blob: 619066d29e2422cb798bb57f771647b29db0023c [file] [log] [blame]
/*
* ARM micro operations
*
* Copyright (c) 2003 Fabrice Bellard
* Copyright (c) 2005 CodeSourcery, LLC
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "exec.h"
#define REGNAME r0
#define REG (env->regs[0])
#include "op_template.h"
#define REGNAME r1
#define REG (env->regs[1])
#include "op_template.h"
#define REGNAME r2
#define REG (env->regs[2])
#include "op_template.h"
#define REGNAME r3
#define REG (env->regs[3])
#include "op_template.h"
#define REGNAME r4
#define REG (env->regs[4])
#include "op_template.h"
#define REGNAME r5
#define REG (env->regs[5])
#include "op_template.h"
#define REGNAME r6
#define REG (env->regs[6])
#include "op_template.h"
#define REGNAME r7
#define REG (env->regs[7])
#include "op_template.h"
#define REGNAME r8
#define REG (env->regs[8])
#include "op_template.h"
#define REGNAME r9
#define REG (env->regs[9])
#include "op_template.h"
#define REGNAME r10
#define REG (env->regs[10])
#include "op_template.h"
#define REGNAME r11
#define REG (env->regs[11])
#include "op_template.h"
#define REGNAME r12
#define REG (env->regs[12])
#include "op_template.h"
#define REGNAME r13
#define REG (env->regs[13])
#include "op_template.h"
#define REGNAME r14
#define REG (env->regs[14])
#include "op_template.h"
#define REGNAME r15
#define REG (env->regs[15])
#define SET_REG(x) REG = x & ~(uint32_t)1
#include "op_template.h"
void OPPROTO op_bx_T0(void)
{
env->regs[15] = T0 & ~(uint32_t)1;
env->thumb = (T0 & 1) != 0;
}
void OPPROTO op_movl_T0_0(void)
{
T0 = 0;
}
void OPPROTO op_movl_T0_im(void)
{
T0 = PARAM1;
}
void OPPROTO op_movl_T0_T1(void)
{
T0 = T1;
}
void OPPROTO op_movl_T1_im(void)
{
T1 = PARAM1;
}
void OPPROTO op_mov_CF_T1(void)
{
env->CF = ((uint32_t)T1) >> 31;
}
void OPPROTO op_movl_T2_im(void)
{
T2 = PARAM1;
}
void OPPROTO op_addl_T1_im(void)
{
T1 += PARAM1;
}
void OPPROTO op_addl_T1_T2(void)
{
T1 += T2;
}
void OPPROTO op_subl_T1_T2(void)
{
T1 -= T2;
}
void OPPROTO op_addl_T0_T1(void)
{
T0 += T1;
}
void OPPROTO op_addl_T0_T1_cc(void)
{
unsigned int src1;
src1 = T0;
T0 += T1;
env->NZF = T0;
env->CF = T0 < src1;
env->VF = (src1 ^ T1 ^ -1) & (src1 ^ T0);
}
void OPPROTO op_adcl_T0_T1(void)
{
T0 += T1 + env->CF;
}
void OPPROTO op_adcl_T0_T1_cc(void)
{
unsigned int src1;
src1 = T0;
if (!env->CF) {
T0 += T1;
env->CF = T0 < src1;
} else {
T0 += T1 + 1;
env->CF = T0 <= src1;
}
env->VF = (src1 ^ T1 ^ -1) & (src1 ^ T0);
env->NZF = T0;
FORCE_RET();
}
#define OPSUB(sub, sbc, res, T0, T1) \
\
void OPPROTO op_ ## sub ## l_T0_T1(void) \
{ \
res = T0 - T1; \
} \
\
void OPPROTO op_ ## sub ## l_T0_T1_cc(void) \
{ \
unsigned int src1; \
src1 = T0; \
T0 -= T1; \
env->NZF = T0; \
env->CF = src1 >= T1; \
env->VF = (src1 ^ T1) & (src1 ^ T0); \
res = T0; \
} \
\
void OPPROTO op_ ## sbc ## l_T0_T1(void) \
{ \
res = T0 - T1 + env->CF - 1; \
} \
\
void OPPROTO op_ ## sbc ## l_T0_T1_cc(void) \
{ \
unsigned int src1; \
src1 = T0; \
if (!env->CF) { \
T0 = T0 - T1 - 1; \
env->CF = src1 > T1; \
} else { \
T0 = T0 - T1; \
env->CF = src1 >= T1; \
} \
env->VF = (src1 ^ T1) & (src1 ^ T0); \
env->NZF = T0; \
res = T0; \
FORCE_RET(); \
}
OPSUB(sub, sbc, T0, T0, T1)
OPSUB(rsb, rsc, T0, T1, T0)
void OPPROTO op_andl_T0_T1(void)
{
T0 &= T1;
}
void OPPROTO op_xorl_T0_T1(void)
{
T0 ^= T1;
}
void OPPROTO op_orl_T0_T1(void)
{
T0 |= T1;
}
void OPPROTO op_bicl_T0_T1(void)
{
T0 &= ~T1;
}
void OPPROTO op_notl_T1(void)
{
T1 = ~T1;
}
void OPPROTO op_logic_T0_cc(void)
{
env->NZF = T0;
}
void OPPROTO op_logic_T1_cc(void)
{
env->NZF = T1;
}
#define EIP (env->regs[15])
void OPPROTO op_test_eq(void)
{
if (env->NZF == 0)
GOTO_LABEL_PARAM(1);;
FORCE_RET();
}
void OPPROTO op_test_ne(void)
{
if (env->NZF != 0)
GOTO_LABEL_PARAM(1);;
FORCE_RET();
}
void OPPROTO op_test_cs(void)
{
if (env->CF != 0)
GOTO_LABEL_PARAM(1);
FORCE_RET();
}
void OPPROTO op_test_cc(void)
{
if (env->CF == 0)
GOTO_LABEL_PARAM(1);
FORCE_RET();
}
void OPPROTO op_test_mi(void)
{
if ((env->NZF & 0x80000000) != 0)
GOTO_LABEL_PARAM(1);
FORCE_RET();
}
void OPPROTO op_test_pl(void)
{
if ((env->NZF & 0x80000000) == 0)
GOTO_LABEL_PARAM(1);
FORCE_RET();
}
void OPPROTO op_test_vs(void)
{
if ((env->VF & 0x80000000) != 0)
GOTO_LABEL_PARAM(1);
FORCE_RET();
}
void OPPROTO op_test_vc(void)
{
if ((env->VF & 0x80000000) == 0)
GOTO_LABEL_PARAM(1);
FORCE_RET();
}
void OPPROTO op_test_hi(void)
{
if (env->CF != 0 && env->NZF != 0)
GOTO_LABEL_PARAM(1);
FORCE_RET();
}
void OPPROTO op_test_ls(void)
{
if (env->CF == 0 || env->NZF == 0)
GOTO_LABEL_PARAM(1);
FORCE_RET();
}
void OPPROTO op_test_ge(void)
{
if (((env->VF ^ env->NZF) & 0x80000000) == 0)
GOTO_LABEL_PARAM(1);
FORCE_RET();
}
void OPPROTO op_test_lt(void)
{
if (((env->VF ^ env->NZF) & 0x80000000) != 0)
GOTO_LABEL_PARAM(1);
FORCE_RET();
}
void OPPROTO op_test_gt(void)
{
if (env->NZF != 0 && ((env->VF ^ env->NZF) & 0x80000000) == 0)
GOTO_LABEL_PARAM(1);
FORCE_RET();
}
void OPPROTO op_test_le(void)
{
if (env->NZF == 0 || ((env->VF ^ env->NZF) & 0x80000000) != 0)
GOTO_LABEL_PARAM(1);
FORCE_RET();
}
void OPPROTO op_goto_tb0(void)
{
GOTO_TB(op_goto_tb0, PARAM1, 0);
}
void OPPROTO op_goto_tb1(void)
{
GOTO_TB(op_goto_tb1, PARAM1, 1);
}
void OPPROTO op_exit_tb(void)
{
EXIT_TB();
}
void OPPROTO op_movl_T0_cpsr(void)
{
T0 = cpsr_read(env);
FORCE_RET();
}
void OPPROTO op_movl_T0_spsr(void)
{
T0 = env->spsr;
}
void OPPROTO op_movl_spsr_T0(void)
{
uint32_t mask = PARAM1;
env->spsr = (env->spsr & ~mask) | (T0 & mask);
}
void OPPROTO op_movl_cpsr_T0(void)
{
cpsr_write(env, T0, PARAM1);
FORCE_RET();
}
void OPPROTO op_mul_T0_T1(void)
{
T0 = T0 * T1;
}
/* 64 bit unsigned mul */
void OPPROTO op_mull_T0_T1(void)
{
uint64_t res;
res = (uint64_t)T0 * (uint64_t)T1;
T1 = res >> 32;
T0 = res;
}
/* 64 bit signed mul */
void OPPROTO op_imull_T0_T1(void)
{
uint64_t res;
res = (int64_t)((int32_t)T0) * (int64_t)((int32_t)T1);
T1 = res >> 32;
T0 = res;
}
/* 48 bit signed mul, top 32 bits */
void OPPROTO op_imulw_T0_T1(void)
{
uint64_t res;
res = (int64_t)((int32_t)T0) * (int64_t)((int32_t)T1);
T0 = res >> 16;
}
void OPPROTO op_addq_T0_T1(void)
{
uint64_t res;
res = ((uint64_t)T1 << 32) | T0;
res += ((uint64_t)(env->regs[PARAM2]) << 32) | (env->regs[PARAM1]);
T1 = res >> 32;
T0 = res;
}
void OPPROTO op_addq_lo_T0_T1(void)
{
uint64_t res;
res = ((uint64_t)T1 << 32) | T0;
res += (uint64_t)(env->regs[PARAM1]);
T1 = res >> 32;
T0 = res;
}
void OPPROTO op_logicq_cc(void)
{
env->NZF = (T1 & 0x80000000) | ((T0 | T1) != 0);
}
/* memory access */
#define MEMSUFFIX _raw
#include "op_mem.h"
#if !defined(CONFIG_USER_ONLY)
#define MEMSUFFIX _user
#include "op_mem.h"
#define MEMSUFFIX _kernel
#include "op_mem.h"
#endif
/* shifts */
/* T1 based */
void OPPROTO op_shll_T1_im(void)
{
T1 = T1 << PARAM1;
}
void OPPROTO op_shrl_T1_im(void)
{
T1 = (uint32_t)T1 >> PARAM1;
}
void OPPROTO op_shrl_T1_0(void)
{
T1 = 0;
}
void OPPROTO op_sarl_T1_im(void)
{
T1 = (int32_t)T1 >> PARAM1;
}
void OPPROTO op_sarl_T1_0(void)
{
T1 = (int32_t)T1 >> 31;
}
void OPPROTO op_rorl_T1_im(void)
{
int shift;
shift = PARAM1;
T1 = ((uint32_t)T1 >> shift) | (T1 << (32 - shift));
}
void OPPROTO op_rrxl_T1(void)
{
T1 = ((uint32_t)T1 >> 1) | ((uint32_t)env->CF << 31);
}
/* T1 based, set C flag */
void OPPROTO op_shll_T1_im_cc(void)
{
env->CF = (T1 >> (32 - PARAM1)) & 1;
T1 = T1 << PARAM1;
}
void OPPROTO op_shrl_T1_im_cc(void)
{
env->CF = (T1 >> (PARAM1 - 1)) & 1;
T1 = (uint32_t)T1 >> PARAM1;
}
void OPPROTO op_shrl_T1_0_cc(void)
{
env->CF = (T1 >> 31) & 1;
T1 = 0;
}
void OPPROTO op_sarl_T1_im_cc(void)
{
env->CF = (T1 >> (PARAM1 - 1)) & 1;
T1 = (int32_t)T1 >> PARAM1;
}
void OPPROTO op_sarl_T1_0_cc(void)
{
env->CF = (T1 >> 31) & 1;
T1 = (int32_t)T1 >> 31;
}
void OPPROTO op_rorl_T1_im_cc(void)
{
int shift;
shift = PARAM1;
env->CF = (T1 >> (shift - 1)) & 1;
T1 = ((uint32_t)T1 >> shift) | (T1 << (32 - shift));
}
void OPPROTO op_rrxl_T1_cc(void)
{
uint32_t c;
c = T1 & 1;
T1 = ((uint32_t)T1 >> 1) | ((uint32_t)env->CF << 31);
env->CF = c;
}
/* T2 based */
void OPPROTO op_shll_T2_im(void)
{
T2 = T2 << PARAM1;
}
void OPPROTO op_shrl_T2_im(void)
{
T2 = (uint32_t)T2 >> PARAM1;
}
void OPPROTO op_shrl_T2_0(void)
{
T2 = 0;
}
void OPPROTO op_sarl_T2_im(void)
{
T2 = (int32_t)T2 >> PARAM1;
}
void OPPROTO op_sarl_T2_0(void)
{
T2 = (int32_t)T2 >> 31;
}
void OPPROTO op_rorl_T2_im(void)
{
int shift;
shift = PARAM1;
T2 = ((uint32_t)T2 >> shift) | (T2 << (32 - shift));
}
void OPPROTO op_rrxl_T2(void)
{
T2 = ((uint32_t)T2 >> 1) | ((uint32_t)env->CF << 31);
}
/* T1 based, use T0 as shift count */
void OPPROTO op_shll_T1_T0(void)
{
int shift;
shift = T0 & 0xff;
if (shift >= 32)
T1 = 0;
else
T1 = T1 << shift;
FORCE_RET();
}
void OPPROTO op_shrl_T1_T0(void)
{
int shift;
shift = T0 & 0xff;
if (shift >= 32)
T1 = 0;
else
T1 = (uint32_t)T1 >> shift;
FORCE_RET();
}
void OPPROTO op_sarl_T1_T0(void)
{
int shift;
shift = T0 & 0xff;
if (shift >= 32)
shift = 31;
T1 = (int32_t)T1 >> shift;
}
void OPPROTO op_rorl_T1_T0(void)
{
int shift;
shift = T0 & 0x1f;
if (shift) {
T1 = ((uint32_t)T1 >> shift) | (T1 << (32 - shift));
}
FORCE_RET();
}
/* T1 based, use T0 as shift count and compute CF */
void OPPROTO op_shll_T1_T0_cc(void)
{
int shift;
shift = T0 & 0xff;
if (shift >= 32) {
if (shift == 32)
env->CF = T1 & 1;
else
env->CF = 0;
T1 = 0;
} else if (shift != 0) {
env->CF = (T1 >> (32 - shift)) & 1;
T1 = T1 << shift;
}
FORCE_RET();
}
void OPPROTO op_shrl_T1_T0_cc(void)
{
int shift;
shift = T0 & 0xff;
if (shift >= 32) {
if (shift == 32)
env->CF = (T1 >> 31) & 1;
else
env->CF = 0;
T1 = 0;
} else if (shift != 0) {
env->CF = (T1 >> (shift - 1)) & 1;
T1 = (uint32_t)T1 >> shift;
}
FORCE_RET();
}
void OPPROTO op_sarl_T1_T0_cc(void)
{
int shift;
shift = T0 & 0xff;
if (shift >= 32) {
env->CF = (T1 >> 31) & 1;
T1 = (int32_t)T1 >> 31;
} else {
env->CF = (T1 >> (shift - 1)) & 1;
T1 = (int32_t)T1 >> shift;
}
FORCE_RET();
}
void OPPROTO op_rorl_T1_T0_cc(void)
{
int shift1, shift;
shift1 = T0 & 0xff;
shift = shift1 & 0x1f;
if (shift == 0) {
if (shift1 != 0)
env->CF = (T1 >> 31) & 1;
} else {
env->CF = (T1 >> (shift - 1)) & 1;
T1 = ((uint32_t)T1 >> shift) | (T1 << (32 - shift));
}
FORCE_RET();
}
/* misc */
void OPPROTO op_clz_T0(void)
{
int count;
for (count = 32; T0 > 0; count--)
T0 = T0 >> 1;
T0 = count;
FORCE_RET();
}
void OPPROTO op_sarl_T0_im(void)
{
T0 = (int32_t)T0 >> PARAM1;
}
/* Sign/zero extend */
void OPPROTO op_sxth_T0(void)
{
T0 = (int16_t)T0;
}
void OPPROTO op_sxth_T1(void)
{
T1 = (int16_t)T1;
}
void OPPROTO op_sxtb_T1(void)
{
T1 = (int8_t)T1;
}
void OPPROTO op_uxtb_T1(void)
{
T1 = (uint8_t)T1;
}
void OPPROTO op_uxth_T1(void)
{
T1 = (uint16_t)T1;
}
void OPPROTO op_sxtb16_T1(void)
{
uint32_t res;
res = (uint16_t)(int8_t)T1;
res |= (uint32_t)(int8_t)(T1 >> 16) << 16;
T1 = res;
}
void OPPROTO op_uxtb16_T1(void)
{
uint32_t res;
res = (uint16_t)(uint8_t)T1;
res |= (uint32_t)(uint8_t)(T1 >> 16) << 16;
T1 = res;
}
#define SIGNBIT (uint32_t)0x80000000
/* saturating arithmetic */
void OPPROTO op_addl_T0_T1_setq(void)
{
uint32_t res;
res = T0 + T1;
if (((res ^ T0) & SIGNBIT) && !((T0 ^ T1) & SIGNBIT))
env->QF = 1;
T0 = res;
FORCE_RET();
}
void OPPROTO op_addl_T0_T1_saturate(void)
{
uint32_t res;
res = T0 + T1;
if (((res ^ T0) & SIGNBIT) && !((T0 ^ T1) & SIGNBIT)) {
env->QF = 1;
if (T0 & SIGNBIT)
T0 = 0x80000000;
else
T0 = 0x7fffffff;
}
else
T0 = res;
FORCE_RET();
}
void OPPROTO op_subl_T0_T1_saturate(void)
{
uint32_t res;
res = T0 - T1;
if (((res ^ T0) & SIGNBIT) && ((T0 ^ T1) & SIGNBIT)) {
env->QF = 1;
if (T0 & SIGNBIT)
T0 = 0x8000000;
else
T0 = 0x7fffffff;
}
else
T0 = res;
FORCE_RET();
}
void OPPROTO op_double_T1_saturate(void)
{
int32_t val;
val = T1;
if (val >= 0x40000000) {
T1 = 0x7fffffff;
env->QF = 1;
} else if (val <= (int32_t)0xc0000000) {
T1 = 0x80000000;
env->QF = 1;
} else {
T1 = val << 1;
}
FORCE_RET();
}
/* thumb shift by immediate */
void OPPROTO op_shll_T0_im_thumb(void)
{
int shift;
shift = PARAM1;
if (shift != 0) {
env->CF = (T1 >> (32 - shift)) & 1;
T0 = T0 << shift;
}
env->NZF = T0;
FORCE_RET();
}
void OPPROTO op_shrl_T0_im_thumb(void)
{
int shift;
shift = PARAM1;
if (shift == 0) {
env->CF = ((uint32_t)shift) >> 31;
T0 = 0;
} else {
env->CF = (T0 >> (shift - 1)) & 1;
T0 = T0 >> shift;
}
env->NZF = T0;
FORCE_RET();
}
void OPPROTO op_sarl_T0_im_thumb(void)
{
int shift;
shift = PARAM1;
if (shift == 0) {
T0 = ((int32_t)T0) >> 31;
env->CF = T0 & 1;
} else {
env->CF = (T0 >> (shift - 1)) & 1;
T0 = ((int32_t)T0) >> shift;
}
env->NZF = T0;
FORCE_RET();
}
/* exceptions */
void OPPROTO op_swi(void)
{
env->exception_index = EXCP_SWI;
cpu_loop_exit();
}
void OPPROTO op_undef_insn(void)
{
env->exception_index = EXCP_UDEF;
cpu_loop_exit();
}
void OPPROTO op_debug(void)
{
env->exception_index = EXCP_DEBUG;
cpu_loop_exit();
}
void OPPROTO op_wfi(void)
{
env->exception_index = EXCP_HLT;
env->halted = 1;
cpu_loop_exit();
}
void OPPROTO op_bkpt(void)
{
env->exception_index = EXCP_BKPT;
cpu_loop_exit();
}
/* VFP support. We follow the convention used for VFP instrunctions:
Single precition routines have a "s" suffix, double precision a
"d" suffix. */
#define VFP_OP(name, p) void OPPROTO op_vfp_##name##p(void)
#define VFP_BINOP(name) \
VFP_OP(name, s) \
{ \
FT0s = float32_ ## name (FT0s, FT1s, &env->vfp.fp_status); \
} \
VFP_OP(name, d) \
{ \
FT0d = float64_ ## name (FT0d, FT1d, &env->vfp.fp_status); \
}
VFP_BINOP(add)
VFP_BINOP(sub)
VFP_BINOP(mul)
VFP_BINOP(div)
#undef VFP_BINOP
#define VFP_HELPER(name) \
VFP_OP(name, s) \
{ \
do_vfp_##name##s(); \
} \
VFP_OP(name, d) \
{ \
do_vfp_##name##d(); \
}
VFP_HELPER(abs)
VFP_HELPER(sqrt)
VFP_HELPER(cmp)
VFP_HELPER(cmpe)
#undef VFP_HELPER
/* XXX: Will this do the right thing for NANs. Should invert the signbit
without looking at the rest of the value. */
VFP_OP(neg, s)
{
FT0s = float32_chs(FT0s);
}
VFP_OP(neg, d)
{
FT0d = float64_chs(FT0d);
}
VFP_OP(F1_ld0, s)
{
union {
uint32_t i;
float32 s;
} v;
v.i = 0;
FT1s = v.s;
}
VFP_OP(F1_ld0, d)
{
union {
uint64_t i;
float64 d;
} v;
v.i = 0;
FT1d = v.d;
}
/* Helper routines to perform bitwise copies between float and int. */
static inline float32 vfp_itos(uint32_t i)
{
union {
uint32_t i;
float32 s;
} v;
v.i = i;
return v.s;
}
static inline uint32_t vfp_stoi(float32 s)
{
union {
uint32_t i;
float32 s;
} v;
v.s = s;
return v.i;
}
/* Integer to float conversion. */
VFP_OP(uito, s)
{
FT0s = uint32_to_float32(vfp_stoi(FT0s), &env->vfp.fp_status);
}
VFP_OP(uito, d)
{
FT0d = uint32_to_float64(vfp_stoi(FT0s), &env->vfp.fp_status);
}
VFP_OP(sito, s)
{
FT0s = int32_to_float32(vfp_stoi(FT0s), &env->vfp.fp_status);
}
VFP_OP(sito, d)
{
FT0d = int32_to_float64(vfp_stoi(FT0s), &env->vfp.fp_status);
}
/* Float to integer conversion. */
VFP_OP(toui, s)
{
FT0s = vfp_itos(float32_to_uint32(FT0s, &env->vfp.fp_status));
}
VFP_OP(toui, d)
{
FT0s = vfp_itos(float64_to_uint32(FT0d, &env->vfp.fp_status));
}
VFP_OP(tosi, s)
{
FT0s = vfp_itos(float32_to_int32(FT0s, &env->vfp.fp_status));
}
VFP_OP(tosi, d)
{
FT0s = vfp_itos(float64_to_int32(FT0d, &env->vfp.fp_status));
}
/* TODO: Set rounding mode properly. */
VFP_OP(touiz, s)
{
FT0s = vfp_itos(float32_to_uint32_round_to_zero(FT0s, &env->vfp.fp_status));
}
VFP_OP(touiz, d)
{
FT0s = vfp_itos(float64_to_uint32_round_to_zero(FT0d, &env->vfp.fp_status));
}
VFP_OP(tosiz, s)
{
FT0s = vfp_itos(float32_to_int32_round_to_zero(FT0s, &env->vfp.fp_status));
}
VFP_OP(tosiz, d)
{
FT0s = vfp_itos(float64_to_int32_round_to_zero(FT0d, &env->vfp.fp_status));
}
/* floating point conversion */
VFP_OP(fcvtd, s)
{
FT0d = float32_to_float64(FT0s, &env->vfp.fp_status);
}
VFP_OP(fcvts, d)
{
FT0s = float64_to_float32(FT0d, &env->vfp.fp_status);
}
/* Get and Put values from registers. */
VFP_OP(getreg_F0, d)
{
FT0d = *(float64 *)((char *) env + PARAM1);
}
VFP_OP(getreg_F0, s)
{
FT0s = *(float32 *)((char *) env + PARAM1);
}
VFP_OP(getreg_F1, d)
{
FT1d = *(float64 *)((char *) env + PARAM1);
}
VFP_OP(getreg_F1, s)
{
FT1s = *(float32 *)((char *) env + PARAM1);
}
VFP_OP(setreg_F0, d)
{
*(float64 *)((char *) env + PARAM1) = FT0d;
}
VFP_OP(setreg_F0, s)
{
*(float32 *)((char *) env + PARAM1) = FT0s;
}
void OPPROTO op_vfp_movl_T0_fpscr(void)
{
do_vfp_get_fpscr ();
}
void OPPROTO op_vfp_movl_T0_fpscr_flags(void)
{
T0 = env->vfp.xregs[ARM_VFP_FPSCR] & (0xf << 28);
}
void OPPROTO op_vfp_movl_fpscr_T0(void)
{
do_vfp_set_fpscr();
}
void OPPROTO op_vfp_movl_T0_xreg(void)
{
T0 = env->vfp.xregs[PARAM1];
}
void OPPROTO op_vfp_movl_xreg_T0(void)
{
env->vfp.xregs[PARAM1] = T0;
}
/* Move between FT0s to T0 */
void OPPROTO op_vfp_mrs(void)
{
T0 = vfp_stoi(FT0s);
}
void OPPROTO op_vfp_msr(void)
{
FT0s = vfp_itos(T0);
}
/* Move between FT0d and {T0,T1} */
void OPPROTO op_vfp_mrrd(void)
{
CPU_DoubleU u;
u.d = FT0d;
T0 = u.l.lower;
T1 = u.l.upper;
}
void OPPROTO op_vfp_mdrr(void)
{
CPU_DoubleU u;
u.l.lower = T0;
u.l.upper = T1;
FT0d = u.d;
}
/* Copy the most significant bit to T0 to all bits of T1. */
void OPPROTO op_signbit_T1_T0(void)
{
T1 = (int32_t)T0 >> 31;
}
void OPPROTO op_movl_cp15_T0(void)
{
helper_set_cp15(env, PARAM1, T0);
FORCE_RET();
}
void OPPROTO op_movl_T0_cp15(void)
{
T0 = helper_get_cp15(env, PARAM1);
FORCE_RET();
}
/* Access to user mode registers from privileged modes. */
void OPPROTO op_movl_T0_user(void)
{
int regno = PARAM1;
if (regno == 13) {
T0 = env->banked_r13[0];
} else if (regno == 14) {
T0 = env->banked_r14[0];
} else if ((env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
T0 = env->usr_regs[regno - 8];
} else {
T0 = env->regs[regno];
}
FORCE_RET();
}
void OPPROTO op_movl_user_T0(void)
{
int regno = PARAM1;
if (regno == 13) {
env->banked_r13[0] = T0;
} else if (regno == 14) {
env->banked_r14[0] = T0;
} else if ((env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
env->usr_regs[regno - 8] = T0;
} else {
env->regs[regno] = T0;
}
FORCE_RET();
}
void OPPROTO op_movl_T2_T0(void)
{
T2 = T0;
}
void OPPROTO op_movl_T0_T2(void)
{
T0 = T2;
}