|  | /* | 
|  | * ARM mach-virt emulation | 
|  | * | 
|  | * Copyright (c) 2013 Linaro Limited | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify it | 
|  | * under the terms and conditions of the GNU General Public License, | 
|  | * version 2 or later, as published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope it will be useful, but WITHOUT | 
|  | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
|  | * more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License along with | 
|  | * this program.  If not, see <http://www.gnu.org/licenses/>. | 
|  | * | 
|  | * Emulate a virtual board which works by passing Linux all the information | 
|  | * it needs about what devices are present via the device tree. | 
|  | * There are some restrictions about what we can do here: | 
|  | *  + we can only present devices whose Linux drivers will work based | 
|  | *    purely on the device tree with no platform data at all | 
|  | *  + we want to present a very stripped-down minimalist platform, | 
|  | *    both because this reduces the security attack surface from the guest | 
|  | *    and also because it reduces our exposure to being broken when | 
|  | *    the kernel updates its device tree bindings and requires further | 
|  | *    information in a device binding that we aren't providing. | 
|  | * This is essentially the same approach kvmtool uses. | 
|  | */ | 
|  |  | 
|  | #include "qemu/osdep.h" | 
|  | #include "qemu/datadir.h" | 
|  | #include "qemu/units.h" | 
|  | #include "qemu/option.h" | 
|  | #include "monitor/qdev.h" | 
|  | #include "hw/sysbus.h" | 
|  | #include "hw/arm/boot.h" | 
|  | #include "hw/arm/primecell.h" | 
|  | #include "hw/arm/virt.h" | 
|  | #include "hw/block/flash.h" | 
|  | #include "hw/vfio/vfio-calxeda-xgmac.h" | 
|  | #include "hw/vfio/vfio-amd-xgbe.h" | 
|  | #include "hw/display/ramfb.h" | 
|  | #include "net/net.h" | 
|  | #include "system/device_tree.h" | 
|  | #include "system/numa.h" | 
|  | #include "system/runstate.h" | 
|  | #include "system/tpm.h" | 
|  | #include "system/tcg.h" | 
|  | #include "system/kvm.h" | 
|  | #include "system/hvf.h" | 
|  | #include "system/qtest.h" | 
|  | #include "hw/loader.h" | 
|  | #include "qapi/error.h" | 
|  | #include "qemu/bitops.h" | 
|  | #include "qemu/cutils.h" | 
|  | #include "qemu/error-report.h" | 
|  | #include "qemu/module.h" | 
|  | #include "hw/pci-host/gpex.h" | 
|  | #include "hw/virtio/virtio-pci.h" | 
|  | #include "hw/core/sysbus-fdt.h" | 
|  | #include "hw/platform-bus.h" | 
|  | #include "hw/qdev-properties.h" | 
|  | #include "hw/arm/fdt.h" | 
|  | #include "hw/intc/arm_gic.h" | 
|  | #include "hw/intc/arm_gicv3_common.h" | 
|  | #include "hw/intc/arm_gicv3_its_common.h" | 
|  | #include "hw/irq.h" | 
|  | #include "kvm_arm.h" | 
|  | #include "hvf_arm.h" | 
|  | #include "hw/firmware/smbios.h" | 
|  | #include "qapi/visitor.h" | 
|  | #include "qapi/qapi-visit-common.h" | 
|  | #include "qobject/qlist.h" | 
|  | #include "standard-headers/linux/input.h" | 
|  | #include "hw/arm/smmuv3.h" | 
|  | #include "hw/acpi/acpi.h" | 
|  | #include "target/arm/cpu-qom.h" | 
|  | #include "target/arm/internals.h" | 
|  | #include "target/arm/multiprocessing.h" | 
|  | #include "target/arm/gtimer.h" | 
|  | #include "hw/mem/pc-dimm.h" | 
|  | #include "hw/mem/nvdimm.h" | 
|  | #include "hw/acpi/generic_event_device.h" | 
|  | #include "hw/uefi/var-service-api.h" | 
|  | #include "hw/virtio/virtio-md-pci.h" | 
|  | #include "hw/virtio/virtio-iommu.h" | 
|  | #include "hw/char/pl011.h" | 
|  | #include "qemu/guest-random.h" | 
|  |  | 
|  | static GlobalProperty arm_virt_compat[] = { | 
|  | { TYPE_VIRTIO_IOMMU_PCI, "aw-bits", "48" }, | 
|  | }; | 
|  | static const size_t arm_virt_compat_len = G_N_ELEMENTS(arm_virt_compat); | 
|  |  | 
|  | /* | 
|  | * This cannot be called from the virt_machine_class_init() because | 
|  | * TYPE_VIRT_MACHINE is abstract and mc->compat_props g_ptr_array_new() | 
|  | * only is called on virt non abstract class init. | 
|  | */ | 
|  | static void arm_virt_compat_set(MachineClass *mc) | 
|  | { | 
|  | compat_props_add(mc->compat_props, arm_virt_compat, | 
|  | arm_virt_compat_len); | 
|  | } | 
|  |  | 
|  | #define DEFINE_VIRT_MACHINE_IMPL(latest, ...) \ | 
|  | static void MACHINE_VER_SYM(class_init, virt, __VA_ARGS__)( \ | 
|  | ObjectClass *oc, \ | 
|  | void *data) \ | 
|  | { \ | 
|  | MachineClass *mc = MACHINE_CLASS(oc); \ | 
|  | arm_virt_compat_set(mc); \ | 
|  | MACHINE_VER_SYM(options, virt, __VA_ARGS__)(mc); \ | 
|  | mc->desc = "QEMU " MACHINE_VER_STR(__VA_ARGS__) " ARM Virtual Machine"; \ | 
|  | MACHINE_VER_DEPRECATION(__VA_ARGS__); \ | 
|  | if (latest) { \ | 
|  | mc->alias = "virt"; \ | 
|  | } \ | 
|  | } \ | 
|  | static const TypeInfo MACHINE_VER_SYM(info, virt, __VA_ARGS__) = \ | 
|  | { \ | 
|  | .name = MACHINE_VER_TYPE_NAME("virt", __VA_ARGS__), \ | 
|  | .parent = TYPE_VIRT_MACHINE, \ | 
|  | .class_init = MACHINE_VER_SYM(class_init, virt, __VA_ARGS__), \ | 
|  | }; \ | 
|  | static void MACHINE_VER_SYM(register, virt, __VA_ARGS__)(void) \ | 
|  | { \ | 
|  | MACHINE_VER_DELETION(__VA_ARGS__); \ | 
|  | type_register_static(&MACHINE_VER_SYM(info, virt, __VA_ARGS__)); \ | 
|  | } \ | 
|  | type_init(MACHINE_VER_SYM(register, virt, __VA_ARGS__)); | 
|  |  | 
|  | #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \ | 
|  | DEFINE_VIRT_MACHINE_IMPL(true, major, minor) | 
|  | #define DEFINE_VIRT_MACHINE(major, minor) \ | 
|  | DEFINE_VIRT_MACHINE_IMPL(false, major, minor) | 
|  |  | 
|  |  | 
|  | /* Number of external interrupt lines to configure the GIC with */ | 
|  | #define NUM_IRQS 256 | 
|  |  | 
|  | #define PLATFORM_BUS_NUM_IRQS 64 | 
|  |  | 
|  | /* Legacy RAM limit in GB (< version 4.0) */ | 
|  | #define LEGACY_RAMLIMIT_GB 255 | 
|  | #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB) | 
|  |  | 
|  | /* Addresses and sizes of our components. | 
|  | * 0..128MB is space for a flash device so we can run bootrom code such as UEFI. | 
|  | * 128MB..256MB is used for miscellaneous device I/O. | 
|  | * 256MB..1GB is reserved for possible future PCI support (ie where the | 
|  | * PCI memory window will go if we add a PCI host controller). | 
|  | * 1GB and up is RAM (which may happily spill over into the | 
|  | * high memory region beyond 4GB). | 
|  | * This represents a compromise between how much RAM can be given to | 
|  | * a 32 bit VM and leaving space for expansion and in particular for PCI. | 
|  | * Note that devices should generally be placed at multiples of 0x10000, | 
|  | * to accommodate guests using 64K pages. | 
|  | */ | 
|  | static const MemMapEntry base_memmap[] = { | 
|  | /* Space up to 0x8000000 is reserved for a boot ROM */ | 
|  | [VIRT_FLASH] =              {          0, 0x08000000 }, | 
|  | [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 }, | 
|  | /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */ | 
|  | [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 }, | 
|  | [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 }, | 
|  | [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 }, | 
|  | [VIRT_GIC_HYP] =            { 0x08030000, 0x00010000 }, | 
|  | [VIRT_GIC_VCPU] =           { 0x08040000, 0x00010000 }, | 
|  | /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */ | 
|  | [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 }, | 
|  | /* This redistributor space allows up to 2*64kB*123 CPUs */ | 
|  | [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 }, | 
|  | [VIRT_UART0] =              { 0x09000000, 0x00001000 }, | 
|  | [VIRT_RTC] =                { 0x09010000, 0x00001000 }, | 
|  | [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 }, | 
|  | [VIRT_GPIO] =               { 0x09030000, 0x00001000 }, | 
|  | [VIRT_UART1] =              { 0x09040000, 0x00001000 }, | 
|  | [VIRT_SMMU] =               { 0x09050000, 0x00020000 }, | 
|  | [VIRT_PCDIMM_ACPI] =        { 0x09070000, MEMORY_HOTPLUG_IO_LEN }, | 
|  | [VIRT_ACPI_GED] =           { 0x09080000, ACPI_GED_EVT_SEL_LEN }, | 
|  | [VIRT_NVDIMM_ACPI] =        { 0x09090000, NVDIMM_ACPI_IO_LEN}, | 
|  | [VIRT_PVTIME] =             { 0x090a0000, 0x00010000 }, | 
|  | [VIRT_SECURE_GPIO] =        { 0x090b0000, 0x00001000 }, | 
|  | [VIRT_MMIO] =               { 0x0a000000, 0x00000200 }, | 
|  | /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */ | 
|  | [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 }, | 
|  | [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 }, | 
|  | [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 }, | 
|  | [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 }, | 
|  | [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 }, | 
|  | /* Actual RAM size depends on initial RAM and device memory settings */ | 
|  | [VIRT_MEM] =                { GiB, LEGACY_RAMLIMIT_BYTES }, | 
|  | }; | 
|  |  | 
|  | /* Update the docs for highmem-mmio-size when changing this default */ | 
|  | #define DEFAULT_HIGH_PCIE_MMIO_SIZE_GB 512 | 
|  | #define DEFAULT_HIGH_PCIE_MMIO_SIZE (DEFAULT_HIGH_PCIE_MMIO_SIZE_GB * GiB) | 
|  |  | 
|  | /* | 
|  | * Highmem IO Regions: This memory map is floating, located after the RAM. | 
|  | * Each MemMapEntry base (GPA) will be dynamically computed, depending on the | 
|  | * top of the RAM, so that its base get the same alignment as the size, | 
|  | * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is | 
|  | * less than 256GiB of RAM, the floating area starts at the 256GiB mark. | 
|  | * Note the extended_memmap is sized so that it eventually also includes the | 
|  | * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last | 
|  | * index of base_memmap). | 
|  | * | 
|  | * The memory map for these Highmem IO Regions can be in legacy or compact | 
|  | * layout, depending on 'compact-highmem' property. With legacy layout, the | 
|  | * PA space for one specific region is always reserved, even if the region | 
|  | * has been disabled or doesn't fit into the PA space. However, the PA space | 
|  | * for the region won't be reserved in these circumstances with compact layout. | 
|  | * | 
|  | * Note that the highmem-mmio-size property will update the high PCIE MMIO size | 
|  | * field in this array. | 
|  | */ | 
|  | static MemMapEntry extended_memmap[] = { | 
|  | /* Additional 64 MB redist region (can contain up to 512 redistributors) */ | 
|  | [VIRT_HIGH_GIC_REDIST2] =   { 0x0, 64 * MiB }, | 
|  | [VIRT_HIGH_PCIE_ECAM] =     { 0x0, 256 * MiB }, | 
|  | /* Second PCIe window */ | 
|  | [VIRT_HIGH_PCIE_MMIO] =     { 0x0, DEFAULT_HIGH_PCIE_MMIO_SIZE }, | 
|  | }; | 
|  |  | 
|  | static const int a15irqmap[] = { | 
|  | [VIRT_UART0] = 1, | 
|  | [VIRT_RTC] = 2, | 
|  | [VIRT_PCIE] = 3, /* ... to 6 */ | 
|  | [VIRT_GPIO] = 7, | 
|  | [VIRT_UART1] = 8, | 
|  | [VIRT_ACPI_GED] = 9, | 
|  | [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */ | 
|  | [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */ | 
|  | [VIRT_SMMU] = 74,    /* ...to 74 + NUM_SMMU_IRQS - 1 */ | 
|  | [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */ | 
|  | }; | 
|  |  | 
|  | static void create_randomness(MachineState *ms, const char *node) | 
|  | { | 
|  | struct { | 
|  | uint64_t kaslr; | 
|  | uint8_t rng[32]; | 
|  | } seed; | 
|  |  | 
|  | if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) { | 
|  | return; | 
|  | } | 
|  | qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed.kaslr); | 
|  | qemu_fdt_setprop(ms->fdt, node, "rng-seed", seed.rng, sizeof(seed.rng)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The CPU object always exposes the NS EL2 virt timer IRQ line, | 
|  | * but we don't want to advertise it to the guest in the dtb or ACPI | 
|  | * table unless it's really going to do something. | 
|  | */ | 
|  | static bool ns_el2_virt_timer_present(void) | 
|  | { | 
|  | ARMCPU *cpu = ARM_CPU(qemu_get_cpu(0)); | 
|  | CPUARMState *env = &cpu->env; | 
|  |  | 
|  | return arm_feature(env, ARM_FEATURE_AARCH64) && | 
|  | arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu); | 
|  | } | 
|  |  | 
|  | static void create_fdt(VirtMachineState *vms) | 
|  | { | 
|  | MachineState *ms = MACHINE(vms); | 
|  | int nb_numa_nodes = ms->numa_state->num_nodes; | 
|  | void *fdt = create_device_tree(&vms->fdt_size); | 
|  |  | 
|  | if (!fdt) { | 
|  | error_report("create_device_tree() failed"); | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | ms->fdt = fdt; | 
|  |  | 
|  | /* Header */ | 
|  | qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt"); | 
|  | qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); | 
|  | qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); | 
|  | qemu_fdt_setprop_string(fdt, "/", "model", "linux,dummy-virt"); | 
|  |  | 
|  | /* | 
|  | * For QEMU, all DMA is coherent. Advertising this in the root node | 
|  | * has two benefits: | 
|  | * | 
|  | * - It avoids potential bugs where we forget to mark a DMA | 
|  | *   capable device as being dma-coherent | 
|  | * - It avoids spurious warnings from the Linux kernel about | 
|  | *   devices which can't do DMA at all | 
|  | */ | 
|  | qemu_fdt_setprop(fdt, "/", "dma-coherent", NULL, 0); | 
|  |  | 
|  | /* /chosen must exist for load_dtb to fill in necessary properties later */ | 
|  | qemu_fdt_add_subnode(fdt, "/chosen"); | 
|  | if (vms->dtb_randomness) { | 
|  | create_randomness(ms, "/chosen"); | 
|  | } | 
|  |  | 
|  | if (vms->secure) { | 
|  | qemu_fdt_add_subnode(fdt, "/secure-chosen"); | 
|  | if (vms->dtb_randomness) { | 
|  | create_randomness(ms, "/secure-chosen"); | 
|  | } | 
|  | } | 
|  |  | 
|  | qemu_fdt_add_subnode(fdt, "/aliases"); | 
|  |  | 
|  | /* Clock node, for the benefit of the UART. The kernel device tree | 
|  | * binding documentation claims the PL011 node clock properties are | 
|  | * optional but in practice if you omit them the kernel refuses to | 
|  | * probe for the device. | 
|  | */ | 
|  | vms->clock_phandle = qemu_fdt_alloc_phandle(fdt); | 
|  | qemu_fdt_add_subnode(fdt, "/apb-pclk"); | 
|  | qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock"); | 
|  | qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0); | 
|  | qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000); | 
|  | qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names", | 
|  | "clk24mhz"); | 
|  | qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle); | 
|  |  | 
|  | if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) { | 
|  | int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t); | 
|  | uint32_t *matrix = g_malloc0(size); | 
|  | int idx, i, j; | 
|  |  | 
|  | for (i = 0; i < nb_numa_nodes; i++) { | 
|  | for (j = 0; j < nb_numa_nodes; j++) { | 
|  | idx = (i * nb_numa_nodes + j) * 3; | 
|  | matrix[idx + 0] = cpu_to_be32(i); | 
|  | matrix[idx + 1] = cpu_to_be32(j); | 
|  | matrix[idx + 2] = | 
|  | cpu_to_be32(ms->numa_state->nodes[i].distance[j]); | 
|  | } | 
|  | } | 
|  |  | 
|  | qemu_fdt_add_subnode(fdt, "/distance-map"); | 
|  | qemu_fdt_setprop_string(fdt, "/distance-map", "compatible", | 
|  | "numa-distance-map-v1"); | 
|  | qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix", | 
|  | matrix, size); | 
|  | g_free(matrix); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void fdt_add_timer_nodes(const VirtMachineState *vms) | 
|  | { | 
|  | /* On real hardware these interrupts are level-triggered. | 
|  | * On KVM they were edge-triggered before host kernel version 4.4, | 
|  | * and level-triggered afterwards. | 
|  | * On emulated QEMU they are level-triggered. | 
|  | * | 
|  | * Getting the DTB info about them wrong is awkward for some | 
|  | * guest kernels: | 
|  | *  pre-4.8 ignore the DT and leave the interrupt configured | 
|  | *   with whatever the GIC reset value (or the bootloader) left it at | 
|  | *  4.8 before rc6 honour the incorrect data by programming it back | 
|  | *   into the GIC, causing problems | 
|  | *  4.8rc6 and later ignore the DT and always write "level triggered" | 
|  | *   into the GIC | 
|  | * | 
|  | * For backwards-compatibility, virt-2.8 and earlier will continue | 
|  | * to say these are edge-triggered, but later machines will report | 
|  | * the correct information. | 
|  | */ | 
|  | ARMCPU *armcpu; | 
|  | VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); | 
|  | uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; | 
|  | MachineState *ms = MACHINE(vms); | 
|  |  | 
|  | if (vmc->claim_edge_triggered_timers) { | 
|  | irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI; | 
|  | } | 
|  |  | 
|  | if (vms->gic_version == VIRT_GIC_VERSION_2) { | 
|  | irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, | 
|  | GIC_FDT_IRQ_PPI_CPU_WIDTH, | 
|  | (1 << MACHINE(vms)->smp.cpus) - 1); | 
|  | } | 
|  |  | 
|  | qemu_fdt_add_subnode(ms->fdt, "/timer"); | 
|  |  | 
|  | armcpu = ARM_CPU(qemu_get_cpu(0)); | 
|  | if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { | 
|  | const char compat[] = "arm,armv8-timer\0arm,armv7-timer"; | 
|  | qemu_fdt_setprop(ms->fdt, "/timer", "compatible", | 
|  | compat, sizeof(compat)); | 
|  | } else { | 
|  | qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible", | 
|  | "arm,armv7-timer"); | 
|  | } | 
|  | qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0); | 
|  | if (vms->ns_el2_virt_timer_irq) { | 
|  | qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts", | 
|  | GIC_FDT_IRQ_TYPE_PPI, | 
|  | INTID_TO_PPI(ARCH_TIMER_S_EL1_IRQ), irqflags, | 
|  | GIC_FDT_IRQ_TYPE_PPI, | 
|  | INTID_TO_PPI(ARCH_TIMER_NS_EL1_IRQ), irqflags, | 
|  | GIC_FDT_IRQ_TYPE_PPI, | 
|  | INTID_TO_PPI(ARCH_TIMER_VIRT_IRQ), irqflags, | 
|  | GIC_FDT_IRQ_TYPE_PPI, | 
|  | INTID_TO_PPI(ARCH_TIMER_NS_EL2_IRQ), irqflags, | 
|  | GIC_FDT_IRQ_TYPE_PPI, | 
|  | INTID_TO_PPI(ARCH_TIMER_NS_EL2_VIRT_IRQ), irqflags); | 
|  | } else { | 
|  | qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts", | 
|  | GIC_FDT_IRQ_TYPE_PPI, | 
|  | INTID_TO_PPI(ARCH_TIMER_S_EL1_IRQ), irqflags, | 
|  | GIC_FDT_IRQ_TYPE_PPI, | 
|  | INTID_TO_PPI(ARCH_TIMER_NS_EL1_IRQ), irqflags, | 
|  | GIC_FDT_IRQ_TYPE_PPI, | 
|  | INTID_TO_PPI(ARCH_TIMER_VIRT_IRQ), irqflags, | 
|  | GIC_FDT_IRQ_TYPE_PPI, | 
|  | INTID_TO_PPI(ARCH_TIMER_NS_EL2_IRQ), irqflags); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void fdt_add_cpu_nodes(const VirtMachineState *vms) | 
|  | { | 
|  | int cpu; | 
|  | int addr_cells = 1; | 
|  | const MachineState *ms = MACHINE(vms); | 
|  | const VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); | 
|  | int smp_cpus = ms->smp.cpus; | 
|  |  | 
|  | /* | 
|  | * See Linux Documentation/devicetree/bindings/arm/cpus.yaml | 
|  | * On ARM v8 64-bit systems value should be set to 2, | 
|  | * that corresponds to the MPIDR_EL1 register size. | 
|  | * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs | 
|  | * in the system, #address-cells can be set to 1, since | 
|  | * MPIDR_EL1[63:32] bits are not used for CPUs | 
|  | * identification. | 
|  | * | 
|  | * Here we actually don't know whether our system is 32- or 64-bit one. | 
|  | * The simplest way to go is to examine affinity IDs of all our CPUs. If | 
|  | * at least one of them has Aff3 populated, we set #address-cells to 2. | 
|  | */ | 
|  | for (cpu = 0; cpu < smp_cpus; cpu++) { | 
|  | ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); | 
|  |  | 
|  | if (arm_cpu_mp_affinity(armcpu) & ARM_AFF3_MASK) { | 
|  | addr_cells = 2; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | qemu_fdt_add_subnode(ms->fdt, "/cpus"); | 
|  | qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells); | 
|  | qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0); | 
|  |  | 
|  | for (cpu = smp_cpus - 1; cpu >= 0; cpu--) { | 
|  | char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); | 
|  | ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); | 
|  | CPUState *cs = CPU(armcpu); | 
|  |  | 
|  | qemu_fdt_add_subnode(ms->fdt, nodename); | 
|  | qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu"); | 
|  | qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", | 
|  | armcpu->dtb_compatible); | 
|  |  | 
|  | if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) { | 
|  | qemu_fdt_setprop_string(ms->fdt, nodename, | 
|  | "enable-method", "psci"); | 
|  | } | 
|  |  | 
|  | if (addr_cells == 2) { | 
|  | qemu_fdt_setprop_u64(ms->fdt, nodename, "reg", | 
|  | arm_cpu_mp_affinity(armcpu)); | 
|  | } else { | 
|  | qemu_fdt_setprop_cell(ms->fdt, nodename, "reg", | 
|  | arm_cpu_mp_affinity(armcpu)); | 
|  | } | 
|  |  | 
|  | if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) { | 
|  | qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id", | 
|  | ms->possible_cpus->cpus[cs->cpu_index].props.node_id); | 
|  | } | 
|  |  | 
|  | if (!vmc->no_cpu_topology) { | 
|  | qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", | 
|  | qemu_fdt_alloc_phandle(ms->fdt)); | 
|  | } | 
|  |  | 
|  | g_free(nodename); | 
|  | } | 
|  |  | 
|  | if (!vmc->no_cpu_topology) { | 
|  | /* | 
|  | * Add vCPU topology description through fdt node cpu-map. | 
|  | * | 
|  | * See Linux Documentation/devicetree/bindings/cpu/cpu-topology.txt | 
|  | * In a SMP system, the hierarchy of CPUs can be defined through | 
|  | * four entities that are used to describe the layout of CPUs in | 
|  | * the system: socket/cluster/core/thread. | 
|  | * | 
|  | * A socket node represents the boundary of system physical package | 
|  | * and its child nodes must be one or more cluster nodes. A system | 
|  | * can contain several layers of clustering within a single physical | 
|  | * package and cluster nodes can be contained in parent cluster nodes. | 
|  | * | 
|  | * Note: currently we only support one layer of clustering within | 
|  | * each physical package. | 
|  | */ | 
|  | qemu_fdt_add_subnode(ms->fdt, "/cpus/cpu-map"); | 
|  |  | 
|  | for (cpu = smp_cpus - 1; cpu >= 0; cpu--) { | 
|  | char *cpu_path = g_strdup_printf("/cpus/cpu@%d", cpu); | 
|  | char *map_path; | 
|  |  | 
|  | if (ms->smp.threads > 1) { | 
|  | map_path = g_strdup_printf( | 
|  | "/cpus/cpu-map/socket%d/cluster%d/core%d/thread%d", | 
|  | cpu / (ms->smp.clusters * ms->smp.cores * ms->smp.threads), | 
|  | (cpu / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters, | 
|  | (cpu / ms->smp.threads) % ms->smp.cores, | 
|  | cpu % ms->smp.threads); | 
|  | } else { | 
|  | map_path = g_strdup_printf( | 
|  | "/cpus/cpu-map/socket%d/cluster%d/core%d", | 
|  | cpu / (ms->smp.clusters * ms->smp.cores), | 
|  | (cpu / ms->smp.cores) % ms->smp.clusters, | 
|  | cpu % ms->smp.cores); | 
|  | } | 
|  | qemu_fdt_add_path(ms->fdt, map_path); | 
|  | qemu_fdt_setprop_phandle(ms->fdt, map_path, "cpu", cpu_path); | 
|  |  | 
|  | g_free(map_path); | 
|  | g_free(cpu_path); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void fdt_add_its_gic_node(VirtMachineState *vms) | 
|  | { | 
|  | char *nodename; | 
|  | MachineState *ms = MACHINE(vms); | 
|  |  | 
|  | vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt); | 
|  | nodename = g_strdup_printf("/intc/its@%" PRIx64, | 
|  | vms->memmap[VIRT_GIC_ITS].base); | 
|  | qemu_fdt_add_subnode(ms->fdt, nodename); | 
|  | qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", | 
|  | "arm,gic-v3-its"); | 
|  | qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0); | 
|  | qemu_fdt_setprop_cell(ms->fdt, nodename, "#msi-cells", 1); | 
|  | qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", | 
|  | 2, vms->memmap[VIRT_GIC_ITS].base, | 
|  | 2, vms->memmap[VIRT_GIC_ITS].size); | 
|  | qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle); | 
|  | g_free(nodename); | 
|  | } | 
|  |  | 
|  | static void fdt_add_v2m_gic_node(VirtMachineState *vms) | 
|  | { | 
|  | MachineState *ms = MACHINE(vms); | 
|  | char *nodename; | 
|  |  | 
|  | nodename = g_strdup_printf("/intc/v2m@%" PRIx64, | 
|  | vms->memmap[VIRT_GIC_V2M].base); | 
|  | vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt); | 
|  | qemu_fdt_add_subnode(ms->fdt, nodename); | 
|  | qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", | 
|  | "arm,gic-v2m-frame"); | 
|  | qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0); | 
|  | qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", | 
|  | 2, vms->memmap[VIRT_GIC_V2M].base, | 
|  | 2, vms->memmap[VIRT_GIC_V2M].size); | 
|  | qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle); | 
|  | g_free(nodename); | 
|  | } | 
|  |  | 
|  | static void fdt_add_gic_node(VirtMachineState *vms) | 
|  | { | 
|  | MachineState *ms = MACHINE(vms); | 
|  | char *nodename; | 
|  |  | 
|  | vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt); | 
|  | qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle); | 
|  |  | 
|  | nodename = g_strdup_printf("/intc@%" PRIx64, | 
|  | vms->memmap[VIRT_GIC_DIST].base); | 
|  | qemu_fdt_add_subnode(ms->fdt, nodename); | 
|  | qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3); | 
|  | qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0); | 
|  | qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2); | 
|  | qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2); | 
|  | qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0); | 
|  | if (vms->gic_version != VIRT_GIC_VERSION_2) { | 
|  | int nb_redist_regions = virt_gicv3_redist_region_count(vms); | 
|  |  | 
|  | qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", | 
|  | "arm,gic-v3"); | 
|  |  | 
|  | qemu_fdt_setprop_cell(ms->fdt, nodename, | 
|  | "#redistributor-regions", nb_redist_regions); | 
|  |  | 
|  | if (nb_redist_regions == 1) { | 
|  | qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", | 
|  | 2, vms->memmap[VIRT_GIC_DIST].base, | 
|  | 2, vms->memmap[VIRT_GIC_DIST].size, | 
|  | 2, vms->memmap[VIRT_GIC_REDIST].base, | 
|  | 2, vms->memmap[VIRT_GIC_REDIST].size); | 
|  | } else { | 
|  | qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", | 
|  | 2, vms->memmap[VIRT_GIC_DIST].base, | 
|  | 2, vms->memmap[VIRT_GIC_DIST].size, | 
|  | 2, vms->memmap[VIRT_GIC_REDIST].base, | 
|  | 2, vms->memmap[VIRT_GIC_REDIST].size, | 
|  | 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base, | 
|  | 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size); | 
|  | } | 
|  |  | 
|  | if (vms->virt) { | 
|  | qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", | 
|  | GIC_FDT_IRQ_TYPE_PPI, | 
|  | INTID_TO_PPI(ARCH_GIC_MAINT_IRQ), | 
|  | GIC_FDT_IRQ_FLAGS_LEVEL_HI); | 
|  | } | 
|  | } else { | 
|  | /* 'cortex-a15-gic' means 'GIC v2' */ | 
|  | qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", | 
|  | "arm,cortex-a15-gic"); | 
|  | if (!vms->virt) { | 
|  | qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", | 
|  | 2, vms->memmap[VIRT_GIC_DIST].base, | 
|  | 2, vms->memmap[VIRT_GIC_DIST].size, | 
|  | 2, vms->memmap[VIRT_GIC_CPU].base, | 
|  | 2, vms->memmap[VIRT_GIC_CPU].size); | 
|  | } else { | 
|  | qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", | 
|  | 2, vms->memmap[VIRT_GIC_DIST].base, | 
|  | 2, vms->memmap[VIRT_GIC_DIST].size, | 
|  | 2, vms->memmap[VIRT_GIC_CPU].base, | 
|  | 2, vms->memmap[VIRT_GIC_CPU].size, | 
|  | 2, vms->memmap[VIRT_GIC_HYP].base, | 
|  | 2, vms->memmap[VIRT_GIC_HYP].size, | 
|  | 2, vms->memmap[VIRT_GIC_VCPU].base, | 
|  | 2, vms->memmap[VIRT_GIC_VCPU].size); | 
|  | qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", | 
|  | GIC_FDT_IRQ_TYPE_PPI, | 
|  | INTID_TO_PPI(ARCH_GIC_MAINT_IRQ), | 
|  | GIC_FDT_IRQ_FLAGS_LEVEL_HI); | 
|  | } | 
|  | } | 
|  |  | 
|  | qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle); | 
|  | g_free(nodename); | 
|  | } | 
|  |  | 
|  | static void fdt_add_pmu_nodes(const VirtMachineState *vms) | 
|  | { | 
|  | ARMCPU *armcpu = ARM_CPU(first_cpu); | 
|  | uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; | 
|  | MachineState *ms = MACHINE(vms); | 
|  |  | 
|  | if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) { | 
|  | assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (vms->gic_version == VIRT_GIC_VERSION_2) { | 
|  | irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, | 
|  | GIC_FDT_IRQ_PPI_CPU_WIDTH, | 
|  | (1 << MACHINE(vms)->smp.cpus) - 1); | 
|  | } | 
|  |  | 
|  | qemu_fdt_add_subnode(ms->fdt, "/pmu"); | 
|  | if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { | 
|  | const char compat[] = "arm,armv8-pmuv3"; | 
|  | qemu_fdt_setprop(ms->fdt, "/pmu", "compatible", | 
|  | compat, sizeof(compat)); | 
|  | qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts", | 
|  | GIC_FDT_IRQ_TYPE_PPI, | 
|  | INTID_TO_PPI(VIRTUAL_PMU_IRQ), irqflags); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline DeviceState *create_acpi_ged(VirtMachineState *vms) | 
|  | { | 
|  | DeviceState *dev; | 
|  | MachineState *ms = MACHINE(vms); | 
|  | int irq = vms->irqmap[VIRT_ACPI_GED]; | 
|  | uint32_t event = ACPI_GED_PWR_DOWN_EVT; | 
|  |  | 
|  | if (ms->ram_slots) { | 
|  | event |= ACPI_GED_MEM_HOTPLUG_EVT; | 
|  | } | 
|  |  | 
|  | if (ms->nvdimms_state->is_enabled) { | 
|  | event |= ACPI_GED_NVDIMM_HOTPLUG_EVT; | 
|  | } | 
|  |  | 
|  | dev = qdev_new(TYPE_ACPI_GED); | 
|  | qdev_prop_set_uint32(dev, "ged-event", event); | 
|  | sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); | 
|  |  | 
|  | sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base); | 
|  | sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base); | 
|  | sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq)); | 
|  |  | 
|  | return dev; | 
|  | } | 
|  |  | 
|  | static void create_its(VirtMachineState *vms) | 
|  | { | 
|  | const char *itsclass = its_class_name(); | 
|  | DeviceState *dev; | 
|  |  | 
|  | if (!strcmp(itsclass, "arm-gicv3-its")) { | 
|  | if (!vms->tcg_its) { | 
|  | itsclass = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!itsclass) { | 
|  | /* Do nothing if not supported */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | dev = qdev_new(itsclass); | 
|  |  | 
|  | object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic), | 
|  | &error_abort); | 
|  | sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); | 
|  | sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base); | 
|  |  | 
|  | fdt_add_its_gic_node(vms); | 
|  | vms->msi_controller = VIRT_MSI_CTRL_ITS; | 
|  | } | 
|  |  | 
|  | static void create_v2m(VirtMachineState *vms) | 
|  | { | 
|  | int i; | 
|  | int irq = vms->irqmap[VIRT_GIC_V2M]; | 
|  | DeviceState *dev; | 
|  |  | 
|  | dev = qdev_new("arm-gicv2m"); | 
|  | qdev_prop_set_uint32(dev, "base-spi", irq); | 
|  | qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS); | 
|  | sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); | 
|  | sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base); | 
|  |  | 
|  | for (i = 0; i < NUM_GICV2M_SPIS; i++) { | 
|  | sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, | 
|  | qdev_get_gpio_in(vms->gic, irq + i)); | 
|  | } | 
|  |  | 
|  | fdt_add_v2m_gic_node(vms); | 
|  | vms->msi_controller = VIRT_MSI_CTRL_GICV2M; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the CPU has FEAT_NMI, then turn on the NMI support in the GICv3 too. | 
|  | * It's permitted to have a configuration with NMI in the CPU (and thus the | 
|  | * GICv3 CPU interface) but not in the distributor/redistributors, but it's | 
|  | * not very useful. | 
|  | */ | 
|  | static bool gicv3_nmi_present(VirtMachineState *vms) | 
|  | { | 
|  | ARMCPU *cpu = ARM_CPU(qemu_get_cpu(0)); | 
|  |  | 
|  | return tcg_enabled() && cpu_isar_feature(aa64_nmi, cpu) && | 
|  | (vms->gic_version != VIRT_GIC_VERSION_2); | 
|  | } | 
|  |  | 
|  | static void create_gic(VirtMachineState *vms, MemoryRegion *mem) | 
|  | { | 
|  | MachineState *ms = MACHINE(vms); | 
|  | /* We create a standalone GIC */ | 
|  | SysBusDevice *gicbusdev; | 
|  | const char *gictype; | 
|  | int i; | 
|  | unsigned int smp_cpus = ms->smp.cpus; | 
|  | uint32_t nb_redist_regions = 0; | 
|  | int revision; | 
|  |  | 
|  | if (vms->gic_version == VIRT_GIC_VERSION_2) { | 
|  | gictype = gic_class_name(); | 
|  | } else { | 
|  | gictype = gicv3_class_name(); | 
|  | } | 
|  |  | 
|  | switch (vms->gic_version) { | 
|  | case VIRT_GIC_VERSION_2: | 
|  | revision = 2; | 
|  | break; | 
|  | case VIRT_GIC_VERSION_3: | 
|  | revision = 3; | 
|  | break; | 
|  | case VIRT_GIC_VERSION_4: | 
|  | revision = 4; | 
|  | break; | 
|  | default: | 
|  | g_assert_not_reached(); | 
|  | } | 
|  | vms->gic = qdev_new(gictype); | 
|  | qdev_prop_set_uint32(vms->gic, "revision", revision); | 
|  | qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus); | 
|  | /* Note that the num-irq property counts both internal and external | 
|  | * interrupts; there are always 32 of the former (mandated by GIC spec). | 
|  | */ | 
|  | qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32); | 
|  | if (!kvm_irqchip_in_kernel()) { | 
|  | qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure); | 
|  | } | 
|  |  | 
|  | if (vms->gic_version != VIRT_GIC_VERSION_2) { | 
|  | QList *redist_region_count; | 
|  | uint32_t redist0_capacity = virt_redist_capacity(vms, VIRT_GIC_REDIST); | 
|  | uint32_t redist0_count = MIN(smp_cpus, redist0_capacity); | 
|  |  | 
|  | nb_redist_regions = virt_gicv3_redist_region_count(vms); | 
|  |  | 
|  | redist_region_count = qlist_new(); | 
|  | qlist_append_int(redist_region_count, redist0_count); | 
|  | if (nb_redist_regions == 2) { | 
|  | uint32_t redist1_capacity = | 
|  | virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2); | 
|  |  | 
|  | qlist_append_int(redist_region_count, | 
|  | MIN(smp_cpus - redist0_count, redist1_capacity)); | 
|  | } | 
|  | qdev_prop_set_array(vms->gic, "redist-region-count", | 
|  | redist_region_count); | 
|  |  | 
|  | if (!kvm_irqchip_in_kernel()) { | 
|  | if (vms->tcg_its) { | 
|  | object_property_set_link(OBJECT(vms->gic), "sysmem", | 
|  | OBJECT(mem), &error_fatal); | 
|  | qdev_prop_set_bit(vms->gic, "has-lpi", true); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | if (!kvm_irqchip_in_kernel()) { | 
|  | qdev_prop_set_bit(vms->gic, "has-virtualization-extensions", | 
|  | vms->virt); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (gicv3_nmi_present(vms)) { | 
|  | qdev_prop_set_bit(vms->gic, "has-nmi", true); | 
|  | } | 
|  |  | 
|  | gicbusdev = SYS_BUS_DEVICE(vms->gic); | 
|  | sysbus_realize_and_unref(gicbusdev, &error_fatal); | 
|  | sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base); | 
|  | if (vms->gic_version != VIRT_GIC_VERSION_2) { | 
|  | sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base); | 
|  | if (nb_redist_regions == 2) { | 
|  | sysbus_mmio_map(gicbusdev, 2, | 
|  | vms->memmap[VIRT_HIGH_GIC_REDIST2].base); | 
|  | } | 
|  | } else { | 
|  | sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base); | 
|  | if (vms->virt) { | 
|  | sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base); | 
|  | sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Wire the outputs from each CPU's generic timer and the GICv3 | 
|  | * maintenance interrupt signal to the appropriate GIC PPI inputs, | 
|  | * and the GIC's IRQ/FIQ/VIRQ/VFIQ/NMI/VINMI interrupt outputs to the | 
|  | * CPU's inputs. | 
|  | */ | 
|  | for (i = 0; i < smp_cpus; i++) { | 
|  | DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); | 
|  | int intidbase = NUM_IRQS + i * GIC_INTERNAL; | 
|  | /* Mapping from the output timer irq lines from the CPU to the | 
|  | * GIC PPI inputs we use for the virt board. | 
|  | */ | 
|  | const int timer_irq[] = { | 
|  | [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ, | 
|  | [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ, | 
|  | [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ, | 
|  | [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ, | 
|  | [GTIMER_HYPVIRT] = ARCH_TIMER_NS_EL2_VIRT_IRQ, | 
|  | }; | 
|  |  | 
|  | for (unsigned irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) { | 
|  | qdev_connect_gpio_out(cpudev, irq, | 
|  | qdev_get_gpio_in(vms->gic, | 
|  | intidbase + timer_irq[irq])); | 
|  | } | 
|  |  | 
|  | if (vms->gic_version != VIRT_GIC_VERSION_2) { | 
|  | qemu_irq irq = qdev_get_gpio_in(vms->gic, | 
|  | intidbase + ARCH_GIC_MAINT_IRQ); | 
|  | qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", | 
|  | 0, irq); | 
|  | } else if (vms->virt) { | 
|  | qemu_irq irq = qdev_get_gpio_in(vms->gic, | 
|  | intidbase + ARCH_GIC_MAINT_IRQ); | 
|  | sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq); | 
|  | } | 
|  |  | 
|  | qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0, | 
|  | qdev_get_gpio_in(vms->gic, intidbase | 
|  | + VIRTUAL_PMU_IRQ)); | 
|  |  | 
|  | sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); | 
|  | sysbus_connect_irq(gicbusdev, i + smp_cpus, | 
|  | qdev_get_gpio_in(cpudev, ARM_CPU_FIQ)); | 
|  | sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus, | 
|  | qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ)); | 
|  | sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus, | 
|  | qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ)); | 
|  |  | 
|  | if (vms->gic_version != VIRT_GIC_VERSION_2) { | 
|  | sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, | 
|  | qdev_get_gpio_in(cpudev, ARM_CPU_NMI)); | 
|  | sysbus_connect_irq(gicbusdev, i + 5 * smp_cpus, | 
|  | qdev_get_gpio_in(cpudev, ARM_CPU_VINMI)); | 
|  | } | 
|  | } | 
|  |  | 
|  | fdt_add_gic_node(vms); | 
|  |  | 
|  | if (vms->gic_version != VIRT_GIC_VERSION_2 && vms->its) { | 
|  | create_its(vms); | 
|  | } else if (vms->gic_version == VIRT_GIC_VERSION_2) { | 
|  | create_v2m(vms); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void create_uart(const VirtMachineState *vms, int uart, | 
|  | MemoryRegion *mem, Chardev *chr, bool secure) | 
|  | { | 
|  | char *nodename; | 
|  | hwaddr base = vms->memmap[uart].base; | 
|  | hwaddr size = vms->memmap[uart].size; | 
|  | int irq = vms->irqmap[uart]; | 
|  | const char compat[] = "arm,pl011\0arm,primecell"; | 
|  | const char clocknames[] = "uartclk\0apb_pclk"; | 
|  | DeviceState *dev = qdev_new(TYPE_PL011); | 
|  | SysBusDevice *s = SYS_BUS_DEVICE(dev); | 
|  | MachineState *ms = MACHINE(vms); | 
|  |  | 
|  | qdev_prop_set_chr(dev, "chardev", chr); | 
|  | sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); | 
|  | memory_region_add_subregion(mem, base, | 
|  | sysbus_mmio_get_region(s, 0)); | 
|  | sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq)); | 
|  |  | 
|  | nodename = g_strdup_printf("/pl011@%" PRIx64, base); | 
|  | qemu_fdt_add_subnode(ms->fdt, nodename); | 
|  | /* Note that we can't use setprop_string because of the embedded NUL */ | 
|  | qemu_fdt_setprop(ms->fdt, nodename, "compatible", | 
|  | compat, sizeof(compat)); | 
|  | qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", | 
|  | 2, base, 2, size); | 
|  | qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", | 
|  | GIC_FDT_IRQ_TYPE_SPI, irq, | 
|  | GIC_FDT_IRQ_FLAGS_LEVEL_HI); | 
|  | qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks", | 
|  | vms->clock_phandle, vms->clock_phandle); | 
|  | qemu_fdt_setprop(ms->fdt, nodename, "clock-names", | 
|  | clocknames, sizeof(clocknames)); | 
|  |  | 
|  | if (uart == VIRT_UART0) { | 
|  | qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename); | 
|  | qemu_fdt_setprop_string(ms->fdt, "/aliases", "serial0", nodename); | 
|  | } else { | 
|  | qemu_fdt_setprop_string(ms->fdt, "/aliases", "serial1", nodename); | 
|  | } | 
|  | if (secure) { | 
|  | /* Mark as not usable by the normal world */ | 
|  | qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); | 
|  | qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); | 
|  |  | 
|  | qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path", | 
|  | nodename); | 
|  | } | 
|  |  | 
|  | g_free(nodename); | 
|  | } | 
|  |  | 
|  | static void create_rtc(const VirtMachineState *vms) | 
|  | { | 
|  | char *nodename; | 
|  | hwaddr base = vms->memmap[VIRT_RTC].base; | 
|  | hwaddr size = vms->memmap[VIRT_RTC].size; | 
|  | int irq = vms->irqmap[VIRT_RTC]; | 
|  | const char compat[] = "arm,pl031\0arm,primecell"; | 
|  | MachineState *ms = MACHINE(vms); | 
|  |  | 
|  | sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq)); | 
|  |  | 
|  | nodename = g_strdup_printf("/pl031@%" PRIx64, base); | 
|  | qemu_fdt_add_subnode(ms->fdt, nodename); | 
|  | qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat)); | 
|  | qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", | 
|  | 2, base, 2, size); | 
|  | qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", | 
|  | GIC_FDT_IRQ_TYPE_SPI, irq, | 
|  | GIC_FDT_IRQ_FLAGS_LEVEL_HI); | 
|  | qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle); | 
|  | qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk"); | 
|  | g_free(nodename); | 
|  | } | 
|  |  | 
|  | static DeviceState *gpio_key_dev; | 
|  | static void virt_powerdown_req(Notifier *n, void *opaque) | 
|  | { | 
|  | VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier); | 
|  |  | 
|  | if (s->acpi_dev) { | 
|  | acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS); | 
|  | } else { | 
|  | /* use gpio Pin for power button event */ | 
|  | qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void create_gpio_keys(char *fdt, DeviceState *pl061_dev, | 
|  | uint32_t phandle) | 
|  | { | 
|  | gpio_key_dev = sysbus_create_simple("gpio-key", -1, | 
|  | qdev_get_gpio_in(pl061_dev, | 
|  | GPIO_PIN_POWER_BUTTON)); | 
|  |  | 
|  | qemu_fdt_add_subnode(fdt, "/gpio-keys"); | 
|  | qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys"); | 
|  |  | 
|  | qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff"); | 
|  | qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff", | 
|  | "label", "GPIO Key Poweroff"); | 
|  | qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code", | 
|  | KEY_POWER); | 
|  | qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff", | 
|  | "gpios", phandle, GPIO_PIN_POWER_BUTTON, 0); | 
|  | } | 
|  |  | 
|  | #define SECURE_GPIO_POWEROFF 0 | 
|  | #define SECURE_GPIO_RESET    1 | 
|  |  | 
|  | static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev, | 
|  | uint32_t phandle) | 
|  | { | 
|  | DeviceState *gpio_pwr_dev; | 
|  |  | 
|  | /* gpio-pwr */ | 
|  | gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL); | 
|  |  | 
|  | /* connect secure pl061 to gpio-pwr */ | 
|  | qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET, | 
|  | qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0)); | 
|  | qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF, | 
|  | qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0)); | 
|  |  | 
|  | qemu_fdt_add_subnode(fdt, "/gpio-poweroff"); | 
|  | qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible", | 
|  | "gpio-poweroff"); | 
|  | qemu_fdt_setprop_cells(fdt, "/gpio-poweroff", | 
|  | "gpios", phandle, SECURE_GPIO_POWEROFF, 0); | 
|  | qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled"); | 
|  | qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status", | 
|  | "okay"); | 
|  |  | 
|  | qemu_fdt_add_subnode(fdt, "/gpio-restart"); | 
|  | qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible", | 
|  | "gpio-restart"); | 
|  | qemu_fdt_setprop_cells(fdt, "/gpio-restart", | 
|  | "gpios", phandle, SECURE_GPIO_RESET, 0); | 
|  | qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled"); | 
|  | qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status", | 
|  | "okay"); | 
|  | } | 
|  |  | 
|  | static void create_gpio_devices(const VirtMachineState *vms, int gpio, | 
|  | MemoryRegion *mem) | 
|  | { | 
|  | char *nodename; | 
|  | DeviceState *pl061_dev; | 
|  | hwaddr base = vms->memmap[gpio].base; | 
|  | hwaddr size = vms->memmap[gpio].size; | 
|  | int irq = vms->irqmap[gpio]; | 
|  | const char compat[] = "arm,pl061\0arm,primecell"; | 
|  | SysBusDevice *s; | 
|  | MachineState *ms = MACHINE(vms); | 
|  |  | 
|  | pl061_dev = qdev_new("pl061"); | 
|  | /* Pull lines down to 0 if not driven by the PL061 */ | 
|  | qdev_prop_set_uint32(pl061_dev, "pullups", 0); | 
|  | qdev_prop_set_uint32(pl061_dev, "pulldowns", 0xff); | 
|  | s = SYS_BUS_DEVICE(pl061_dev); | 
|  | sysbus_realize_and_unref(s, &error_fatal); | 
|  | memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0)); | 
|  | sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq)); | 
|  |  | 
|  | uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt); | 
|  | nodename = g_strdup_printf("/pl061@%" PRIx64, base); | 
|  | qemu_fdt_add_subnode(ms->fdt, nodename); | 
|  | qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", | 
|  | 2, base, 2, size); | 
|  | qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat)); | 
|  | qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2); | 
|  | qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0); | 
|  | qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", | 
|  | GIC_FDT_IRQ_TYPE_SPI, irq, | 
|  | GIC_FDT_IRQ_FLAGS_LEVEL_HI); | 
|  | qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle); | 
|  | qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk"); | 
|  | qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle); | 
|  |  | 
|  | if (gpio != VIRT_GPIO) { | 
|  | /* Mark as not usable by the normal world */ | 
|  | qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); | 
|  | qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); | 
|  | } | 
|  | g_free(nodename); | 
|  |  | 
|  | /* Child gpio devices */ | 
|  | if (gpio == VIRT_GPIO) { | 
|  | create_gpio_keys(ms->fdt, pl061_dev, phandle); | 
|  | } else { | 
|  | create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void create_virtio_devices(const VirtMachineState *vms) | 
|  | { | 
|  | int i; | 
|  | hwaddr size = vms->memmap[VIRT_MMIO].size; | 
|  | MachineState *ms = MACHINE(vms); | 
|  |  | 
|  | /* We create the transports in forwards order. Since qbus_realize() | 
|  | * prepends (not appends) new child buses, the incrementing loop below will | 
|  | * create a list of virtio-mmio buses with decreasing base addresses. | 
|  | * | 
|  | * When a -device option is processed from the command line, | 
|  | * qbus_find_recursive() picks the next free virtio-mmio bus in forwards | 
|  | * order. The upshot is that -device options in increasing command line | 
|  | * order are mapped to virtio-mmio buses with decreasing base addresses. | 
|  | * | 
|  | * When this code was originally written, that arrangement ensured that the | 
|  | * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to | 
|  | * the first -device on the command line. (The end-to-end order is a | 
|  | * function of this loop, qbus_realize(), qbus_find_recursive(), and the | 
|  | * guest kernel's name-to-address assignment strategy.) | 
|  | * | 
|  | * Meanwhile, the kernel's traversal seems to have been reversed; see eg. | 
|  | * the message, if not necessarily the code, of commit 70161ff336. | 
|  | * Therefore the loop now establishes the inverse of the original intent. | 
|  | * | 
|  | * Unfortunately, we can't counteract the kernel change by reversing the | 
|  | * loop; it would break existing command lines. | 
|  | * | 
|  | * In any case, the kernel makes no guarantee about the stability of | 
|  | * enumeration order of virtio devices (as demonstrated by it changing | 
|  | * between kernel versions). For reliable and stable identification | 
|  | * of disks users must use UUIDs or similar mechanisms. | 
|  | */ | 
|  | for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) { | 
|  | int irq = vms->irqmap[VIRT_MMIO] + i; | 
|  | hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; | 
|  |  | 
|  | sysbus_create_simple("virtio-mmio", base, | 
|  | qdev_get_gpio_in(vms->gic, irq)); | 
|  | } | 
|  |  | 
|  | /* We add dtb nodes in reverse order so that they appear in the finished | 
|  | * device tree lowest address first. | 
|  | * | 
|  | * Note that this mapping is independent of the loop above. The previous | 
|  | * loop influences virtio device to virtio transport assignment, whereas | 
|  | * this loop controls how virtio transports are laid out in the dtb. | 
|  | */ | 
|  | for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) { | 
|  | char *nodename; | 
|  | int irq = vms->irqmap[VIRT_MMIO] + i; | 
|  | hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; | 
|  |  | 
|  | nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base); | 
|  | qemu_fdt_add_subnode(ms->fdt, nodename); | 
|  | qemu_fdt_setprop_string(ms->fdt, nodename, | 
|  | "compatible", "virtio,mmio"); | 
|  | qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", | 
|  | 2, base, 2, size); | 
|  | qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", | 
|  | GIC_FDT_IRQ_TYPE_SPI, irq, | 
|  | GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); | 
|  | qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0); | 
|  | g_free(nodename); | 
|  | } | 
|  | } | 
|  |  | 
|  | #define VIRT_FLASH_SECTOR_SIZE (256 * KiB) | 
|  |  | 
|  | static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms, | 
|  | const char *name, | 
|  | const char *alias_prop_name) | 
|  | { | 
|  | /* | 
|  | * Create a single flash device.  We use the same parameters as | 
|  | * the flash devices on the Versatile Express board. | 
|  | */ | 
|  | DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01); | 
|  |  | 
|  | qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE); | 
|  | qdev_prop_set_uint8(dev, "width", 4); | 
|  | qdev_prop_set_uint8(dev, "device-width", 2); | 
|  | qdev_prop_set_bit(dev, "big-endian", false); | 
|  | qdev_prop_set_uint16(dev, "id0", 0x89); | 
|  | qdev_prop_set_uint16(dev, "id1", 0x18); | 
|  | qdev_prop_set_uint16(dev, "id2", 0x00); | 
|  | qdev_prop_set_uint16(dev, "id3", 0x00); | 
|  | qdev_prop_set_string(dev, "name", name); | 
|  | object_property_add_child(OBJECT(vms), name, OBJECT(dev)); | 
|  | object_property_add_alias(OBJECT(vms), alias_prop_name, | 
|  | OBJECT(dev), "drive"); | 
|  | return PFLASH_CFI01(dev); | 
|  | } | 
|  |  | 
|  | static void virt_flash_create(VirtMachineState *vms) | 
|  | { | 
|  | vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0"); | 
|  | vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1"); | 
|  | } | 
|  |  | 
|  | static void virt_flash_map1(PFlashCFI01 *flash, | 
|  | hwaddr base, hwaddr size, | 
|  | MemoryRegion *sysmem) | 
|  | { | 
|  | DeviceState *dev = DEVICE(flash); | 
|  |  | 
|  | assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE)); | 
|  | assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX); | 
|  | qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE); | 
|  | sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); | 
|  |  | 
|  | memory_region_add_subregion(sysmem, base, | 
|  | sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), | 
|  | 0)); | 
|  | } | 
|  |  | 
|  | static void virt_flash_map(VirtMachineState *vms, | 
|  | MemoryRegion *sysmem, | 
|  | MemoryRegion *secure_sysmem) | 
|  | { | 
|  | /* | 
|  | * Map two flash devices to fill the VIRT_FLASH space in the memmap. | 
|  | * sysmem is the system memory space. secure_sysmem is the secure view | 
|  | * of the system, and the first flash device should be made visible only | 
|  | * there. The second flash device is visible to both secure and nonsecure. | 
|  | * If sysmem == secure_sysmem this means there is no separate Secure | 
|  | * address space and both flash devices are generally visible. | 
|  | */ | 
|  | hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; | 
|  | hwaddr flashbase = vms->memmap[VIRT_FLASH].base; | 
|  |  | 
|  | virt_flash_map1(vms->flash[0], flashbase, flashsize, | 
|  | secure_sysmem); | 
|  | virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize, | 
|  | sysmem); | 
|  | } | 
|  |  | 
|  | static void virt_flash_fdt(VirtMachineState *vms, | 
|  | MemoryRegion *sysmem, | 
|  | MemoryRegion *secure_sysmem) | 
|  | { | 
|  | hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; | 
|  | hwaddr flashbase = vms->memmap[VIRT_FLASH].base; | 
|  | MachineState *ms = MACHINE(vms); | 
|  | char *nodename; | 
|  |  | 
|  | if (sysmem == secure_sysmem) { | 
|  | /* Report both flash devices as a single node in the DT */ | 
|  | nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); | 
|  | qemu_fdt_add_subnode(ms->fdt, nodename); | 
|  | qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash"); | 
|  | qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", | 
|  | 2, flashbase, 2, flashsize, | 
|  | 2, flashbase + flashsize, 2, flashsize); | 
|  | qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4); | 
|  | g_free(nodename); | 
|  | } else { | 
|  | /* | 
|  | * Report the devices as separate nodes so we can mark one as | 
|  | * only visible to the secure world. | 
|  | */ | 
|  | nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase); | 
|  | qemu_fdt_add_subnode(ms->fdt, nodename); | 
|  | qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash"); | 
|  | qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", | 
|  | 2, flashbase, 2, flashsize); | 
|  | qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4); | 
|  | qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); | 
|  | qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); | 
|  | g_free(nodename); | 
|  |  | 
|  | nodename = g_strdup_printf("/flash@%" PRIx64, flashbase + flashsize); | 
|  | qemu_fdt_add_subnode(ms->fdt, nodename); | 
|  | qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash"); | 
|  | qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", | 
|  | 2, flashbase + flashsize, 2, flashsize); | 
|  | qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4); | 
|  | g_free(nodename); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool virt_firmware_init(VirtMachineState *vms, | 
|  | MemoryRegion *sysmem, | 
|  | MemoryRegion *secure_sysmem) | 
|  | { | 
|  | int i; | 
|  | const char *bios_name; | 
|  | BlockBackend *pflash_blk0; | 
|  |  | 
|  | /* Map legacy -drive if=pflash to machine properties */ | 
|  | for (i = 0; i < ARRAY_SIZE(vms->flash); i++) { | 
|  | pflash_cfi01_legacy_drive(vms->flash[i], | 
|  | drive_get(IF_PFLASH, 0, i)); | 
|  | } | 
|  |  | 
|  | virt_flash_map(vms, sysmem, secure_sysmem); | 
|  |  | 
|  | pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]); | 
|  |  | 
|  | bios_name = MACHINE(vms)->firmware; | 
|  | if (bios_name) { | 
|  | char *fname; | 
|  | MemoryRegion *mr; | 
|  | int image_size; | 
|  |  | 
|  | if (pflash_blk0) { | 
|  | error_report("The contents of the first flash device may be " | 
|  | "specified with -bios or with -drive if=pflash... " | 
|  | "but you cannot use both options at once"); | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | /* Fall back to -bios */ | 
|  |  | 
|  | fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); | 
|  | if (!fname) { | 
|  | error_report("Could not find ROM image '%s'", bios_name); | 
|  | exit(1); | 
|  | } | 
|  | mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0); | 
|  | image_size = load_image_mr(fname, mr); | 
|  | g_free(fname); | 
|  | if (image_size < 0) { | 
|  | error_report("Could not load ROM image '%s'", bios_name); | 
|  | exit(1); | 
|  | } | 
|  | } | 
|  |  | 
|  | return pflash_blk0 || bios_name; | 
|  | } | 
|  |  | 
|  | static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as) | 
|  | { | 
|  | MachineState *ms = MACHINE(vms); | 
|  | hwaddr base = vms->memmap[VIRT_FW_CFG].base; | 
|  | hwaddr size = vms->memmap[VIRT_FW_CFG].size; | 
|  | FWCfgState *fw_cfg; | 
|  | char *nodename; | 
|  |  | 
|  | fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as); | 
|  | fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus); | 
|  |  | 
|  | nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base); | 
|  | qemu_fdt_add_subnode(ms->fdt, nodename); | 
|  | qemu_fdt_setprop_string(ms->fdt, nodename, | 
|  | "compatible", "qemu,fw-cfg-mmio"); | 
|  | qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", | 
|  | 2, base, 2, size); | 
|  | qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0); | 
|  | g_free(nodename); | 
|  | return fw_cfg; | 
|  | } | 
|  |  | 
|  | static void create_pcie_irq_map(const MachineState *ms, | 
|  | uint32_t gic_phandle, | 
|  | int first_irq, const char *nodename) | 
|  | { | 
|  | int devfn, pin; | 
|  | uint32_t full_irq_map[4 * 4 * 10] = { 0 }; | 
|  | uint32_t *irq_map = full_irq_map; | 
|  |  | 
|  | for (devfn = 0; devfn <= 0x18; devfn += 0x8) { | 
|  | for (pin = 0; pin < 4; pin++) { | 
|  | int irq_type = GIC_FDT_IRQ_TYPE_SPI; | 
|  | int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS); | 
|  | int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI; | 
|  | int i; | 
|  |  | 
|  | uint32_t map[] = { | 
|  | devfn << 8, 0, 0,                           /* devfn */ | 
|  | pin + 1,                                    /* PCI pin */ | 
|  | gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */ | 
|  |  | 
|  | /* Convert map to big endian */ | 
|  | for (i = 0; i < 10; i++) { | 
|  | irq_map[i] = cpu_to_be32(map[i]); | 
|  | } | 
|  | irq_map += 10; | 
|  | } | 
|  | } | 
|  |  | 
|  | qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map", | 
|  | full_irq_map, sizeof(full_irq_map)); | 
|  |  | 
|  | qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask", | 
|  | cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */ | 
|  | 0, 0, | 
|  | 0x7           /* PCI irq */); | 
|  | } | 
|  |  | 
|  | static void create_smmu(const VirtMachineState *vms, | 
|  | PCIBus *bus) | 
|  | { | 
|  | VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); | 
|  | char *node; | 
|  | const char compat[] = "arm,smmu-v3"; | 
|  | int irq =  vms->irqmap[VIRT_SMMU]; | 
|  | int i; | 
|  | hwaddr base = vms->memmap[VIRT_SMMU].base; | 
|  | hwaddr size = vms->memmap[VIRT_SMMU].size; | 
|  | const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror"; | 
|  | DeviceState *dev; | 
|  | MachineState *ms = MACHINE(vms); | 
|  |  | 
|  | if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | dev = qdev_new(TYPE_ARM_SMMUV3); | 
|  |  | 
|  | if (!vmc->no_nested_smmu) { | 
|  | object_property_set_str(OBJECT(dev), "stage", "nested", &error_fatal); | 
|  | } | 
|  | object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus), | 
|  | &error_abort); | 
|  | sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); | 
|  | sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base); | 
|  | for (i = 0; i < NUM_SMMU_IRQS; i++) { | 
|  | sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, | 
|  | qdev_get_gpio_in(vms->gic, irq + i)); | 
|  | } | 
|  |  | 
|  | node = g_strdup_printf("/smmuv3@%" PRIx64, base); | 
|  | qemu_fdt_add_subnode(ms->fdt, node); | 
|  | qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat)); | 
|  | qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size); | 
|  |  | 
|  | qemu_fdt_setprop_cells(ms->fdt, node, "interrupts", | 
|  | GIC_FDT_IRQ_TYPE_SPI, irq    , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, | 
|  | GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, | 
|  | GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, | 
|  | GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); | 
|  |  | 
|  | qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names, | 
|  | sizeof(irq_names)); | 
|  |  | 
|  | qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0); | 
|  |  | 
|  | qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1); | 
|  |  | 
|  | qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle); | 
|  | g_free(node); | 
|  | } | 
|  |  | 
|  | static void create_virtio_iommu_dt_bindings(VirtMachineState *vms) | 
|  | { | 
|  | const char compat[] = "virtio,pci-iommu\0pci1af4,1057"; | 
|  | uint16_t bdf = vms->virtio_iommu_bdf; | 
|  | MachineState *ms = MACHINE(vms); | 
|  | char *node; | 
|  |  | 
|  | vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt); | 
|  |  | 
|  | node = g_strdup_printf("%s/virtio_iommu@%x,%x", vms->pciehb_nodename, | 
|  | PCI_SLOT(bdf), PCI_FUNC(bdf)); | 
|  | qemu_fdt_add_subnode(ms->fdt, node); | 
|  | qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat)); | 
|  | qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", | 
|  | 1, bdf << 8, 1, 0, 1, 0, | 
|  | 1, 0, 1, 0); | 
|  |  | 
|  | qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1); | 
|  | qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle); | 
|  | g_free(node); | 
|  |  | 
|  | qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map", | 
|  | 0x0, vms->iommu_phandle, 0x0, bdf, | 
|  | bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf); | 
|  | } | 
|  |  | 
|  | static void create_pcie(VirtMachineState *vms) | 
|  | { | 
|  | hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base; | 
|  | hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size; | 
|  | hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base; | 
|  | hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size; | 
|  | hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base; | 
|  | hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size; | 
|  | hwaddr base_ecam, size_ecam; | 
|  | hwaddr base = base_mmio; | 
|  | int nr_pcie_buses; | 
|  | int irq = vms->irqmap[VIRT_PCIE]; | 
|  | MemoryRegion *mmio_alias; | 
|  | MemoryRegion *mmio_reg; | 
|  | MemoryRegion *ecam_alias; | 
|  | MemoryRegion *ecam_reg; | 
|  | DeviceState *dev; | 
|  | char *nodename; | 
|  | int i, ecam_id; | 
|  | PCIHostState *pci; | 
|  | MachineState *ms = MACHINE(vms); | 
|  | MachineClass *mc = MACHINE_GET_CLASS(ms); | 
|  |  | 
|  | dev = qdev_new(TYPE_GPEX_HOST); | 
|  | sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); | 
|  |  | 
|  | ecam_id = VIRT_ECAM_ID(vms->highmem_ecam); | 
|  | base_ecam = vms->memmap[ecam_id].base; | 
|  | size_ecam = vms->memmap[ecam_id].size; | 
|  | nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN; | 
|  | /* Map only the first size_ecam bytes of ECAM space */ | 
|  | ecam_alias = g_new0(MemoryRegion, 1); | 
|  | ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); | 
|  | memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", | 
|  | ecam_reg, 0, size_ecam); | 
|  | memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias); | 
|  |  | 
|  | /* Map the MMIO window into system address space so as to expose | 
|  | * the section of PCI MMIO space which starts at the same base address | 
|  | * (ie 1:1 mapping for that part of PCI MMIO space visible through | 
|  | * the window). | 
|  | */ | 
|  | mmio_alias = g_new0(MemoryRegion, 1); | 
|  | mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); | 
|  | memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", | 
|  | mmio_reg, base_mmio, size_mmio); | 
|  | memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias); | 
|  |  | 
|  | if (vms->highmem_mmio) { | 
|  | /* Map high MMIO space */ | 
|  | MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1); | 
|  |  | 
|  | memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high", | 
|  | mmio_reg, base_mmio_high, size_mmio_high); | 
|  | memory_region_add_subregion(get_system_memory(), base_mmio_high, | 
|  | high_mmio_alias); | 
|  | } | 
|  |  | 
|  | /* Map IO port space */ | 
|  | sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio); | 
|  |  | 
|  | for (i = 0; i < PCI_NUM_PINS; i++) { | 
|  | sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, | 
|  | qdev_get_gpio_in(vms->gic, irq + i)); | 
|  | gpex_set_irq_num(GPEX_HOST(dev), i, irq + i); | 
|  | } | 
|  |  | 
|  | pci = PCI_HOST_BRIDGE(dev); | 
|  | pci->bypass_iommu = vms->default_bus_bypass_iommu; | 
|  | vms->bus = pci->bus; | 
|  | if (vms->bus) { | 
|  | pci_init_nic_devices(pci->bus, mc->default_nic); | 
|  | } | 
|  |  | 
|  | nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base); | 
|  | qemu_fdt_add_subnode(ms->fdt, nodename); | 
|  | qemu_fdt_setprop_string(ms->fdt, nodename, | 
|  | "compatible", "pci-host-ecam-generic"); | 
|  | qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci"); | 
|  | qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3); | 
|  | qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2); | 
|  | qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0); | 
|  | qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0, | 
|  | nr_pcie_buses - 1); | 
|  | qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0); | 
|  |  | 
|  | if (vms->msi_phandle) { | 
|  | qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-map", | 
|  | 0, vms->msi_phandle, 0, 0x10000); | 
|  | } | 
|  |  | 
|  | qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", | 
|  | 2, base_ecam, 2, size_ecam); | 
|  |  | 
|  | if (vms->highmem_mmio) { | 
|  | qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges", | 
|  | 1, FDT_PCI_RANGE_IOPORT, 2, 0, | 
|  | 2, base_pio, 2, size_pio, | 
|  | 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, | 
|  | 2, base_mmio, 2, size_mmio, | 
|  | 1, FDT_PCI_RANGE_MMIO_64BIT, | 
|  | 2, base_mmio_high, | 
|  | 2, base_mmio_high, 2, size_mmio_high); | 
|  | } else { | 
|  | qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges", | 
|  | 1, FDT_PCI_RANGE_IOPORT, 2, 0, | 
|  | 2, base_pio, 2, size_pio, | 
|  | 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, | 
|  | 2, base_mmio, 2, size_mmio); | 
|  | } | 
|  |  | 
|  | qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1); | 
|  | create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename); | 
|  |  | 
|  | if (vms->iommu) { | 
|  | vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt); | 
|  |  | 
|  | switch (vms->iommu) { | 
|  | case VIRT_IOMMU_SMMUV3: | 
|  | create_smmu(vms, vms->bus); | 
|  | qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map", | 
|  | 0x0, vms->iommu_phandle, 0x0, 0x10000); | 
|  | break; | 
|  | default: | 
|  | g_assert_not_reached(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void create_platform_bus(VirtMachineState *vms) | 
|  | { | 
|  | DeviceState *dev; | 
|  | SysBusDevice *s; | 
|  | int i; | 
|  | MemoryRegion *sysmem = get_system_memory(); | 
|  |  | 
|  | dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE); | 
|  | dev->id = g_strdup(TYPE_PLATFORM_BUS_DEVICE); | 
|  | qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS); | 
|  | qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size); | 
|  | sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); | 
|  | vms->platform_bus_dev = dev; | 
|  |  | 
|  | s = SYS_BUS_DEVICE(dev); | 
|  | for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) { | 
|  | int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i; | 
|  | sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq)); | 
|  | } | 
|  |  | 
|  | memory_region_add_subregion(sysmem, | 
|  | vms->memmap[VIRT_PLATFORM_BUS].base, | 
|  | sysbus_mmio_get_region(s, 0)); | 
|  | } | 
|  |  | 
|  | static void create_tag_ram(MemoryRegion *tag_sysmem, | 
|  | hwaddr base, hwaddr size, | 
|  | const char *name) | 
|  | { | 
|  | MemoryRegion *tagram = g_new(MemoryRegion, 1); | 
|  |  | 
|  | memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal); | 
|  | memory_region_add_subregion(tag_sysmem, base / 32, tagram); | 
|  | } | 
|  |  | 
|  | static void create_secure_ram(VirtMachineState *vms, | 
|  | MemoryRegion *secure_sysmem, | 
|  | MemoryRegion *secure_tag_sysmem) | 
|  | { | 
|  | MemoryRegion *secram = g_new(MemoryRegion, 1); | 
|  | char *nodename; | 
|  | hwaddr base = vms->memmap[VIRT_SECURE_MEM].base; | 
|  | hwaddr size = vms->memmap[VIRT_SECURE_MEM].size; | 
|  | MachineState *ms = MACHINE(vms); | 
|  |  | 
|  | memory_region_init_ram(secram, NULL, "virt.secure-ram", size, | 
|  | &error_fatal); | 
|  | memory_region_add_subregion(secure_sysmem, base, secram); | 
|  |  | 
|  | nodename = g_strdup_printf("/secram@%" PRIx64, base); | 
|  | qemu_fdt_add_subnode(ms->fdt, nodename); | 
|  | qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory"); | 
|  | qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size); | 
|  | qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); | 
|  | qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); | 
|  |  | 
|  | if (secure_tag_sysmem) { | 
|  | create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag"); | 
|  | } | 
|  |  | 
|  | g_free(nodename); | 
|  | } | 
|  |  | 
|  | static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size) | 
|  | { | 
|  | const VirtMachineState *board = container_of(binfo, VirtMachineState, | 
|  | bootinfo); | 
|  | MachineState *ms = MACHINE(board); | 
|  |  | 
|  |  | 
|  | *fdt_size = board->fdt_size; | 
|  | return ms->fdt; | 
|  | } | 
|  |  | 
|  | static void virt_build_smbios(VirtMachineState *vms) | 
|  | { | 
|  | MachineClass *mc = MACHINE_GET_CLASS(vms); | 
|  | MachineState *ms = MACHINE(vms); | 
|  | VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); | 
|  | uint8_t *smbios_tables, *smbios_anchor; | 
|  | size_t smbios_tables_len, smbios_anchor_len; | 
|  | struct smbios_phys_mem_area mem_array; | 
|  | const char *product = "QEMU Virtual Machine"; | 
|  |  | 
|  | if (kvm_enabled()) { | 
|  | product = "KVM Virtual Machine"; | 
|  | } | 
|  |  | 
|  | smbios_set_defaults("QEMU", product, | 
|  | vmc->smbios_old_sys_ver ? "1.0" : mc->name); | 
|  |  | 
|  | /* build the array of physical mem area from base_memmap */ | 
|  | mem_array.address = vms->memmap[VIRT_MEM].base; | 
|  | mem_array.length = ms->ram_size; | 
|  |  | 
|  | smbios_get_tables(ms, SMBIOS_ENTRY_POINT_TYPE_64, &mem_array, 1, | 
|  | &smbios_tables, &smbios_tables_len, | 
|  | &smbios_anchor, &smbios_anchor_len, | 
|  | &error_fatal); | 
|  |  | 
|  | if (smbios_anchor) { | 
|  | fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables", | 
|  | smbios_tables, smbios_tables_len); | 
|  | fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor", | 
|  | smbios_anchor, smbios_anchor_len); | 
|  | } | 
|  | } | 
|  |  | 
|  | static | 
|  | void virt_machine_done(Notifier *notifier, void *data) | 
|  | { | 
|  | VirtMachineState *vms = container_of(notifier, VirtMachineState, | 
|  | machine_done); | 
|  | MachineState *ms = MACHINE(vms); | 
|  | ARMCPU *cpu = ARM_CPU(first_cpu); | 
|  | struct arm_boot_info *info = &vms->bootinfo; | 
|  | AddressSpace *as = arm_boot_address_space(cpu, info); | 
|  |  | 
|  | /* | 
|  | * If the user provided a dtb, we assume the dynamic sysbus nodes | 
|  | * already are integrated there. This corresponds to a use case where | 
|  | * the dynamic sysbus nodes are complex and their generation is not yet | 
|  | * supported. In that case the user can take charge of the guest dt | 
|  | * while qemu takes charge of the qom stuff. | 
|  | */ | 
|  | if (info->dtb_filename == NULL) { | 
|  | platform_bus_add_all_fdt_nodes(ms->fdt, "/intc", | 
|  | vms->memmap[VIRT_PLATFORM_BUS].base, | 
|  | vms->memmap[VIRT_PLATFORM_BUS].size, | 
|  | vms->irqmap[VIRT_PLATFORM_BUS]); | 
|  | } | 
|  | if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms, cpu) < 0) { | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | pci_bus_add_fw_cfg_extra_pci_roots(vms->fw_cfg, vms->bus, | 
|  | &error_abort); | 
|  |  | 
|  | virt_acpi_setup(vms); | 
|  | virt_build_smbios(vms); | 
|  | } | 
|  |  | 
|  | static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx) | 
|  | { | 
|  | uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER; | 
|  | VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); | 
|  |  | 
|  | if (!vmc->disallow_affinity_adjustment) { | 
|  | /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the | 
|  | * GIC's target-list limitations. 32-bit KVM hosts currently | 
|  | * always create clusters of 4 CPUs, but that is expected to | 
|  | * change when they gain support for gicv3. When KVM is enabled | 
|  | * it will override the changes we make here, therefore our | 
|  | * purposes are to make TCG consistent (with 64-bit KVM hosts) | 
|  | * and to improve SGI efficiency. | 
|  | */ | 
|  | if (vms->gic_version == VIRT_GIC_VERSION_2) { | 
|  | clustersz = GIC_TARGETLIST_BITS; | 
|  | } else { | 
|  | clustersz = GICV3_TARGETLIST_BITS; | 
|  | } | 
|  | } | 
|  | return arm_build_mp_affinity(idx, clustersz); | 
|  | } | 
|  |  | 
|  | static inline bool *virt_get_high_memmap_enabled(VirtMachineState *vms, | 
|  | int index) | 
|  | { | 
|  | bool *enabled_array[] = { | 
|  | &vms->highmem_redists, | 
|  | &vms->highmem_ecam, | 
|  | &vms->highmem_mmio, | 
|  | }; | 
|  |  | 
|  | assert(ARRAY_SIZE(extended_memmap) - VIRT_LOWMEMMAP_LAST == | 
|  | ARRAY_SIZE(enabled_array)); | 
|  | assert(index - VIRT_LOWMEMMAP_LAST < ARRAY_SIZE(enabled_array)); | 
|  |  | 
|  | return enabled_array[index - VIRT_LOWMEMMAP_LAST]; | 
|  | } | 
|  |  | 
|  | static void virt_set_high_memmap(VirtMachineState *vms, | 
|  | hwaddr base, int pa_bits) | 
|  | { | 
|  | hwaddr region_base, region_size; | 
|  | bool *region_enabled, fits; | 
|  | int i; | 
|  |  | 
|  | for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) { | 
|  | region_enabled = virt_get_high_memmap_enabled(vms, i); | 
|  | region_base = ROUND_UP(base, extended_memmap[i].size); | 
|  | region_size = extended_memmap[i].size; | 
|  |  | 
|  | vms->memmap[i].base = region_base; | 
|  | vms->memmap[i].size = region_size; | 
|  |  | 
|  | /* | 
|  | * Check each device to see if it fits in the PA space, | 
|  | * moving highest_gpa as we go. For compatibility, move | 
|  | * highest_gpa for disabled fitting devices as well, if | 
|  | * the compact layout has been disabled. | 
|  | * | 
|  | * For each device that doesn't fit, disable it. | 
|  | */ | 
|  | fits = (region_base + region_size) <= BIT_ULL(pa_bits); | 
|  | *region_enabled &= fits; | 
|  | if (vms->highmem_compact && !*region_enabled) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | base = region_base + region_size; | 
|  | if (fits) { | 
|  | vms->highest_gpa = base - 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void virt_set_memmap(VirtMachineState *vms, int pa_bits) | 
|  | { | 
|  | MachineState *ms = MACHINE(vms); | 
|  | hwaddr base, device_memory_base, device_memory_size, memtop; | 
|  | int i; | 
|  |  | 
|  | vms->memmap = extended_memmap; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(base_memmap); i++) { | 
|  | vms->memmap[i] = base_memmap[i]; | 
|  | } | 
|  |  | 
|  | if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) { | 
|  | error_report("unsupported number of memory slots: %"PRIu64, | 
|  | ms->ram_slots); | 
|  | exit(EXIT_FAILURE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * !highmem is exactly the same as limiting the PA space to 32bit, | 
|  | * irrespective of the underlying capabilities of the HW. | 
|  | */ | 
|  | if (!vms->highmem) { | 
|  | pa_bits = 32; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We compute the base of the high IO region depending on the | 
|  | * amount of initial and device memory. The device memory start/size | 
|  | * is aligned on 1GiB. We never put the high IO region below 256GiB | 
|  | * so that if maxram_size is < 255GiB we keep the legacy memory map. | 
|  | * The device region size assumes 1GiB page max alignment per slot. | 
|  | */ | 
|  | device_memory_base = | 
|  | ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB); | 
|  | device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB; | 
|  |  | 
|  | /* Base address of the high IO region */ | 
|  | memtop = base = device_memory_base + ROUND_UP(device_memory_size, GiB); | 
|  | if (memtop > BIT_ULL(pa_bits)) { | 
|  | error_report("Addressing limited to %d bits, but memory exceeds it by %llu bytes", | 
|  | pa_bits, memtop - BIT_ULL(pa_bits)); | 
|  | exit(EXIT_FAILURE); | 
|  | } | 
|  | if (base < device_memory_base) { | 
|  | error_report("maxmem/slots too huge"); | 
|  | exit(EXIT_FAILURE); | 
|  | } | 
|  | if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) { | 
|  | base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES; | 
|  | } | 
|  |  | 
|  | /* We know for sure that at least the memory fits in the PA space */ | 
|  | vms->highest_gpa = memtop - 1; | 
|  |  | 
|  | virt_set_high_memmap(vms, base, pa_bits); | 
|  |  | 
|  | if (device_memory_size > 0) { | 
|  | machine_memory_devices_init(ms, device_memory_base, device_memory_size); | 
|  | } | 
|  | } | 
|  |  | 
|  | static VirtGICType finalize_gic_version_do(const char *accel_name, | 
|  | VirtGICType gic_version, | 
|  | int gics_supported, | 
|  | unsigned int max_cpus) | 
|  | { | 
|  | /* Convert host/max/nosel to GIC version number */ | 
|  | switch (gic_version) { | 
|  | case VIRT_GIC_VERSION_HOST: | 
|  | if (!kvm_enabled()) { | 
|  | error_report("gic-version=host requires KVM"); | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | /* For KVM, gic-version=host means gic-version=max */ | 
|  | return finalize_gic_version_do(accel_name, VIRT_GIC_VERSION_MAX, | 
|  | gics_supported, max_cpus); | 
|  | case VIRT_GIC_VERSION_MAX: | 
|  | if (gics_supported & VIRT_GIC_VERSION_4_MASK) { | 
|  | gic_version = VIRT_GIC_VERSION_4; | 
|  | } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) { | 
|  | gic_version = VIRT_GIC_VERSION_3; | 
|  | } else { | 
|  | gic_version = VIRT_GIC_VERSION_2; | 
|  | } | 
|  | break; | 
|  | case VIRT_GIC_VERSION_NOSEL: | 
|  | if ((gics_supported & VIRT_GIC_VERSION_2_MASK) && | 
|  | max_cpus <= GIC_NCPU) { | 
|  | gic_version = VIRT_GIC_VERSION_2; | 
|  | } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) { | 
|  | /* | 
|  | * in case the host does not support v2 emulation or | 
|  | * the end-user requested more than 8 VCPUs we now default | 
|  | * to v3. In any case defaulting to v2 would be broken. | 
|  | */ | 
|  | gic_version = VIRT_GIC_VERSION_3; | 
|  | } else if (max_cpus > GIC_NCPU) { | 
|  | error_report("%s only supports GICv2 emulation but more than 8 " | 
|  | "vcpus are requested", accel_name); | 
|  | exit(1); | 
|  | } | 
|  | break; | 
|  | case VIRT_GIC_VERSION_2: | 
|  | case VIRT_GIC_VERSION_3: | 
|  | case VIRT_GIC_VERSION_4: | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Check chosen version is effectively supported */ | 
|  | switch (gic_version) { | 
|  | case VIRT_GIC_VERSION_2: | 
|  | if (!(gics_supported & VIRT_GIC_VERSION_2_MASK)) { | 
|  | error_report("%s does not support GICv2 emulation", accel_name); | 
|  | exit(1); | 
|  | } | 
|  | break; | 
|  | case VIRT_GIC_VERSION_3: | 
|  | if (!(gics_supported & VIRT_GIC_VERSION_3_MASK)) { | 
|  | error_report("%s does not support GICv3 emulation", accel_name); | 
|  | exit(1); | 
|  | } | 
|  | break; | 
|  | case VIRT_GIC_VERSION_4: | 
|  | if (!(gics_supported & VIRT_GIC_VERSION_4_MASK)) { | 
|  | error_report("%s does not support GICv4 emulation, is virtualization=on?", | 
|  | accel_name); | 
|  | exit(1); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | error_report("logic error in finalize_gic_version"); | 
|  | exit(1); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return gic_version; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * finalize_gic_version - Determines the final gic_version | 
|  | * according to the gic-version property | 
|  | * | 
|  | * Default GIC type is v2 | 
|  | */ | 
|  | static void finalize_gic_version(VirtMachineState *vms) | 
|  | { | 
|  | const char *accel_name = current_accel_name(); | 
|  | unsigned int max_cpus = MACHINE(vms)->smp.max_cpus; | 
|  | int gics_supported = 0; | 
|  |  | 
|  | /* Determine which GIC versions the current environment supports */ | 
|  | if (kvm_enabled() && kvm_irqchip_in_kernel()) { | 
|  | int probe_bitmap = kvm_arm_vgic_probe(); | 
|  |  | 
|  | if (!probe_bitmap) { | 
|  | error_report("Unable to determine GIC version supported by host"); | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | if (probe_bitmap & KVM_ARM_VGIC_V2) { | 
|  | gics_supported |= VIRT_GIC_VERSION_2_MASK; | 
|  | } | 
|  | if (probe_bitmap & KVM_ARM_VGIC_V3) { | 
|  | gics_supported |= VIRT_GIC_VERSION_3_MASK; | 
|  | } | 
|  | } else if (kvm_enabled() && !kvm_irqchip_in_kernel()) { | 
|  | /* KVM w/o kernel irqchip can only deal with GICv2 */ | 
|  | gics_supported |= VIRT_GIC_VERSION_2_MASK; | 
|  | accel_name = "KVM with kernel-irqchip=off"; | 
|  | } else if (tcg_enabled() || hvf_enabled() || qtest_enabled())  { | 
|  | gics_supported |= VIRT_GIC_VERSION_2_MASK; | 
|  | if (module_object_class_by_name("arm-gicv3")) { | 
|  | gics_supported |= VIRT_GIC_VERSION_3_MASK; | 
|  | if (vms->virt) { | 
|  | /* GICv4 only makes sense if CPU has EL2 */ | 
|  | gics_supported |= VIRT_GIC_VERSION_4_MASK; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | error_report("Unsupported accelerator, can not determine GIC support"); | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Then convert helpers like host/max to concrete GIC versions and ensure | 
|  | * the desired version is supported | 
|  | */ | 
|  | vms->gic_version = finalize_gic_version_do(accel_name, vms->gic_version, | 
|  | gics_supported, max_cpus); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * virt_cpu_post_init() must be called after the CPUs have | 
|  | * been realized and the GIC has been created. | 
|  | */ | 
|  | static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem) | 
|  | { | 
|  | int max_cpus = MACHINE(vms)->smp.max_cpus; | 
|  | bool aarch64, pmu, steal_time; | 
|  | CPUState *cpu; | 
|  |  | 
|  | aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL); | 
|  | pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL); | 
|  | steal_time = object_property_get_bool(OBJECT(first_cpu), | 
|  | "kvm-steal-time", NULL); | 
|  |  | 
|  | if (kvm_enabled()) { | 
|  | hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base; | 
|  | hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size; | 
|  |  | 
|  | if (steal_time) { | 
|  | MemoryRegion *pvtime = g_new(MemoryRegion, 1); | 
|  | hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU; | 
|  |  | 
|  | /* The memory region size must be a multiple of host page size. */ | 
|  | pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size); | 
|  |  | 
|  | if (pvtime_size > pvtime_reg_size) { | 
|  | error_report("pvtime requires a %" HWADDR_PRId | 
|  | " byte memory region for %d CPUs," | 
|  | " but only %" HWADDR_PRId " has been reserved", | 
|  | pvtime_size, max_cpus, pvtime_reg_size); | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL); | 
|  | memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime); | 
|  | } | 
|  |  | 
|  | CPU_FOREACH(cpu) { | 
|  | if (pmu) { | 
|  | assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU)); | 
|  | if (kvm_irqchip_in_kernel()) { | 
|  | kvm_arm_pmu_set_irq(ARM_CPU(cpu), VIRTUAL_PMU_IRQ); | 
|  | } | 
|  | kvm_arm_pmu_init(ARM_CPU(cpu)); | 
|  | } | 
|  | if (steal_time) { | 
|  | kvm_arm_pvtime_init(ARM_CPU(cpu), pvtime_reg_base | 
|  | + cpu->cpu_index | 
|  | * PVTIME_SIZE_PER_CPU); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | if (aarch64 && vms->highmem) { | 
|  | int requested_pa_size = 64 - clz64(vms->highest_gpa); | 
|  | int pamax = arm_pamax(ARM_CPU(first_cpu)); | 
|  |  | 
|  | if (pamax < requested_pa_size) { | 
|  | error_report("VCPU supports less PA bits (%d) than " | 
|  | "requested by the memory map (%d)", | 
|  | pamax, requested_pa_size); | 
|  | exit(1); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void machvirt_init(MachineState *machine) | 
|  | { | 
|  | VirtMachineState *vms = VIRT_MACHINE(machine); | 
|  | VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine); | 
|  | MachineClass *mc = MACHINE_GET_CLASS(machine); | 
|  | const CPUArchIdList *possible_cpus; | 
|  | MemoryRegion *sysmem = get_system_memory(); | 
|  | MemoryRegion *secure_sysmem = NULL; | 
|  | MemoryRegion *tag_sysmem = NULL; | 
|  | MemoryRegion *secure_tag_sysmem = NULL; | 
|  | int n, virt_max_cpus; | 
|  | bool firmware_loaded; | 
|  | bool aarch64 = true; | 
|  | bool has_ged = !vmc->no_ged; | 
|  | unsigned int smp_cpus = machine->smp.cpus; | 
|  | unsigned int max_cpus = machine->smp.max_cpus; | 
|  |  | 
|  | possible_cpus = mc->possible_cpu_arch_ids(machine); | 
|  |  | 
|  | /* | 
|  | * In accelerated mode, the memory map is computed earlier in kvm_type() | 
|  | * for Linux, or hvf_get_physical_address_range() for macOS to create a | 
|  | * VM with the right number of IPA bits. | 
|  | */ | 
|  | if (!vms->memmap) { | 
|  | Object *cpuobj; | 
|  | ARMCPU *armcpu; | 
|  | int pa_bits; | 
|  |  | 
|  | /* | 
|  | * Instantiate a temporary CPU object to find out about what | 
|  | * we are about to deal with. Once this is done, get rid of | 
|  | * the object. | 
|  | */ | 
|  | cpuobj = object_new(possible_cpus->cpus[0].type); | 
|  | armcpu = ARM_CPU(cpuobj); | 
|  |  | 
|  | pa_bits = arm_pamax(armcpu); | 
|  |  | 
|  | object_unref(cpuobj); | 
|  |  | 
|  | virt_set_memmap(vms, pa_bits); | 
|  | } | 
|  |  | 
|  | /* We can probe only here because during property set | 
|  | * KVM is not available yet | 
|  | */ | 
|  | finalize_gic_version(vms); | 
|  |  | 
|  | if (vms->secure) { | 
|  | /* | 
|  | * The Secure view of the world is the same as the NonSecure, | 
|  | * but with a few extra devices. Create it as a container region | 
|  | * containing the system memory at low priority; any secure-only | 
|  | * devices go in at higher priority and take precedence. | 
|  | */ | 
|  | secure_sysmem = g_new(MemoryRegion, 1); | 
|  | memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory", | 
|  | UINT64_MAX); | 
|  | memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1); | 
|  | } | 
|  |  | 
|  | firmware_loaded = virt_firmware_init(vms, sysmem, | 
|  | secure_sysmem ?: sysmem); | 
|  |  | 
|  | /* If we have an EL3 boot ROM then the assumption is that it will | 
|  | * implement PSCI itself, so disable QEMU's internal implementation | 
|  | * so it doesn't get in the way. Instead of starting secondary | 
|  | * CPUs in PSCI powerdown state we will start them all running and | 
|  | * let the boot ROM sort them out. | 
|  | * The usual case is that we do use QEMU's PSCI implementation; | 
|  | * if the guest has EL2 then we will use SMC as the conduit, | 
|  | * and otherwise we will use HVC (for backwards compatibility and | 
|  | * because if we're using KVM then we must use HVC). | 
|  | */ | 
|  | if (vms->secure && firmware_loaded) { | 
|  | vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED; | 
|  | } else if (vms->virt) { | 
|  | vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC; | 
|  | } else { | 
|  | vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The maximum number of CPUs depends on the GIC version, or on how | 
|  | * many redistributors we can fit into the memory map (which in turn | 
|  | * depends on whether this is a GICv3 or v4). | 
|  | */ | 
|  | if (vms->gic_version == VIRT_GIC_VERSION_2) { | 
|  | virt_max_cpus = GIC_NCPU; | 
|  | } else { | 
|  | virt_max_cpus = virt_redist_capacity(vms, VIRT_GIC_REDIST); | 
|  | if (vms->highmem_redists) { | 
|  | virt_max_cpus += virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (max_cpus > virt_max_cpus) { | 
|  | error_report("Number of SMP CPUs requested (%d) exceeds max CPUs " | 
|  | "supported by machine 'mach-virt' (%d)", | 
|  | max_cpus, virt_max_cpus); | 
|  | if (vms->gic_version != VIRT_GIC_VERSION_2 && !vms->highmem_redists) { | 
|  | error_printf("Try 'highmem-redists=on' for more CPUs\n"); | 
|  | } | 
|  |  | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | if (vms->secure && (kvm_enabled() || hvf_enabled())) { | 
|  | error_report("mach-virt: %s does not support providing " | 
|  | "Security extensions (TrustZone) to the guest CPU", | 
|  | current_accel_name()); | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | if (vms->virt && (kvm_enabled() || hvf_enabled())) { | 
|  | error_report("mach-virt: %s does not support providing " | 
|  | "Virtualization extensions to the guest CPU", | 
|  | current_accel_name()); | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | if (vms->mte && hvf_enabled()) { | 
|  | error_report("mach-virt: %s does not support providing " | 
|  | "MTE to the guest CPU", | 
|  | current_accel_name()); | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | create_fdt(vms); | 
|  |  | 
|  | assert(possible_cpus->len == max_cpus); | 
|  | for (n = 0; n < possible_cpus->len; n++) { | 
|  | Object *cpuobj; | 
|  | CPUState *cs; | 
|  |  | 
|  | if (n >= smp_cpus) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | cpuobj = object_new(possible_cpus->cpus[n].type); | 
|  | object_property_set_int(cpuobj, "mp-affinity", | 
|  | possible_cpus->cpus[n].arch_id, NULL); | 
|  |  | 
|  | cs = CPU(cpuobj); | 
|  | cs->cpu_index = n; | 
|  |  | 
|  | numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj), | 
|  | &error_fatal); | 
|  |  | 
|  | aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL); | 
|  |  | 
|  | if (!vms->secure) { | 
|  | object_property_set_bool(cpuobj, "has_el3", false, NULL); | 
|  | } | 
|  |  | 
|  | if (!vms->virt && object_property_find(cpuobj, "has_el2")) { | 
|  | object_property_set_bool(cpuobj, "has_el2", false, NULL); | 
|  | } | 
|  |  | 
|  | if (vmc->kvm_no_adjvtime && | 
|  | object_property_find(cpuobj, "kvm-no-adjvtime")) { | 
|  | object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL); | 
|  | } | 
|  |  | 
|  | if (vmc->no_kvm_steal_time && | 
|  | object_property_find(cpuobj, "kvm-steal-time")) { | 
|  | object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL); | 
|  | } | 
|  |  | 
|  | if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) { | 
|  | object_property_set_bool(cpuobj, "pmu", false, NULL); | 
|  | } | 
|  |  | 
|  | if (vmc->no_tcg_lpa2 && object_property_find(cpuobj, "lpa2")) { | 
|  | object_property_set_bool(cpuobj, "lpa2", false, NULL); | 
|  | } | 
|  |  | 
|  | if (object_property_find(cpuobj, "reset-cbar")) { | 
|  | object_property_set_int(cpuobj, "reset-cbar", | 
|  | vms->memmap[VIRT_CPUPERIPHS].base, | 
|  | &error_abort); | 
|  | } | 
|  |  | 
|  | object_property_set_link(cpuobj, "memory", OBJECT(sysmem), | 
|  | &error_abort); | 
|  | if (vms->secure) { | 
|  | object_property_set_link(cpuobj, "secure-memory", | 
|  | OBJECT(secure_sysmem), &error_abort); | 
|  | } | 
|  |  | 
|  | if (vms->mte) { | 
|  | if (tcg_enabled()) { | 
|  | /* Create the memory region only once, but link to all cpus. */ | 
|  | if (!tag_sysmem) { | 
|  | /* | 
|  | * The property exists only if MemTag is supported. | 
|  | * If it is, we must allocate the ram to back that up. | 
|  | */ | 
|  | if (!object_property_find(cpuobj, "tag-memory")) { | 
|  | error_report("MTE requested, but not supported " | 
|  | "by the guest CPU"); | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | tag_sysmem = g_new(MemoryRegion, 1); | 
|  | memory_region_init(tag_sysmem, OBJECT(machine), | 
|  | "tag-memory", UINT64_MAX / 32); | 
|  |  | 
|  | if (vms->secure) { | 
|  | secure_tag_sysmem = g_new(MemoryRegion, 1); | 
|  | memory_region_init(secure_tag_sysmem, OBJECT(machine), | 
|  | "secure-tag-memory", | 
|  | UINT64_MAX / 32); | 
|  |  | 
|  | /* As with ram, secure-tag takes precedence over tag. */ | 
|  | memory_region_add_subregion_overlap(secure_tag_sysmem, | 
|  | 0, tag_sysmem, -1); | 
|  | } | 
|  | } | 
|  |  | 
|  | object_property_set_link(cpuobj, "tag-memory", | 
|  | OBJECT(tag_sysmem), &error_abort); | 
|  | if (vms->secure) { | 
|  | object_property_set_link(cpuobj, "secure-tag-memory", | 
|  | OBJECT(secure_tag_sysmem), | 
|  | &error_abort); | 
|  | } | 
|  | } else if (kvm_enabled()) { | 
|  | if (!kvm_arm_mte_supported()) { | 
|  | error_report("MTE requested, but not supported by KVM"); | 
|  | exit(1); | 
|  | } | 
|  | kvm_arm_enable_mte(cpuobj, &error_abort); | 
|  | } else { | 
|  | error_report("MTE requested, but not supported "); | 
|  | exit(1); | 
|  | } | 
|  | } | 
|  |  | 
|  | qdev_realize(DEVICE(cpuobj), NULL, &error_fatal); | 
|  | object_unref(cpuobj); | 
|  | } | 
|  |  | 
|  | /* Now we've created the CPUs we can see if they have the hypvirt timer */ | 
|  | vms->ns_el2_virt_timer_irq = ns_el2_virt_timer_present() && | 
|  | !vmc->no_ns_el2_virt_timer_irq; | 
|  |  | 
|  | fdt_add_timer_nodes(vms); | 
|  | fdt_add_cpu_nodes(vms); | 
|  |  | 
|  | memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, | 
|  | machine->ram); | 
|  |  | 
|  | virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem); | 
|  |  | 
|  | create_gic(vms, sysmem); | 
|  |  | 
|  | virt_cpu_post_init(vms, sysmem); | 
|  |  | 
|  | fdt_add_pmu_nodes(vms); | 
|  |  | 
|  | /* | 
|  | * The first UART always exists. If the security extensions are | 
|  | * enabled, the second UART also always exists. Otherwise, it only exists | 
|  | * if a backend is configured explicitly via '-serial <backend>'. | 
|  | * This avoids potentially breaking existing user setups that expect | 
|  | * only one NonSecure UART to be present (for instance, older EDK2 | 
|  | * binaries). | 
|  | * | 
|  | * The nodes end up in the DTB in reverse order of creation, so we must | 
|  | * create UART0 last to ensure it appears as the first node in the DTB, | 
|  | * for compatibility with guest software that just iterates through the | 
|  | * DTB to find the first UART, as older versions of EDK2 do. | 
|  | * DTB readers that follow the spec, as Linux does, should honour the | 
|  | * aliases node information and /chosen/stdout-path regardless of | 
|  | * the order that nodes appear in the DTB. | 
|  | * | 
|  | * For similar back-compatibility reasons, if UART1 is the secure UART | 
|  | * we create it second (and so it appears first in the DTB), because | 
|  | * that's what QEMU has always done. | 
|  | */ | 
|  | if (!vms->secure) { | 
|  | Chardev *serial1 = serial_hd(1); | 
|  |  | 
|  | if (serial1) { | 
|  | vms->second_ns_uart_present = true; | 
|  | create_uart(vms, VIRT_UART1, sysmem, serial1, false); | 
|  | } | 
|  | } | 
|  | create_uart(vms, VIRT_UART0, sysmem, serial_hd(0), false); | 
|  | if (vms->secure) { | 
|  | create_uart(vms, VIRT_UART1, secure_sysmem, serial_hd(1), true); | 
|  | } | 
|  |  | 
|  | if (vms->secure) { | 
|  | create_secure_ram(vms, secure_sysmem, secure_tag_sysmem); | 
|  | } | 
|  |  | 
|  | if (tag_sysmem) { | 
|  | create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base, | 
|  | machine->ram_size, "mach-virt.tag"); | 
|  | } | 
|  |  | 
|  | vms->highmem_ecam &= (!firmware_loaded || aarch64); | 
|  |  | 
|  | create_rtc(vms); | 
|  |  | 
|  | create_pcie(vms); | 
|  |  | 
|  | if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) { | 
|  | vms->acpi_dev = create_acpi_ged(vms); | 
|  | } else { | 
|  | create_gpio_devices(vms, VIRT_GPIO, sysmem); | 
|  | } | 
|  |  | 
|  | if (vms->secure && !vmc->no_secure_gpio) { | 
|  | create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem); | 
|  | } | 
|  |  | 
|  | /* connect powerdown request */ | 
|  | vms->powerdown_notifier.notify = virt_powerdown_req; | 
|  | qemu_register_powerdown_notifier(&vms->powerdown_notifier); | 
|  |  | 
|  | /* Create mmio transports, so the user can create virtio backends | 
|  | * (which will be automatically plugged in to the transports). If | 
|  | * no backend is created the transport will just sit harmlessly idle. | 
|  | */ | 
|  | create_virtio_devices(vms); | 
|  |  | 
|  | vms->fw_cfg = create_fw_cfg(vms, &address_space_memory); | 
|  | rom_set_fw(vms->fw_cfg); | 
|  |  | 
|  | create_platform_bus(vms); | 
|  |  | 
|  | if (machine->nvdimms_state->is_enabled) { | 
|  | const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = { | 
|  | .space_id = AML_AS_SYSTEM_MEMORY, | 
|  | .address = vms->memmap[VIRT_NVDIMM_ACPI].base, | 
|  | .bit_width = NVDIMM_ACPI_IO_LEN << 3 | 
|  | }; | 
|  |  | 
|  | nvdimm_init_acpi_state(machine->nvdimms_state, sysmem, | 
|  | arm_virt_nvdimm_acpi_dsmio, | 
|  | vms->fw_cfg, OBJECT(vms)); | 
|  | } | 
|  |  | 
|  | vms->bootinfo.ram_size = machine->ram_size; | 
|  | vms->bootinfo.board_id = -1; | 
|  | vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base; | 
|  | vms->bootinfo.get_dtb = machvirt_dtb; | 
|  | vms->bootinfo.skip_dtb_autoload = true; | 
|  | vms->bootinfo.firmware_loaded = firmware_loaded; | 
|  | vms->bootinfo.psci_conduit = vms->psci_conduit; | 
|  | arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo); | 
|  |  | 
|  | vms->machine_done.notify = virt_machine_done; | 
|  | qemu_add_machine_init_done_notifier(&vms->machine_done); | 
|  | } | 
|  |  | 
|  | static bool virt_get_secure(Object *obj, Error **errp) | 
|  | { | 
|  | VirtMachineState *vms = VIRT_MACHINE(obj); | 
|  |  | 
|  | return vms->secure; | 
|  | } | 
|  |  | 
|  | static void virt_set_secure(Object *obj, bool value, Error **errp) | 
|  | { | 
|  | VirtMachineState *vms = VIRT_MACHINE(obj); | 
|  |  | 
|  | vms->secure = value; | 
|  | } | 
|  |  | 
|  | static bool virt_get_virt(Object *obj, Error **errp) | 
|  | { | 
|  | VirtMachineState *vms = VIRT_MACHINE(obj); | 
|  |  | 
|  | return vms->virt; | 
|  | } | 
|  |  | 
|  | static void virt_set_virt(Object *obj, bool value, Error **errp) | 
|  | { | 
|  | VirtMachineState *vms = VIRT_MACHINE(obj); | 
|  |  | 
|  | vms->virt = value; | 
|  | } | 
|  |  | 
|  | static bool virt_get_highmem(Object *obj, Error **errp) | 
|  | { | 
|  | VirtMachineState *vms = VIRT_MACHINE(obj); | 
|  |  | 
|  | return vms->highmem; | 
|  | } | 
|  |  | 
|  | static void virt_set_highmem(Object *obj, bool value, Error **errp) | 
|  | { | 
|  | VirtMachineState *vms = VIRT_MACHINE(obj); | 
|  |  | 
|  | vms->highmem = value; | 
|  | } | 
|  |  | 
|  | static bool virt_get_compact_highmem(Object *obj, Error **errp) | 
|  | { | 
|  | VirtMachineState *vms = VIRT_MACHINE(obj); | 
|  |  | 
|  | return vms->highmem_compact; | 
|  | } | 
|  |  | 
|  | static void virt_set_compact_highmem(Object *obj, bool value, Error **errp) | 
|  | { | 
|  | VirtMachineState *vms = VIRT_MACHINE(obj); | 
|  |  | 
|  | vms->highmem_compact = value; | 
|  | } | 
|  |  | 
|  | static bool virt_get_highmem_redists(Object *obj, Error **errp) | 
|  | { | 
|  | VirtMachineState *vms = VIRT_MACHINE(obj); | 
|  |  | 
|  | return vms->highmem_redists; | 
|  | } | 
|  |  | 
|  | static void virt_set_highmem_redists(Object *obj, bool value, Error **errp) | 
|  | { | 
|  | VirtMachineState *vms = VIRT_MACHINE(obj); | 
|  |  | 
|  | vms->highmem_redists = value; | 
|  | } | 
|  |  | 
|  | static bool virt_get_highmem_ecam(Object *obj, Error **errp) | 
|  | { | 
|  | VirtMachineState *vms = VIRT_MACHINE(obj); | 
|  |  | 
|  | return vms->highmem_ecam; | 
|  | } | 
|  |  | 
|  | static void virt_set_highmem_ecam(Object *obj, bool value, Error **errp) | 
|  | { | 
|  | VirtMachineState *vms = VIRT_MACHINE(obj); | 
|  |  | 
|  | vms->highmem_ecam = value; | 
|  | } | 
|  |  | 
|  | static bool virt_get_highmem_mmio(Object *obj, Error **errp) | 
|  | { | 
|  | VirtMachineState *vms = VIRT_MACHINE(obj); | 
|  |  | 
|  | return vms->highmem_mmio; | 
|  | } | 
|  |  | 
|  | static void virt_set_highmem_mmio(Object *obj, bool value, Error **errp) | 
|  | { | 
|  | VirtMachineState *vms = VIRT_MACHINE(obj); | 
|  |  | 
|  | vms->highmem_mmio = value; | 
|  | } | 
|  |  | 
|  | static void virt_get_highmem_mmio_size(Object *obj, Visitor *v, | 
|  | const char *name, void *opaque, | 
|  | Error **errp) | 
|  | { | 
|  | uint64_t size = extended_memmap[VIRT_HIGH_PCIE_MMIO].size; | 
|  |  | 
|  | visit_type_size(v, name, &size, errp); | 
|  | } | 
|  |  | 
|  | static void virt_set_highmem_mmio_size(Object *obj, Visitor *v, | 
|  | const char *name, void *opaque, | 
|  | Error **errp) | 
|  | { | 
|  | uint64_t size; | 
|  |  | 
|  | if (!visit_type_size(v, name, &size, errp)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!is_power_of_2(size)) { | 
|  | error_setg(errp, "highmem-mmio-size is not a power of 2"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (size < DEFAULT_HIGH_PCIE_MMIO_SIZE) { | 
|  | char *sz = size_to_str(DEFAULT_HIGH_PCIE_MMIO_SIZE); | 
|  | error_setg(errp, "highmem-mmio-size cannot be set to a lower value " | 
|  | "than the default (%s)", sz); | 
|  | g_free(sz); | 
|  | return; | 
|  | } | 
|  |  | 
|  | extended_memmap[VIRT_HIGH_PCIE_MMIO].size = size; | 
|  | } | 
|  |  | 
|  | static bool virt_get_its(Object *obj, Error **errp) | 
|  | { | 
|  | VirtMachineState *vms = VIRT_MACHINE(obj); | 
|  |  | 
|  | return vms->its; | 
|  | } | 
|  |  | 
|  | static void virt_set_its(Object *obj, bool value, Error **errp) | 
|  | { | 
|  | VirtMachineState *vms = VIRT_MACHINE(obj); | 
|  |  | 
|  | vms->its = value; | 
|  | } | 
|  |  | 
|  | static bool virt_get_dtb_randomness(Object *obj, Error **errp) | 
|  | { | 
|  | VirtMachineState *vms = VIRT_MACHINE(obj); | 
|  |  | 
|  | return vms->dtb_randomness; | 
|  | } | 
|  |  | 
|  | static void virt_set_dtb_randomness(Object *obj, bool value, Error **errp) | 
|  | { | 
|  | VirtMachineState *vms = VIRT_MACHINE(obj); | 
|  |  | 
|  | vms->dtb_randomness = value; | 
|  | } | 
|  |  | 
|  | static char *virt_get_oem_id(Object *obj, Error **errp) | 
|  | { | 
|  | VirtMachineState *vms = VIRT_MACHINE(obj); | 
|  |  | 
|  | return g_strdup(vms->oem_id); | 
|  | } | 
|  |  | 
|  | static void virt_set_oem_id(Object *obj, const char *value, Error **errp) | 
|  | { | 
|  | VirtMachineState *vms = VIRT_MACHINE(obj); | 
|  | size_t len = strlen(value); | 
|  |  | 
|  | if (len > 6) { | 
|  | error_setg(errp, | 
|  | "User specified oem-id value is bigger than 6 bytes in size"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | strncpy(vms->oem_id, value, 6); | 
|  | } | 
|  |  | 
|  | static char *virt_get_oem_table_id(Object *obj, Error **errp) | 
|  | { | 
|  | VirtMachineState *vms = VIRT_MACHINE(obj); | 
|  |  | 
|  | return g_strdup(vms->oem_table_id); | 
|  | } | 
|  |  | 
|  | static void virt_set_oem_table_id(Object *obj, const char *value, | 
|  | Error **errp) | 
|  | { | 
|  | VirtMachineState *vms = VIRT_MACHINE(obj); | 
|  | size_t len = strlen(value); | 
|  |  | 
|  | if (len > 8) { | 
|  | error_setg(errp, | 
|  | "User specified oem-table-id value is bigger than 8 bytes in size"); | 
|  | return; | 
|  | } | 
|  | strncpy(vms->oem_table_id, value, 8); | 
|  | } | 
|  |  | 
|  |  | 
|  | bool virt_is_acpi_enabled(VirtMachineState *vms) | 
|  | { | 
|  | if (vms->acpi == ON_OFF_AUTO_OFF) { | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void virt_get_acpi(Object *obj, Visitor *v, const char *name, | 
|  | void *opaque, Error **errp) | 
|  | { | 
|  | VirtMachineState *vms = VIRT_MACHINE(obj); | 
|  | OnOffAuto acpi = vms->acpi; | 
|  |  | 
|  | visit_type_OnOffAuto(v, name, &acpi, errp); | 
|  | } | 
|  |  | 
|  | static void virt_set_acpi(Object *obj, Visitor *v, const char *name, | 
|  | void *opaque, Error **errp) | 
|  | { | 
|  | VirtMachineState *vms = VIRT_MACHINE(obj); | 
|  |  | 
|  | visit_type_OnOffAuto(v, name, &vms->acpi, errp); | 
|  | } | 
|  |  | 
|  | static bool virt_get_ras(Object *obj, Error **errp) | 
|  | { | 
|  | VirtMachineState *vms = VIRT_MACHINE(obj); | 
|  |  | 
|  | return vms->ras; | 
|  | } | 
|  |  | 
|  | static void virt_set_ras(Object *obj, bool value, Error **errp) | 
|  | { | 
|  | VirtMachineState *vms = VIRT_MACHINE(obj); | 
|  |  | 
|  | vms->ras = value; | 
|  | } | 
|  |  | 
|  | static bool virt_get_mte(Object *obj, Error **errp) | 
|  | { | 
|  | VirtMachineState *vms = VIRT_MACHINE(obj); | 
|  |  | 
|  | return vms->mte; | 
|  | } | 
|  |  | 
|  | static void virt_set_mte(Object *obj, bool value, Error **errp) | 
|  | { | 
|  | VirtMachineState *vms = VIRT_MACHINE(obj); | 
|  |  | 
|  | vms->mte = value; | 
|  | } | 
|  |  | 
|  | static char *virt_get_gic_version(Object *obj, Error **errp) | 
|  | { | 
|  | VirtMachineState *vms = VIRT_MACHINE(obj); | 
|  | const char *val; | 
|  |  | 
|  | switch (vms->gic_version) { | 
|  | case VIRT_GIC_VERSION_4: | 
|  | val = "4"; | 
|  | break; | 
|  | case VIRT_GIC_VERSION_3: | 
|  | val = "3"; | 
|  | break; | 
|  | default: | 
|  | val = "2"; | 
|  | break; | 
|  | } | 
|  | return g_strdup(val); | 
|  | } | 
|  |  | 
|  | static void virt_set_gic_version(Object *obj, const char *value, Error **errp) | 
|  | { | 
|  | VirtMachineState *vms = VIRT_MACHINE(obj); | 
|  |  | 
|  | if (!strcmp(value, "4")) { | 
|  | vms->gic_version = VIRT_GIC_VERSION_4; | 
|  | } else if (!strcmp(value, "3")) { | 
|  | vms->gic_version = VIRT_GIC_VERSION_3; | 
|  | } else if (!strcmp(value, "2")) { | 
|  | vms->gic_version = VIRT_GIC_VERSION_2; | 
|  | } else if (!strcmp(value, "host")) { | 
|  | vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */ | 
|  | } else if (!strcmp(value, "max")) { | 
|  | vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */ | 
|  | } else { | 
|  | error_setg(errp, "Invalid gic-version value"); | 
|  | error_append_hint(errp, "Valid values are 3, 2, host, max.\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | static char *virt_get_iommu(Object *obj, Error **errp) | 
|  | { | 
|  | VirtMachineState *vms = VIRT_MACHINE(obj); | 
|  |  | 
|  | switch (vms->iommu) { | 
|  | case VIRT_IOMMU_NONE: | 
|  | return g_strdup("none"); | 
|  | case VIRT_IOMMU_SMMUV3: | 
|  | return g_strdup("smmuv3"); | 
|  | default: | 
|  | g_assert_not_reached(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void virt_set_iommu(Object *obj, const char *value, Error **errp) | 
|  | { | 
|  | VirtMachineState *vms = VIRT_MACHINE(obj); | 
|  |  | 
|  | if (!strcmp(value, "smmuv3")) { | 
|  | vms->iommu = VIRT_IOMMU_SMMUV3; | 
|  | } else if (!strcmp(value, "none")) { | 
|  | vms->iommu = VIRT_IOMMU_NONE; | 
|  | } else { | 
|  | error_setg(errp, "Invalid iommu value"); | 
|  | error_append_hint(errp, "Valid values are none, smmuv3.\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool virt_get_default_bus_bypass_iommu(Object *obj, Error **errp) | 
|  | { | 
|  | VirtMachineState *vms = VIRT_MACHINE(obj); | 
|  |  | 
|  | return vms->default_bus_bypass_iommu; | 
|  | } | 
|  |  | 
|  | static void virt_set_default_bus_bypass_iommu(Object *obj, bool value, | 
|  | Error **errp) | 
|  | { | 
|  | VirtMachineState *vms = VIRT_MACHINE(obj); | 
|  |  | 
|  | vms->default_bus_bypass_iommu = value; | 
|  | } | 
|  |  | 
|  | static CpuInstanceProperties | 
|  | virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index) | 
|  | { | 
|  | MachineClass *mc = MACHINE_GET_CLASS(ms); | 
|  | const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); | 
|  |  | 
|  | assert(cpu_index < possible_cpus->len); | 
|  | return possible_cpus->cpus[cpu_index].props; | 
|  | } | 
|  |  | 
|  | static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx) | 
|  | { | 
|  | int64_t socket_id = ms->possible_cpus->cpus[idx].props.socket_id; | 
|  |  | 
|  | return socket_id % ms->numa_state->num_nodes; | 
|  | } | 
|  |  | 
|  | static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms) | 
|  | { | 
|  | int n; | 
|  | unsigned int max_cpus = ms->smp.max_cpus; | 
|  | VirtMachineState *vms = VIRT_MACHINE(ms); | 
|  | MachineClass *mc = MACHINE_GET_CLASS(vms); | 
|  |  | 
|  | if (ms->possible_cpus) { | 
|  | assert(ms->possible_cpus->len == max_cpus); | 
|  | return ms->possible_cpus; | 
|  | } | 
|  |  | 
|  | ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + | 
|  | sizeof(CPUArchId) * max_cpus); | 
|  | ms->possible_cpus->len = max_cpus; | 
|  | for (n = 0; n < ms->possible_cpus->len; n++) { | 
|  | ms->possible_cpus->cpus[n].type = ms->cpu_type; | 
|  | ms->possible_cpus->cpus[n].arch_id = | 
|  | virt_cpu_mp_affinity(vms, n); | 
|  |  | 
|  | assert(!mc->smp_props.dies_supported); | 
|  | ms->possible_cpus->cpus[n].props.has_socket_id = true; | 
|  | ms->possible_cpus->cpus[n].props.socket_id = | 
|  | n / (ms->smp.clusters * ms->smp.cores * ms->smp.threads); | 
|  | ms->possible_cpus->cpus[n].props.has_cluster_id = true; | 
|  | ms->possible_cpus->cpus[n].props.cluster_id = | 
|  | (n / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters; | 
|  | ms->possible_cpus->cpus[n].props.has_core_id = true; | 
|  | ms->possible_cpus->cpus[n].props.core_id = | 
|  | (n / ms->smp.threads) % ms->smp.cores; | 
|  | ms->possible_cpus->cpus[n].props.has_thread_id = true; | 
|  | ms->possible_cpus->cpus[n].props.thread_id = | 
|  | n % ms->smp.threads; | 
|  | } | 
|  | return ms->possible_cpus; | 
|  | } | 
|  |  | 
|  | static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, | 
|  | Error **errp) | 
|  | { | 
|  | VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); | 
|  | const MachineState *ms = MACHINE(hotplug_dev); | 
|  | const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); | 
|  |  | 
|  | if (!vms->acpi_dev) { | 
|  | error_setg(errp, | 
|  | "memory hotplug is not enabled: missing acpi-ged device"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (vms->mte) { | 
|  | error_setg(errp, "memory hotplug is not enabled: MTE is enabled"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (is_nvdimm && !ms->nvdimms_state->is_enabled) { | 
|  | error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), errp); | 
|  | } | 
|  |  | 
|  | static void virt_memory_plug(HotplugHandler *hotplug_dev, | 
|  | DeviceState *dev, Error **errp) | 
|  | { | 
|  | VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); | 
|  | MachineState *ms = MACHINE(hotplug_dev); | 
|  | bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); | 
|  |  | 
|  | pc_dimm_plug(PC_DIMM(dev), MACHINE(vms)); | 
|  |  | 
|  | if (is_nvdimm) { | 
|  | nvdimm_plug(ms->nvdimms_state); | 
|  | } | 
|  |  | 
|  | hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev), | 
|  | dev, &error_abort); | 
|  | } | 
|  |  | 
|  | static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev, | 
|  | DeviceState *dev, Error **errp) | 
|  | { | 
|  | VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); | 
|  |  | 
|  | if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { | 
|  | virt_memory_pre_plug(hotplug_dev, dev, errp); | 
|  | } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) { | 
|  | virtio_md_pci_pre_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp); | 
|  | } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { | 
|  | hwaddr db_start = 0, db_end = 0; | 
|  | QList *reserved_regions; | 
|  | char *resv_prop_str; | 
|  |  | 
|  | if (vms->iommu != VIRT_IOMMU_NONE) { | 
|  | error_setg(errp, "virt machine does not support multiple IOMMUs"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | switch (vms->msi_controller) { | 
|  | case VIRT_MSI_CTRL_NONE: | 
|  | return; | 
|  | case VIRT_MSI_CTRL_ITS: | 
|  | /* GITS_TRANSLATER page */ | 
|  | db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000; | 
|  | db_end = base_memmap[VIRT_GIC_ITS].base + | 
|  | base_memmap[VIRT_GIC_ITS].size - 1; | 
|  | break; | 
|  | case VIRT_MSI_CTRL_GICV2M: | 
|  | /* MSI_SETSPI_NS page */ | 
|  | db_start = base_memmap[VIRT_GIC_V2M].base; | 
|  | db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1; | 
|  | break; | 
|  | } | 
|  | resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u", | 
|  | db_start, db_end, | 
|  | VIRTIO_IOMMU_RESV_MEM_T_MSI); | 
|  |  | 
|  | reserved_regions = qlist_new(); | 
|  | qlist_append_str(reserved_regions, resv_prop_str); | 
|  | qdev_prop_set_array(dev, "reserved-regions", reserved_regions); | 
|  | g_free(resv_prop_str); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev, | 
|  | DeviceState *dev, Error **errp) | 
|  | { | 
|  | VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); | 
|  |  | 
|  | if (vms->platform_bus_dev) { | 
|  | MachineClass *mc = MACHINE_GET_CLASS(vms); | 
|  |  | 
|  | if (device_is_dynamic_sysbus(mc, dev)) { | 
|  | platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev), | 
|  | SYS_BUS_DEVICE(dev)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { | 
|  | virt_memory_plug(hotplug_dev, dev, errp); | 
|  | } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) { | 
|  | virtio_md_pci_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp); | 
|  | } | 
|  |  | 
|  | if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { | 
|  | PCIDevice *pdev = PCI_DEVICE(dev); | 
|  |  | 
|  | vms->iommu = VIRT_IOMMU_VIRTIO; | 
|  | vms->virtio_iommu_bdf = pci_get_bdf(pdev); | 
|  | create_virtio_iommu_dt_bindings(vms); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev, | 
|  | DeviceState *dev, Error **errp) | 
|  | { | 
|  | VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); | 
|  |  | 
|  | if (!vms->acpi_dev) { | 
|  | error_setg(errp, | 
|  | "memory hotplug is not enabled: missing acpi-ged device"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { | 
|  | error_setg(errp, "nvdimm device hot unplug is not supported yet."); | 
|  | return; | 
|  | } | 
|  |  | 
|  | hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev, | 
|  | errp); | 
|  | } | 
|  |  | 
|  | static void virt_dimm_unplug(HotplugHandler *hotplug_dev, | 
|  | DeviceState *dev, Error **errp) | 
|  | { | 
|  | VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); | 
|  | Error *local_err = NULL; | 
|  |  | 
|  | hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err); | 
|  | if (local_err) { | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms)); | 
|  | qdev_unrealize(dev); | 
|  |  | 
|  | out: | 
|  | error_propagate(errp, local_err); | 
|  | } | 
|  |  | 
|  | static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev, | 
|  | DeviceState *dev, Error **errp) | 
|  | { | 
|  | if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { | 
|  | virt_dimm_unplug_request(hotplug_dev, dev, errp); | 
|  | } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) { | 
|  | virtio_md_pci_unplug_request(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), | 
|  | errp); | 
|  | } else { | 
|  | error_setg(errp, "device unplug request for unsupported device" | 
|  | " type: %s", object_get_typename(OBJECT(dev))); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev, | 
|  | DeviceState *dev, Error **errp) | 
|  | { | 
|  | if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { | 
|  | virt_dimm_unplug(hotplug_dev, dev, errp); | 
|  | } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) { | 
|  | virtio_md_pci_unplug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp); | 
|  | } else { | 
|  | error_setg(errp, "virt: device unplug for unsupported device" | 
|  | " type: %s", object_get_typename(OBJECT(dev))); | 
|  | } | 
|  | } | 
|  |  | 
|  | static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine, | 
|  | DeviceState *dev) | 
|  | { | 
|  | MachineClass *mc = MACHINE_GET_CLASS(machine); | 
|  |  | 
|  | if (device_is_dynamic_sysbus(mc, dev) || | 
|  | object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || | 
|  | object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI) || | 
|  | object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { | 
|  | return HOTPLUG_HANDLER(machine); | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * for arm64 kvm_type [7-0] encodes the requested number of bits | 
|  | * in the IPA address space | 
|  | */ | 
|  | static int virt_kvm_type(MachineState *ms, const char *type_str) | 
|  | { | 
|  | VirtMachineState *vms = VIRT_MACHINE(ms); | 
|  | int max_vm_pa_size, requested_pa_size; | 
|  | bool fixed_ipa; | 
|  |  | 
|  | max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa); | 
|  |  | 
|  | /* we freeze the memory map to compute the highest gpa */ | 
|  | virt_set_memmap(vms, max_vm_pa_size); | 
|  |  | 
|  | requested_pa_size = 64 - clz64(vms->highest_gpa); | 
|  |  | 
|  | /* | 
|  | * KVM requires the IPA size to be at least 32 bits. | 
|  | */ | 
|  | if (requested_pa_size < 32) { | 
|  | requested_pa_size = 32; | 
|  | } | 
|  |  | 
|  | if (requested_pa_size > max_vm_pa_size) { | 
|  | error_report("-m and ,maxmem option values " | 
|  | "require an IPA range (%d bits) larger than " | 
|  | "the one supported by the host (%d bits)", | 
|  | requested_pa_size, max_vm_pa_size); | 
|  | return -1; | 
|  | } | 
|  | /* | 
|  | * We return the requested PA log size, unless KVM only supports | 
|  | * the implicit legacy 40b IPA setting, in which case the kvm_type | 
|  | * must be 0. | 
|  | */ | 
|  | return fixed_ipa ? 0 : requested_pa_size; | 
|  | } | 
|  |  | 
|  | static int virt_hvf_get_physical_address_range(MachineState *ms) | 
|  | { | 
|  | VirtMachineState *vms = VIRT_MACHINE(ms); | 
|  |  | 
|  | int default_ipa_size = hvf_arm_get_default_ipa_bit_size(); | 
|  | int max_ipa_size = hvf_arm_get_max_ipa_bit_size(); | 
|  |  | 
|  | /* We freeze the memory map to compute the highest gpa */ | 
|  | virt_set_memmap(vms, max_ipa_size); | 
|  |  | 
|  | int requested_ipa_size = 64 - clz64(vms->highest_gpa); | 
|  |  | 
|  | /* | 
|  | * If we're <= the default IPA size just use the default. | 
|  | * If we're above the default but below the maximum, round up to | 
|  | * the maximum. hvf_arm_get_max_ipa_bit_size() conveniently only | 
|  | * returns values that are valid ARM PARange values. | 
|  | */ | 
|  | if (requested_ipa_size <= default_ipa_size) { | 
|  | requested_ipa_size = default_ipa_size; | 
|  | } else if (requested_ipa_size <= max_ipa_size) { | 
|  | requested_ipa_size = max_ipa_size; | 
|  | } else { | 
|  | error_report("-m and ,maxmem option values " | 
|  | "require an IPA range (%d bits) larger than " | 
|  | "the one supported by the host (%d bits)", | 
|  | requested_ipa_size, max_ipa_size); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return requested_ipa_size; | 
|  | } | 
|  |  | 
|  | static void virt_machine_class_init(ObjectClass *oc, void *data) | 
|  | { | 
|  | MachineClass *mc = MACHINE_CLASS(oc); | 
|  | HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); | 
|  | static const char * const valid_cpu_types[] = { | 
|  | #ifdef CONFIG_TCG | 
|  | ARM_CPU_TYPE_NAME("cortex-a7"), | 
|  | ARM_CPU_TYPE_NAME("cortex-a15"), | 
|  | #ifdef TARGET_AARCH64 | 
|  | ARM_CPU_TYPE_NAME("cortex-a35"), | 
|  | ARM_CPU_TYPE_NAME("cortex-a55"), | 
|  | ARM_CPU_TYPE_NAME("cortex-a72"), | 
|  | ARM_CPU_TYPE_NAME("cortex-a76"), | 
|  | ARM_CPU_TYPE_NAME("cortex-a710"), | 
|  | ARM_CPU_TYPE_NAME("a64fx"), | 
|  | ARM_CPU_TYPE_NAME("neoverse-n1"), | 
|  | ARM_CPU_TYPE_NAME("neoverse-v1"), | 
|  | ARM_CPU_TYPE_NAME("neoverse-n2"), | 
|  | #endif /* TARGET_AARCH64 */ | 
|  | #endif /* CONFIG_TCG */ | 
|  | #ifdef TARGET_AARCH64 | 
|  | ARM_CPU_TYPE_NAME("cortex-a53"), | 
|  | ARM_CPU_TYPE_NAME("cortex-a57"), | 
|  | #if defined(CONFIG_KVM) || defined(CONFIG_HVF) | 
|  | ARM_CPU_TYPE_NAME("host"), | 
|  | #endif /* CONFIG_KVM || CONFIG_HVF */ | 
|  | #endif /* TARGET_AARCH64 */ | 
|  | ARM_CPU_TYPE_NAME("max"), | 
|  | NULL | 
|  | }; | 
|  |  | 
|  | mc->init = machvirt_init; | 
|  | /* Start with max_cpus set to 512, which is the maximum supported by KVM. | 
|  | * The value may be reduced later when we have more information about the | 
|  | * configuration of the particular instance. | 
|  | */ | 
|  | mc->max_cpus = 512; | 
|  | machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC); | 
|  | machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE); | 
|  | machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE); | 
|  | machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM); | 
|  | machine_class_allow_dynamic_sysbus_dev(mc, TYPE_UEFI_VARS_SYSBUS); | 
|  | #ifdef CONFIG_TPM | 
|  | machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS); | 
|  | #endif | 
|  | mc->block_default_type = IF_VIRTIO; | 
|  | mc->no_cdrom = 1; | 
|  | mc->pci_allow_0_address = true; | 
|  | /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */ | 
|  | mc->minimum_page_bits = 12; | 
|  | mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids; | 
|  | mc->cpu_index_to_instance_props = virt_cpu_index_to_props; | 
|  | #ifdef CONFIG_TCG | 
|  | mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15"); | 
|  | #else | 
|  | mc->default_cpu_type = ARM_CPU_TYPE_NAME("max"); | 
|  | #endif | 
|  | mc->valid_cpu_types = valid_cpu_types; | 
|  | mc->get_default_cpu_node_id = virt_get_default_cpu_node_id; | 
|  | mc->kvm_type = virt_kvm_type; | 
|  | mc->hvf_get_physical_address_range = virt_hvf_get_physical_address_range; | 
|  | assert(!mc->get_hotplug_handler); | 
|  | mc->get_hotplug_handler = virt_machine_get_hotplug_handler; | 
|  | hc->pre_plug = virt_machine_device_pre_plug_cb; | 
|  | hc->plug = virt_machine_device_plug_cb; | 
|  | hc->unplug_request = virt_machine_device_unplug_request_cb; | 
|  | hc->unplug = virt_machine_device_unplug_cb; | 
|  | mc->nvdimm_supported = true; | 
|  | mc->smp_props.clusters_supported = true; | 
|  | mc->auto_enable_numa_with_memhp = true; | 
|  | mc->auto_enable_numa_with_memdev = true; | 
|  | /* platform instead of architectural choice */ | 
|  | mc->cpu_cluster_has_numa_boundary = true; | 
|  | mc->default_ram_id = "mach-virt.ram"; | 
|  | mc->default_nic = "virtio-net-pci"; | 
|  |  | 
|  | object_class_property_add(oc, "acpi", "OnOffAuto", | 
|  | virt_get_acpi, virt_set_acpi, | 
|  | NULL, NULL); | 
|  | object_class_property_set_description(oc, "acpi", | 
|  | "Enable ACPI"); | 
|  | object_class_property_add_bool(oc, "secure", virt_get_secure, | 
|  | virt_set_secure); | 
|  | object_class_property_set_description(oc, "secure", | 
|  | "Set on/off to enable/disable the ARM " | 
|  | "Security Extensions (TrustZone)"); | 
|  |  | 
|  | object_class_property_add_bool(oc, "virtualization", virt_get_virt, | 
|  | virt_set_virt); | 
|  | object_class_property_set_description(oc, "virtualization", | 
|  | "Set on/off to enable/disable emulating a " | 
|  | "guest CPU which implements the ARM " | 
|  | "Virtualization Extensions"); | 
|  |  | 
|  | object_class_property_add_bool(oc, "highmem", virt_get_highmem, | 
|  | virt_set_highmem); | 
|  | object_class_property_set_description(oc, "highmem", | 
|  | "Set on/off to enable/disable using " | 
|  | "physical address space above 32 bits"); | 
|  |  | 
|  | object_class_property_add_bool(oc, "compact-highmem", | 
|  | virt_get_compact_highmem, | 
|  | virt_set_compact_highmem); | 
|  | object_class_property_set_description(oc, "compact-highmem", | 
|  | "Set on/off to enable/disable compact " | 
|  | "layout for high memory regions"); | 
|  |  | 
|  | object_class_property_add_bool(oc, "highmem-redists", | 
|  | virt_get_highmem_redists, | 
|  | virt_set_highmem_redists); | 
|  | object_class_property_set_description(oc, "highmem-redists", | 
|  | "Set on/off to enable/disable high " | 
|  | "memory region for GICv3 or GICv4 " | 
|  | "redistributor"); | 
|  |  | 
|  | object_class_property_add_bool(oc, "highmem-ecam", | 
|  | virt_get_highmem_ecam, | 
|  | virt_set_highmem_ecam); | 
|  | object_class_property_set_description(oc, "highmem-ecam", | 
|  | "Set on/off to enable/disable high " | 
|  | "memory region for PCI ECAM"); | 
|  |  | 
|  | object_class_property_add_bool(oc, "highmem-mmio", | 
|  | virt_get_highmem_mmio, | 
|  | virt_set_highmem_mmio); | 
|  | object_class_property_set_description(oc, "highmem-mmio", | 
|  | "Set on/off to enable/disable high " | 
|  | "memory region for PCI MMIO"); | 
|  |  | 
|  | object_class_property_add(oc, "highmem-mmio-size", "size", | 
|  | virt_get_highmem_mmio_size, | 
|  | virt_set_highmem_mmio_size, | 
|  | NULL, NULL); | 
|  | object_class_property_set_description(oc, "highmem-mmio-size", | 
|  | "Set the high memory region size " | 
|  | "for PCI MMIO"); | 
|  |  | 
|  | object_class_property_add_str(oc, "gic-version", virt_get_gic_version, | 
|  | virt_set_gic_version); | 
|  | object_class_property_set_description(oc, "gic-version", | 
|  | "Set GIC version. " | 
|  | "Valid values are 2, 3, 4, host and max"); | 
|  |  | 
|  | object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu); | 
|  | object_class_property_set_description(oc, "iommu", | 
|  | "Set the IOMMU type. " | 
|  | "Valid values are none and smmuv3"); | 
|  |  | 
|  | object_class_property_add_bool(oc, "default-bus-bypass-iommu", | 
|  | virt_get_default_bus_bypass_iommu, | 
|  | virt_set_default_bus_bypass_iommu); | 
|  | object_class_property_set_description(oc, "default-bus-bypass-iommu", | 
|  | "Set on/off to enable/disable " | 
|  | "bypass_iommu for default root bus"); | 
|  |  | 
|  | object_class_property_add_bool(oc, "ras", virt_get_ras, | 
|  | virt_set_ras); | 
|  | object_class_property_set_description(oc, "ras", | 
|  | "Set on/off to enable/disable reporting host memory errors " | 
|  | "to a KVM guest using ACPI and guest external abort exceptions"); | 
|  |  | 
|  | object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte); | 
|  | object_class_property_set_description(oc, "mte", | 
|  | "Set on/off to enable/disable emulating a " | 
|  | "guest CPU which implements the ARM " | 
|  | "Memory Tagging Extension"); | 
|  |  | 
|  | object_class_property_add_bool(oc, "its", virt_get_its, | 
|  | virt_set_its); | 
|  | object_class_property_set_description(oc, "its", | 
|  | "Set on/off to enable/disable " | 
|  | "ITS instantiation"); | 
|  |  | 
|  | object_class_property_add_bool(oc, "dtb-randomness", | 
|  | virt_get_dtb_randomness, | 
|  | virt_set_dtb_randomness); | 
|  | object_class_property_set_description(oc, "dtb-randomness", | 
|  | "Set off to disable passing random or " | 
|  | "non-deterministic dtb nodes to guest"); | 
|  |  | 
|  | object_class_property_add_bool(oc, "dtb-kaslr-seed", | 
|  | virt_get_dtb_randomness, | 
|  | virt_set_dtb_randomness); | 
|  | object_class_property_set_description(oc, "dtb-kaslr-seed", | 
|  | "Deprecated synonym of dtb-randomness"); | 
|  |  | 
|  | object_class_property_add_str(oc, "x-oem-id", | 
|  | virt_get_oem_id, | 
|  | virt_set_oem_id); | 
|  | object_class_property_set_description(oc, "x-oem-id", | 
|  | "Override the default value of field OEMID " | 
|  | "in ACPI table header." | 
|  | "The string may be up to 6 bytes in size"); | 
|  |  | 
|  |  | 
|  | object_class_property_add_str(oc, "x-oem-table-id", | 
|  | virt_get_oem_table_id, | 
|  | virt_set_oem_table_id); | 
|  | object_class_property_set_description(oc, "x-oem-table-id", | 
|  | "Override the default value of field OEM Table ID " | 
|  | "in ACPI table header." | 
|  | "The string may be up to 8 bytes in size"); | 
|  |  | 
|  | } | 
|  |  | 
|  | static void virt_instance_init(Object *obj) | 
|  | { | 
|  | VirtMachineState *vms = VIRT_MACHINE(obj); | 
|  | VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); | 
|  |  | 
|  | /* EL3 is disabled by default on virt: this makes us consistent | 
|  | * between KVM and TCG for this board, and it also allows us to | 
|  | * boot UEFI blobs which assume no TrustZone support. | 
|  | */ | 
|  | vms->secure = false; | 
|  |  | 
|  | /* EL2 is also disabled by default, for similar reasons */ | 
|  | vms->virt = false; | 
|  |  | 
|  | /* High memory is enabled by default */ | 
|  | vms->highmem = true; | 
|  | vms->highmem_compact = !vmc->no_highmem_compact; | 
|  | vms->gic_version = VIRT_GIC_VERSION_NOSEL; | 
|  |  | 
|  | vms->highmem_ecam = !vmc->no_highmem_ecam; | 
|  | vms->highmem_mmio = true; | 
|  | vms->highmem_redists = true; | 
|  |  | 
|  | if (vmc->no_its) { | 
|  | vms->its = false; | 
|  | } else { | 
|  | /* Default allows ITS instantiation */ | 
|  | vms->its = true; | 
|  |  | 
|  | if (vmc->no_tcg_its) { | 
|  | vms->tcg_its = false; | 
|  | } else { | 
|  | vms->tcg_its = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Default disallows iommu instantiation */ | 
|  | vms->iommu = VIRT_IOMMU_NONE; | 
|  |  | 
|  | /* The default root bus is attached to iommu by default */ | 
|  | vms->default_bus_bypass_iommu = false; | 
|  |  | 
|  | /* Default disallows RAS instantiation */ | 
|  | vms->ras = false; | 
|  |  | 
|  | /* MTE is disabled by default.  */ | 
|  | vms->mte = false; | 
|  |  | 
|  | /* Supply kaslr-seed and rng-seed by default */ | 
|  | vms->dtb_randomness = true; | 
|  |  | 
|  | vms->irqmap = a15irqmap; | 
|  |  | 
|  | virt_flash_create(vms); | 
|  |  | 
|  | vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6); | 
|  | vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8); | 
|  | } | 
|  |  | 
|  | static const TypeInfo virt_machine_info = { | 
|  | .name          = TYPE_VIRT_MACHINE, | 
|  | .parent        = TYPE_MACHINE, | 
|  | .abstract      = true, | 
|  | .instance_size = sizeof(VirtMachineState), | 
|  | .class_size    = sizeof(VirtMachineClass), | 
|  | .class_init    = virt_machine_class_init, | 
|  | .instance_init = virt_instance_init, | 
|  | .interfaces = (InterfaceInfo[]) { | 
|  | { TYPE_HOTPLUG_HANDLER }, | 
|  | { } | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static void machvirt_machine_init(void) | 
|  | { | 
|  | type_register_static(&virt_machine_info); | 
|  | } | 
|  | type_init(machvirt_machine_init); | 
|  |  | 
|  | static void virt_machine_10_0_options(MachineClass *mc) | 
|  | { | 
|  | } | 
|  | DEFINE_VIRT_MACHINE_AS_LATEST(10, 0) | 
|  |  | 
|  | static void virt_machine_9_2_options(MachineClass *mc) | 
|  | { | 
|  | virt_machine_10_0_options(mc); | 
|  | compat_props_add(mc->compat_props, hw_compat_9_2, hw_compat_9_2_len); | 
|  | } | 
|  | DEFINE_VIRT_MACHINE(9, 2) | 
|  |  | 
|  | static void virt_machine_9_1_options(MachineClass *mc) | 
|  | { | 
|  | VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); | 
|  |  | 
|  | virt_machine_9_2_options(mc); | 
|  | compat_props_add(mc->compat_props, hw_compat_9_1, hw_compat_9_1_len); | 
|  | /* 9.1 and earlier have only a stage-1 SMMU, not a nested s1+2 one */ | 
|  | vmc->no_nested_smmu = true; | 
|  | } | 
|  | DEFINE_VIRT_MACHINE(9, 1) | 
|  |  | 
|  | static void virt_machine_9_0_options(MachineClass *mc) | 
|  | { | 
|  | virt_machine_9_1_options(mc); | 
|  | mc->smbios_memory_device_size = 16 * GiB; | 
|  | compat_props_add(mc->compat_props, hw_compat_9_0, hw_compat_9_0_len); | 
|  | } | 
|  | DEFINE_VIRT_MACHINE(9, 0) | 
|  |  | 
|  | static void virt_machine_8_2_options(MachineClass *mc) | 
|  | { | 
|  | VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); | 
|  |  | 
|  | virt_machine_9_0_options(mc); | 
|  | compat_props_add(mc->compat_props, hw_compat_8_2, hw_compat_8_2_len); | 
|  | /* | 
|  | * Don't expose NS_EL2_VIRT timer IRQ in DTB on ACPI on 8.2 and | 
|  | * earlier machines. (Exposing it tickles a bug in older EDK2 | 
|  | * guest BIOS binaries.) | 
|  | */ | 
|  | vmc->no_ns_el2_virt_timer_irq = true; | 
|  | } | 
|  | DEFINE_VIRT_MACHINE(8, 2) | 
|  |  | 
|  | static void virt_machine_8_1_options(MachineClass *mc) | 
|  | { | 
|  | virt_machine_8_2_options(mc); | 
|  | compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len); | 
|  | } | 
|  | DEFINE_VIRT_MACHINE(8, 1) | 
|  |  | 
|  | static void virt_machine_8_0_options(MachineClass *mc) | 
|  | { | 
|  | virt_machine_8_1_options(mc); | 
|  | compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len); | 
|  | } | 
|  | DEFINE_VIRT_MACHINE(8, 0) | 
|  |  | 
|  | static void virt_machine_7_2_options(MachineClass *mc) | 
|  | { | 
|  | virt_machine_8_0_options(mc); | 
|  | compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len); | 
|  | } | 
|  | DEFINE_VIRT_MACHINE(7, 2) | 
|  |  | 
|  | static void virt_machine_7_1_options(MachineClass *mc) | 
|  | { | 
|  | VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); | 
|  |  | 
|  | virt_machine_7_2_options(mc); | 
|  | compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len); | 
|  | /* Compact layout for high memory regions was introduced with 7.2 */ | 
|  | vmc->no_highmem_compact = true; | 
|  | } | 
|  | DEFINE_VIRT_MACHINE(7, 1) | 
|  |  | 
|  | static void virt_machine_7_0_options(MachineClass *mc) | 
|  | { | 
|  | virt_machine_7_1_options(mc); | 
|  | compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len); | 
|  | } | 
|  | DEFINE_VIRT_MACHINE(7, 0) | 
|  |  | 
|  | static void virt_machine_6_2_options(MachineClass *mc) | 
|  | { | 
|  | VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); | 
|  |  | 
|  | virt_machine_7_0_options(mc); | 
|  | compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len); | 
|  | vmc->no_tcg_lpa2 = true; | 
|  | } | 
|  | DEFINE_VIRT_MACHINE(6, 2) | 
|  |  | 
|  | static void virt_machine_6_1_options(MachineClass *mc) | 
|  | { | 
|  | VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); | 
|  |  | 
|  | virt_machine_6_2_options(mc); | 
|  | compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len); | 
|  | mc->smp_props.prefer_sockets = true; | 
|  | vmc->no_cpu_topology = true; | 
|  |  | 
|  | /* qemu ITS was introduced with 6.2 */ | 
|  | vmc->no_tcg_its = true; | 
|  | } | 
|  | DEFINE_VIRT_MACHINE(6, 1) | 
|  |  | 
|  | static void virt_machine_6_0_options(MachineClass *mc) | 
|  | { | 
|  | virt_machine_6_1_options(mc); | 
|  | compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len); | 
|  | } | 
|  | DEFINE_VIRT_MACHINE(6, 0) | 
|  |  | 
|  | static void virt_machine_5_2_options(MachineClass *mc) | 
|  | { | 
|  | VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); | 
|  |  | 
|  | virt_machine_6_0_options(mc); | 
|  | compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len); | 
|  | vmc->no_secure_gpio = true; | 
|  | } | 
|  | DEFINE_VIRT_MACHINE(5, 2) | 
|  |  | 
|  | static void virt_machine_5_1_options(MachineClass *mc) | 
|  | { | 
|  | VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); | 
|  |  | 
|  | virt_machine_5_2_options(mc); | 
|  | compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len); | 
|  | vmc->no_kvm_steal_time = true; | 
|  | } | 
|  | DEFINE_VIRT_MACHINE(5, 1) | 
|  |  | 
|  | static void virt_machine_5_0_options(MachineClass *mc) | 
|  | { | 
|  | VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); | 
|  |  | 
|  | virt_machine_5_1_options(mc); | 
|  | compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len); | 
|  | mc->numa_mem_supported = true; | 
|  | vmc->acpi_expose_flash = true; | 
|  | mc->auto_enable_numa_with_memdev = false; | 
|  | } | 
|  | DEFINE_VIRT_MACHINE(5, 0) | 
|  |  | 
|  | static void virt_machine_4_2_options(MachineClass *mc) | 
|  | { | 
|  | VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); | 
|  |  | 
|  | virt_machine_5_0_options(mc); | 
|  | compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len); | 
|  | vmc->kvm_no_adjvtime = true; | 
|  | } | 
|  | DEFINE_VIRT_MACHINE(4, 2) | 
|  |  | 
|  | static void virt_machine_4_1_options(MachineClass *mc) | 
|  | { | 
|  | VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); | 
|  |  | 
|  | virt_machine_4_2_options(mc); | 
|  | compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len); | 
|  | vmc->no_ged = true; | 
|  | mc->auto_enable_numa_with_memhp = false; | 
|  | } | 
|  | DEFINE_VIRT_MACHINE(4, 1) | 
|  |  | 
|  | static void virt_machine_4_0_options(MachineClass *mc) | 
|  | { | 
|  | virt_machine_4_1_options(mc); | 
|  | compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); | 
|  | } | 
|  | DEFINE_VIRT_MACHINE(4, 0) | 
|  |  | 
|  | static void virt_machine_3_1_options(MachineClass *mc) | 
|  | { | 
|  | virt_machine_4_0_options(mc); | 
|  | compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); | 
|  | } | 
|  | DEFINE_VIRT_MACHINE(3, 1) | 
|  |  | 
|  | static void virt_machine_3_0_options(MachineClass *mc) | 
|  | { | 
|  | virt_machine_3_1_options(mc); | 
|  | compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); | 
|  | } | 
|  | DEFINE_VIRT_MACHINE(3, 0) | 
|  |  | 
|  | static void virt_machine_2_12_options(MachineClass *mc) | 
|  | { | 
|  | VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); | 
|  |  | 
|  | virt_machine_3_0_options(mc); | 
|  | compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); | 
|  | vmc->no_highmem_ecam = true; | 
|  | mc->max_cpus = 255; | 
|  | } | 
|  | DEFINE_VIRT_MACHINE(2, 12) | 
|  |  | 
|  | static void virt_machine_2_11_options(MachineClass *mc) | 
|  | { | 
|  | VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); | 
|  |  | 
|  | virt_machine_2_12_options(mc); | 
|  | compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); | 
|  | vmc->smbios_old_sys_ver = true; | 
|  | } | 
|  | DEFINE_VIRT_MACHINE(2, 11) | 
|  |  | 
|  | static void virt_machine_2_10_options(MachineClass *mc) | 
|  | { | 
|  | virt_machine_2_11_options(mc); | 
|  | compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); | 
|  | /* before 2.11 we never faulted accesses to bad addresses */ | 
|  | mc->ignore_memory_transaction_failures = true; | 
|  | } | 
|  | DEFINE_VIRT_MACHINE(2, 10) | 
|  |  | 
|  | static void virt_machine_2_9_options(MachineClass *mc) | 
|  | { | 
|  | virt_machine_2_10_options(mc); | 
|  | compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); | 
|  | } | 
|  | DEFINE_VIRT_MACHINE(2, 9) | 
|  |  | 
|  | static void virt_machine_2_8_options(MachineClass *mc) | 
|  | { | 
|  | VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); | 
|  |  | 
|  | virt_machine_2_9_options(mc); | 
|  | compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); | 
|  | /* For 2.8 and earlier we falsely claimed in the DT that | 
|  | * our timers were edge-triggered, not level-triggered. | 
|  | */ | 
|  | vmc->claim_edge_triggered_timers = true; | 
|  | } | 
|  | DEFINE_VIRT_MACHINE(2, 8) | 
|  |  | 
|  | static void virt_machine_2_7_options(MachineClass *mc) | 
|  | { | 
|  | VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); | 
|  |  | 
|  | virt_machine_2_8_options(mc); | 
|  | compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); | 
|  | /* ITS was introduced with 2.8 */ | 
|  | vmc->no_its = true; | 
|  | /* Stick with 1K pages for migration compatibility */ | 
|  | mc->minimum_page_bits = 0; | 
|  | } | 
|  | DEFINE_VIRT_MACHINE(2, 7) | 
|  |  | 
|  | static void virt_machine_2_6_options(MachineClass *mc) | 
|  | { | 
|  | VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); | 
|  |  | 
|  | virt_machine_2_7_options(mc); | 
|  | compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); | 
|  | vmc->disallow_affinity_adjustment = true; | 
|  | /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */ | 
|  | vmc->no_pmu = true; | 
|  | } | 
|  | DEFINE_VIRT_MACHINE(2, 6) |