| #ifndef CPU_COMMON_H |
| #define CPU_COMMON_H |
| |
| /* CPU interfaces that are target independent. */ |
| |
| #ifndef CONFIG_USER_ONLY |
| #include "exec/hwaddr.h" |
| #endif |
| |
| #define EXCP_INTERRUPT 0x10000 /* async interruption */ |
| #define EXCP_HLT 0x10001 /* hlt instruction reached */ |
| #define EXCP_DEBUG 0x10002 /* cpu stopped after a breakpoint or singlestep */ |
| #define EXCP_HALTED 0x10003 /* cpu is halted (waiting for external event) */ |
| #define EXCP_YIELD 0x10004 /* cpu wants to yield timeslice to another */ |
| #define EXCP_ATOMIC 0x10005 /* stop-the-world and emulate atomic */ |
| |
| /** |
| * vaddr: |
| * Type wide enough to contain any #target_ulong virtual address. |
| */ |
| typedef uint64_t vaddr; |
| #define VADDR_PRId PRId64 |
| #define VADDR_PRIu PRIu64 |
| #define VADDR_PRIo PRIo64 |
| #define VADDR_PRIx PRIx64 |
| #define VADDR_PRIX PRIX64 |
| #define VADDR_MAX UINT64_MAX |
| |
| void cpu_exec_init_all(void); |
| void cpu_exec_step_atomic(CPUState *cpu); |
| |
| /* Using intptr_t ensures that qemu_*_page_mask is sign-extended even |
| * when intptr_t is 32-bit and we are aligning a long long. |
| */ |
| extern uintptr_t qemu_host_page_size; |
| extern intptr_t qemu_host_page_mask; |
| |
| #define HOST_PAGE_ALIGN(addr) ROUND_UP((addr), qemu_host_page_size) |
| #define REAL_HOST_PAGE_ALIGN(addr) ROUND_UP((addr), qemu_real_host_page_size()) |
| |
| /* The CPU list lock nests outside page_(un)lock or mmap_(un)lock */ |
| extern QemuMutex qemu_cpu_list_lock; |
| void qemu_init_cpu_list(void); |
| void cpu_list_lock(void); |
| void cpu_list_unlock(void); |
| unsigned int cpu_list_generation_id_get(void); |
| |
| void tcg_iommu_init_notifier_list(CPUState *cpu); |
| void tcg_iommu_free_notifier_list(CPUState *cpu); |
| |
| #if !defined(CONFIG_USER_ONLY) |
| |
| enum device_endian { |
| DEVICE_NATIVE_ENDIAN, |
| DEVICE_BIG_ENDIAN, |
| DEVICE_LITTLE_ENDIAN, |
| }; |
| |
| #if HOST_BIG_ENDIAN |
| #define DEVICE_HOST_ENDIAN DEVICE_BIG_ENDIAN |
| #else |
| #define DEVICE_HOST_ENDIAN DEVICE_LITTLE_ENDIAN |
| #endif |
| |
| /* address in the RAM (different from a physical address) */ |
| #if defined(CONFIG_XEN_BACKEND) |
| typedef uint64_t ram_addr_t; |
| # define RAM_ADDR_MAX UINT64_MAX |
| # define RAM_ADDR_FMT "%" PRIx64 |
| #else |
| typedef uintptr_t ram_addr_t; |
| # define RAM_ADDR_MAX UINTPTR_MAX |
| # define RAM_ADDR_FMT "%" PRIxPTR |
| #endif |
| |
| /* memory API */ |
| |
| void qemu_ram_remap(ram_addr_t addr, ram_addr_t length); |
| /* This should not be used by devices. */ |
| ram_addr_t qemu_ram_addr_from_host(void *ptr); |
| ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr); |
| RAMBlock *qemu_ram_block_by_name(const char *name); |
| |
| /* |
| * Translates a host ptr back to a RAMBlock and an offset in that RAMBlock. |
| * |
| * @ptr: The host pointer to translate. |
| * @round_offset: Whether to round the result offset down to a target page |
| * @offset: Will be set to the offset within the returned RAMBlock. |
| * |
| * Returns: RAMBlock (or NULL if not found) |
| * |
| * By the time this function returns, the returned pointer is not protected |
| * by RCU anymore. If the caller is not within an RCU critical section and |
| * does not hold the BQL, it must have other means of protecting the |
| * pointer, such as a reference to the memory region that owns the RAMBlock. |
| */ |
| RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset, |
| ram_addr_t *offset); |
| ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host); |
| void qemu_ram_set_idstr(RAMBlock *block, const char *name, DeviceState *dev); |
| void qemu_ram_unset_idstr(RAMBlock *block); |
| const char *qemu_ram_get_idstr(RAMBlock *rb); |
| void *qemu_ram_get_host_addr(RAMBlock *rb); |
| ram_addr_t qemu_ram_get_offset(RAMBlock *rb); |
| ram_addr_t qemu_ram_get_used_length(RAMBlock *rb); |
| ram_addr_t qemu_ram_get_max_length(RAMBlock *rb); |
| bool qemu_ram_is_shared(RAMBlock *rb); |
| bool qemu_ram_is_noreserve(RAMBlock *rb); |
| bool qemu_ram_is_uf_zeroable(RAMBlock *rb); |
| void qemu_ram_set_uf_zeroable(RAMBlock *rb); |
| bool qemu_ram_is_migratable(RAMBlock *rb); |
| void qemu_ram_set_migratable(RAMBlock *rb); |
| void qemu_ram_unset_migratable(RAMBlock *rb); |
| bool qemu_ram_is_named_file(RAMBlock *rb); |
| int qemu_ram_get_fd(RAMBlock *rb); |
| |
| size_t qemu_ram_pagesize(RAMBlock *block); |
| size_t qemu_ram_pagesize_largest(void); |
| |
| /** |
| * cpu_address_space_init: |
| * @cpu: CPU to add this address space to |
| * @asidx: integer index of this address space |
| * @prefix: prefix to be used as name of address space |
| * @mr: the root memory region of address space |
| * |
| * Add the specified address space to the CPU's cpu_ases list. |
| * The address space added with @asidx 0 is the one used for the |
| * convenience pointer cpu->as. |
| * The target-specific code which registers ASes is responsible |
| * for defining what semantics address space 0, 1, 2, etc have. |
| * |
| * Before the first call to this function, the caller must set |
| * cpu->num_ases to the total number of address spaces it needs |
| * to support. |
| * |
| * Note that with KVM only one address space is supported. |
| */ |
| void cpu_address_space_init(CPUState *cpu, int asidx, |
| const char *prefix, MemoryRegion *mr); |
| |
| void cpu_physical_memory_rw(hwaddr addr, void *buf, |
| hwaddr len, bool is_write); |
| static inline void cpu_physical_memory_read(hwaddr addr, |
| void *buf, hwaddr len) |
| { |
| cpu_physical_memory_rw(addr, buf, len, false); |
| } |
| static inline void cpu_physical_memory_write(hwaddr addr, |
| const void *buf, hwaddr len) |
| { |
| cpu_physical_memory_rw(addr, (void *)buf, len, true); |
| } |
| void *cpu_physical_memory_map(hwaddr addr, |
| hwaddr *plen, |
| bool is_write); |
| void cpu_physical_memory_unmap(void *buffer, hwaddr len, |
| bool is_write, hwaddr access_len); |
| void cpu_register_map_client(QEMUBH *bh); |
| void cpu_unregister_map_client(QEMUBH *bh); |
| |
| bool cpu_physical_memory_is_io(hwaddr phys_addr); |
| |
| /* Coalesced MMIO regions are areas where write operations can be reordered. |
| * This usually implies that write operations are side-effect free. This allows |
| * batching which can make a major impact on performance when using |
| * virtualization. |
| */ |
| void qemu_flush_coalesced_mmio_buffer(void); |
| |
| void cpu_flush_icache_range(hwaddr start, hwaddr len); |
| |
| typedef int (RAMBlockIterFunc)(RAMBlock *rb, void *opaque); |
| |
| int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque); |
| int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length); |
| |
| #endif |
| |
| /* Returns: 0 on success, -1 on error */ |
| int cpu_memory_rw_debug(CPUState *cpu, vaddr addr, |
| void *ptr, size_t len, bool is_write); |
| |
| /* vl.c */ |
| void list_cpus(void); |
| |
| #ifdef CONFIG_TCG |
| /** |
| * cpu_unwind_state_data: |
| * @cpu: the cpu context |
| * @host_pc: the host pc within the translation |
| * @data: output data |
| * |
| * Attempt to load the the unwind state for a host pc occurring in |
| * translated code. If @host_pc is not in translated code, the |
| * function returns false; otherwise @data is loaded. |
| * This is the same unwind info as given to restore_state_to_opc. |
| */ |
| bool cpu_unwind_state_data(CPUState *cpu, uintptr_t host_pc, uint64_t *data); |
| |
| /** |
| * cpu_restore_state: |
| * @cpu: the cpu context |
| * @host_pc: the host pc within the translation |
| * @return: true if state was restored, false otherwise |
| * |
| * Attempt to restore the state for a fault occurring in translated |
| * code. If @host_pc is not in translated code no state is |
| * restored and the function returns false. |
| */ |
| bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc); |
| |
| G_NORETURN void cpu_loop_exit_noexc(CPUState *cpu); |
| G_NORETURN void cpu_loop_exit_atomic(CPUState *cpu, uintptr_t pc); |
| #endif /* CONFIG_TCG */ |
| G_NORETURN void cpu_loop_exit(CPUState *cpu); |
| G_NORETURN void cpu_loop_exit_restore(CPUState *cpu, uintptr_t pc); |
| |
| #endif /* CPU_COMMON_H */ |