| ========= |
| Migration |
| ========= |
| |
| QEMU has code to load/save the state of the guest that it is running. |
| These are two complementary operations. Saving the state just does |
| that, saves the state for each device that the guest is running. |
| Restoring a guest is just the opposite operation: we need to load the |
| state of each device. |
| |
| For this to work, QEMU has to be launched with the same arguments the |
| two times. I.e. it can only restore the state in one guest that has |
| the same devices that the one it was saved (this last requirement can |
| be relaxed a bit, but for now we can consider that configuration has |
| to be exactly the same). |
| |
| Once that we are able to save/restore a guest, a new functionality is |
| requested: migration. This means that QEMU is able to start in one |
| machine and being "migrated" to another machine. I.e. being moved to |
| another machine. |
| |
| Next was the "live migration" functionality. This is important |
| because some guests run with a lot of state (specially RAM), and it |
| can take a while to move all state from one machine to another. Live |
| migration allows the guest to continue running while the state is |
| transferred. Only while the last part of the state is transferred has |
| the guest to be stopped. Typically the time that the guest is |
| unresponsive during live migration is the low hundred of milliseconds |
| (notice that this depends on a lot of things). |
| |
| Transports |
| ========== |
| |
| The migration stream is normally just a byte stream that can be passed |
| over any transport. |
| |
| - tcp migration: do the migration using tcp sockets |
| - unix migration: do the migration using unix sockets |
| - exec migration: do the migration using the stdin/stdout through a process. |
| - fd migration: do the migration using a file descriptor that is |
| passed to QEMU. QEMU doesn't care how this file descriptor is opened. |
| |
| In addition, support is included for migration using RDMA, which |
| transports the page data using ``RDMA``, where the hardware takes care of |
| transporting the pages, and the load on the CPU is much lower. While the |
| internals of RDMA migration are a bit different, this isn't really visible |
| outside the RAM migration code. |
| |
| All these migration protocols use the same infrastructure to |
| save/restore state devices. This infrastructure is shared with the |
| savevm/loadvm functionality. |
| |
| Common infrastructure |
| ===================== |
| |
| The files, sockets or fd's that carry the migration stream are abstracted by |
| the ``QEMUFile`` type (see `migration/qemu-file.h`). In most cases this |
| is connected to a subtype of ``QIOChannel`` (see `io/`). |
| |
| |
| Saving the state of one device |
| ============================== |
| |
| For most devices, the state is saved in a single call to the migration |
| infrastructure; these are *non-iterative* devices. The data for these |
| devices is sent at the end of precopy migration, when the CPUs are paused. |
| There are also *iterative* devices, which contain a very large amount of |
| data (e.g. RAM or large tables). See the iterative device section below. |
| |
| General advice for device developers |
| ------------------------------------ |
| |
| - The migration state saved should reflect the device being modelled rather |
| than the way your implementation works. That way if you change the implementation |
| later the migration stream will stay compatible. That model may include |
| internal state that's not directly visible in a register. |
| |
| - When saving a migration stream the device code may walk and check |
| the state of the device. These checks might fail in various ways (e.g. |
| discovering internal state is corrupt or that the guest has done something bad). |
| Consider carefully before asserting/aborting at this point, since the |
| normal response from users is that *migration broke their VM* since it had |
| apparently been running fine until then. In these error cases, the device |
| should log a message indicating the cause of error, and should consider |
| putting the device into an error state, allowing the rest of the VM to |
| continue execution. |
| |
| - The migration might happen at an inconvenient point, |
| e.g. right in the middle of the guest reprogramming the device, during |
| guest reboot or shutdown or while the device is waiting for external IO. |
| It's strongly preferred that migrations do not fail in this situation, |
| since in the cloud environment migrations might happen automatically to |
| VMs that the administrator doesn't directly control. |
| |
| - If you do need to fail a migration, ensure that sufficient information |
| is logged to identify what went wrong. |
| |
| - The destination should treat an incoming migration stream as hostile |
| (which we do to varying degrees in the existing code). Check that offsets |
| into buffers and the like can't cause overruns. Fail the incoming migration |
| in the case of a corrupted stream like this. |
| |
| - Take care with internal device state or behaviour that might become |
| migration version dependent. For example, the order of PCI capabilities |
| is required to stay constant across migration. Another example would |
| be that a special case handled by subsections (see below) might become |
| much more common if a default behaviour is changed. |
| |
| - The state of the source should not be changed or destroyed by the |
| outgoing migration. Migrations timing out or being failed by |
| higher levels of management, or failures of the destination host are |
| not unusual, and in that case the VM is restarted on the source. |
| Note that the management layer can validly revert the migration |
| even though the QEMU level of migration has succeeded as long as it |
| does it before starting execution on the destination. |
| |
| - Buses and devices should be able to explicitly specify addresses when |
| instantiated, and management tools should use those. For example, |
| when hot adding USB devices it's important to specify the ports |
| and addresses, since implicit ordering based on the command line order |
| may be different on the destination. This can result in the |
| device state being loaded into the wrong device. |
| |
| VMState |
| ------- |
| |
| Most device data can be described using the ``VMSTATE`` macros (mostly defined |
| in ``include/migration/vmstate.h``). |
| |
| An example (from hw/input/pckbd.c) |
| |
| .. code:: c |
| |
| static const VMStateDescription vmstate_kbd = { |
| .name = "pckbd", |
| .version_id = 3, |
| .minimum_version_id = 3, |
| .fields = (VMStateField[]) { |
| VMSTATE_UINT8(write_cmd, KBDState), |
| VMSTATE_UINT8(status, KBDState), |
| VMSTATE_UINT8(mode, KBDState), |
| VMSTATE_UINT8(pending, KBDState), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| We are declaring the state with name "pckbd". |
| The `version_id` is 3, and the fields are 4 uint8_t in a KBDState structure. |
| We registered this with: |
| |
| .. code:: c |
| |
| vmstate_register(NULL, 0, &vmstate_kbd, s); |
| |
| For devices that are `qdev` based, we can register the device in the class |
| init function: |
| |
| .. code:: c |
| |
| dc->vmsd = &vmstate_kbd_isa; |
| |
| The VMState macros take care of ensuring that the device data section |
| is formatted portably (normally big endian) and make some compile time checks |
| against the types of the fields in the structures. |
| |
| VMState macros can include other VMStateDescriptions to store substructures |
| (see ``VMSTATE_STRUCT_``), arrays (``VMSTATE_ARRAY_``) and variable length |
| arrays (``VMSTATE_VARRAY_``). Various other macros exist for special |
| cases. |
| |
| Note that the format on the wire is still very raw; i.e. a VMSTATE_UINT32 |
| ends up with a 4 byte bigendian representation on the wire; in the future |
| it might be possible to use a more structured format. |
| |
| Legacy way |
| ---------- |
| |
| This way is going to disappear as soon as all current users are ported to VMSTATE; |
| although converting existing code can be tricky, and thus 'soon' is relative. |
| |
| Each device has to register two functions, one to save the state and |
| another to load the state back. |
| |
| .. code:: c |
| |
| int register_savevm_live(DeviceState *dev, |
| const char *idstr, |
| int instance_id, |
| int version_id, |
| SaveVMHandlers *ops, |
| void *opaque); |
| |
| Two functions in the ``ops`` structure are the `save_state` |
| and `load_state` functions. Notice that `load_state` receives a version_id |
| parameter to know what state format is receiving. `save_state` doesn't |
| have a version_id parameter because it always uses the latest version. |
| |
| Note that because the VMState macros still save the data in a raw |
| format, in many cases it's possible to replace legacy code |
| with a carefully constructed VMState description that matches the |
| byte layout of the existing code. |
| |
| Changing migration data structures |
| ---------------------------------- |
| |
| When we migrate a device, we save/load the state as a series |
| of fields. Sometimes, due to bugs or new functionality, we need to |
| change the state to store more/different information. Changing the migration |
| state saved for a device can break migration compatibility unless |
| care is taken to use the appropriate techniques. In general QEMU tries |
| to maintain forward migration compatibility (i.e. migrating from |
| QEMU n->n+1) and there are users who benefit from backward compatibility |
| as well. |
| |
| Subsections |
| ----------- |
| |
| The most common structure change is adding new data, e.g. when adding |
| a newer form of device, or adding that state that you previously |
| forgot to migrate. This is best solved using a subsection. |
| |
| A subsection is "like" a device vmstate, but with a particularity, it |
| has a Boolean function that tells if that values are needed to be sent |
| or not. If this functions returns false, the subsection is not sent. |
| Subsections have a unique name, that is looked for on the receiving |
| side. |
| |
| On the receiving side, if we found a subsection for a device that we |
| don't understand, we just fail the migration. If we understand all |
| the subsections, then we load the state with success. There's no check |
| that a subsection is loaded, so a newer QEMU that knows about a subsection |
| can (with care) load a stream from an older QEMU that didn't send |
| the subsection. |
| |
| If the new data is only needed in a rare case, then the subsection |
| can be made conditional on that case and the migration will still |
| succeed to older QEMUs in most cases. This is OK for data that's |
| critical, but in some use cases it's preferred that the migration |
| should succeed even with the data missing. To support this the |
| subsection can be connected to a device property and from there |
| to a versioned machine type. |
| |
| The 'pre_load' and 'post_load' functions on subsections are only |
| called if the subsection is loaded. |
| |
| One important note is that the outer post_load() function is called "after" |
| loading all subsections, because a newer subsection could change the same |
| value that it uses. A flag, and the combination of outer pre_load and |
| post_load can be used to detect whether a subsection was loaded, and to |
| fall back on default behaviour when the subsection isn't present. |
| |
| Example: |
| |
| .. code:: c |
| |
| static bool ide_drive_pio_state_needed(void *opaque) |
| { |
| IDEState *s = opaque; |
| |
| return ((s->status & DRQ_STAT) != 0) |
| || (s->bus->error_status & BM_STATUS_PIO_RETRY); |
| } |
| |
| const VMStateDescription vmstate_ide_drive_pio_state = { |
| .name = "ide_drive/pio_state", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .pre_save = ide_drive_pio_pre_save, |
| .post_load = ide_drive_pio_post_load, |
| .needed = ide_drive_pio_state_needed, |
| .fields = (VMStateField[]) { |
| VMSTATE_INT32(req_nb_sectors, IDEState), |
| VMSTATE_VARRAY_INT32(io_buffer, IDEState, io_buffer_total_len, 1, |
| vmstate_info_uint8, uint8_t), |
| VMSTATE_INT32(cur_io_buffer_offset, IDEState), |
| VMSTATE_INT32(cur_io_buffer_len, IDEState), |
| VMSTATE_UINT8(end_transfer_fn_idx, IDEState), |
| VMSTATE_INT32(elementary_transfer_size, IDEState), |
| VMSTATE_INT32(packet_transfer_size, IDEState), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| const VMStateDescription vmstate_ide_drive = { |
| .name = "ide_drive", |
| .version_id = 3, |
| .minimum_version_id = 0, |
| .post_load = ide_drive_post_load, |
| .fields = (VMStateField[]) { |
| .... several fields .... |
| VMSTATE_END_OF_LIST() |
| }, |
| .subsections = (const VMStateDescription*[]) { |
| &vmstate_ide_drive_pio_state, |
| NULL |
| } |
| }; |
| |
| Here we have a subsection for the pio state. We only need to |
| save/send this state when we are in the middle of a pio operation |
| (that is what ``ide_drive_pio_state_needed()`` checks). If DRQ_STAT is |
| not enabled, the values on that fields are garbage and don't need to |
| be sent. |
| |
| Connecting subsections to properties |
| ------------------------------------ |
| |
| Using a condition function that checks a 'property' to determine whether |
| to send a subsection allows backward migration compatibility when |
| new subsections are added, especially when combined with versioned |
| machine types. |
| |
| For example: |
| |
| a) Add a new property using ``DEFINE_PROP_BOOL`` - e.g. support-foo and |
| default it to true. |
| b) Add an entry to the ``HW_COMPAT_`` for the previous version that sets |
| the property to false. |
| c) Add a static bool support_foo function that tests the property. |
| d) Add a subsection with a .needed set to the support_foo function |
| e) (potentially) Add an outer pre_load that sets up a default value |
| for 'foo' to be used if the subsection isn't loaded. |
| |
| Now that subsection will not be generated when using an older |
| machine type and the migration stream will be accepted by older |
| QEMU versions. |
| |
| Not sending existing elements |
| ----------------------------- |
| |
| Sometimes members of the VMState are no longer needed: |
| |
| - removing them will break migration compatibility |
| |
| - making them version dependent and bumping the version will break backward migration |
| compatibility. |
| |
| Adding a dummy field into the migration stream is normally the best way to preserve |
| compatibility. |
| |
| If the field really does need to be removed then: |
| |
| a) Add a new property/compatibility/function in the same way for subsections above. |
| b) replace the VMSTATE macro with the _TEST version of the macro, e.g.: |
| |
| ``VMSTATE_UINT32(foo, barstruct)`` |
| |
| becomes |
| |
| ``VMSTATE_UINT32_TEST(foo, barstruct, pre_version_baz)`` |
| |
| Sometime in the future when we no longer care about the ancient versions these can be killed off. |
| Note that for backward compatibility it's important to fill in the structure with |
| data that the destination will understand. |
| |
| Any difference in the predicates on the source and destination will end up |
| with different fields being enabled and data being loaded into the wrong |
| fields; for this reason conditional fields like this are very fragile. |
| |
| Versions |
| -------- |
| |
| Version numbers are intended for major incompatible changes to the |
| migration of a device, and using them breaks backward-migration |
| compatibility; in general most changes can be made by adding Subsections |
| (see above) or _TEST macros (see above) which won't break compatibility. |
| |
| Each version is associated with a series of fields saved. The `save_state` always saves |
| the state as the newer version. But `load_state` sometimes is able to |
| load state from an older version. |
| |
| You can see that there are several version fields: |
| |
| - `version_id`: the maximum version_id supported by VMState for that device. |
| - `minimum_version_id`: the minimum version_id that VMState is able to understand |
| for that device. |
| - `minimum_version_id_old`: For devices that were not able to port to vmstate, we can |
| assign a function that knows how to read this old state. This field is |
| ignored if there is no `load_state_old` handler. |
| |
| VMState is able to read versions from minimum_version_id to |
| version_id. And the function ``load_state_old()`` (if present) is able to |
| load state from minimum_version_id_old to minimum_version_id. This |
| function is deprecated and will be removed when no more users are left. |
| |
| There are *_V* forms of many ``VMSTATE_`` macros to load fields for version dependent fields, |
| e.g. |
| |
| .. code:: c |
| |
| VMSTATE_UINT16_V(ip_id, Slirp, 2), |
| |
| only loads that field for versions 2 and newer. |
| |
| Saving state will always create a section with the 'version_id' value |
| and thus can't be loaded by any older QEMU. |
| |
| Massaging functions |
| ------------------- |
| |
| Sometimes, it is not enough to be able to save the state directly |
| from one structure, we need to fill the correct values there. One |
| example is when we are using kvm. Before saving the cpu state, we |
| need to ask kvm to copy to QEMU the state that it is using. And the |
| opposite when we are loading the state, we need a way to tell kvm to |
| load the state for the cpu that we have just loaded from the QEMUFile. |
| |
| The functions to do that are inside a vmstate definition, and are called: |
| |
| - ``int (*pre_load)(void *opaque);`` |
| |
| This function is called before we load the state of one device. |
| |
| - ``int (*post_load)(void *opaque, int version_id);`` |
| |
| This function is called after we load the state of one device. |
| |
| - ``int (*pre_save)(void *opaque);`` |
| |
| This function is called before we save the state of one device. |
| |
| Example: You can look at hpet.c, that uses the three function to |
| massage the state that is transferred. |
| |
| The ``VMSTATE_WITH_TMP`` macro may be useful when the migration |
| data doesn't match the stored device data well; it allows an |
| intermediate temporary structure to be populated with migration |
| data and then transferred to the main structure. |
| |
| If you use memory API functions that update memory layout outside |
| initialization (i.e., in response to a guest action), this is a strong |
| indication that you need to call these functions in a `post_load` callback. |
| Examples of such memory API functions are: |
| |
| - memory_region_add_subregion() |
| - memory_region_del_subregion() |
| - memory_region_set_readonly() |
| - memory_region_set_enabled() |
| - memory_region_set_address() |
| - memory_region_set_alias_offset() |
| |
| Iterative device migration |
| -------------------------- |
| |
| Some devices, such as RAM, Block storage or certain platform devices, |
| have large amounts of data that would mean that the CPUs would be |
| paused for too long if they were sent in one section. For these |
| devices an *iterative* approach is taken. |
| |
| The iterative devices generally don't use VMState macros |
| (although it may be possible in some cases) and instead use |
| qemu_put_*/qemu_get_* macros to read/write data to the stream. Specialist |
| versions exist for high bandwidth IO. |
| |
| |
| An iterative device must provide: |
| |
| - A ``save_setup`` function that initialises the data structures and |
| transmits a first section containing information on the device. In the |
| case of RAM this transmits a list of RAMBlocks and sizes. |
| |
| - A ``load_setup`` function that initialises the data structures on the |
| destination. |
| |
| - A ``save_live_pending`` function that is called repeatedly and must |
| indicate how much more data the iterative data must save. The core |
| migration code will use this to determine when to pause the CPUs |
| and complete the migration. |
| |
| - A ``save_live_iterate`` function (called after ``save_live_pending`` |
| when there is significant data still to be sent). It should send |
| a chunk of data until the point that stream bandwidth limits tell it |
| to stop. Each call generates one section. |
| |
| - A ``save_live_complete_precopy`` function that must transmit the |
| last section for the device containing any remaining data. |
| |
| - A ``load_state`` function used to load sections generated by |
| any of the save functions that generate sections. |
| |
| - ``cleanup`` functions for both save and load that are called |
| at the end of migration. |
| |
| Note that the contents of the sections for iterative migration tend |
| to be open-coded by the devices; care should be taken in parsing |
| the results and structuring the stream to make them easy to validate. |
| |
| Device ordering |
| --------------- |
| |
| There are cases in which the ordering of device loading matters; for |
| example in some systems where a device may assert an interrupt during loading, |
| if the interrupt controller is loaded later then it might lose the state. |
| |
| Some ordering is implicitly provided by the order in which the machine |
| definition creates devices, however this is somewhat fragile. |
| |
| The ``MigrationPriority`` enum provides a means of explicitly enforcing |
| ordering. Numerically higher priorities are loaded earlier. |
| The priority is set by setting the ``priority`` field of the top level |
| ``VMStateDescription`` for the device. |
| |
| Stream structure |
| ================ |
| |
| The stream tries to be word and endian agnostic, allowing migration between hosts |
| of different characteristics running the same VM. |
| |
| - Header |
| |
| - Magic |
| - Version |
| - VM configuration section |
| |
| - Machine type |
| - Target page bits |
| - List of sections |
| Each section contains a device, or one iteration of a device save. |
| |
| - section type |
| - section id |
| - ID string (First section of each device) |
| - instance id (First section of each device) |
| - version id (First section of each device) |
| - <device data> |
| - Footer mark |
| - EOF mark |
| - VM Description structure |
| Consisting of a JSON description of the contents for analysis only |
| |
| The ``device data`` in each section consists of the data produced |
| by the code described above. For non-iterative devices they have a single |
| section; iterative devices have an initial and last section and a set |
| of parts in between. |
| Note that there is very little checking by the common code of the integrity |
| of the ``device data`` contents, that's up to the devices themselves. |
| The ``footer mark`` provides a little bit of protection for the case where |
| the receiving side reads more or less data than expected. |
| |
| The ``ID string`` is normally unique, having been formed from a bus name |
| and device address, PCI devices and storage devices hung off PCI controllers |
| fit this pattern well. Some devices are fixed single instances (e.g. "pc-ram"). |
| Others (especially either older devices or system devices which for |
| some reason don't have a bus concept) make use of the ``instance id`` |
| for otherwise identically named devices. |
| |
| Return path |
| ----------- |
| |
| Only a unidirectional stream is required for normal migration, however a |
| ``return path`` can be created when bidirectional communication is desired. |
| This is primarily used by postcopy, but is also used to return a success |
| flag to the source at the end of migration. |
| |
| ``qemu_file_get_return_path(QEMUFile* fwdpath)`` gives the QEMUFile* for the return |
| path. |
| |
| Source side |
| |
| Forward path - written by migration thread |
| Return path - opened by main thread, read by return-path thread |
| |
| Destination side |
| |
| Forward path - read by main thread |
| Return path - opened by main thread, written by main thread AND postcopy |
| thread (protected by rp_mutex) |
| |
| Postcopy |
| ======== |
| |
| 'Postcopy' migration is a way to deal with migrations that refuse to converge |
| (or take too long to converge) its plus side is that there is an upper bound on |
| the amount of migration traffic and time it takes, the down side is that during |
| the postcopy phase, a failure of *either* side or the network connection causes |
| the guest to be lost. |
| |
| In postcopy the destination CPUs are started before all the memory has been |
| transferred, and accesses to pages that are yet to be transferred cause |
| a fault that's translated by QEMU into a request to the source QEMU. |
| |
| Postcopy can be combined with precopy (i.e. normal migration) so that if precopy |
| doesn't finish in a given time the switch is made to postcopy. |
| |
| Enabling postcopy |
| ----------------- |
| |
| To enable postcopy, issue this command on the monitor (both source and |
| destination) prior to the start of migration: |
| |
| ``migrate_set_capability postcopy-ram on`` |
| |
| The normal commands are then used to start a migration, which is still |
| started in precopy mode. Issuing: |
| |
| ``migrate_start_postcopy`` |
| |
| will now cause the transition from precopy to postcopy. |
| It can be issued immediately after migration is started or any |
| time later on. Issuing it after the end of a migration is harmless. |
| |
| Blocktime is a postcopy live migration metric, intended to show how |
| long the vCPU was in state of interruptable sleep due to pagefault. |
| That metric is calculated both for all vCPUs as overlapped value, and |
| separately for each vCPU. These values are calculated on destination |
| side. To enable postcopy blocktime calculation, enter following |
| command on destination monitor: |
| |
| ``migrate_set_capability postcopy-blocktime on`` |
| |
| Postcopy blocktime can be retrieved by query-migrate qmp command. |
| postcopy-blocktime value of qmp command will show overlapped blocking |
| time for all vCPU, postcopy-vcpu-blocktime will show list of blocking |
| time per vCPU. |
| |
| .. note:: |
| During the postcopy phase, the bandwidth limits set using |
| ``migrate_set_speed`` is ignored (to avoid delaying requested pages that |
| the destination is waiting for). |
| |
| Postcopy device transfer |
| ------------------------ |
| |
| Loading of device data may cause the device emulation to access guest RAM |
| that may trigger faults that have to be resolved by the source, as such |
| the migration stream has to be able to respond with page data *during* the |
| device load, and hence the device data has to be read from the stream completely |
| before the device load begins to free the stream up. This is achieved by |
| 'packaging' the device data into a blob that's read in one go. |
| |
| Source behaviour |
| ---------------- |
| |
| Until postcopy is entered the migration stream is identical to normal |
| precopy, except for the addition of a 'postcopy advise' command at |
| the beginning, to tell the destination that postcopy might happen. |
| When postcopy starts the source sends the page discard data and then |
| forms the 'package' containing: |
| |
| - Command: 'postcopy listen' |
| - The device state |
| |
| A series of sections, identical to the precopy streams device state stream |
| containing everything except postcopiable devices (i.e. RAM) |
| - Command: 'postcopy run' |
| |
| The 'package' is sent as the data part of a Command: ``CMD_PACKAGED``, and the |
| contents are formatted in the same way as the main migration stream. |
| |
| During postcopy the source scans the list of dirty pages and sends them |
| to the destination without being requested (in much the same way as precopy), |
| however when a page request is received from the destination, the dirty page |
| scanning restarts from the requested location. This causes requested pages |
| to be sent quickly, and also causes pages directly after the requested page |
| to be sent quickly in the hope that those pages are likely to be used |
| by the destination soon. |
| |
| Destination behaviour |
| --------------------- |
| |
| Initially the destination looks the same as precopy, with a single thread |
| reading the migration stream; the 'postcopy advise' and 'discard' commands |
| are processed to change the way RAM is managed, but don't affect the stream |
| processing. |
| |
| :: |
| |
| ------------------------------------------------------------------------------ |
| 1 2 3 4 5 6 7 |
| main -----DISCARD-CMD_PACKAGED ( LISTEN DEVICE DEVICE DEVICE RUN ) |
| thread | | |
| | (page request) |
| | \___ |
| v \ |
| listen thread: --- page -- page -- page -- page -- page -- |
| |
| a b c |
| ------------------------------------------------------------------------------ |
| |
| - On receipt of ``CMD_PACKAGED`` (1) |
| |
| All the data associated with the package - the ( ... ) section in the diagram - |
| is read into memory, and the main thread recurses into qemu_loadvm_state_main |
| to process the contents of the package (2) which contains commands (3,6) and |
| devices (4...) |
| |
| - On receipt of 'postcopy listen' - 3 -(i.e. the 1st command in the package) |
| |
| a new thread (a) is started that takes over servicing the migration stream, |
| while the main thread carries on loading the package. It loads normal |
| background page data (b) but if during a device load a fault happens (5) |
| the returned page (c) is loaded by the listen thread allowing the main |
| threads device load to carry on. |
| |
| - The last thing in the ``CMD_PACKAGED`` is a 'RUN' command (6) |
| |
| letting the destination CPUs start running. At the end of the |
| ``CMD_PACKAGED`` (7) the main thread returns to normal running behaviour and |
| is no longer used by migration, while the listen thread carries on servicing |
| page data until the end of migration. |
| |
| Postcopy states |
| --------------- |
| |
| Postcopy moves through a series of states (see postcopy_state) from |
| ADVISE->DISCARD->LISTEN->RUNNING->END |
| |
| - Advise |
| |
| Set at the start of migration if postcopy is enabled, even |
| if it hasn't had the start command; here the destination |
| checks that its OS has the support needed for postcopy, and performs |
| setup to ensure the RAM mappings are suitable for later postcopy. |
| The destination will fail early in migration at this point if the |
| required OS support is not present. |
| (Triggered by reception of POSTCOPY_ADVISE command) |
| |
| - Discard |
| |
| Entered on receipt of the first 'discard' command; prior to |
| the first Discard being performed, hugepages are switched off |
| (using madvise) to ensure that no new huge pages are created |
| during the postcopy phase, and to cause any huge pages that |
| have discards on them to be broken. |
| |
| - Listen |
| |
| The first command in the package, POSTCOPY_LISTEN, switches |
| the destination state to Listen, and starts a new thread |
| (the 'listen thread') which takes over the job of receiving |
| pages off the migration stream, while the main thread carries |
| on processing the blob. With this thread able to process page |
| reception, the destination now 'sensitises' the RAM to detect |
| any access to missing pages (on Linux using the 'userfault' |
| system). |
| |
| - Running |
| |
| POSTCOPY_RUN causes the destination to synchronise all |
| state and start the CPUs and IO devices running. The main |
| thread now finishes processing the migration package and |
| now carries on as it would for normal precopy migration |
| (although it can't do the cleanup it would do as it |
| finishes a normal migration). |
| |
| - End |
| |
| The listen thread can now quit, and perform the cleanup of migration |
| state, the migration is now complete. |
| |
| Source side page maps |
| --------------------- |
| |
| The source side keeps two bitmaps during postcopy; 'the migration bitmap' |
| and 'unsent map'. The 'migration bitmap' is basically the same as in |
| the precopy case, and holds a bit to indicate that page is 'dirty' - |
| i.e. needs sending. During the precopy phase this is updated as the CPU |
| dirties pages, however during postcopy the CPUs are stopped and nothing |
| should dirty anything any more. |
| |
| The 'unsent map' is used for the transition to postcopy. It is a bitmap that |
| has a bit cleared whenever a page is sent to the destination, however during |
| the transition to postcopy mode it is combined with the migration bitmap |
| to form a set of pages that: |
| |
| a) Have been sent but then redirtied (which must be discarded) |
| b) Have not yet been sent - which also must be discarded to cause any |
| transparent huge pages built during precopy to be broken. |
| |
| Note that the contents of the unsentmap are sacrificed during the calculation |
| of the discard set and thus aren't valid once in postcopy. The dirtymap |
| is still valid and is used to ensure that no page is sent more than once. Any |
| request for a page that has already been sent is ignored. Duplicate requests |
| such as this can happen as a page is sent at about the same time the |
| destination accesses it. |
| |
| Postcopy with hugepages |
| ----------------------- |
| |
| Postcopy now works with hugetlbfs backed memory: |
| |
| a) The linux kernel on the destination must support userfault on hugepages. |
| b) The huge-page configuration on the source and destination VMs must be |
| identical; i.e. RAMBlocks on both sides must use the same page size. |
| c) Note that ``-mem-path /dev/hugepages`` will fall back to allocating normal |
| RAM if it doesn't have enough hugepages, triggering (b) to fail. |
| Using ``-mem-prealloc`` enforces the allocation using hugepages. |
| d) Care should be taken with the size of hugepage used; postcopy with 2MB |
| hugepages works well, however 1GB hugepages are likely to be problematic |
| since it takes ~1 second to transfer a 1GB hugepage across a 10Gbps link, |
| and until the full page is transferred the destination thread is blocked. |
| |
| Postcopy with shared memory |
| --------------------------- |
| |
| Postcopy migration with shared memory needs explicit support from the other |
| processes that share memory and from QEMU. There are restrictions on the type of |
| memory that userfault can support shared. |
| |
| The Linux kernel userfault support works on `/dev/shm` memory and on `hugetlbfs` |
| (although the kernel doesn't provide an equivalent to `madvise(MADV_DONTNEED)` |
| for hugetlbfs which may be a problem in some configurations). |
| |
| The vhost-user code in QEMU supports clients that have Postcopy support, |
| and the `vhost-user-bridge` (in `tests/`) and the DPDK package have changes |
| to support postcopy. |
| |
| The client needs to open a userfaultfd and register the areas |
| of memory that it maps with userfault. The client must then pass the |
| userfaultfd back to QEMU together with a mapping table that allows |
| fault addresses in the clients address space to be converted back to |
| RAMBlock/offsets. The client's userfaultfd is added to the postcopy |
| fault-thread and page requests are made on behalf of the client by QEMU. |
| QEMU performs 'wake' operations on the client's userfaultfd to allow it |
| to continue after a page has arrived. |
| |
| .. note:: |
| There are two future improvements that would be nice: |
| a) Some way to make QEMU ignorant of the addresses in the clients |
| address space |
| b) Avoiding the need for QEMU to perform ufd-wake calls after the |
| pages have arrived |
| |
| Retro-fitting postcopy to existing clients is possible: |
| a) A mechanism is needed for the registration with userfault as above, |
| and the registration needs to be coordinated with the phases of |
| postcopy. In vhost-user extra messages are added to the existing |
| control channel. |
| b) Any thread that can block due to guest memory accesses must be |
| identified and the implication understood; for example if the |
| guest memory access is made while holding a lock then all other |
| threads waiting for that lock will also be blocked. |
| |
| Firmware |
| ======== |
| |
| Migration migrates the copies of RAM and ROM, and thus when running |
| on the destination it includes the firmware from the source. Even after |
| resetting a VM, the old firmware is used. Only once QEMU has been restarted |
| is the new firmware in use. |
| |
| - Changes in firmware size can cause changes in the required RAMBlock size |
| to hold the firmware and thus migration can fail. In practice it's best |
| to pad firmware images to convenient powers of 2 with plenty of space |
| for growth. |
| |
| - Care should be taken with device emulation code so that newer |
| emulation code can work with older firmware to allow forward migration. |
| |
| - Care should be taken with newer firmware so that backward migration |
| to older systems with older device emulation code will work. |
| |
| In some cases it may be best to tie specific firmware versions to specific |
| versioned machine types to cut down on the combinations that will need |
| support. This is also useful when newer versions of firmware outgrow |
| the padding. |
| |