  | memset(elf_header, 0, sizeof(Elf32_Ehdr)); | 
|  | memcpy(elf_header, ELFMAG, SELFMAG); | 
|  | elf_header->e_ident[EI_CLASS] = ELFCLASS32; | 
|  | elf_header->e_ident[EI_DATA] = s->dump_info.d_endian; | 
|  | elf_header->e_ident[EI_VERSION] = EV_CURRENT; | 
|  | elf_header->e_type = cpu_to_dump16(s, ET_CORE); | 
|  | elf_header->e_machine = cpu_to_dump16(s, s->dump_info.d_machine); | 
|  | elf_header->e_version = cpu_to_dump32(s, EV_CURRENT); | 
|  | elf_header->e_ehsize = cpu_to_dump16(s, sizeof(elf_header)); | 
|  | elf_header->e_phoff = cpu_to_dump32(s, s->phdr_offset); | 
|  | elf_header->e_phentsize = cpu_to_dump16(s, sizeof(Elf32_Phdr)); | 
|  | elf_header->e_phnum = cpu_to_dump16(s, phnum); | 
|  | elf_header->e_shoff = cpu_to_dump32(s, s->shdr_offset); | 
|  | elf_header->e_shentsize = cpu_to_dump16(s, sizeof(Elf32_Shdr)); | 
|  | elf_header->e_shnum = cpu_to_dump16(s, s->shdr_num); | 
|  | elf_header->e_shstrndx = cpu_to_dump16(s, s->shdr_num - 1); | 
|  | } | 
|  |  | 
|  | static void write_elf_header(DumpState *s, Error **errp) | 
|  | { | 
|  | Elf32_Ehdr elf32_header; | 
|  | Elf64_Ehdr elf64_header; | 
|  | size_t header_size; | 
|  | void *header_ptr; | 
|  | int ret; | 
|  |  | 
|  | /* The NULL header and the shstrtab are always defined */ | 
|  | assert(s->shdr_num >= 2); | 
|  | if (dump_is_64bit(s)) { | 
|  | prepare_elf64_header(s, &elf64_header); | 
|  | header_size = sizeof(elf64_header); | 
|  | header_ptr = &elf64_header; | 
|  | } else { | 
|  | prepare_elf32_header(s, &elf32_header); | 
|  | header_size = sizeof(elf32_header); | 
|  | header_ptr = &elf32_header; | 
|  | } | 
|  |  | 
|  | ret = fd_write_vmcore(header_ptr, header_size, s); | 
|  | if (ret < 0) { | 
|  | error_setg_errno(errp, -ret, "dump: failed to write elf header"); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void write_elf64_load(DumpState *s, MemoryMapping *memory_mapping, | 
|  | int phdr_index, hwaddr offset, | 
|  | hwaddr filesz, Error **errp) | 
|  | { | 
|  | Elf64_Phdr phdr; | 
|  | int ret; | 
|  |  | 
|  | memset(&phdr, 0, sizeof(Elf64_Phdr)); | 
|  | phdr.p_type = cpu_to_dump32(s, PT_LOAD); | 
|  | phdr.p_offset = cpu_to_dump64(s, offset); | 
|  | phdr.p_paddr = cpu_to_dump64(s, memory_mapping->phys_addr); | 
|  | phdr.p_filesz = cpu_to_dump64(s, filesz); | 
|  | phdr.p_memsz = cpu_to_dump64(s, memory_mapping->length); | 
|  | phdr.p_vaddr = cpu_to_dump64(s, memory_mapping->virt_addr) ?: phdr.p_paddr; | 
|  |  | 
|  | assert(memory_mapping->length >= filesz); | 
|  |  | 
|  | ret = fd_write_vmcore(&phdr, sizeof(Elf64_Phdr), s); | 
|  | if (ret < 0) { | 
|  | error_setg_errno(errp, -ret, | 
|  | "dump: failed to write program header table"); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void write_elf32_load(DumpState *s, MemoryMapping *memory_mapping, | 
|  | int phdr_index, hwaddr offset, | 
|  | hwaddr filesz, Error **errp) | 
|  | { | 
|  | Elf32_Phdr phdr; | 
|  | int ret; | 
|  |  | 
|  | memset(&phdr, 0, sizeof(Elf32_Phdr)); | 
|  | phdr.p_type = cpu_to_dump32(s, PT_LOAD); | 
|  | phdr.p_offset = cpu_to_dump32(s, offset); | 
|  | phdr.p_paddr = cpu_to_dump32(s, memory_mapping->phys_addr); | 
|  | phdr.p_filesz = cpu_to_dump32(s, filesz); | 
|  | phdr.p_memsz = cpu_to_dump32(s, memory_mapping->length); | 
|  | phdr.p_vaddr = | 
|  | cpu_to_dump32(s, memory_mapping->virt_addr) ?: phdr.p_paddr; | 
|  |  | 
|  | assert(memory_mapping->length >= filesz); | 
|  |  | 
|  | ret = fd_write_vmcore(&phdr, sizeof(Elf32_Phdr), s); | 
|  | if (ret < 0) { | 
|  | error_setg_errno(errp, -ret, | 
|  | "dump: failed to write program header table"); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void prepare_elf64_phdr_note(DumpState *s, Elf64_Phdr *phdr) | 
|  | { | 
|  | memset(phdr, 0, sizeof(*phdr)); | 
|  | phdr->p_type = cpu_to_dump32(s, PT_NOTE); | 
|  | phdr->p_offset = cpu_to_dump64(s, s->note_offset); | 
|  | phdr->p_paddr = 0; | 
|  | phdr->p_filesz = cpu_to_dump64(s, s->note_size); | 
|  | phdr->p_memsz = cpu_to_dump64(s, s->note_size); | 
|  | phdr->p_vaddr = 0; | 
|  | } | 
|  |  | 
|  | static inline int cpu_index(CPUState *cpu) | 
|  | { | 
|  | return cpu->cpu_index + 1; | 
|  | } | 
|  |  | 
|  | static void write_guest_note(WriteCoreDumpFunction f, DumpState *s, | 
|  | Error **errp) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (s->guest_note) { | 
|  | ret = f(s->guest_note, s->guest_note_size, s); | 
|  | if (ret < 0) { | 
|  | error_setg(errp, "dump: failed to write guest note"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void write_elf64_notes(WriteCoreDumpFunction f, DumpState *s, | 
|  | Error **errp) | 
|  | { | 
|  | CPUState *cpu; | 
|  | int ret; | 
|  | int id; | 
|  |  | 
|  | CPU_FOREACH(cpu) { | 
|  | id = cpu_index(cpu); | 
|  | ret = cpu_write_elf64_note(f, cpu, id, s); | 
|  | if (ret < 0) { | 
|  | error_setg(errp, "dump: failed to write elf notes"); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | CPU_FOREACH(cpu) { | 
|  | ret = cpu_write_elf64_qemunote(f, cpu, s); | 
|  | if (ret < 0) { | 
|  | error_setg(errp, "dump: failed to write CPU status"); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | write_guest_note(f, s, errp); | 
|  | } | 
|  |  | 
|  | static void prepare_elf32_phdr_note(DumpState *s, Elf32_Phdr *phdr) | 
|  | { | 
|  | memset(phdr, 0, sizeof(*phdr)); | 
|  | phdr->p_type = cpu_to_dump32(s, PT_NOTE); | 
|  | phdr->p_offset = cpu_to_dump32(s, s->note_offset); | 
|  | phdr->p_paddr = 0; | 
|  | phdr->p_filesz = cpu_to_dump32(s, s->note_size); | 
|  | phdr->p_memsz = cpu_to_dump32(s, s->note_size); | 
|  | phdr->p_vaddr = 0; | 
|  | } | 
|  |  | 
|  | static void write_elf32_notes(WriteCoreDumpFunction f, DumpState *s, | 
|  | Error **errp) | 
|  | { | 
|  | CPUState *cpu; | 
|  | int ret; | 
|  | int id; | 
|  |  | 
|  | CPU_FOREACH(cpu) { | 
|  | id = cpu_index(cpu); | 
|  | ret = cpu_write_elf32_note(f, cpu, id, s); | 
|  | if (ret < 0) { | 
|  | error_setg(errp, "dump: failed to write elf notes"); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | CPU_FOREACH(cpu) { | 
|  | ret = cpu_write_elf32_qemunote(f, cpu, s); | 
|  | if (ret < 0) { | 
|  | error_setg(errp, "dump: failed to write CPU status"); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | write_guest_note(f, s, errp); | 
|  | } | 
|  |  | 
|  | static void write_elf_phdr_note(DumpState *s, Error **errp) | 
|  | { | 
|  | Elf32_Phdr phdr32; | 
|  | Elf64_Phdr phdr64; | 
|  | void *phdr; | 
|  | size_t size; | 
|  | int ret; | 
|  |  | 
|  | if (dump_is_64bit(s)) { | 
|  | prepare_elf64_phdr_note(s, &phdr64); | 
|  | size = sizeof(phdr64); | 
|  | phdr = &phdr64; | 
|  | } else { | 
|  | prepare_elf32_phdr_note(s, &phdr32); | 
|  | size = sizeof(phdr32); | 
|  | phdr = &phdr32; | 
|  | } | 
|  |  | 
|  | ret = fd_write_vmcore(phdr, size, s); | 
|  | if (ret < 0) { | 
|  | error_setg_errno(errp, -ret, | 
|  | "dump: failed to write program header table"); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void prepare_elf_section_hdr_zero(DumpState *s) | 
|  | { | 
|  | if (dump_is_64bit(s)) { | 
|  | Elf64_Shdr *shdr64 = s->elf_section_hdrs; | 
|  |  | 
|  | shdr64->sh_info = cpu_to_dump32(s, s->phdr_num); | 
|  | } else { | 
|  | Elf32_Shdr *shdr32 = s->elf_section_hdrs; | 
|  |  | 
|  | shdr32->sh_info = cpu_to_dump32(s, s->phdr_num); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void prepare_elf_section_hdr_string(DumpState *s, void *buff) | 
|  | { | 
|  | uint64_t index = s->string_table_buf->len; | 
|  | const char strtab[] = ".shstrtab"; | 
|  | Elf32_Shdr shdr32 = {}; | 
|  | Elf64_Shdr shdr64 = {}; | 
|  | int shdr_size; | 
|  | void *shdr; | 
|  |  | 
|  | g_array_append_vals(s->string_table_buf, strtab, sizeof(strtab)); | 
|  | if (dump_is_64bit(s)) { | 
|  | shdr_size = sizeof(Elf64_Shdr); | 
|  | shdr64.sh_type = SHT_STRTAB; | 
|  | shdr64.sh_offset = s->section_offset + s->elf_section_data_size; | 
|  | shdr64.sh_name = index; | 
|  | shdr64.sh_size = s->string_table_buf->len; | 
|  | shdr = &shdr64; | 
|  | } else { | 
|  | shdr_size = sizeof(Elf32_Shdr); | 
|  | shdr32.sh_type = SHT_STRTAB; | 
|  | shdr32.sh_offset = s->section_offset + s->elf_section_data_size; | 
|  | shdr32.sh_name = index; | 
|  | shdr32.sh_size = s->string_table_buf->len; | 
|  | shdr = &shdr32; | 
|  | } | 
|  | memcpy(buff, shdr, shdr_size); | 
|  | } | 
|  |  | 
|  | static bool prepare_elf_section_hdrs(DumpState *s, Error **errp) | 
|  | { | 
|  | size_t len, sizeof_shdr; | 
|  | void *buff_hdr; | 
|  |  | 
|  | /* | 
|  | * Section ordering: | 
|  | * - HDR zero | 
|  | * - Arch section hdrs | 
|  | * - String table hdr | 
|  | */ | 
|  | sizeof_shdr = dump_is_64bit(s) ? sizeof(Elf64_Shdr) : sizeof(Elf32_Shdr); | 
|  | len = sizeof_shdr * s->shdr_num; | 
|  | s->elf_section_hdrs = g_malloc0(len); | 
|  | buff_hdr = s->elf_section_hdrs; | 
|  |  | 
|  | /* | 
|  | * The first section header is ALWAYS a special initial section | 
|  | * header. | 
|  | * | 
|  | * The header should be 0 with one exception being that if | 
|  | * phdr_num is PN_XNUM then the sh_info field contains the real | 
|  | * number of segment entries. | 
|  | * | 
|  | * As we zero allocate the buffer we will only need to modify | 
|  | * sh_info for the PN_XNUM case. | 
|  | */ | 
|  | if (s->phdr_num >= PN_XNUM) { | 
|  | prepare_elf_section_hdr_zero(s); | 
|  | } | 
|  | buff_hdr += sizeof_shdr; | 
|  |  | 
|  | /* Add architecture defined section headers */ | 
|  | if (s->dump_info.arch_sections_write_hdr_fn | 
|  | && s->shdr_num > 2) { | 
|  | buff_hdr += s->dump_info.arch_sections_write_hdr_fn(s, buff_hdr); | 
|  |  | 
|  | if (s->shdr_num >= SHN_LORESERVE) { | 
|  | error_setg_errno(errp, EINVAL, | 
|  | "dump: too many architecture defined sections"); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * String table is the last section since strings are added via | 
|  | * arch_sections_write_hdr(). | 
|  | */ | 
|  | prepare_elf_section_hdr_string(s, buff_hdr); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void write_elf_section_headers(DumpState *s, Error **errp) | 
|  | { | 
|  | size_t sizeof_shdr = dump_is_64bit(s) ? sizeof(Elf64_Shdr) : sizeof(Elf32_Shdr); | 
|  | int ret; | 
|  |  | 
|  | if (!prepare_elf_section_hdrs(s, errp)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | ret = fd_write_vmcore(s->elf_section_hdrs, s->shdr_num * sizeof_shdr, s); | 
|  | if (ret < 0) { | 
|  | error_setg_errno(errp, -ret, "dump: failed to write section headers"); | 
|  | } | 
|  |  | 
|  | g_free(s->elf_section_hdrs); | 
|  | } | 
|  |  | 
|  | static void write_elf_sections(DumpState *s, Error **errp) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (s->elf_section_data_size) { | 
|  | /* Write architecture section data */ | 
|  | ret = fd_write_vmcore(s->elf_section_data, | 
|  | s->elf_section_data_size, s); | 
|  | if (ret < 0) { | 
|  | error_setg_errno(errp, -ret, | 
|  | "dump: failed to write architecture section data"); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Write string table */ | 
|  | ret = fd_write_vmcore(s->string_table_buf->data, | 
|  | s->string_table_buf->len, s); | 
|  | if (ret < 0) { | 
|  | error_setg_errno(errp, -ret, "dump: failed to write string table data"); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void write_data(DumpState *s, void *buf, int length, Error **errp) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = fd_write_vmcore(buf, length, s); | 
|  | if (ret < 0) { | 
|  | error_setg_errno(errp, -ret, "dump: failed to save memory"); | 
|  | } else { | 
|  | s->written_size += length; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* write the memory to vmcore. 1 page per I/O. */ | 
|  | static void write_memory(DumpState *s, GuestPhysBlock *block, ram_addr_t start, | 
|  | int64_t size, Error **errp) | 
|  | { | 
|  | ERRP_GUARD(); | 
|  | int64_t i; | 
|  |  | 
|  | for (i = 0; i < size / s->dump_info.page_size; i++) { | 
|  | write_data(s, block->host_addr + start + i * s->dump_info.page_size, | 
|  | s->dump_info.page_size, errp); | 
|  | if (*errp) { | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | if ((size % s->dump_info.page_size) != 0) { | 
|  | write_data(s, block->host_addr + start + i * s->dump_info.page_size, | 
|  | size % s->dump_info.page_size, errp); | 
|  | if (*errp) { | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* get the memory's offset and size in the vmcore */ | 
|  | static void get_offset_range(hwaddr phys_addr, | 
|  | ram_addr_t mapping_length, | 
|  | DumpState *s, | 
|  | hwaddr *p_offset, | 
|  | hwaddr *p_filesz) | 
|  | { | 
|  | GuestPhysBlock *block; | 
|  | hwaddr offset = s->memory_offset; | 
|  | int64_t size_in_block, start; | 
|  |  | 
|  | /* When the memory is not stored into vmcore, offset will be -1 */ | 
|  | *p_offset = -1; | 
|  | *p_filesz = 0; | 
|  |  | 
|  | if (dump_has_filter(s)) { | 
|  | if (phys_addr < s->filter_area_begin || | 
|  | phys_addr >= s->filter_area_begin + s->filter_area_length) { | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) { | 
|  | if (dump_has_filter(s)) { | 
|  | if (block->target_start >= s->filter_area_begin + s->filter_area_length || | 
|  | block->target_end <= s->filter_area_begin) { | 
|  | /* This block is out of the range */ | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (s->filter_area_begin <= block->target_start) { | 
|  | start = block->target_start; | 
|  | } else { | 
|  | start = s->filter_area_begin; | 
|  | } | 
|  |  | 
|  | size_in_block = block->target_end - start; | 
|  | if (s->filter_area_begin + s->filter_area_length < block->target_end) { | 
|  | size_in_block -= block->target_end - (s->filter_area_begin + s->filter_area_length); | 
|  | } | 
|  | } else { | 
|  | start = block->target_start; | 
|  | size_in_block = block->target_end - block->target_start; | 
|  | } | 
|  |  | 
|  | if (phys_addr >= start && phys_addr < start + size_in_block) { | 
|  | *p_offset = phys_addr - start + offset; | 
|  |  | 
|  | /* The offset range mapped from the vmcore file must not spill over | 
|  | * the GuestPhysBlock, clamp it. The rest of the mapping will be | 
|  | * zero-filled in memory at load time; see | 
|  | * <http://refspecs.linuxbase.org/elf/gabi4+/ch5.pheader.html>. | 
|  | */ | 
|  | *p_filesz = phys_addr + mapping_length <= start + size_in_block ? | 
|  | mapping_length : | 
|  | size_in_block - (phys_addr - start); | 
|  | return; | 
|  | } | 
|  |  | 
|  | offset += size_in_block; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void write_elf_phdr_loads(DumpState *s, Error **errp) | 
|  | { | 
|  | ERRP_GUARD(); | 
|  | hwaddr offset, filesz; | 
|  | MemoryMapping *memory_mapping; | 
|  | uint32_t phdr_index = 1; | 
|  |  | 
|  | QTAILQ_FOREACH(memory_mapping, &s->list.head, next) { | 
|  | get_offset_range(memory_mapping->phys_addr, | 
|  | memory_mapping->length, | 
|  | s, &offset, &filesz); | 
|  | if (dump_is_64bit(s)) { | 
|  | write_elf64_load(s, memory_mapping, phdr_index++, offset, | 
|  | filesz, errp); | 
|  | } else { | 
|  | write_elf32_load(s, memory_mapping, phdr_index++, offset, | 
|  | filesz, errp); | 
|  | } | 
|  |  | 
|  | if (*errp) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (phdr_index >= s->phdr_num) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void write_elf_notes(DumpState *s, Error **errp) | 
|  | { | 
|  | if (dump_is_64bit(s)) { | 
|  | write_elf64_notes(fd_write_vmcore, s, errp); | 
|  | } else { | 
|  | write_elf32_notes(fd_write_vmcore, s, errp); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* write elf header, PT_NOTE and elf note to vmcore. */ | 
|  | static void dump_begin(DumpState *s, Error **errp) | 
|  | { | 
|  | ERRP_GUARD(); | 
|  |  | 
|  | /* | 
|  | * the vmcore's format is: | 
|  | *   -------------- | 
|  | *   |  elf header | | 
|  | *   -------------- | 
|  | *   |  sctn_hdr   | | 
|  | *   -------------- | 
|  | *   |  PT_NOTE    | | 
|  | *   -------------- | 
|  | *   |  PT_LOAD    | | 
|  | *   -------------- | 
|  | *   |  ......     | | 
|  | *   -------------- | 
|  | *   |  PT_LOAD    | | 
|  | *   -------------- | 
|  | *   |  elf note   | | 
|  | *   -------------- | 
|  | *   |  memory     | | 
|  | *   -------------- | 
|  | * | 
|  | * we only know where the memory is saved after we write elf note into | 
|  | * vmcore. | 
|  | */ | 
|  |  | 
|  | /* write elf header to vmcore */ | 
|  | write_elf_header(s, errp); | 
|  | if (*errp) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* write section headers to vmcore */ | 
|  | write_elf_section_headers(s, errp); | 
|  | if (*errp) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* write PT_NOTE to vmcore */ | 
|  | write_elf_phdr_note(s, errp); | 
|  | if (*errp) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* write all PT_LOADs to vmcore */ | 
|  | write_elf_phdr_loads(s, errp); | 
|  | if (*errp) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* write notes to vmcore */ | 
|  | write_elf_notes(s, errp); | 
|  | } | 
|  |  | 
|  | int64_t dump_filtered_memblock_size(GuestPhysBlock *block, | 
|  | int64_t filter_area_start, | 
|  | int64_t filter_area_length) | 
|  | { | 
|  | int64_t size, left, right; | 
|  |  | 
|  | /* No filter, return full size */ | 
|  | if (!filter_area_length) { | 
|  | return block->target_end - block->target_start; | 
|  | } | 
|  |  | 
|  | /* calculate the overlapped region. */ | 
|  | left = MAX(filter_area_start, block->target_start); | 
|  | right = MIN(filter_area_start + filter_area_length, block->target_end); | 
|  | size = right - left; | 
|  | size = size > 0 ? size : 0; | 
|  |  | 
|  | return size; | 
|  | } | 
|  |  | 
|  | int64_t dump_filtered_memblock_start(GuestPhysBlock *block, | 
|  | int64_t filter_area_start, | 
|  | int64_t filter_area_length) | 
|  | { | 
|  | if (filter_area_length) { | 
|  | /* return -1 if the block is not within filter area */ | 
|  | if (block->target_start >= filter_area_start + filter_area_length || | 
|  | block->target_end <= filter_area_start) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (filter_area_start > block->target_start) { | 
|  | return filter_area_start - block->target_start; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* write all memory to vmcore */ | 
|  | static void dump_iterate(DumpState *s, Error **errp) | 
|  | { | 
|  | ERRP_GUARD(); | 
|  | GuestPhysBlock *block; | 
|  | int64_t memblock_size, memblock_start; | 
|  |  | 
|  | QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) { | 
|  | memblock_start = dump_filtered_memblock_start(block, s->filter_area_begin, s->filter_area_length); | 
|  | if (memblock_start == -1) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | memblock_size = dump_filtered_memblock_size(block, s->filter_area_begin, s->filter_area_length); | 
|  |  | 
|  | /* Write the memory to file */ | 
|  | write_memory(s, block, memblock_start, memblock_size, errp); | 
|  | if (*errp) { | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void dump_end(DumpState *s, Error **errp) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | if (s->elf_section_data_size) { | 
|  | s->elf_section_data = g_malloc0(s->elf_section_data_size); | 
|  | } | 
|  |  | 
|  | /* Adds the architecture defined section data to s->elf_section_data  */ | 
|  | if (s->dump_info.arch_sections_write_fn && | 
|  | s->elf_section_data_size) { | 
|  | rc = s->dump_info.arch_sections_write_fn(s, s->elf_section_data); | 
|  | if (rc) { | 
|  | error_setg_errno(errp, rc, | 
|  | "dump: failed to get arch section data"); | 
|  | g_free(s->elf_section_data); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* write sections to vmcore */ | 
|  | write_elf_sections(s, errp); | 
|  | } | 
|  |  | 
|  | static void create_vmcore(DumpState *s, Error **errp) | 
|  | { | 
|  | ERRP_GUARD(); | 
|  |  | 
|  | dump_begin(s, errp); | 
|  | if (*errp) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Iterate over memory and dump it to file */ | 
|  | dump_iterate(s, errp); | 
|  | if (*errp) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Write the section data */ | 
|  | dump_end(s, errp); | 
|  | } | 
|  |  | 
|  | static int write_start_flat_header(int fd) | 
|  | { | 
|  | MakedumpfileHeader *mh; | 
|  | int ret = 0; | 
|  |  | 
|  | QEMU_BUILD_BUG_ON(sizeof *mh > MAX_SIZE_MDF_HEADER); | 
|  | mh = g_malloc0(MAX_SIZE_MDF_HEADER); | 
|  |  | 
|  | memcpy(mh->signature, MAKEDUMPFILE_SIGNATURE, | 
|  | MIN(sizeof mh->signature, sizeof MAKEDUMPFILE_SIGNATURE)); | 
|  |  | 
|  | mh->type = cpu_to_be64(TYPE_FLAT_HEADER); | 
|  | mh->version = cpu_to_be64(VERSION_FLAT_HEADER); | 
|  |  | 
|  | size_t written_size; | 
|  | written_size = qemu_write_full(fd, mh, MAX_SIZE_MDF_HEADER); | 
|  | if (written_size != MAX_SIZE_MDF_HEADER) { | 
|  | ret = -1; | 
|  | } | 
|  |  | 
|  | g_free(mh); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int write_end_flat_header(int fd) | 
|  | { | 
|  | MakedumpfileDataHeader mdh; | 
|  |  | 
|  | mdh.offset = END_FLAG_FLAT_HEADER; | 
|  | mdh.buf_size = END_FLAG_FLAT_HEADER; | 
|  |  | 
|  | size_t written_size; | 
|  | written_size = qemu_write_full(fd, &mdh, sizeof(mdh)); | 
|  | if (written_size != sizeof(mdh)) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int write_buffer(int fd, off_t offset, const void *buf, size_t size) | 
|  | { | 
|  | size_t written_size; | 
|  | MakedumpfileDataHeader mdh; | 
|  |  | 
|  | mdh.offset = cpu_to_be64(offset); | 
|  | mdh.buf_size = cpu_to_be64(size); | 
|  |  | 
|  | written_size = qemu_write_full(fd, &mdh, sizeof(mdh)); | 
|  | if (written_size != sizeof(mdh)) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | written_size = qemu_write_full(fd, buf, size); | 
|  | if (written_size != size) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int buf_write_note(const void *buf, size_t size, void *opaque) | 
|  | { | 
|  | DumpState *s = opaque; | 
|  |  | 
|  | /* note_buf is not enough */ | 
|  | if (s->note_buf_offset + size > s->note_size) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | memcpy(s->note_buf + s->note_buf_offset, buf, size); | 
|  |  | 
|  | s->note_buf_offset += size; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function retrieves various sizes from an elf header. | 
|  | * | 
|  | * @note has to be a valid ELF note. The return sizes are unmodified | 
|  | * (not padded or rounded up to be multiple of 4). | 
|  | */ | 
|  | static void get_note_sizes(DumpState *s, const void *note, | 
|  | uint64_t *note_head_size, | 
|  | uint64_t *name_size, | 
|  | uint64_t *desc_size) | 
|  | { | 
|  | uint64_t note_head_sz; | 
|  | uint64_t name_sz; | 
|  | uint64_t desc_sz; | 
|  |  | 
|  | if (dump_is_64bit(s)) { | 
|  | const Elf64_Nhdr *hdr = note; | 
|  | note_head_sz = sizeof(Elf64_Nhdr); | 
|  | name_sz = cpu_to_dump64(s, hdr->n_namesz); | 
|  | desc_sz = cpu_to_dump64(s, hdr->n_descsz); | 
|  | } else { | 
|  | const Elf32_Nhdr *hdr = note; | 
|  | note_head_sz = sizeof(Elf32_Nhdr); | 
|  | name_sz = cpu_to_dump32(s, hdr->n_namesz); | 
|  | desc_sz = cpu_to_dump32(s, hdr->n_descsz); | 
|  | } | 
|  |  | 
|  | if (note_head_size) { | 
|  | *note_head_size = note_head_sz; | 
|  | } | 
|  | if (name_size) { | 
|  | *name_size = name_sz; | 
|  | } | 
|  | if (desc_size) { | 
|  | *desc_size = desc_sz; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool note_name_equal(DumpState *s, | 
|  | const uint8_t *note, const char *name) | 
|  | { | 
|  | int len = strlen(name) + 1; | 
|  | uint64_t head_size, name_size; | 
|  |  | 
|  | get_note_sizes(s, note, &head_size, &name_size, NULL); | 
|  | head_size = ROUND_UP(head_size, 4); | 
|  |  | 
|  | return name_size == len && memcmp(note + head_size, name, len) == 0; | 
|  | } | 
|  |  | 
|  | /* write common header, sub header and elf note to vmcore */ | 
|  | static void create_header32(DumpState *s, Error **errp) | 
|  | { | 
|  | ERRP_GUARD(); | 
|  | DiskDumpHeader32 *dh = NULL; | 
|  | KdumpSubHeader32 *kh = NULL; | 
|  | size_t size; | 
|  | uint32_t block_size; | 
|  | uint32_t sub_hdr_size; | 
|  | uint32_t bitmap_blocks; | 
|  | uint32_t status = 0; | 
|  | uint64_t offset_note; | 
|  |  | 
|  | /* write common header, the version of kdump-compressed format is 6th */ | 
|  | size = sizeof(DiskDumpHeader32); | 
|  | dh = g_malloc0(size); | 
|  |  | 
|  | memcpy(dh->signature, KDUMP_SIGNATURE, SIG_LEN); | 
|  | dh->header_version = cpu_to_dump32(s, 6); | 
|  | block_size = s->dump_info.page_size; | 
|  | dh->block_size = cpu_to_dump32(s, block_size); | 
|  | sub_hdr_size = sizeof(struct KdumpSubHeader32) + s->note_size; | 
|  | sub_hdr_size = DIV_ROUND_UP(sub_hdr_size, block_size); | 
|  | dh->sub_hdr_size = cpu_to_dump32(s, sub_hdr_size); | 
|  | /* dh->max_mapnr may be truncated, full 64bit is in kh.max_mapnr_64 */ | 
|  | dh->max_mapnr = cpu_to_dump32(s, MIN(s->max_mapnr, UINT_MAX)); | 
|  | dh->nr_cpus = cpu_to_dump32(s, s->nr_cpus); | 
|  | bitmap_blocks = DIV_ROUND_UP(s->len_dump_bitmap, block_size) * 2; | 
|  | dh->bitmap_blocks = cpu_to_dump32(s, bitmap_blocks); | 
|  | strncpy(dh->utsname.machine, ELF_MACHINE_UNAME, sizeof(dh->utsname.machine)); | 
|  |  | 
|  | if (s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) { | 
|  | status |= DUMP_DH_COMPRESSED_ZLIB; | 
|  | } | 
|  | #ifdef CONFIG_LZO | 
|  | if (s->flag_compress & DUMP_DH_COMPRESSED_LZO) { | 
|  | status |= DUMP_DH_COMPRESSED_LZO; | 
|  | } | 
|  | #endif | 
|  | #ifdef CONFIG_SNAPPY | 
|  | if (s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) { | 
|  | status |= DUMP_DH_COMPRESSED_SNAPPY; | 
|  | } | 
|  | #endif | 
|  | dh->status = cpu_to_dump32(s, status); | 
|  |  | 
|  | if (write_buffer(s->fd, 0, dh, size) < 0) { | 
|  | error_setg(errp, "dump: failed to write disk dump header"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* write sub header */ | 
|  | size = sizeof(KdumpSubHeader32); | 
|  | kh = g_malloc0(size); | 
|  |  | 
|  | /* 64bit max_mapnr_64 */ | 
|  | kh->max_mapnr_64 = cpu_to_dump64(s, s->max_mapnr); | 
|  | kh->phys_base = cpu_to_dump32(s, s->dump_info.phys_base); | 
|  | kh->dump_level = cpu_to_dump32(s, DUMP_LEVEL); | 
|  |  | 
|  | offset_note = DISKDUMP_HEADER_BLOCKS * block_size + size; | 
|  | if (s->guest_note && | 
|  | note_name_equal(s, s->guest_note, "VMCOREINFO")) { | 
|  | uint64_t hsize, name_size, size_vmcoreinfo_desc, offset_vmcoreinfo; | 
|  |  | 
|  | get_note_sizes(s, s->guest_note, | 
|  | &hsize, &name_size, &size_vmcoreinfo_desc); | 
|  | offset_vmcoreinfo = offset_note + s->note_size - s->guest_note_size + | 
|  | (DIV_ROUND_UP(hsize, 4) + DIV_ROUND_UP(name_size, 4)) * 4; | 
|  | kh->offset_vmcoreinfo = cpu_to_dump64(s, offset_vmcoreinfo); | 
|  | kh->size_vmcoreinfo = cpu_to_dump32(s, size_vmcoreinfo_desc); | 
|  | } | 
|  |  | 
|  | kh->offset_note = cpu_to_dump64(s, offset_note); | 
|  | kh->note_size = cpu_to_dump32(s, s->note_size); | 
|  |  | 
|  | if (write_buffer(s->fd, DISKDUMP_HEADER_BLOCKS * | 
|  | block_size, kh, size) < 0) { | 
|  | error_setg(errp, "dump: failed to write kdump sub header"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* write note */ | 
|  | s->note_buf = g_malloc0(s->note_size); | 
|  | s->note_buf_offset = 0; | 
|  |  | 
|  | /* use s->note_buf to store notes temporarily */ | 
|  | write_elf32_notes(buf_write_note, s, errp); | 
|  | if (*errp) { | 
|  | goto out; | 
|  | } | 
|  | if (write_buffer(s->fd, offset_note, s->note_buf, | 
|  | s->note_size) < 0) { | 
|  | error_setg(errp, "dump: failed to write notes"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* get offset of dump_bitmap */ | 
|  | s->offset_dump_bitmap = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size) * | 
|  | block_size; | 
|  |  | 
|  | /* get offset of page */ | 
|  | s->offset_page = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size + bitmap_blocks) * | 
|  | block_size; | 
|  |  | 
|  | out: | 
|  | g_free(dh); | 
|  | g_free(kh); | 
|  | g_free(s->note_buf); | 
|  | } | 
|  |  | 
|  | /* write common header, sub header and elf note to vmcore */ | 
|  | static void create_header64(DumpState *s, Error **errp) | 
|  | { | 
|  | ERRP_GUARD(); | 
|  | DiskDumpHeader64 *dh = NULL; | 
|  | KdumpSubHeader64 *kh = NULL; | 
|  | size_t size; | 
|  | uint32_t block_size; | 
|  | uint32_t sub_hdr_size; | 
|  | uint32_t bitmap_blocks; | 
|  | uint32_t status = 0; | 
|  | uint64_t offset_note; | 
|  |  | 
|  | /* write common header, the version of kdump-compressed format is 6th */ | 
|  | size = sizeof(DiskDumpHeader64); | 
|  | dh = g_malloc0(size); | 
|  |  | 
|  | memcpy(dh->signature, KDUMP_SIGNATURE, SIG_LEN); | 
|  | dh->header_version = cpu_to_dump32(s, 6); | 
|  | block_size = s->dump_info.page_size; | 
|  | dh->block_size = cpu_to_dump32(s, block_size); | 
|  | sub_hdr_size = sizeof(struct KdumpSubHeader64) + s->note_size; | 
|  | sub_hdr_size = DIV_ROUND_UP(sub_hdr_size, block_size); | 
|  | dh->sub_hdr_size = cpu_to_dump32(s, sub_hdr_size); | 
|  | /* dh->max_mapnr may be truncated, full 64bit is in kh.max_mapnr_64 */ | 
|  | dh->max_mapnr = cpu_to_dump32(s, MIN(s->max_mapnr, UINT_MAX)); | 
|  | dh->nr_cpus = cpu_to_dump32(s, s->nr_cpus); | 
|  | bitmap_blocks = DIV_ROUND_UP(s->len_dump_bitmap, block_size) * 2; | 
|  | dh->bitmap_blocks = cpu_to_dump32(s, bitmap_blocks); | 
|  | strncpy(dh->utsname.machine, ELF_MACHINE_UNAME, sizeof(dh->utsname.machine)); | 
|  |  | 
|  | if (s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) { | 
|  | status |= DUMP_DH_COMPRESSED_ZLIB; | 
|  | } | 
|  | #ifdef CONFIG_LZO | 
|  | if (s->flag_compress & DUMP_DH_COMPRESSED_LZO) { | 
|  | status |= DUMP_DH_COMPRESSED_LZO; | 
|  | } | 
|  | #endif | 
|  | #ifdef CONFIG_SNAPPY | 
|  | if (s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) { | 
|  | status |= DUMP_DH_COMPRESSED_SNAPPY; | 
|  | } | 
|  | #endif | 
|  | dh->status = cpu_to_dump32(s, status); | 
|  |  | 
|  | if (write_buffer(s->fd, 0, dh, size) < 0) { | 
|  | error_setg(errp, "dump: failed to write disk dump header"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* write sub header */ | 
|  | size = sizeof(KdumpSubHeader64); | 
|  | kh = g_malloc0(size); | 
|  |  | 
|  | /* 64bit max_mapnr_64 */ | 
|  | kh->max_mapnr_64 = cpu_to_dump64(s, s->max_mapnr); | 
|  | kh->phys_base = cpu_to_dump64(s, s->dump_info.phys_base); | 
|  | kh->dump_level = cpu_to_dump32(s, DUMP_LEVEL); | 
|  |  | 
|  | offset_note = DISKDUMP_HEADER_BLOCKS * block_size + size; | 
|  | if (s->guest_note && | 
|  | note_name_equal(s, s->guest_note, "VMCOREINFO")) { | 
|  | uint64_t hsize, name_size, size_vmcoreinfo_desc, offset_vmcoreinfo; | 
|  |  | 
|  | get_note_sizes(s, s->guest_note, | 
|  | &hsize, &name_size, &size_vmcoreinfo_desc); | 
|  | offset_vmcoreinfo = offset_note + s->note_size - s->guest_note_size + | 
|  | (DIV_ROUND_UP(hsize, 4) + DIV_ROUND_UP(name_size, 4)) * 4; | 
|  | kh->offset_vmcoreinfo = cpu_to_dump64(s, offset_vmcoreinfo); | 
|  | kh->size_vmcoreinfo = cpu_to_dump64(s, size_vmcoreinfo_desc); | 
|  | } | 
|  |  | 
|  | kh->offset_note = cpu_to_dump64(s, offset_note); | 
|  | kh->note_size = cpu_to_dump64(s, s->note_size); | 
|  |  | 
|  | if (write_buffer(s->fd, DISKDUMP_HEADER_BLOCKS * | 
|  | block_size, kh, size) < 0) { | 
|  | error_setg(errp, "dump: failed to write kdump sub header"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* write note */ | 
|  | s->note_buf = g_malloc0(s->note_size); | 
|  | s->note_buf_offset = 0; | 
|  |  | 
|  | /* use s->note_buf to store notes temporarily */ | 
|  | write_elf64_notes(buf_write_note, s, errp); | 
|  | if (*errp) { | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (write_buffer(s->fd, offset_note, s->note_buf, | 
|  | s->note_size) < 0) { | 
|  | error_setg(errp, "dump: failed to write notes"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* get offset of dump_bitmap */ | 
|  | s->offset_dump_bitmap = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size) * | 
|  | block_size; | 
|  |  | 
|  | /* get offset of page */ | 
|  | s->offset_page = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size + bitmap_blocks) * | 
|  | block_size; | 
|  |  | 
|  | out: | 
|  | g_free(dh); | 
|  | g_free(kh); | 
|  | g_free(s->note_buf); | 
|  | } | 
|  |  | 
|  | static void write_dump_header(DumpState *s, Error **errp) | 
|  | { | 
|  | if (dump_is_64bit(s)) { | 
|  | create_header64(s, errp); | 
|  | } else { | 
|  | create_header32(s, errp); | 
|  | } | 
|  | } | 
|  |  | 
|  | static size_t dump_bitmap_get_bufsize(DumpState *s) | 
|  | { | 
|  | return s->dump_info.page_size; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * set dump_bitmap sequencely. the bit before last_pfn is not allowed to be | 
|  | * rewritten, so if need to set the first bit, set last_pfn and pfn to 0. | 
|  | * set_dump_bitmap will always leave the recently set bit un-sync. And setting | 
|  | * (last bit + sizeof(buf) * 8) to 0 will do flushing the content in buf into | 
|  | * vmcore, ie. synchronizing un-sync bit into vmcore. | 
|  | */ | 
|  | static int set_dump_bitmap(uint64_t last_pfn, uint64_t pfn, bool value, | 
|  | uint8_t *buf, DumpState *s) | 
|  | { | 
|  | off_t old_offset, new_offset; | 
|  | off_t offset_bitmap1, offset_bitmap2; | 
|  | uint32_t byte, bit; | 
|  | size_t bitmap_bufsize = dump_bitmap_get_bufsize(s); | 
|  | size_t bits_per_buf = bitmap_bufsize * CHAR_BIT; | 
|  |  | 
|  | /* should not set the previous place */ | 
|  | assert(last_pfn <= pfn); | 
|  |  | 
|  | /* | 
|  | * if the bit needed to be set is not cached in buf, flush the data in buf | 
|  | * to vmcore firstly. | 
|  | * making new_offset be bigger than old_offset can also sync remained data | 
|  | * into vmcore. | 
|  | */ | 
|  | old_offset = bitmap_bufsize * (last_pfn / bits_per_buf); | 
|  | new_offset = bitmap_bufsize * (pfn / bits_per_buf); | 
|  |  | 
|  | while (old_offset < new_offset) { | 
|  | /* calculate the offset and write dump_bitmap */ | 
|  | offset_bitmap1 = s->offset_dump_bitmap + old_offset; | 
|  | if (write_buffer(s->fd, offset_bitmap1, buf, | 
|  | bitmap_bufsize) < 0) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* dump level 1 is chosen, so 1st and 2nd bitmap are same */ | 
|  | offset_bitmap2 = s->offset_dump_bitmap + s->len_dump_bitmap + | 
|  | old_offset; | 
|  | if (write_buffer(s->fd, offset_bitmap2, buf, | 
|  | bitmap_bufsize) < 0) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | memset(buf, 0, bitmap_bufsize); | 
|  | old_offset += bitmap_bufsize; | 
|  | } | 
|  |  | 
|  | /* get the exact place of the bit in the buf, and set it */ | 
|  | byte = (pfn % bits_per_buf) / CHAR_BIT; | 
|  | bit = (pfn % bits_per_buf) % CHAR_BIT; | 
|  | if (value) { | 
|  | buf[byte] |= 1u << bit; | 
|  | } else { | 
|  | buf[byte] &= ~(1u << bit); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static uint64_t dump_paddr_to_pfn(DumpState *s, uint64_t addr) | 
|  | { | 
|  | int target_page_shift = ctz32(s->dump_info.page_size); | 
|  |  | 
|  | return (addr >> target_page_shift) - ARCH_PFN_OFFSET; | 
|  | } | 
|  |  | 
|  | static uint64_t dump_pfn_to_paddr(DumpState *s, uint64_t pfn) | 
|  | { | 
|  | int target_page_shift = ctz32(s->dump_info.page_size); | 
|  |  | 
|  | return (pfn + ARCH_PFN_OFFSET) << target_page_shift; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return the page frame number and the page content in *bufptr. bufptr can be | 
|  | * NULL. If not NULL, *bufptr must contains a target page size of pre-allocated | 
|  | * memory. This is not necessarily the memory returned. | 
|  | */ | 
|  | static bool get_next_page(GuestPhysBlock **blockptr, uint64_t *pfnptr, | 
|  | uint8_t **bufptr, DumpState *s) | 
|  | { | 
|  | GuestPhysBlock *block = *blockptr; | 
|  | uint32_t page_size = s->dump_info.page_size; | 
|  | uint8_t *buf = NULL, *hbuf; | 
|  | hwaddr addr; | 
|  |  | 
|  | /* block == NULL means the start of the iteration */ | 
|  | if (!block) { | 
|  | block = QTAILQ_FIRST(&s->guest_phys_blocks.head); | 
|  | *blockptr = block; | 
|  | addr = block->target_start; | 
|  | *pfnptr = dump_paddr_to_pfn(s, addr); | 
|  | } else { | 
|  | *pfnptr += 1; | 
|  | addr = dump_pfn_to_paddr(s, *pfnptr); | 
|  | } | 
|  | assert(block != NULL); | 
|  |  | 
|  | while (1) { | 
|  | if (addr >= block->target_start && addr < block->target_end) { | 
|  | size_t n = MIN(block->target_end - addr, page_size - addr % page_size); | 
|  | hbuf = block->host_addr + (addr - block->target_start); | 
|  | if (!buf) { | 
|  | if (n == page_size) { | 
|  | /* this is a whole target page, go for it */ | 
|  | assert(addr % page_size == 0); | 
|  | buf = hbuf; | 
|  | break; | 
|  | } else if (bufptr) { | 
|  | assert(*bufptr); | 
|  | buf = *bufptr; | 
|  | memset(buf, 0, page_size); | 
|  | } else { | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | memcpy(buf + addr % page_size, hbuf, n); | 
|  | addr += n; | 
|  | if (addr % page_size == 0) { | 
|  | /* we filled up the page */ | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | /* the next page is in the next block */ | 
|  | *blockptr = block = QTAILQ_NEXT(block, next); | 
|  | if (!block) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | addr = block->target_start; | 
|  | /* are we still in the same page? */ | 
|  | if (dump_paddr_to_pfn(s, addr) != *pfnptr) { | 
|  | if (buf) { | 
|  | /* no, but we already filled something earlier, return it */ | 
|  | break; | 
|  | } else { | 
|  | /* else continue from there */ | 
|  | *pfnptr = dump_paddr_to_pfn(s, addr); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (bufptr) { | 
|  | *bufptr = buf; | 
|  | } | 
|  |  | 
|  | return buf != NULL; | 
|  | } | 
|  |  | 
|  | static void write_dump_bitmap(DumpState *s, Error **errp) | 
|  | { | 
|  | int ret = 0; | 
|  | uint64_t last_pfn, pfn; | 
|  | void *dump_bitmap_buf; | 
|  | size_t num_dumpable; | 
|  | GuestPhysBlock *block_iter = NULL; | 
|  | size_t bitmap_bufsize = dump_bitmap_get_bufsize(s); | 
|  | size_t bits_per_buf = bitmap_bufsize * CHAR_BIT; | 
|  |  | 
|  | /* dump_bitmap_buf is used to store dump_bitmap temporarily */ | 
|  | dump_bitmap_buf = g_malloc0(bitmap_bufsize); | 
|  |  | 
|  | num_dumpable = 0; | 
|  | last_pfn = 0; | 
|  |  | 
|  | /* | 
|  | * exam memory page by page, and set the bit in dump_bitmap corresponded | 
|  | * to the existing page. | 
|  | */ | 
|  | while (get_next_page(&block_iter, &pfn, NULL, s)) { | 
|  | ret = set_dump_bitmap(last_pfn, pfn, true, dump_bitmap_buf, s); | 
|  | if (ret < 0) { | 
|  | error_setg(errp, "dump: failed to set dump_bitmap"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | last_pfn = pfn; | 
|  | num_dumpable++; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * set_dump_bitmap will always leave the recently set bit un-sync. Here we | 
|  | * set the remaining bits from last_pfn to the end of the bitmap buffer to | 
|  | * 0. With those set, the un-sync bit will be synchronized into the vmcore. | 
|  | */ | 
|  | if (num_dumpable > 0) { | 
|  | ret = set_dump_bitmap(last_pfn, last_pfn + bits_per_buf, false, | 
|  | dump_bitmap_buf, s); | 
|  | if (ret < 0) { | 
|  | error_setg(errp, "dump: failed to sync dump_bitmap"); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* number of dumpable pages that will be dumped later */ | 
|  | s->num_dumpable = num_dumpable; | 
|  |  | 
|  | out: | 
|  | g_free(dump_bitmap_buf); | 
|  | } | 
|  |  | 
|  | static void prepare_data_cache(DataCache *data_cache, DumpState *s, | 
|  | off_t offset) | 
|  | { | 
|  | data_cache->fd = s->fd; | 
|  | data_cache->data_size = 0; | 
|  | data_cache->buf_size = 4 * dump_bitmap_get_bufsize(s); | 
|  | data_cache->buf = g_malloc0(data_cache->buf_size); | 
|  | data_cache->offset = offset; | 
|  | } | 
|  |  | 
|  | static int write_cache(DataCache *dc, const void *buf, size_t size, | 
|  | bool flag_sync) | 
|  | { | 
|  | /* | 
|  | * dc->buf_size should not be less than size, otherwise dc will never be | 
|  | * enough | 
|  | */ | 
|  | assert(size <= dc->buf_size); | 
|  |  | 
|  | /* | 
|  | * if flag_sync is set, synchronize data in dc->buf into vmcore. | 
|  | * otherwise check if the space is enough for caching data in buf, if not, | 
|  | * write the data in dc->buf to dc->fd and reset dc->buf | 
|  | */ | 
|  | if ((!flag_sync && dc->data_size + size > dc->buf_size) || | 
|  | (flag_sync && dc->data_size > 0)) { | 
|  | if (write_buffer(dc->fd, dc->offset, dc->buf, dc->data_size) < 0) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | dc->offset += dc->data_size; | 
|  | dc->data_size = 0; | 
|  | } | 
|  |  | 
|  | if (!flag_sync) { | 
|  | memcpy(dc->buf + dc->data_size, buf, size); | 
|  | dc->data_size += size; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void free_data_cache(DataCache *data_cache) | 
|  | { | 
|  | g_free(data_cache->buf); | 
|  | } | 
|  |  | 
|  | static size_t get_len_buf_out(size_t page_size, uint32_t flag_compress) | 
|  | { | 
|  | switch (flag_compress) { | 
|  | case DUMP_DH_COMPRESSED_ZLIB: | 
|  | return compressBound(page_size); | 
|  |  | 
|  | case DUMP_DH_COMPRESSED_LZO: | 
|  | /* | 
|  | * LZO will expand incompressible data by a little amount. Please check | 
|  | * the following URL to see the expansion calculation: | 
|  | * http://www.oberhumer.com/opensource/lzo/lzofaq.php | 
|  | */ | 
|  | return page_size + page_size / 16 + 64 + 3; | 
|  |  | 
|  | #ifdef CONFIG_SNAPPY | 
|  | case DUMP_DH_COMPRESSED_SNAPPY: | 
|  | return snappy_max_compressed_length(page_size); | 
|  | #endif | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void write_dump_pages(DumpState *s, Error **errp) | 
|  | { | 
|  | int ret = 0; | 
|  | DataCache page_desc, page_data; | 
|  | size_t len_buf_out, size_out; | 
|  | #ifdef CONFIG_LZO | 
|  | lzo_bytep wrkmem = NULL; | 
|  | #endif | 
|  | uint8_t *buf_out = NULL; | 
|  | off_t offset_desc, offset_data; | 
|  | PageDescriptor pd, pd_zero; | 
|  | uint8_t *buf; | 
|  | GuestPhysBlock *block_iter = NULL; | 
|  | uint64_t pfn_iter; | 
|  | g_autofree uint8_t *page = NULL; | 
|  |  | 
|  | /* get offset of page_desc and page_data in dump file */ | 
|  | offset_desc = s->offset_page; | 
|  | offset_data = offset_desc + sizeof(PageDescriptor) * s->num_dumpable; | 
|  |  | 
|  | prepare_data_cache(&page_desc, s, offset_desc); | 
|  | prepare_data_cache(&page_data, s, offset_data); | 
|  |  | 
|  | /* prepare buffer to store compressed data */ | 
|  | len_buf_out = get_len_buf_out(s->dump_info.page_size, s->flag_compress); | 
|  | assert(len_buf_out != 0); | 
|  |  | 
|  | #ifdef CONFIG_LZO | 
|  | wrkmem = g_malloc(LZO1X_1_MEM_COMPRESS); | 
|  | #endif | 
|  |  | 
|  | buf_out = g_malloc(len_buf_out); | 
|  |  | 
|  | /* | 
|  | * init zero page's page_desc and page_data, because every zero page | 
|  | * uses the same page_data | 
|  | */ | 
|  | pd_zero.size = cpu_to_dump32(s, s->dump_info.page_size); | 
|  | pd_zero.flags = cpu_to_dump32(s, 0); | 
|  | pd_zero.offset = cpu_to_dump64(s, offset_data); | 
|  | pd_zero.page_flags = cpu_to_dump64(s, 0); | 
|  | buf = g_malloc0(s->dump_info.page_size); | 
|  | ret = write_cache(&page_data, buf, s->dump_info.page_size, false); | 
|  | g_free(buf); | 
|  | if (ret < 0) { | 
|  | error_setg(errp, "dump: failed to write page data (zero page)"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | offset_data += s->dump_info.page_size; | 
|  | page = g_malloc(s->dump_info.page_size); | 
|  |  | 
|  | /* | 
|  | * dump memory to vmcore page by page. zero page will all be resided in the | 
|  | * first page of page section | 
|  | */ | 
|  | for (buf = page; get_next_page(&block_iter, &pfn_iter, &buf, s); buf = page) { | 
|  | /* check zero page */ | 
|  | if (buffer_is_zero(buf, s->dump_info.page_size)) { | 
|  | ret = write_cache(&page_desc, &pd_zero, sizeof(PageDescriptor), | 
|  | false); | 
|  | if (ret < 0) { | 
|  | error_setg(errp, "dump: failed to write page desc"); | 
|  | goto out; | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * not zero page, then: | 
|  | * 1. compress the page | 
|  | * 2. write the compressed page into the cache of page_data | 
|  | * 3. get page desc of the compressed page and write it into the | 
|  | *    cache of page_desc | 
|  | * | 
|  | * only one compression format will be used here, for | 
|  | * s->flag_compress is set. But when compression fails to work, | 
|  | * we fall back to save in plaintext. | 
|  | */ | 
|  | size_out = len_buf_out; | 
|  | if ((s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) && | 
|  | (compress2(buf_out, (uLongf *)&size_out, buf, | 
|  | s->dump_info.page_size, Z_BEST_SPEED) == Z_OK) && | 
|  | (size_out < s->dump_info.page_size)) { | 
|  | pd.flags = cpu_to_dump32(s, DUMP_DH_COMPRESSED_ZLIB); | 
|  | pd.size  = cpu_to_dump32(s, size_out); | 
|  |  | 
|  | ret = write_cache(&page_data, buf_out, size_out, false); | 
|  | if (ret < 0) { | 
|  | error_setg(errp, "dump: failed to write page data"); | 
|  | goto out; | 
|  | } | 
|  | #ifdef CONFIG_LZO | 
|  | } else if ((s->flag_compress & DUMP_DH_COMPRESSED_LZO) && | 
|  | (lzo1x_1_compress(buf, s->dump_info.page_size, buf_out, | 
|  | (lzo_uint *)&size_out, wrkmem) == LZO_E_OK) && | 
|  | (size_out < s->dump_info.page_size)) { | 
|  | pd.flags = cpu_to_dump32(s, DUMP_DH_COMPRESSED_LZO); | 
|  | pd.size  = cpu_to_dump32(s, size_out); | 
|  |  | 
|  | ret = write_cache(&page_data, buf_out, size_out, false); | 
|  | if (ret < 0) { | 
|  | error_setg(errp, "dump: failed to write page data"); | 
|  | goto out; | 
|  | } | 
|  | #endif | 
|  | #ifdef CONFIG_SNAPPY | 
|  | } else if ((s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) && | 
|  | (snappy_compress((char *)buf, s->dump_info.page_size, | 
|  | (char *)buf_out, &size_out) == SNAPPY_OK) && | 
|  | (size_out < s->dump_info.page_size)) { | 
|  | pd.flags = cpu_to_dump32(s, DUMP_DH_COMPRESSED_SNAPPY); | 
|  | pd.size  = cpu_to_dump32(s, size_out); | 
|  |  | 
|  | ret = write_cache(&page_data, buf_out, size_out, false); | 
|  | if (ret < 0) { | 
|  | error_setg(errp, "dump: failed to write page data"); | 
|  | goto out; | 
|  | } | 
|  | #endif | 
|  | } else { | 
|  | /* | 
|  | * fall back to save in plaintext, size_out should be | 
|  | * assigned the target's page size | 
|  | */ | 
|  | pd.flags = cpu_to_dump32(s, 0); | 
|  | size_out = s->dump_info.page_size; | 
|  | pd.size = cpu_to_dump32(s, size_out); | 
|  |  | 
|  | ret = write_cache(&page_data, buf, | 
|  | s->dump_info.page_size, false); | 
|  | if (ret < 0) { | 
|  | error_setg(errp, "dump: failed to write page data"); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* get and write page desc here */ | 
|  | pd.page_flags = cpu_to_dump64(s, 0); | 
|  | pd.offset = cpu_to_dump64(s, offset_data); | 
|  | offset_data += size_out; | 
|  |  | 
|  | ret = write_cache(&page_desc, &pd, sizeof(PageDescriptor), false); | 
|  | if (ret < 0) { | 
|  | error_setg(errp, "dump: failed to write page desc"); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | s->written_size += s->dump_info.page_size; | 
|  | } | 
|  |  | 
|  | ret = write_cache(&page_desc, NULL, 0, true); | 
|  | if (ret < 0) { | 
|  | error_setg(errp, "dump: failed to sync cache for page_desc"); | 
|  | goto out; | 
|  | } | 
|  | ret = write_cache(&page_data, NULL, 0, true); | 
|  | if (ret < 0) { | 
|  | error_setg(errp, "dump: failed to sync cache for page_data"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | out: | 
|  | free_data_cache(&page_desc); | 
|  | free_data_cache(&page_data); | 
|  |  | 
|  | #ifdef CONFIG_LZO | 
|  | g_free(wrkmem); | 
|  | #endif | 
|  |  | 
|  | g_free(buf_out); | 
|  | } | 
|  |  | 
|  | static void create_kdump_vmcore(DumpState *s, Error **errp) | 
|  | { | 
|  | ERRP_GUARD(); | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * the kdump-compressed format is: | 
|  | *                                               File offset | 
|  | *  +------------------------------------------+ 0x0 | 
|  | *  |    main header (struct disk_dump_header) | | 
|  | *  |------------------------------------------+ block 1 | 
|  | *  |    sub header (struct kdump_sub_header)  | | 
|  | *  |------------------------------------------+ block 2 | 
|  | *  |            1st-dump_bitmap               | | 
|  | *  |------------------------------------------+ block 2 + X blocks | 
|  | *  |            2nd-dump_bitmap               | (aligned by block) | 
|  | *  |------------------------------------------+ block 2 + 2 * X blocks | 
|  | *  |  page desc for pfn 0 (struct page_desc)  | (aligned by block) | 
|  | *  |  page desc for pfn 1 (struct page_desc)  | | 
|  | *  |                    :                     | | 
|  | *  |------------------------------------------| (not aligned by block) | 
|  | *  |         page data (pfn 0)                | | 
|  | *  |         page data (pfn 1)                | | 
|  | *  |                    :                     | | 
|  | *  +------------------------------------------+ | 
|  | */ | 
|  |  | 
|  | ret = write_start_flat_header(s->fd); | 
|  | if (ret < 0) { | 
|  | error_setg(errp, "dump: failed to write start flat header"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | write_dump_header(s, errp); | 
|  | if (*errp) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | write_dump_bitmap(s, errp); | 
|  | if (*errp) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | write_dump_pages(s, errp); | 
|  | if (*errp) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | ret = write_end_flat_header(s->fd); | 
|  | if (ret < 0) { | 
|  | error_setg(errp, "dump: failed to write end flat header"); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int validate_start_block(DumpState *s) | 
|  | { | 
|  | GuestPhysBlock *block; | 
|  |  | 
|  | if (!dump_has_filter(s)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) { | 
|  | /* This block is out of the range */ | 
|  | if (block->target_start >= s->filter_area_begin + s->filter_area_length || | 
|  | block->target_end <= s->filter_area_begin) { | 
|  | continue; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static void get_max_mapnr(DumpState *s) | 
|  | { | 
|  | GuestPhysBlock *last_block; | 
|  |  | 
|  | last_block = QTAILQ_LAST(&s->guest_phys_blocks.head); | 
|  | s->max_mapnr = dump_paddr_to_pfn(s, last_block->target_end); | 
|  | } | 
|  |  | 
|  | static DumpState dump_state_global = { .status = DUMP_STATUS_NONE }; | 
|  |  | 
|  | static void dump_state_prepare(DumpState *s) | 
|  | { | 
|  | /* zero the struct, setting status to active */ | 
|  | *s = (DumpState) { .status = DUMP_STATUS_ACTIVE }; | 
|  | } | 
|  |  | 
|  | bool qemu_system_dump_in_progress(void) | 
|  | { | 
|  | DumpState *state = &dump_state_global; | 
|  | return (qatomic_read(&state->status) == DUMP_STATUS_ACTIVE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * calculate total size of memory to be dumped (taking filter into | 
|  | * account.) | 
|  | */ | 
|  | static int64_t dump_calculate_size(DumpState *s) | 
|  | { | 
|  | GuestPhysBlock *block; | 
|  | int64_t total = 0; | 
|  |  | 
|  | QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) { | 
|  | total += dump_filtered_memblock_size(block, | 
|  | s->filter_area_begin, | 
|  | s->filter_area_length); | 
|  | } | 
|  |  | 
|  | return total; | 
|  | } | 
|  |  | 
|  | static void vmcoreinfo_update_phys_base(DumpState *s) | 
|  | { | 
|  | uint64_t size, note_head_size, name_size, phys_base; | 
|  | char **lines; | 
|  | uint8_t *vmci; | 
|  | size_t i; | 
|  |  | 
|  | if (!note_name_equal(s, s->guest_note, "VMCOREINFO")) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | get_note_sizes(s, s->guest_note, ¬e_head_size, &name_size, &size); | 
|  | note_head_size = ROUND_UP(note_head_size, 4); | 
|  |  | 
|  | vmci = s->guest_note + note_head_size + ROUND_UP(name_size, 4); | 
|  | *(vmci + size) = '\0'; | 
|  |  | 
|  | lines = g_strsplit((char *)vmci, "\n", -1); | 
|  | for (i = 0; lines[i]; i++) { | 
|  | const char *prefix = NULL; | 
|  |  | 
|  | if (s->dump_info.d_machine == EM_X86_64) { | 
|  | prefix = "NUMBER(phys_base)="; | 
|  | } else if (s->dump_info.d_machine == EM_AARCH64) { | 
|  | prefix = "NUMBER(PHYS_OFFSET)="; | 
|  | } | 
|  |  | 
|  | if (prefix && g_str_has_prefix(lines[i], prefix)) { | 
|  | if (qemu_strtou64(lines[i] + strlen(prefix), NULL, 16, | 
|  | &phys_base) < 0) { | 
|  | warn_report("Failed to read %s", prefix); | 
|  | } else { | 
|  | s->dump_info.phys_base = phys_base; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | g_strfreev(lines); | 
|  | } | 
|  |  | 
|  | static void dump_init(DumpState *s, int fd, bool has_format, | 
|  | DumpGuestMemoryFormat format, bool paging, bool has_filter, | 
|  | int64_t begin, int64_t length, Error **errp) | 
|  | { | 
|  | ERRP_GUARD(); | 
|  | VMCoreInfoState *vmci = vmcoreinfo_find(); | 
|  | CPUState *cpu; | 
|  | int nr_cpus; | 
|  | int ret; | 
|  |  | 
|  | s->has_format = has_format; | 
|  | s->format = format; | 
|  | s->written_size = 0; | 
|  |  | 
|  | /* kdump-compressed is conflict with paging and filter */ | 
|  | if (has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) { | 
|  | assert(!paging && !has_filter); | 
|  | } | 
|  |  | 
|  | if (runstate_is_running()) { | 
|  | vm_stop(RUN_STATE_SAVE_VM); | 
|  | s->resume = true; | 
|  | } else { | 
|  | s->resume = false; | 
|  | } | 
|  |  | 
|  | /* If we use KVM, we should synchronize the registers before we get dump | 
|  | * info or physmap info. | 
|  | */ | 
|  | cpu_synchronize_all_states(); | 
|  | nr_cpus = 0; | 
|  | CPU_FOREACH(cpu) { | 
|  | nr_cpus++; | 
|  | } | 
|  |  | 
|  | s->fd = fd; | 
|  | if (has_filter && !length) { | 
|  | error_setg(errp, QERR_INVALID_PARAMETER, "length"); | 
|  | goto cleanup; | 
|  | } | 
|  | s->filter_area_begin = begin; | 
|  | s->filter_area_length = length; | 
|  |  | 
|  | /* First index is 0, it's the special null name */ | 
|  | s->string_table_buf = g_array_new(FALSE, TRUE, 1); | 
|  | /* | 
|  | * Allocate the null name, due to the clearing option set to true | 
|  | * it will be 0. | 
|  | */ | 
|  | g_array_set_size(s->string_table_buf, 1); | 
|  |  | 
|  | memory_mapping_list_init(&s->list); | 
|  |  | 
|  | guest_phys_blocks_init(&s->guest_phys_blocks); | 
|  | guest_phys_blocks_append(&s->guest_phys_blocks); | 
|  | s->total_size = dump_calculate_size(s); | 
|  | #ifdef DEBUG_DUMP_GUEST_MEMORY | 
|  | fprintf(stderr, "DUMP: total memory to dump: %lu\n", s->total_size); | 
|  | #endif | 
|  |  | 
|  | /* it does not make sense to dump non-existent memory */ | 
|  | if (!s->total_size) { | 
|  | error_setg(errp, "dump: no guest memory to dump"); | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | /* Is the filter filtering everything? */ | 
|  | if (validate_start_block(s) == -1) { | 
|  | error_setg(errp, QERR_INVALID_PARAMETER, "begin"); | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | /* get dump info: endian, class and architecture. | 
|  | * If the target architecture is not supported, cpu_get_dump_info() will | 
|  | * return -1. | 
|  | */ | 
|  | ret = cpu_get_dump_info(&s->dump_info, &s->guest_phys_blocks); | 
|  | if (ret < 0) { | 
|  | error_setg(errp, | 
|  | "dumping guest memory is not supported on this target"); | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | if (!s->dump_info.page_size) { | 
|  | s->dump_info.page_size = qemu_target_page_size(); | 
|  | } | 
|  |  | 
|  | s->note_size = cpu_get_note_size(s->dump_info.d_class, | 
|  | s->dump_info.d_machine, nr_cpus); | 
|  | assert(s->note_size >= 0); | 
|  |  | 
|  | /* | 
|  | * The goal of this block is to (a) update the previously guessed | 
|  | * phys_base, (b) copy the guest note out of the guest. | 
|  | * Failure to do so is not fatal for dumping. | 
|  | */ | 
|  | if (vmci) { | 
|  | uint64_t addr, note_head_size, name_size, desc_size; | 
|  | uint32_t size; | 
|  | uint16_t format; | 
|  |  | 
|  | note_head_size = dump_is_64bit(s) ? | 
|  | sizeof(Elf64_Nhdr) : sizeof(Elf32_Nhdr); | 
|  |  | 
|  | format = le16_to_cpu(vmci->vmcoreinfo.guest_format); | 
|  | size = le32_to_cpu(vmci->vmcoreinfo.size); | 
|  | addr = le64_to_cpu(vmci->vmcoreinfo.paddr); | 
|  | if (!vmci->has_vmcoreinfo) { | 
|  | warn_report("guest note is not present"); | 
|  | } else if (size < note_head_size || size > MAX_GUEST_NOTE_SIZE) { | 
|  | warn_report("guest note size is invalid: %" PRIu32, size); | 
|  | } else if (format != FW_CFG_VMCOREINFO_FORMAT_ELF) { | 
|  | warn_report("guest note format is unsupported: %" PRIu16, format); | 
|  | } else { | 
|  | s->guest_note = g_malloc(size + 1); /* +1 for adding \0 */ | 
|  | cpu_physical_memory_read(addr, s->guest_note, size); | 
|  |  | 
|  | get_note_sizes(s, s->guest_note, NULL, &name_size, &desc_size); | 
|  | s->guest_note_size = ELF_NOTE_SIZE(note_head_size, name_size, | 
|  | desc_size); | 
|  | if (name_size > MAX_GUEST_NOTE_SIZE || | 
|  | desc_size > MAX_GUEST_NOTE_SIZE || | 
|  | s->guest_note_size > size) { | 
|  | warn_report("Invalid guest note header"); | 
|  | g_free(s->guest_note); | 
|  | s->guest_note = NULL; | 
|  | } else { | 
|  | vmcoreinfo_update_phys_base(s); | 
|  | s->note_size += s->guest_note_size; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* get memory mapping */ | 
|  | if (paging) { | 
|  | qemu_get_guest_memory_mapping(&s->list, &s->guest_phys_blocks, errp); | 
|  | if (*errp) { | 
|  | goto cleanup; | 
|  | } | 
|  | } else { | 
|  | qemu_get_guest_simple_memory_mapping(&s->list, &s->guest_phys_blocks); | 
|  | } | 
|  |  | 
|  | s->nr_cpus = nr_cpus; | 
|  |  | 
|  | get_max_mapnr(s); | 
|  |  | 
|  | uint64_t tmp; | 
|  | tmp = DIV_ROUND_UP(DIV_ROUND_UP(s->max_mapnr, CHAR_BIT), | 
|  | s->dump_info.page_size); | 
|  | s->len_dump_bitmap = tmp * s->dump_info.page_size; | 
|  |  | 
|  | /* init for kdump-compressed format */ | 
|  | if (has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) { | 
|  | switch (format) { | 
|  | case DUMP_GUEST_MEMORY_FORMAT_KDUMP_ZLIB: | 
|  | s->flag_compress = DUMP_DH_COMPRESSED_ZLIB; | 
|  | break; | 
|  |  | 
|  | case DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO: | 
|  | #ifdef CONFIG_LZO | 
|  | if (lzo_init() != LZO_E_OK) { | 
|  | error_setg(errp, "failed to initialize the LZO library"); | 
|  | goto cleanup; | 
|  | } | 
|  | #endif | 
|  | s->flag_compress = DUMP_DH_COMPRESSED_LZO; | 
|  | break; | 
|  |  | 
|  | case DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY: | 
|  | s->flag_compress = DUMP_DH_COMPRESSED_SNAPPY; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | s->flag_compress = 0; | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (dump_has_filter(s)) { | 
|  | memory_mapping_filter(&s->list, s->filter_area_begin, s->filter_area_length); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The first section header is always a special one in which most | 
|  | * fields are 0. The section header string table is also always | 
|  | * set. | 
|  | */ | 
|  | s->shdr_num = 2; | 
|  |  | 
|  | /* | 
|  | * Adds the number of architecture sections to shdr_num and sets | 
|  | * elf_section_data_size so we know the offsets and sizes of all | 
|  | * parts. | 
|  | */ | 
|  | if (s->dump_info.arch_sections_add_fn) { | 
|  | s->dump_info.arch_sections_add_fn(s); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * calculate shdr_num so we know the offsets and sizes of all | 
|  | * parts. | 
|  | * Calculate phdr_num | 
|  | * | 
|  | * The absolute maximum amount of phdrs is UINT32_MAX - 1 as | 
|  | * sh_info is 32 bit. There's special handling once we go over | 
|  | * UINT16_MAX - 1 but that is handled in the ehdr and section | 
|  | * code. | 
|  | */ | 
|  | s->phdr_num = 1; /* Reserve PT_NOTE */ | 
|  | if (s->list.num <= UINT32_MAX - 1) { | 
|  | s->phdr_num += s->list.num; | 
|  | } else { | 
|  | s->phdr_num = UINT32_MAX; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now that the number of section and program headers is known we | 
|  | * can calculate the offsets of the headers and data. | 
|  | */ | 
|  | if (dump_is_64bit(s)) { | 
|  | s->shdr_offset = sizeof(Elf64_Ehdr); | 
|  | s->phdr_offset = s->shdr_offset + sizeof(Elf64_Shdr) * s->shdr_num; | 
|  | s->note_offset = s->phdr_offset + sizeof(Elf64_Phdr) * s->phdr_num; | 
|  | } else { | 
|  | s->shdr_offset = sizeof(Elf32_Ehdr); | 
|  | s->phdr_offset = s->shdr_offset + sizeof(Elf32_Shdr) * s->shdr_num; | 
|  | s->note_offset = s->phdr_offset + sizeof(Elf32_Phdr) * s->phdr_num; | 
|  | } | 
|  | s->memory_offset = s->note_offset + s->note_size; | 
|  | s->section_offset = s->memory_offset + s->total_size; | 
|  |  | 
|  | return; | 
|  |  | 
|  | cleanup: | 
|  | dump_cleanup(s); | 
|  | } | 
|  |  | 
|  | /* this operation might be time consuming. */ | 
|  | static void dump_process(DumpState *s, Error **errp) | 
|  | { | 
|  | ERRP_GUARD(); | 
|  | DumpQueryResult *result = NULL; | 
|  |  | 
|  | if (s->has_format && s->format == DUMP_GUEST_MEMORY_FORMAT_WIN_DMP) { | 
|  | create_win_dump(s, errp); | 
|  | } else if (s->has_format && s->format != DUMP_GUEST_MEMORY_FORMAT_ELF) { | 
|  | create_kdump_vmcore(s, errp); | 
|  | } else { | 
|  | create_vmcore(s, errp); | 
|  | } | 
|  |  | 
|  | /* make sure status is written after written_size updates */ | 
|  | smp_wmb(); | 
|  | qatomic_set(&s->status, | 
|  | (*errp ? DUMP_STATUS_FAILED : DUMP_STATUS_COMPLETED)); | 
|  |  | 
|  | /* send DUMP_COMPLETED message (unconditionally) */ | 
|  | result = qmp_query_dump(NULL); | 
|  | /* should never fail */ | 
|  | assert(result); | 
|  | qapi_event_send_dump_completed(result, | 
|  | *errp ? error_get_pretty(*errp) : NULL); | 
|  | qapi_free_DumpQueryResult(result); | 
|  |  | 
|  | dump_cleanup(s); | 
|  | } | 
|  |  | 
|  | static void *dump_thread(void *data) | 
|  | { | 
|  | DumpState *s = (DumpState *)data; | 
|  | dump_process(s, NULL); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | DumpQueryResult *qmp_query_dump(Error **errp) | 
|  | { | 
|  | DumpQueryResult *result = g_new(DumpQueryResult, 1); | 
|  | DumpState *state = &dump_state_global; | 
|  | result->status = qatomic_read(&state->status); | 
|  | /* make sure we are reading status and written_size in order */ | 
|  | smp_rmb(); | 
|  | result->completed = state->written_size; | 
|  | result->total = state->total_size; | 
|  | return result; | 
|  | } | 
|  |  | 
|  | void qmp_dump_guest_memory(bool paging, const char *file, | 
|  | bool has_detach, bool detach, | 
|  | bool has_begin, int64_t begin, bool has_length, | 
|  | int64_t length, bool has_format, | 
|  | DumpGuestMemoryFormat format, Error **errp) | 
|  | { | 
|  | ERRP_GUARD(); | 
|  | const char *p; | 
|  | int fd = -1; | 
|  | DumpState *s; | 
|  | bool detach_p = false; | 
|  |  | 
|  | if (runstate_check(RUN_STATE_INMIGRATE)) { | 
|  | error_setg(errp, "Dump not allowed during incoming migration."); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* if there is a dump in background, we should wait until the dump | 
|  | * finished */ | 
|  | if (qemu_system_dump_in_progress()) { | 
|  | error_setg(errp, "There is a dump in process, please wait."); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * kdump-compressed format need the whole memory dumped, so paging or | 
|  | * filter is not supported here. | 
|  | */ | 
|  | if ((has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) && | 
|  | (paging || has_begin || has_length)) { | 
|  | error_setg(errp, "kdump-compressed format doesn't support paging or " | 
|  | "filter"); | 
|  | return; | 
|  | } | 
|  | if (has_begin && !has_length) { | 
|  | error_setg(errp, QERR_MISSING_PARAMETER, "length"); | 
|  | return; | 
|  | } | 
|  | if (!has_begin && has_length) { | 
|  | error_setg(errp, QERR_MISSING_PARAMETER, "begin"); | 
|  | return; | 
|  | } | 
|  | if (has_detach) { | 
|  | detach_p = detach; | 
|  | } | 
|  |  | 
|  | /* check whether lzo/snappy is supported */ | 
|  | #ifndef CONFIG_LZO | 
|  | if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO) { | 
|  | error_setg(errp, "kdump-lzo is not available now"); | 
|  | return; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifndef CONFIG_SNAPPY | 
|  | if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY) { | 
|  | error_setg(errp, "kdump-snappy is not available now"); | 
|  | return; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_WIN_DMP | 
|  | && !win_dump_available(errp)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | #if !defined(WIN32) | 
|  | if (strstart(file, "fd:", &p)) { | 
|  | fd = monitor_get_fd(monitor_cur(), p, errp); | 
|  | if (fd == -1) { | 
|  | return; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if  (strstart(file, "file:", &p)) { | 
|  | fd = qemu_open_old(p, O_WRONLY | O_CREAT | O_TRUNC | O_BINARY, S_IRUSR); | 
|  | if (fd < 0) { | 
|  | error_setg_file_open(errp, errno, p); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (fd == -1) { | 
|  | error_setg(errp, QERR_INVALID_PARAMETER, "protocol"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!dump_migration_blocker) { | 
|  | error_setg(&dump_migration_blocker, | 
|  | "Live migration disabled: dump-guest-memory in progress"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allows even for -only-migratable, but forbid migration during the | 
|  | * process of dump guest memory. | 
|  | */ | 
|  | if (migrate_add_blocker_internal(dump_migration_blocker, errp)) { | 
|  | /* Remember to release the fd before passing it over to dump state */ | 
|  | close(fd); | 
|  | return; | 
|  | } | 
|  |  | 
|  | s = &dump_state_global; | 
|  | dump_state_prepare(s); | 
|  |  | 
|  | dump_init(s, fd, has_format, format, paging, has_begin, | 
|  | begin, length, errp); | 
|  | if (*errp) { | 
|  | qatomic_set(&s->status, DUMP_STATUS_FAILED); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (detach_p) { | 
|  | /* detached dump */ | 
|  | s->detached = true; | 
|  | qemu_thread_create(&s->dump_thread, "dump_thread", dump_thread, | 
|  | s, QEMU_THREAD_DETACHED); | 
|  | } else { | 
|  | /* sync dump */ | 
|  | dump_process(s, errp); | 
|  | } | 
|  | } | 
|  |  | 
|  | DumpGuestMemoryCapability *qmp_query_dump_guest_memory_capability(Error **errp) | 
|  | { | 
|  | DumpGuestMemoryCapability *cap = | 
|  | g_new0(DumpGuestMemoryCapability, 1); | 
|  | DumpGuestMemoryFormatList **tail = &cap->formats; | 
|  |  | 
|  | /* elf is always available */ | 
|  | QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_ELF); | 
|  |  | 
|  | /* kdump-zlib is always available */ | 
|  | QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_ZLIB); | 
|  |  | 
|  | /* add new item if kdump-lzo is available */ | 
|  | #ifdef CONFIG_LZO | 
|  | QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO); | 
|  | #endif | 
|  |  | 
|  | /* add new item if kdump-snappy is available */ | 
|  | #ifdef CONFIG_SNAPPY | 
|  | QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY); | 
|  | #endif | 
|  |  | 
|  | if (win_dump_available(NULL)) { | 
|  | QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_WIN_DMP); | 
|  | } | 
|  |  | 
|  | return cap; | 
|  | } |