| /* |
| * gdb server stub |
| * |
| * Copyright (c) 2003-2005 Fabrice Bellard |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| #include "config.h" |
| #include "qemu-common.h" |
| #ifdef CONFIG_USER_ONLY |
| #include <stdlib.h> |
| #include <stdio.h> |
| #include <stdarg.h> |
| #include <string.h> |
| #include <errno.h> |
| #include <unistd.h> |
| #include <fcntl.h> |
| |
| #include "qemu.h" |
| #else |
| #include "monitor/monitor.h" |
| #include "sysemu/char.h" |
| #include "sysemu/sysemu.h" |
| #include "exec/gdbstub.h" |
| #endif |
| |
| #define MAX_PACKET_LENGTH 4096 |
| |
| #include "cpu.h" |
| #include "qemu/sockets.h" |
| #include "sysemu/kvm.h" |
| #include "qemu/bitops.h" |
| |
| #ifndef TARGET_CPU_MEMORY_RW_DEBUG |
| static inline int target_memory_rw_debug(CPUArchState *env, target_ulong addr, |
| uint8_t *buf, int len, int is_write) |
| { |
| return cpu_memory_rw_debug(env, addr, buf, len, is_write); |
| } |
| #else |
| /* target_memory_rw_debug() defined in cpu.h */ |
| #endif |
| |
| enum { |
| GDB_SIGNAL_0 = 0, |
| GDB_SIGNAL_INT = 2, |
| GDB_SIGNAL_QUIT = 3, |
| GDB_SIGNAL_TRAP = 5, |
| GDB_SIGNAL_ABRT = 6, |
| GDB_SIGNAL_ALRM = 14, |
| GDB_SIGNAL_IO = 23, |
| GDB_SIGNAL_XCPU = 24, |
| GDB_SIGNAL_UNKNOWN = 143 |
| }; |
| |
| #ifdef CONFIG_USER_ONLY |
| |
| /* Map target signal numbers to GDB protocol signal numbers and vice |
| * versa. For user emulation's currently supported systems, we can |
| * assume most signals are defined. |
| */ |
| |
| static int gdb_signal_table[] = { |
| 0, |
| TARGET_SIGHUP, |
| TARGET_SIGINT, |
| TARGET_SIGQUIT, |
| TARGET_SIGILL, |
| TARGET_SIGTRAP, |
| TARGET_SIGABRT, |
| -1, /* SIGEMT */ |
| TARGET_SIGFPE, |
| TARGET_SIGKILL, |
| TARGET_SIGBUS, |
| TARGET_SIGSEGV, |
| TARGET_SIGSYS, |
| TARGET_SIGPIPE, |
| TARGET_SIGALRM, |
| TARGET_SIGTERM, |
| TARGET_SIGURG, |
| TARGET_SIGSTOP, |
| TARGET_SIGTSTP, |
| TARGET_SIGCONT, |
| TARGET_SIGCHLD, |
| TARGET_SIGTTIN, |
| TARGET_SIGTTOU, |
| TARGET_SIGIO, |
| TARGET_SIGXCPU, |
| TARGET_SIGXFSZ, |
| TARGET_SIGVTALRM, |
| TARGET_SIGPROF, |
| TARGET_SIGWINCH, |
| -1, /* SIGLOST */ |
| TARGET_SIGUSR1, |
| TARGET_SIGUSR2, |
| #ifdef TARGET_SIGPWR |
| TARGET_SIGPWR, |
| #else |
| -1, |
| #endif |
| -1, /* SIGPOLL */ |
| -1, |
| -1, |
| -1, |
| -1, |
| -1, |
| -1, |
| -1, |
| -1, |
| -1, |
| -1, |
| -1, |
| #ifdef __SIGRTMIN |
| __SIGRTMIN + 1, |
| __SIGRTMIN + 2, |
| __SIGRTMIN + 3, |
| __SIGRTMIN + 4, |
| __SIGRTMIN + 5, |
| __SIGRTMIN + 6, |
| __SIGRTMIN + 7, |
| __SIGRTMIN + 8, |
| __SIGRTMIN + 9, |
| __SIGRTMIN + 10, |
| __SIGRTMIN + 11, |
| __SIGRTMIN + 12, |
| __SIGRTMIN + 13, |
| __SIGRTMIN + 14, |
| __SIGRTMIN + 15, |
| __SIGRTMIN + 16, |
| __SIGRTMIN + 17, |
| __SIGRTMIN + 18, |
| __SIGRTMIN + 19, |
| __SIGRTMIN + 20, |
| __SIGRTMIN + 21, |
| __SIGRTMIN + 22, |
| __SIGRTMIN + 23, |
| __SIGRTMIN + 24, |
| __SIGRTMIN + 25, |
| __SIGRTMIN + 26, |
| __SIGRTMIN + 27, |
| __SIGRTMIN + 28, |
| __SIGRTMIN + 29, |
| __SIGRTMIN + 30, |
| __SIGRTMIN + 31, |
| -1, /* SIGCANCEL */ |
| __SIGRTMIN, |
| __SIGRTMIN + 32, |
| __SIGRTMIN + 33, |
| __SIGRTMIN + 34, |
| __SIGRTMIN + 35, |
| __SIGRTMIN + 36, |
| __SIGRTMIN + 37, |
| __SIGRTMIN + 38, |
| __SIGRTMIN + 39, |
| __SIGRTMIN + 40, |
| __SIGRTMIN + 41, |
| __SIGRTMIN + 42, |
| __SIGRTMIN + 43, |
| __SIGRTMIN + 44, |
| __SIGRTMIN + 45, |
| __SIGRTMIN + 46, |
| __SIGRTMIN + 47, |
| __SIGRTMIN + 48, |
| __SIGRTMIN + 49, |
| __SIGRTMIN + 50, |
| __SIGRTMIN + 51, |
| __SIGRTMIN + 52, |
| __SIGRTMIN + 53, |
| __SIGRTMIN + 54, |
| __SIGRTMIN + 55, |
| __SIGRTMIN + 56, |
| __SIGRTMIN + 57, |
| __SIGRTMIN + 58, |
| __SIGRTMIN + 59, |
| __SIGRTMIN + 60, |
| __SIGRTMIN + 61, |
| __SIGRTMIN + 62, |
| __SIGRTMIN + 63, |
| __SIGRTMIN + 64, |
| __SIGRTMIN + 65, |
| __SIGRTMIN + 66, |
| __SIGRTMIN + 67, |
| __SIGRTMIN + 68, |
| __SIGRTMIN + 69, |
| __SIGRTMIN + 70, |
| __SIGRTMIN + 71, |
| __SIGRTMIN + 72, |
| __SIGRTMIN + 73, |
| __SIGRTMIN + 74, |
| __SIGRTMIN + 75, |
| __SIGRTMIN + 76, |
| __SIGRTMIN + 77, |
| __SIGRTMIN + 78, |
| __SIGRTMIN + 79, |
| __SIGRTMIN + 80, |
| __SIGRTMIN + 81, |
| __SIGRTMIN + 82, |
| __SIGRTMIN + 83, |
| __SIGRTMIN + 84, |
| __SIGRTMIN + 85, |
| __SIGRTMIN + 86, |
| __SIGRTMIN + 87, |
| __SIGRTMIN + 88, |
| __SIGRTMIN + 89, |
| __SIGRTMIN + 90, |
| __SIGRTMIN + 91, |
| __SIGRTMIN + 92, |
| __SIGRTMIN + 93, |
| __SIGRTMIN + 94, |
| __SIGRTMIN + 95, |
| -1, /* SIGINFO */ |
| -1, /* UNKNOWN */ |
| -1, /* DEFAULT */ |
| -1, |
| -1, |
| -1, |
| -1, |
| -1, |
| -1 |
| #endif |
| }; |
| #else |
| /* In system mode we only need SIGINT and SIGTRAP; other signals |
| are not yet supported. */ |
| |
| enum { |
| TARGET_SIGINT = 2, |
| TARGET_SIGTRAP = 5 |
| }; |
| |
| static int gdb_signal_table[] = { |
| -1, |
| -1, |
| TARGET_SIGINT, |
| -1, |
| -1, |
| TARGET_SIGTRAP |
| }; |
| #endif |
| |
| #ifdef CONFIG_USER_ONLY |
| static int target_signal_to_gdb (int sig) |
| { |
| int i; |
| for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++) |
| if (gdb_signal_table[i] == sig) |
| return i; |
| return GDB_SIGNAL_UNKNOWN; |
| } |
| #endif |
| |
| static int gdb_signal_to_target (int sig) |
| { |
| if (sig < ARRAY_SIZE (gdb_signal_table)) |
| return gdb_signal_table[sig]; |
| else |
| return -1; |
| } |
| |
| //#define DEBUG_GDB |
| |
| typedef struct GDBRegisterState { |
| int base_reg; |
| int num_regs; |
| gdb_reg_cb get_reg; |
| gdb_reg_cb set_reg; |
| const char *xml; |
| struct GDBRegisterState *next; |
| } GDBRegisterState; |
| |
| enum RSState { |
| RS_INACTIVE, |
| RS_IDLE, |
| RS_GETLINE, |
| RS_CHKSUM1, |
| RS_CHKSUM2, |
| }; |
| typedef struct GDBState { |
| CPUArchState *c_cpu; /* current CPU for step/continue ops */ |
| CPUArchState *g_cpu; /* current CPU for other ops */ |
| CPUArchState *query_cpu; /* for q{f|s}ThreadInfo */ |
| enum RSState state; /* parsing state */ |
| char line_buf[MAX_PACKET_LENGTH]; |
| int line_buf_index; |
| int line_csum; |
| uint8_t last_packet[MAX_PACKET_LENGTH + 4]; |
| int last_packet_len; |
| int signal; |
| #ifdef CONFIG_USER_ONLY |
| int fd; |
| int running_state; |
| #else |
| CharDriverState *chr; |
| CharDriverState *mon_chr; |
| #endif |
| char syscall_buf[256]; |
| gdb_syscall_complete_cb current_syscall_cb; |
| } GDBState; |
| |
| /* By default use no IRQs and no timers while single stepping so as to |
| * make single stepping like an ICE HW step. |
| */ |
| static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER; |
| |
| static GDBState *gdbserver_state; |
| |
| /* This is an ugly hack to cope with both new and old gdb. |
| If gdb sends qXfer:features:read then assume we're talking to a newish |
| gdb that understands target descriptions. */ |
| static int gdb_has_xml; |
| |
| #ifdef CONFIG_USER_ONLY |
| /* XXX: This is not thread safe. Do we care? */ |
| static int gdbserver_fd = -1; |
| |
| static int get_char(GDBState *s) |
| { |
| uint8_t ch; |
| int ret; |
| |
| for(;;) { |
| ret = qemu_recv(s->fd, &ch, 1, 0); |
| if (ret < 0) { |
| if (errno == ECONNRESET) |
| s->fd = -1; |
| if (errno != EINTR && errno != EAGAIN) |
| return -1; |
| } else if (ret == 0) { |
| close(s->fd); |
| s->fd = -1; |
| return -1; |
| } else { |
| break; |
| } |
| } |
| return ch; |
| } |
| #endif |
| |
| static enum { |
| GDB_SYS_UNKNOWN, |
| GDB_SYS_ENABLED, |
| GDB_SYS_DISABLED, |
| } gdb_syscall_mode; |
| |
| /* If gdb is connected when the first semihosting syscall occurs then use |
| remote gdb syscalls. Otherwise use native file IO. */ |
| int use_gdb_syscalls(void) |
| { |
| if (gdb_syscall_mode == GDB_SYS_UNKNOWN) { |
| gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED |
| : GDB_SYS_DISABLED); |
| } |
| return gdb_syscall_mode == GDB_SYS_ENABLED; |
| } |
| |
| /* Resume execution. */ |
| static inline void gdb_continue(GDBState *s) |
| { |
| #ifdef CONFIG_USER_ONLY |
| s->running_state = 1; |
| #else |
| if (runstate_check(RUN_STATE_GUEST_PANICKED)) { |
| runstate_set(RUN_STATE_DEBUG); |
| } |
| if (!runstate_needs_reset()) { |
| vm_start(); |
| } |
| #endif |
| } |
| |
| static void put_buffer(GDBState *s, const uint8_t *buf, int len) |
| { |
| #ifdef CONFIG_USER_ONLY |
| int ret; |
| |
| while (len > 0) { |
| ret = send(s->fd, buf, len, 0); |
| if (ret < 0) { |
| if (errno != EINTR && errno != EAGAIN) |
| return; |
| } else { |
| buf += ret; |
| len -= ret; |
| } |
| } |
| #else |
| qemu_chr_fe_write(s->chr, buf, len); |
| #endif |
| } |
| |
| static inline int fromhex(int v) |
| { |
| if (v >= '0' && v <= '9') |
| return v - '0'; |
| else if (v >= 'A' && v <= 'F') |
| return v - 'A' + 10; |
| else if (v >= 'a' && v <= 'f') |
| return v - 'a' + 10; |
| else |
| return 0; |
| } |
| |
| static inline int tohex(int v) |
| { |
| if (v < 10) |
| return v + '0'; |
| else |
| return v - 10 + 'a'; |
| } |
| |
| static void memtohex(char *buf, const uint8_t *mem, int len) |
| { |
| int i, c; |
| char *q; |
| q = buf; |
| for(i = 0; i < len; i++) { |
| c = mem[i]; |
| *q++ = tohex(c >> 4); |
| *q++ = tohex(c & 0xf); |
| } |
| *q = '\0'; |
| } |
| |
| static void hextomem(uint8_t *mem, const char *buf, int len) |
| { |
| int i; |
| |
| for(i = 0; i < len; i++) { |
| mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]); |
| buf += 2; |
| } |
| } |
| |
| /* return -1 if error, 0 if OK */ |
| static int put_packet_binary(GDBState *s, const char *buf, int len) |
| { |
| int csum, i; |
| uint8_t *p; |
| |
| for(;;) { |
| p = s->last_packet; |
| *(p++) = '$'; |
| memcpy(p, buf, len); |
| p += len; |
| csum = 0; |
| for(i = 0; i < len; i++) { |
| csum += buf[i]; |
| } |
| *(p++) = '#'; |
| *(p++) = tohex((csum >> 4) & 0xf); |
| *(p++) = tohex((csum) & 0xf); |
| |
| s->last_packet_len = p - s->last_packet; |
| put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len); |
| |
| #ifdef CONFIG_USER_ONLY |
| i = get_char(s); |
| if (i < 0) |
| return -1; |
| if (i == '+') |
| break; |
| #else |
| break; |
| #endif |
| } |
| return 0; |
| } |
| |
| /* return -1 if error, 0 if OK */ |
| static int put_packet(GDBState *s, const char *buf) |
| { |
| #ifdef DEBUG_GDB |
| printf("reply='%s'\n", buf); |
| #endif |
| |
| return put_packet_binary(s, buf, strlen(buf)); |
| } |
| |
| /* The GDB remote protocol transfers values in target byte order. This means |
| we can use the raw memory access routines to access the value buffer. |
| Conveniently, these also handle the case where the buffer is mis-aligned. |
| */ |
| #define GET_REG8(val) do { \ |
| stb_p(mem_buf, val); \ |
| return 1; \ |
| } while(0) |
| #define GET_REG16(val) do { \ |
| stw_p(mem_buf, val); \ |
| return 2; \ |
| } while(0) |
| #define GET_REG32(val) do { \ |
| stl_p(mem_buf, val); \ |
| return 4; \ |
| } while(0) |
| #define GET_REG64(val) do { \ |
| stq_p(mem_buf, val); \ |
| return 8; \ |
| } while(0) |
| |
| #if TARGET_LONG_BITS == 64 |
| #define GET_REGL(val) GET_REG64(val) |
| #define ldtul_p(addr) ldq_p(addr) |
| #else |
| #define GET_REGL(val) GET_REG32(val) |
| #define ldtul_p(addr) ldl_p(addr) |
| #endif |
| |
| #if defined(TARGET_I386) |
| |
| #ifdef TARGET_X86_64 |
| static const int gpr_map[16] = { |
| R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP, |
| 8, 9, 10, 11, 12, 13, 14, 15 |
| }; |
| #else |
| #define gpr_map gpr_map32 |
| #endif |
| static const int gpr_map32[8] = { 0, 1, 2, 3, 4, 5, 6, 7 }; |
| |
| #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25) |
| |
| #define IDX_IP_REG CPU_NB_REGS |
| #define IDX_FLAGS_REG (IDX_IP_REG + 1) |
| #define IDX_SEG_REGS (IDX_FLAGS_REG + 1) |
| #define IDX_FP_REGS (IDX_SEG_REGS + 6) |
| #define IDX_XMM_REGS (IDX_FP_REGS + 16) |
| #define IDX_MXCSR_REG (IDX_XMM_REGS + CPU_NB_REGS) |
| |
| static int cpu_gdb_read_register(CPUX86State *env, uint8_t *mem_buf, int n) |
| { |
| if (n < CPU_NB_REGS) { |
| if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) { |
| GET_REG64(env->regs[gpr_map[n]]); |
| } else if (n < CPU_NB_REGS32) { |
| GET_REG32(env->regs[gpr_map32[n]]); |
| } |
| } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) { |
| #ifdef USE_X86LDOUBLE |
| /* FIXME: byteswap float values - after fixing fpregs layout. */ |
| memcpy(mem_buf, &env->fpregs[n - IDX_FP_REGS], 10); |
| #else |
| memset(mem_buf, 0, 10); |
| #endif |
| return 10; |
| } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) { |
| n -= IDX_XMM_REGS; |
| if (n < CPU_NB_REGS32 || |
| (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK)) { |
| stq_p(mem_buf, env->xmm_regs[n].XMM_Q(0)); |
| stq_p(mem_buf + 8, env->xmm_regs[n].XMM_Q(1)); |
| return 16; |
| } |
| } else { |
| switch (n) { |
| case IDX_IP_REG: |
| if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) { |
| GET_REG64(env->eip); |
| } else { |
| GET_REG32(env->eip); |
| } |
| case IDX_FLAGS_REG: GET_REG32(env->eflags); |
| |
| case IDX_SEG_REGS: GET_REG32(env->segs[R_CS].selector); |
| case IDX_SEG_REGS + 1: GET_REG32(env->segs[R_SS].selector); |
| case IDX_SEG_REGS + 2: GET_REG32(env->segs[R_DS].selector); |
| case IDX_SEG_REGS + 3: GET_REG32(env->segs[R_ES].selector); |
| case IDX_SEG_REGS + 4: GET_REG32(env->segs[R_FS].selector); |
| case IDX_SEG_REGS + 5: GET_REG32(env->segs[R_GS].selector); |
| |
| case IDX_FP_REGS + 8: GET_REG32(env->fpuc); |
| case IDX_FP_REGS + 9: GET_REG32((env->fpus & ~0x3800) | |
| (env->fpstt & 0x7) << 11); |
| case IDX_FP_REGS + 10: GET_REG32(0); /* ftag */ |
| case IDX_FP_REGS + 11: GET_REG32(0); /* fiseg */ |
| case IDX_FP_REGS + 12: GET_REG32(0); /* fioff */ |
| case IDX_FP_REGS + 13: GET_REG32(0); /* foseg */ |
| case IDX_FP_REGS + 14: GET_REG32(0); /* fooff */ |
| case IDX_FP_REGS + 15: GET_REG32(0); /* fop */ |
| |
| case IDX_MXCSR_REG: GET_REG32(env->mxcsr); |
| } |
| } |
| return 0; |
| } |
| |
| static int cpu_x86_gdb_load_seg(CPUX86State *env, int sreg, uint8_t *mem_buf) |
| { |
| uint16_t selector = ldl_p(mem_buf); |
| |
| if (selector != env->segs[sreg].selector) { |
| #if defined(CONFIG_USER_ONLY) |
| cpu_x86_load_seg(env, sreg, selector); |
| #else |
| unsigned int limit, flags; |
| target_ulong base; |
| |
| if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) { |
| base = selector << 4; |
| limit = 0xffff; |
| flags = 0; |
| } else { |
| if (!cpu_x86_get_descr_debug(env, selector, &base, &limit, &flags)) |
| return 4; |
| } |
| cpu_x86_load_seg_cache(env, sreg, selector, base, limit, flags); |
| #endif |
| } |
| return 4; |
| } |
| |
| static int cpu_gdb_write_register(CPUX86State *env, uint8_t *mem_buf, int n) |
| { |
| uint32_t tmp; |
| |
| if (n < CPU_NB_REGS) { |
| if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) { |
| env->regs[gpr_map[n]] = ldtul_p(mem_buf); |
| return sizeof(target_ulong); |
| } else if (n < CPU_NB_REGS32) { |
| n = gpr_map32[n]; |
| env->regs[n] &= ~0xffffffffUL; |
| env->regs[n] |= (uint32_t)ldl_p(mem_buf); |
| return 4; |
| } |
| } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) { |
| #ifdef USE_X86LDOUBLE |
| /* FIXME: byteswap float values - after fixing fpregs layout. */ |
| memcpy(&env->fpregs[n - IDX_FP_REGS], mem_buf, 10); |
| #endif |
| return 10; |
| } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) { |
| n -= IDX_XMM_REGS; |
| if (n < CPU_NB_REGS32 || |
| (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK)) { |
| env->xmm_regs[n].XMM_Q(0) = ldq_p(mem_buf); |
| env->xmm_regs[n].XMM_Q(1) = ldq_p(mem_buf + 8); |
| return 16; |
| } |
| } else { |
| switch (n) { |
| case IDX_IP_REG: |
| if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) { |
| env->eip = ldq_p(mem_buf); |
| return 8; |
| } else { |
| env->eip &= ~0xffffffffUL; |
| env->eip |= (uint32_t)ldl_p(mem_buf); |
| return 4; |
| } |
| case IDX_FLAGS_REG: |
| env->eflags = ldl_p(mem_buf); |
| return 4; |
| |
| case IDX_SEG_REGS: return cpu_x86_gdb_load_seg(env, R_CS, mem_buf); |
| case IDX_SEG_REGS + 1: return cpu_x86_gdb_load_seg(env, R_SS, mem_buf); |
| case IDX_SEG_REGS + 2: return cpu_x86_gdb_load_seg(env, R_DS, mem_buf); |
| case IDX_SEG_REGS + 3: return cpu_x86_gdb_load_seg(env, R_ES, mem_buf); |
| case IDX_SEG_REGS + 4: return cpu_x86_gdb_load_seg(env, R_FS, mem_buf); |
| case IDX_SEG_REGS + 5: return cpu_x86_gdb_load_seg(env, R_GS, mem_buf); |
| |
| case IDX_FP_REGS + 8: |
| env->fpuc = ldl_p(mem_buf); |
| return 4; |
| case IDX_FP_REGS + 9: |
| tmp = ldl_p(mem_buf); |
| env->fpstt = (tmp >> 11) & 7; |
| env->fpus = tmp & ~0x3800; |
| return 4; |
| case IDX_FP_REGS + 10: /* ftag */ return 4; |
| case IDX_FP_REGS + 11: /* fiseg */ return 4; |
| case IDX_FP_REGS + 12: /* fioff */ return 4; |
| case IDX_FP_REGS + 13: /* foseg */ return 4; |
| case IDX_FP_REGS + 14: /* fooff */ return 4; |
| case IDX_FP_REGS + 15: /* fop */ return 4; |
| |
| case IDX_MXCSR_REG: |
| env->mxcsr = ldl_p(mem_buf); |
| return 4; |
| } |
| } |
| /* Unrecognised register. */ |
| return 0; |
| } |
| |
| #elif defined (TARGET_PPC) |
| |
| /* Old gdb always expects FP registers. Newer (xml-aware) gdb only |
| expects whatever the target description contains. Due to a |
| historical mishap the FP registers appear in between core integer |
| regs and PC, MSR, CR, and so forth. We hack round this by giving the |
| FP regs zero size when talking to a newer gdb. */ |
| #define NUM_CORE_REGS 71 |
| #if defined (TARGET_PPC64) |
| #define GDB_CORE_XML "power64-core.xml" |
| #else |
| #define GDB_CORE_XML "power-core.xml" |
| #endif |
| |
| static int cpu_gdb_read_register(CPUPPCState *env, uint8_t *mem_buf, int n) |
| { |
| if (n < 32) { |
| /* gprs */ |
| GET_REGL(env->gpr[n]); |
| } else if (n < 64) { |
| /* fprs */ |
| if (gdb_has_xml) |
| return 0; |
| stfq_p(mem_buf, env->fpr[n-32]); |
| return 8; |
| } else { |
| switch (n) { |
| case 64: GET_REGL(env->nip); |
| case 65: GET_REGL(env->msr); |
| case 66: |
| { |
| uint32_t cr = 0; |
| int i; |
| for (i = 0; i < 8; i++) |
| cr |= env->crf[i] << (32 - ((i + 1) * 4)); |
| GET_REG32(cr); |
| } |
| case 67: GET_REGL(env->lr); |
| case 68: GET_REGL(env->ctr); |
| case 69: GET_REGL(env->xer); |
| case 70: |
| { |
| if (gdb_has_xml) |
| return 0; |
| GET_REG32(env->fpscr); |
| } |
| } |
| } |
| return 0; |
| } |
| |
| static int cpu_gdb_write_register(CPUPPCState *env, uint8_t *mem_buf, int n) |
| { |
| if (n < 32) { |
| /* gprs */ |
| env->gpr[n] = ldtul_p(mem_buf); |
| return sizeof(target_ulong); |
| } else if (n < 64) { |
| /* fprs */ |
| if (gdb_has_xml) |
| return 0; |
| env->fpr[n-32] = ldfq_p(mem_buf); |
| return 8; |
| } else { |
| switch (n) { |
| case 64: |
| env->nip = ldtul_p(mem_buf); |
| return sizeof(target_ulong); |
| case 65: |
| ppc_store_msr(env, ldtul_p(mem_buf)); |
| return sizeof(target_ulong); |
| case 66: |
| { |
| uint32_t cr = ldl_p(mem_buf); |
| int i; |
| for (i = 0; i < 8; i++) |
| env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF; |
| return 4; |
| } |
| case 67: |
| env->lr = ldtul_p(mem_buf); |
| return sizeof(target_ulong); |
| case 68: |
| env->ctr = ldtul_p(mem_buf); |
| return sizeof(target_ulong); |
| case 69: |
| env->xer = ldtul_p(mem_buf); |
| return sizeof(target_ulong); |
| case 70: |
| /* fpscr */ |
| if (gdb_has_xml) |
| return 0; |
| store_fpscr(env, ldtul_p(mem_buf), 0xffffffff); |
| return sizeof(target_ulong); |
| } |
| } |
| return 0; |
| } |
| |
| #elif defined (TARGET_SPARC) |
| |
| #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) |
| #define NUM_CORE_REGS 86 |
| #else |
| #define NUM_CORE_REGS 72 |
| #endif |
| |
| #ifdef TARGET_ABI32 |
| #define GET_REGA(val) GET_REG32(val) |
| #else |
| #define GET_REGA(val) GET_REGL(val) |
| #endif |
| |
| static int cpu_gdb_read_register(CPUSPARCState *env, uint8_t *mem_buf, int n) |
| { |
| if (n < 8) { |
| /* g0..g7 */ |
| GET_REGA(env->gregs[n]); |
| } |
| if (n < 32) { |
| /* register window */ |
| GET_REGA(env->regwptr[n - 8]); |
| } |
| #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64) |
| if (n < 64) { |
| /* fprs */ |
| if (n & 1) { |
| GET_REG32(env->fpr[(n - 32) / 2].l.lower); |
| } else { |
| GET_REG32(env->fpr[(n - 32) / 2].l.upper); |
| } |
| } |
| /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */ |
| switch (n) { |
| case 64: GET_REGA(env->y); |
| case 65: GET_REGA(cpu_get_psr(env)); |
| case 66: GET_REGA(env->wim); |
| case 67: GET_REGA(env->tbr); |
| case 68: GET_REGA(env->pc); |
| case 69: GET_REGA(env->npc); |
| case 70: GET_REGA(env->fsr); |
| case 71: GET_REGA(0); /* csr */ |
| default: GET_REGA(0); |
| } |
| #else |
| if (n < 64) { |
| /* f0-f31 */ |
| if (n & 1) { |
| GET_REG32(env->fpr[(n - 32) / 2].l.lower); |
| } else { |
| GET_REG32(env->fpr[(n - 32) / 2].l.upper); |
| } |
| } |
| if (n < 80) { |
| /* f32-f62 (double width, even numbers only) */ |
| GET_REG64(env->fpr[(n - 32) / 2].ll); |
| } |
| switch (n) { |
| case 80: GET_REGL(env->pc); |
| case 81: GET_REGL(env->npc); |
| case 82: GET_REGL((cpu_get_ccr(env) << 32) | |
| ((env->asi & 0xff) << 24) | |
| ((env->pstate & 0xfff) << 8) | |
| cpu_get_cwp64(env)); |
| case 83: GET_REGL(env->fsr); |
| case 84: GET_REGL(env->fprs); |
| case 85: GET_REGL(env->y); |
| } |
| #endif |
| return 0; |
| } |
| |
| static int cpu_gdb_write_register(CPUSPARCState *env, uint8_t *mem_buf, int n) |
| { |
| #if defined(TARGET_ABI32) |
| abi_ulong tmp; |
| |
| tmp = ldl_p(mem_buf); |
| #else |
| target_ulong tmp; |
| |
| tmp = ldtul_p(mem_buf); |
| #endif |
| |
| if (n < 8) { |
| /* g0..g7 */ |
| env->gregs[n] = tmp; |
| } else if (n < 32) { |
| /* register window */ |
| env->regwptr[n - 8] = tmp; |
| } |
| #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64) |
| else if (n < 64) { |
| /* fprs */ |
| /* f0-f31 */ |
| if (n & 1) { |
| env->fpr[(n - 32) / 2].l.lower = tmp; |
| } else { |
| env->fpr[(n - 32) / 2].l.upper = tmp; |
| } |
| } else { |
| /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */ |
| switch (n) { |
| case 64: env->y = tmp; break; |
| case 65: cpu_put_psr(env, tmp); break; |
| case 66: env->wim = tmp; break; |
| case 67: env->tbr = tmp; break; |
| case 68: env->pc = tmp; break; |
| case 69: env->npc = tmp; break; |
| case 70: env->fsr = tmp; break; |
| default: return 0; |
| } |
| } |
| return 4; |
| #else |
| else if (n < 64) { |
| /* f0-f31 */ |
| tmp = ldl_p(mem_buf); |
| if (n & 1) { |
| env->fpr[(n - 32) / 2].l.lower = tmp; |
| } else { |
| env->fpr[(n - 32) / 2].l.upper = tmp; |
| } |
| return 4; |
| } else if (n < 80) { |
| /* f32-f62 (double width, even numbers only) */ |
| env->fpr[(n - 32) / 2].ll = tmp; |
| } else { |
| switch (n) { |
| case 80: env->pc = tmp; break; |
| case 81: env->npc = tmp; break; |
| case 82: |
| cpu_put_ccr(env, tmp >> 32); |
| env->asi = (tmp >> 24) & 0xff; |
| env->pstate = (tmp >> 8) & 0xfff; |
| cpu_put_cwp64(env, tmp & 0xff); |
| break; |
| case 83: env->fsr = tmp; break; |
| case 84: env->fprs = tmp; break; |
| case 85: env->y = tmp; break; |
| default: return 0; |
| } |
| } |
| return 8; |
| #endif |
| } |
| #elif defined (TARGET_ARM) |
| |
| /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect |
| whatever the target description contains. Due to a historical mishap |
| the FPA registers appear in between core integer regs and the CPSR. |
| We hack round this by giving the FPA regs zero size when talking to a |
| newer gdb. */ |
| #define NUM_CORE_REGS 26 |
| #define GDB_CORE_XML "arm-core.xml" |
| |
| static int cpu_gdb_read_register(CPUARMState *env, uint8_t *mem_buf, int n) |
| { |
| if (n < 16) { |
| /* Core integer register. */ |
| GET_REG32(env->regs[n]); |
| } |
| if (n < 24) { |
| /* FPA registers. */ |
| if (gdb_has_xml) |
| return 0; |
| memset(mem_buf, 0, 12); |
| return 12; |
| } |
| switch (n) { |
| case 24: |
| /* FPA status register. */ |
| if (gdb_has_xml) |
| return 0; |
| GET_REG32(0); |
| case 25: |
| /* CPSR */ |
| GET_REG32(cpsr_read(env)); |
| } |
| /* Unknown register. */ |
| return 0; |
| } |
| |
| static int cpu_gdb_write_register(CPUARMState *env, uint8_t *mem_buf, int n) |
| { |
| uint32_t tmp; |
| |
| tmp = ldl_p(mem_buf); |
| |
| /* Mask out low bit of PC to workaround gdb bugs. This will probably |
| cause problems if we ever implement the Jazelle DBX extensions. */ |
| if (n == 15) |
| tmp &= ~1; |
| |
| if (n < 16) { |
| /* Core integer register. */ |
| env->regs[n] = tmp; |
| return 4; |
| } |
| if (n < 24) { /* 16-23 */ |
| /* FPA registers (ignored). */ |
| if (gdb_has_xml) |
| return 0; |
| return 12; |
| } |
| switch (n) { |
| case 24: |
| /* FPA status register (ignored). */ |
| if (gdb_has_xml) |
| return 0; |
| return 4; |
| case 25: |
| /* CPSR */ |
| cpsr_write (env, tmp, 0xffffffff); |
| return 4; |
| } |
| /* Unknown register. */ |
| return 0; |
| } |
| |
| #elif defined (TARGET_M68K) |
| |
| #define NUM_CORE_REGS 18 |
| |
| #define GDB_CORE_XML "cf-core.xml" |
| |
| static int cpu_gdb_read_register(CPUM68KState *env, uint8_t *mem_buf, int n) |
| { |
| if (n < 8) { |
| /* D0-D7 */ |
| GET_REG32(env->dregs[n]); |
| } else if (n < 16) { |
| /* A0-A7 */ |
| GET_REG32(env->aregs[n - 8]); |
| } else { |
| switch (n) { |
| case 16: GET_REG32(env->sr); |
| case 17: GET_REG32(env->pc); |
| } |
| } |
| /* FP registers not included here because they vary between |
| ColdFire and m68k. Use XML bits for these. */ |
| return 0; |
| } |
| |
| static int cpu_gdb_write_register(CPUM68KState *env, uint8_t *mem_buf, int n) |
| { |
| uint32_t tmp; |
| |
| tmp = ldl_p(mem_buf); |
| |
| if (n < 8) { |
| /* D0-D7 */ |
| env->dregs[n] = tmp; |
| } else if (n < 16) { |
| /* A0-A7 */ |
| env->aregs[n - 8] = tmp; |
| } else { |
| switch (n) { |
| case 16: env->sr = tmp; break; |
| case 17: env->pc = tmp; break; |
| default: return 0; |
| } |
| } |
| return 4; |
| } |
| #elif defined (TARGET_MIPS) |
| |
| #define NUM_CORE_REGS 73 |
| |
| static int cpu_gdb_read_register(CPUMIPSState *env, uint8_t *mem_buf, int n) |
| { |
| if (n < 32) { |
| GET_REGL(env->active_tc.gpr[n]); |
| } |
| if (env->CP0_Config1 & (1 << CP0C1_FP)) { |
| if (n >= 38 && n < 70) { |
| if (env->CP0_Status & (1 << CP0St_FR)) |
| GET_REGL(env->active_fpu.fpr[n - 38].d); |
| else |
| GET_REGL(env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX]); |
| } |
| switch (n) { |
| case 70: GET_REGL((int32_t)env->active_fpu.fcr31); |
| case 71: GET_REGL((int32_t)env->active_fpu.fcr0); |
| } |
| } |
| switch (n) { |
| case 32: GET_REGL((int32_t)env->CP0_Status); |
| case 33: GET_REGL(env->active_tc.LO[0]); |
| case 34: GET_REGL(env->active_tc.HI[0]); |
| case 35: GET_REGL(env->CP0_BadVAddr); |
| case 36: GET_REGL((int32_t)env->CP0_Cause); |
| case 37: GET_REGL(env->active_tc.PC | !!(env->hflags & MIPS_HFLAG_M16)); |
| case 72: GET_REGL(0); /* fp */ |
| case 89: GET_REGL((int32_t)env->CP0_PRid); |
| } |
| if (n >= 73 && n <= 88) { |
| /* 16 embedded regs. */ |
| GET_REGL(0); |
| } |
| |
| return 0; |
| } |
| |
| /* convert MIPS rounding mode in FCR31 to IEEE library */ |
| static unsigned int ieee_rm[] = |
| { |
| float_round_nearest_even, |
| float_round_to_zero, |
| float_round_up, |
| float_round_down |
| }; |
| #define RESTORE_ROUNDING_MODE \ |
| set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status) |
| |
| static int cpu_gdb_write_register(CPUMIPSState *env, uint8_t *mem_buf, int n) |
| { |
| target_ulong tmp; |
| |
| tmp = ldtul_p(mem_buf); |
| |
| if (n < 32) { |
| env->active_tc.gpr[n] = tmp; |
| return sizeof(target_ulong); |
| } |
| if (env->CP0_Config1 & (1 << CP0C1_FP) |
| && n >= 38 && n < 73) { |
| if (n < 70) { |
| if (env->CP0_Status & (1 << CP0St_FR)) |
| env->active_fpu.fpr[n - 38].d = tmp; |
| else |
| env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX] = tmp; |
| } |
| switch (n) { |
| case 70: |
| env->active_fpu.fcr31 = tmp & 0xFF83FFFF; |
| /* set rounding mode */ |
| RESTORE_ROUNDING_MODE; |
| break; |
| case 71: env->active_fpu.fcr0 = tmp; break; |
| } |
| return sizeof(target_ulong); |
| } |
| switch (n) { |
| case 32: env->CP0_Status = tmp; break; |
| case 33: env->active_tc.LO[0] = tmp; break; |
| case 34: env->active_tc.HI[0] = tmp; break; |
| case 35: env->CP0_BadVAddr = tmp; break; |
| case 36: env->CP0_Cause = tmp; break; |
| case 37: |
| env->active_tc.PC = tmp & ~(target_ulong)1; |
| if (tmp & 1) { |
| env->hflags |= MIPS_HFLAG_M16; |
| } else { |
| env->hflags &= ~(MIPS_HFLAG_M16); |
| } |
| break; |
| case 72: /* fp, ignored */ break; |
| default: |
| if (n > 89) |
| return 0; |
| /* Other registers are readonly. Ignore writes. */ |
| break; |
| } |
| |
| return sizeof(target_ulong); |
| } |
| #elif defined(TARGET_OPENRISC) |
| |
| #define NUM_CORE_REGS (32 + 3) |
| |
| static int cpu_gdb_read_register(CPUOpenRISCState *env, uint8_t *mem_buf, int n) |
| { |
| if (n < 32) { |
| GET_REG32(env->gpr[n]); |
| } else { |
| switch (n) { |
| case 32: /* PPC */ |
| GET_REG32(env->ppc); |
| break; |
| |
| case 33: /* NPC */ |
| GET_REG32(env->npc); |
| break; |
| |
| case 34: /* SR */ |
| GET_REG32(env->sr); |
| break; |
| |
| default: |
| break; |
| } |
| } |
| return 0; |
| } |
| |
| static int cpu_gdb_write_register(CPUOpenRISCState *env, |
| uint8_t *mem_buf, int n) |
| { |
| uint32_t tmp; |
| |
| if (n > NUM_CORE_REGS) { |
| return 0; |
| } |
| |
| tmp = ldl_p(mem_buf); |
| |
| if (n < 32) { |
| env->gpr[n] = tmp; |
| } else { |
| switch (n) { |
| case 32: /* PPC */ |
| env->ppc = tmp; |
| break; |
| |
| case 33: /* NPC */ |
| env->npc = tmp; |
| break; |
| |
| case 34: /* SR */ |
| env->sr = tmp; |
| break; |
| |
| default: |
| break; |
| } |
| } |
| return 4; |
| } |
| #elif defined (TARGET_SH4) |
| |
| /* Hint: Use "set architecture sh4" in GDB to see fpu registers */ |
| /* FIXME: We should use XML for this. */ |
| |
| #define NUM_CORE_REGS 59 |
| |
| static int cpu_gdb_read_register(CPUSH4State *env, uint8_t *mem_buf, int n) |
| { |
| switch (n) { |
| case 0 ... 7: |
| if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) { |
| GET_REGL(env->gregs[n + 16]); |
| } else { |
| GET_REGL(env->gregs[n]); |
| } |
| case 8 ... 15: |
| GET_REGL(env->gregs[n]); |
| case 16: |
| GET_REGL(env->pc); |
| case 17: |
| GET_REGL(env->pr); |
| case 18: |
| GET_REGL(env->gbr); |
| case 19: |
| GET_REGL(env->vbr); |
| case 20: |
| GET_REGL(env->mach); |
| case 21: |
| GET_REGL(env->macl); |
| case 22: |
| GET_REGL(env->sr); |
| case 23: |
| GET_REGL(env->fpul); |
| case 24: |
| GET_REGL(env->fpscr); |
| case 25 ... 40: |
| if (env->fpscr & FPSCR_FR) { |
| stfl_p(mem_buf, env->fregs[n - 9]); |
| } else { |
| stfl_p(mem_buf, env->fregs[n - 25]); |
| } |
| return 4; |
| case 41: |
| GET_REGL(env->ssr); |
| case 42: |
| GET_REGL(env->spc); |
| case 43 ... 50: |
| GET_REGL(env->gregs[n - 43]); |
| case 51 ... 58: |
| GET_REGL(env->gregs[n - (51 - 16)]); |
| } |
| |
| return 0; |
| } |
| |
| static int cpu_gdb_write_register(CPUSH4State *env, uint8_t *mem_buf, int n) |
| { |
| switch (n) { |
| case 0 ... 7: |
| if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) { |
| env->gregs[n + 16] = ldl_p(mem_buf); |
| } else { |
| env->gregs[n] = ldl_p(mem_buf); |
| } |
| break; |
| case 8 ... 15: |
| env->gregs[n] = ldl_p(mem_buf); |
| break; |
| case 16: |
| env->pc = ldl_p(mem_buf); |
| break; |
| case 17: |
| env->pr = ldl_p(mem_buf); |
| break; |
| case 18: |
| env->gbr = ldl_p(mem_buf); |
| break; |
| case 19: |
| env->vbr = ldl_p(mem_buf); |
| break; |
| case 20: |
| env->mach = ldl_p(mem_buf); |
| break; |
| case 21: |
| env->macl = ldl_p(mem_buf); |
| break; |
| case 22: |
| env->sr = ldl_p(mem_buf); |
| break; |
| case 23: |
| env->fpul = ldl_p(mem_buf); |
| break; |
| case 24: |
| env->fpscr = ldl_p(mem_buf); |
| break; |
| case 25 ... 40: |
| if (env->fpscr & FPSCR_FR) { |
| env->fregs[n - 9] = ldfl_p(mem_buf); |
| } else { |
| env->fregs[n - 25] = ldfl_p(mem_buf); |
| } |
| break; |
| case 41: |
| env->ssr = ldl_p(mem_buf); |
| break; |
| case 42: |
| env->spc = ldl_p(mem_buf); |
| break; |
| case 43 ... 50: |
| env->gregs[n - 43] = ldl_p(mem_buf); |
| break; |
| case 51 ... 58: |
| env->gregs[n - (51 - 16)] = ldl_p(mem_buf); |
| break; |
| default: return 0; |
| } |
| |
| return 4; |
| } |
| #elif defined (TARGET_MICROBLAZE) |
| |
| #define NUM_CORE_REGS (32 + 5) |
| |
| static int cpu_gdb_read_register(CPUMBState *env, uint8_t *mem_buf, int n) |
| { |
| if (n < 32) { |
| GET_REG32(env->regs[n]); |
| } else { |
| GET_REG32(env->sregs[n - 32]); |
| } |
| return 0; |
| } |
| |
| static int cpu_gdb_write_register(CPUMBState *env, uint8_t *mem_buf, int n) |
| { |
| uint32_t tmp; |
| |
| if (n > NUM_CORE_REGS) |
| return 0; |
| |
| tmp = ldl_p(mem_buf); |
| |
| if (n < 32) { |
| env->regs[n] = tmp; |
| } else { |
| env->sregs[n - 32] = tmp; |
| } |
| return 4; |
| } |
| #elif defined (TARGET_CRIS) |
| |
| #define NUM_CORE_REGS 49 |
| |
| static int |
| read_register_crisv10(CPUCRISState *env, uint8_t *mem_buf, int n) |
| { |
| if (n < 15) { |
| GET_REG32(env->regs[n]); |
| } |
| |
| if (n == 15) { |
| GET_REG32(env->pc); |
| } |
| |
| if (n < 32) { |
| switch (n) { |
| case 16: |
| GET_REG8(env->pregs[n - 16]); |
| break; |
| case 17: |
| GET_REG8(env->pregs[n - 16]); |
| break; |
| case 20: |
| case 21: |
| GET_REG16(env->pregs[n - 16]); |
| break; |
| default: |
| if (n >= 23) { |
| GET_REG32(env->pregs[n - 16]); |
| } |
| break; |
| } |
| } |
| return 0; |
| } |
| |
| static int cpu_gdb_read_register(CPUCRISState *env, uint8_t *mem_buf, int n) |
| { |
| uint8_t srs; |
| |
| if (env->pregs[PR_VR] < 32) |
| return read_register_crisv10(env, mem_buf, n); |
| |
| srs = env->pregs[PR_SRS]; |
| if (n < 16) { |
| GET_REG32(env->regs[n]); |
| } |
| |
| if (n >= 21 && n < 32) { |
| GET_REG32(env->pregs[n - 16]); |
| } |
| if (n >= 33 && n < 49) { |
| GET_REG32(env->sregs[srs][n - 33]); |
| } |
| switch (n) { |
| case 16: GET_REG8(env->pregs[0]); |
| case 17: GET_REG8(env->pregs[1]); |
| case 18: GET_REG32(env->pregs[2]); |
| case 19: GET_REG8(srs); |
| case 20: GET_REG16(env->pregs[4]); |
| case 32: GET_REG32(env->pc); |
| } |
| |
| return 0; |
| } |
| |
| static int cpu_gdb_write_register(CPUCRISState *env, uint8_t *mem_buf, int n) |
| { |
| uint32_t tmp; |
| |
| if (n > 49) |
| return 0; |
| |
| tmp = ldl_p(mem_buf); |
| |
| if (n < 16) { |
| env->regs[n] = tmp; |
| } |
| |
| if (n >= 21 && n < 32) { |
| env->pregs[n - 16] = tmp; |
| } |
| |
| /* FIXME: Should support function regs be writable? */ |
| switch (n) { |
| case 16: return 1; |
| case 17: return 1; |
| case 18: env->pregs[PR_PID] = tmp; break; |
| case 19: return 1; |
| case 20: return 2; |
| case 32: env->pc = tmp; break; |
| } |
| |
| return 4; |
| } |
| #elif defined (TARGET_ALPHA) |
| |
| #define NUM_CORE_REGS 67 |
| |
| static int cpu_gdb_read_register(CPUAlphaState *env, uint8_t *mem_buf, int n) |
| { |
| uint64_t val; |
| CPU_DoubleU d; |
| |
| switch (n) { |
| case 0 ... 30: |
| val = env->ir[n]; |
| break; |
| case 32 ... 62: |
| d.d = env->fir[n - 32]; |
| val = d.ll; |
| break; |
| case 63: |
| val = cpu_alpha_load_fpcr(env); |
| break; |
| case 64: |
| val = env->pc; |
| break; |
| case 66: |
| val = env->unique; |
| break; |
| case 31: |
| case 65: |
| /* 31 really is the zero register; 65 is unassigned in the |
| gdb protocol, but is still required to occupy 8 bytes. */ |
| val = 0; |
| break; |
| default: |
| return 0; |
| } |
| GET_REGL(val); |
| } |
| |
| static int cpu_gdb_write_register(CPUAlphaState *env, uint8_t *mem_buf, int n) |
| { |
| target_ulong tmp = ldtul_p(mem_buf); |
| CPU_DoubleU d; |
| |
| switch (n) { |
| case 0 ... 30: |
| env->ir[n] = tmp; |
| break; |
| case 32 ... 62: |
| d.ll = tmp; |
| env->fir[n - 32] = d.d; |
| break; |
| case 63: |
| cpu_alpha_store_fpcr(env, tmp); |
| break; |
| case 64: |
| env->pc = tmp; |
| break; |
| case 66: |
| env->unique = tmp; |
| break; |
| case 31: |
| case 65: |
| /* 31 really is the zero register; 65 is unassigned in the |
| gdb protocol, but is still required to occupy 8 bytes. */ |
| break; |
| default: |
| return 0; |
| } |
| return 8; |
| } |
| #elif defined (TARGET_S390X) |
| |
| #define NUM_CORE_REGS S390_NUM_REGS |
| |
| static int cpu_gdb_read_register(CPUS390XState *env, uint8_t *mem_buf, int n) |
| { |
| uint64_t val; |
| int cc_op; |
| |
| switch (n) { |
| case S390_PSWM_REGNUM: |
| cc_op = calc_cc(env, env->cc_op, env->cc_src, env->cc_dst, env->cc_vr); |
| val = deposit64(env->psw.mask, 44, 2, cc_op); |
| GET_REGL(val); |
| break; |
| case S390_PSWA_REGNUM: |
| GET_REGL(env->psw.addr); |
| break; |
| case S390_R0_REGNUM ... S390_R15_REGNUM: |
| GET_REGL(env->regs[n-S390_R0_REGNUM]); |
| break; |
| case S390_A0_REGNUM ... S390_A15_REGNUM: |
| GET_REG32(env->aregs[n-S390_A0_REGNUM]); |
| break; |
| case S390_FPC_REGNUM: |
| GET_REG32(env->fpc); |
| break; |
| case S390_F0_REGNUM ... S390_F15_REGNUM: |
| GET_REG64(env->fregs[n-S390_F0_REGNUM].ll); |
| break; |
| } |
| |
| return 0; |
| } |
| |
| static int cpu_gdb_write_register(CPUS390XState *env, uint8_t *mem_buf, int n) |
| { |
| target_ulong tmpl; |
| uint32_t tmp32; |
| int r = 8; |
| tmpl = ldtul_p(mem_buf); |
| tmp32 = ldl_p(mem_buf); |
| |
| switch (n) { |
| case S390_PSWM_REGNUM: |
| env->psw.mask = tmpl; |
| env->cc_op = extract64(tmpl, 44, 2); |
| break; |
| case S390_PSWA_REGNUM: |
| env->psw.addr = tmpl; |
| break; |
| case S390_R0_REGNUM ... S390_R15_REGNUM: |
| env->regs[n-S390_R0_REGNUM] = tmpl; |
| break; |
| case S390_A0_REGNUM ... S390_A15_REGNUM: |
| env->aregs[n-S390_A0_REGNUM] = tmp32; |
| r = 4; |
| break; |
| case S390_FPC_REGNUM: |
| env->fpc = tmp32; |
| r = 4; |
| break; |
| case S390_F0_REGNUM ... S390_F15_REGNUM: |
| env->fregs[n-S390_F0_REGNUM].ll = tmpl; |
| break; |
| default: |
| return 0; |
| } |
| return r; |
| } |
| #elif defined (TARGET_LM32) |
| |
| #include "hw/lm32/lm32_pic.h" |
| #define NUM_CORE_REGS (32 + 7) |
| |
| static int cpu_gdb_read_register(CPULM32State *env, uint8_t *mem_buf, int n) |
| { |
| if (n < 32) { |
| GET_REG32(env->regs[n]); |
| } else { |
| switch (n) { |
| case 32: |
| GET_REG32(env->pc); |
| break; |
| /* FIXME: put in right exception ID */ |
| case 33: |
| GET_REG32(0); |
| break; |
| case 34: |
| GET_REG32(env->eba); |
| break; |
| case 35: |
| GET_REG32(env->deba); |
| break; |
| case 36: |
| GET_REG32(env->ie); |
| break; |
| case 37: |
| GET_REG32(lm32_pic_get_im(env->pic_state)); |
| break; |
| case 38: |
| GET_REG32(lm32_pic_get_ip(env->pic_state)); |
| break; |
| } |
| } |
| return 0; |
| } |
| |
| static int cpu_gdb_write_register(CPULM32State *env, uint8_t *mem_buf, int n) |
| { |
| uint32_t tmp; |
| |
| if (n > NUM_CORE_REGS) { |
| return 0; |
| } |
| |
| tmp = ldl_p(mem_buf); |
| |
| if (n < 32) { |
| env->regs[n] = tmp; |
| } else { |
| switch (n) { |
| case 32: |
| env->pc = tmp; |
| break; |
| case 34: |
| env->eba = tmp; |
| break; |
| case 35: |
| env->deba = tmp; |
| break; |
| case 36: |
| env->ie = tmp; |
| break; |
| case 37: |
| lm32_pic_set_im(env->pic_state, tmp); |
| break; |
| case 38: |
| lm32_pic_set_ip(env->pic_state, tmp); |
| break; |
| } |
| } |
| return 4; |
| } |
| #elif defined(TARGET_XTENSA) |
| |
| /* Use num_core_regs to see only non-privileged registers in an unmodified gdb. |
| * Use num_regs to see all registers. gdb modification is required for that: |
| * reset bit 0 in the 'flags' field of the registers definitions in the |
| * gdb/xtensa-config.c inside gdb source tree or inside gdb overlay. |
| */ |
| #define NUM_CORE_REGS (env->config->gdb_regmap.num_regs) |
| #define num_g_regs NUM_CORE_REGS |
| |
| static int cpu_gdb_read_register(CPUXtensaState *env, uint8_t *mem_buf, int n) |
| { |
| const XtensaGdbReg *reg = env->config->gdb_regmap.reg + n; |
| |
| if (n < 0 || n >= env->config->gdb_regmap.num_regs) { |
| return 0; |
| } |
| |
| switch (reg->type) { |
| case 9: /*pc*/ |
| GET_REG32(env->pc); |
| break; |
| |
| case 1: /*ar*/ |
| xtensa_sync_phys_from_window(env); |
| GET_REG32(env->phys_regs[(reg->targno & 0xff) % env->config->nareg]); |
| break; |
| |
| case 2: /*SR*/ |
| GET_REG32(env->sregs[reg->targno & 0xff]); |
| break; |
| |
| case 3: /*UR*/ |
| GET_REG32(env->uregs[reg->targno & 0xff]); |
| break; |
| |
| case 4: /*f*/ |
| GET_REG32(float32_val(env->fregs[reg->targno & 0x0f])); |
| break; |
| |
| case 8: /*a*/ |
| GET_REG32(env->regs[reg->targno & 0x0f]); |
| break; |
| |
| default: |
| qemu_log("%s from reg %d of unsupported type %d\n", |
| __func__, n, reg->type); |
| return 0; |
| } |
| } |
| |
| static int cpu_gdb_write_register(CPUXtensaState *env, uint8_t *mem_buf, int n) |
| { |
| uint32_t tmp; |
| const XtensaGdbReg *reg = env->config->gdb_regmap.reg + n; |
| |
| if (n < 0 || n >= env->config->gdb_regmap.num_regs) { |
| return 0; |
| } |
| |
| tmp = ldl_p(mem_buf); |
| |
| switch (reg->type) { |
| case 9: /*pc*/ |
| env->pc = tmp; |
| break; |
| |
| case 1: /*ar*/ |
| env->phys_regs[(reg->targno & 0xff) % env->config->nareg] = tmp; |
| xtensa_sync_window_from_phys(env); |
| break; |
| |
| case 2: /*SR*/ |
| env->sregs[reg->targno & 0xff] = tmp; |
| break; |
| |
| case 3: /*UR*/ |
| env->uregs[reg->targno & 0xff] = tmp; |
| break; |
| |
| case 4: /*f*/ |
| env->fregs[reg->targno & 0x0f] = make_float32(tmp); |
| break; |
| |
| case 8: /*a*/ |
| env->regs[reg->targno & 0x0f] = tmp; |
| break; |
| |
| default: |
| qemu_log("%s to reg %d of unsupported type %d\n", |
| __func__, n, reg->type); |
| return 0; |
| } |
| |
| return 4; |
| } |
| #else |
| |
| #define NUM_CORE_REGS 0 |
| |
| static int cpu_gdb_read_register(CPUArchState *env, uint8_t *mem_buf, int n) |
| { |
| return 0; |
| } |
| |
| static int cpu_gdb_write_register(CPUArchState *env, uint8_t *mem_buf, int n) |
| { |
| return 0; |
| } |
| |
| #endif |
| |
| #if !defined(TARGET_XTENSA) |
| static int num_g_regs = NUM_CORE_REGS; |
| #endif |
| |
| #ifdef GDB_CORE_XML |
| /* Encode data using the encoding for 'x' packets. */ |
| static int memtox(char *buf, const char *mem, int len) |
| { |
| char *p = buf; |
| char c; |
| |
| while (len--) { |
| c = *(mem++); |
| switch (c) { |
| case '#': case '$': case '*': case '}': |
| *(p++) = '}'; |
| *(p++) = c ^ 0x20; |
| break; |
| default: |
| *(p++) = c; |
| break; |
| } |
| } |
| return p - buf; |
| } |
| |
| static const char *get_feature_xml(const char *p, const char **newp) |
| { |
| size_t len; |
| int i; |
| const char *name; |
| static char target_xml[1024]; |
| |
| len = 0; |
| while (p[len] && p[len] != ':') |
| len++; |
| *newp = p + len; |
| |
| name = NULL; |
| if (strncmp(p, "target.xml", len) == 0) { |
| /* Generate the XML description for this CPU. */ |
| if (!target_xml[0]) { |
| GDBRegisterState *r; |
| |
| snprintf(target_xml, sizeof(target_xml), |
| "<?xml version=\"1.0\"?>" |
| "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">" |
| "<target>" |
| "<xi:include href=\"%s\"/>", |
| GDB_CORE_XML); |
| |
| for (r = first_cpu->gdb_regs; r; r = r->next) { |
| pstrcat(target_xml, sizeof(target_xml), "<xi:include href=\""); |
| pstrcat(target_xml, sizeof(target_xml), r->xml); |
| pstrcat(target_xml, sizeof(target_xml), "\"/>"); |
| } |
| pstrcat(target_xml, sizeof(target_xml), "</target>"); |
| } |
| return target_xml; |
| } |
| for (i = 0; ; i++) { |
| name = xml_builtin[i][0]; |
| if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len)) |
| break; |
| } |
| return name ? xml_builtin[i][1] : NULL; |
| } |
| #endif |
| |
| static int gdb_read_register(CPUArchState *env, uint8_t *mem_buf, int reg) |
| { |
| GDBRegisterState *r; |
| |
| if (reg < NUM_CORE_REGS) |
| return cpu_gdb_read_register(env, mem_buf, reg); |
| |
| for (r = env->gdb_regs; r; r = r->next) { |
| if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) { |
| return r->get_reg(env, mem_buf, reg - r->base_reg); |
| } |
| } |
| return 0; |
| } |
| |
| static int gdb_write_register(CPUArchState *env, uint8_t *mem_buf, int reg) |
| { |
| GDBRegisterState *r; |
| |
| if (reg < NUM_CORE_REGS) |
| return cpu_gdb_write_register(env, mem_buf, reg); |
| |
| for (r = env->gdb_regs; r; r = r->next) { |
| if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) { |
| return r->set_reg(env, mem_buf, reg - r->base_reg); |
| } |
| } |
| return 0; |
| } |
| |
| #if !defined(TARGET_XTENSA) |
| /* Register a supplemental set of CPU registers. If g_pos is nonzero it |
| specifies the first register number and these registers are included in |
| a standard "g" packet. Direction is relative to gdb, i.e. get_reg is |
| gdb reading a CPU register, and set_reg is gdb modifying a CPU register. |
| */ |
| |
| void gdb_register_coprocessor(CPUArchState * env, |
| gdb_reg_cb get_reg, gdb_reg_cb set_reg, |
| int num_regs, const char *xml, int g_pos) |
| { |
| GDBRegisterState *s; |
| GDBRegisterState **p; |
| static int last_reg = NUM_CORE_REGS; |
| |
| p = &env->gdb_regs; |
| while (*p) { |
| /* Check for duplicates. */ |
| if (strcmp((*p)->xml, xml) == 0) |
| return; |
| p = &(*p)->next; |
| } |
| |
| s = g_new0(GDBRegisterState, 1); |
| s->base_reg = last_reg; |
| s->num_regs = num_regs; |
| s->get_reg = get_reg; |
| s->set_reg = set_reg; |
| s->xml = xml; |
| |
| /* Add to end of list. */ |
| last_reg += num_regs; |
| *p = s; |
| if (g_pos) { |
| if (g_pos != s->base_reg) { |
| fprintf(stderr, "Error: Bad gdb register numbering for '%s'\n" |
| "Expected %d got %d\n", xml, g_pos, s->base_reg); |
| } else { |
| num_g_regs = last_reg; |
| } |
| } |
| } |
| #endif |
| |
| #ifndef CONFIG_USER_ONLY |
| static const int xlat_gdb_type[] = { |
| [GDB_WATCHPOINT_WRITE] = BP_GDB | BP_MEM_WRITE, |
| [GDB_WATCHPOINT_READ] = BP_GDB | BP_MEM_READ, |
| [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS, |
| }; |
| #endif |
| |
| static int gdb_breakpoint_insert(target_ulong addr, target_ulong len, int type) |
| { |
| CPUArchState *env; |
| int err = 0; |
| |
| if (kvm_enabled()) |
| return kvm_insert_breakpoint(gdbserver_state->c_cpu, addr, len, type); |
| |
| switch (type) { |
| case GDB_BREAKPOINT_SW: |
| case GDB_BREAKPOINT_HW: |
| for (env = first_cpu; env != NULL; env = env->next_cpu) { |
| err = cpu_breakpoint_insert(env, addr, BP_GDB, NULL); |
| if (err) |
| break; |
| } |
| return err; |
| #ifndef CONFIG_USER_ONLY |
| case GDB_WATCHPOINT_WRITE: |
| case GDB_WATCHPOINT_READ: |
| case GDB_WATCHPOINT_ACCESS: |
| for (env = first_cpu; env != NULL; env = env->next_cpu) { |
| err = cpu_watchpoint_insert(env, addr, len, xlat_gdb_type[type], |
| NULL); |
| if (err) |
| break; |
| } |
| return err; |
| #endif |
| default: |
| return -ENOSYS; |
| } |
| } |
| |
| static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type) |
| { |
| CPUArchState *env; |
| int err = 0; |
| |
| if (kvm_enabled()) |
| return kvm_remove_breakpoint(gdbserver_state->c_cpu, addr, len, type); |
| |
| switch (type) { |
| case GDB_BREAKPOINT_SW: |
| case GDB_BREAKPOINT_HW: |
| for (env = first_cpu; env != NULL; env = env->next_cpu) { |
| err = cpu_breakpoint_remove(env, addr, BP_GDB); |
| if (err) |
| break; |
| } |
| return err; |
| #ifndef CONFIG_USER_ONLY |
| case GDB_WATCHPOINT_WRITE: |
| case GDB_WATCHPOINT_READ: |
| case GDB_WATCHPOINT_ACCESS: |
| for (env = first_cpu; env != NULL; env = env->next_cpu) { |
| err = cpu_watchpoint_remove(env, addr, len, xlat_gdb_type[type]); |
| if (err) |
| break; |
| } |
| return err; |
| #endif |
| default: |
| return -ENOSYS; |
| } |
| } |
| |
| static void gdb_breakpoint_remove_all(void) |
| { |
| CPUArchState *env; |
| |
| if (kvm_enabled()) { |
| kvm_remove_all_breakpoints(gdbserver_state->c_cpu); |
| return; |
| } |
| |
| for (env = first_cpu; env != NULL; env = env->next_cpu) { |
| cpu_breakpoint_remove_all(env, BP_GDB); |
| #ifndef CONFIG_USER_ONLY |
| cpu_watchpoint_remove_all(env, BP_GDB); |
| #endif |
| } |
| } |
| |
| static void gdb_set_cpu_pc(GDBState *s, target_ulong pc) |
| { |
| cpu_synchronize_state(s->c_cpu); |
| #if defined(TARGET_I386) |
| s->c_cpu->eip = pc; |
| #elif defined (TARGET_PPC) |
| s->c_cpu->nip = pc; |
| #elif defined (TARGET_SPARC) |
| s->c_cpu->pc = pc; |
| s->c_cpu->npc = pc + 4; |
| #elif defined (TARGET_ARM) |
| s->c_cpu->regs[15] = pc; |
| #elif defined (TARGET_SH4) |
| s->c_cpu->pc = pc; |
| #elif defined (TARGET_MIPS) |
| s->c_cpu->active_tc.PC = pc & ~(target_ulong)1; |
| if (pc & 1) { |
| s->c_cpu->hflags |= MIPS_HFLAG_M16; |
| } else { |
| s->c_cpu->hflags &= ~(MIPS_HFLAG_M16); |
| } |
| #elif defined (TARGET_MICROBLAZE) |
| s->c_cpu->sregs[SR_PC] = pc; |
| #elif defined(TARGET_OPENRISC) |
| s->c_cpu->pc = pc; |
| #elif defined (TARGET_CRIS) |
| s->c_cpu->pc = pc; |
| #elif defined (TARGET_ALPHA) |
| s->c_cpu->pc = pc; |
| #elif defined (TARGET_S390X) |
| s->c_cpu->psw.addr = pc; |
| #elif defined (TARGET_LM32) |
| s->c_cpu->pc = pc; |
| #elif defined(TARGET_XTENSA) |
| s->c_cpu->pc = pc; |
| #endif |
| } |
| |
| static CPUArchState *find_cpu(uint32_t thread_id) |
| { |
| CPUArchState *env; |
| CPUState *cpu; |
| |
| for (env = first_cpu; env != NULL; env = env->next_cpu) { |
| cpu = ENV_GET_CPU(env); |
| if (cpu_index(cpu) == thread_id) { |
| return env; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| static int gdb_handle_packet(GDBState *s, const char *line_buf) |
| { |
| CPUArchState *env; |
| const char *p; |
| uint32_t thread; |
| int ch, reg_size, type, res; |
| char buf[MAX_PACKET_LENGTH]; |
| uint8_t mem_buf[MAX_PACKET_LENGTH]; |
| uint8_t *registers; |
| target_ulong addr, len; |
| |
| #ifdef DEBUG_GDB |
| printf("command='%s'\n", line_buf); |
| #endif |
| p = line_buf; |
| ch = *p++; |
| switch(ch) { |
| case '?': |
| /* TODO: Make this return the correct value for user-mode. */ |
| snprintf(buf, sizeof(buf), "T%02xthread:%02x;", GDB_SIGNAL_TRAP, |
| cpu_index(ENV_GET_CPU(s->c_cpu))); |
| put_packet(s, buf); |
| /* Remove all the breakpoints when this query is issued, |
| * because gdb is doing and initial connect and the state |
| * should be cleaned up. |
| */ |
| gdb_breakpoint_remove_all(); |
| break; |
| case 'c': |
| if (*p != '\0') { |
| addr = strtoull(p, (char **)&p, 16); |
| gdb_set_cpu_pc(s, addr); |
| } |
| s->signal = 0; |
| gdb_continue(s); |
| return RS_IDLE; |
| case 'C': |
| s->signal = gdb_signal_to_target (strtoul(p, (char **)&p, 16)); |
| if (s->signal == -1) |
| s->signal = 0; |
| gdb_continue(s); |
| return RS_IDLE; |
| case 'v': |
| if (strncmp(p, "Cont", 4) == 0) { |
| int res_signal, res_thread; |
| |
| p += 4; |
| if (*p == '?') { |
| put_packet(s, "vCont;c;C;s;S"); |
| break; |
| } |
| res = 0; |
| res_signal = 0; |
| res_thread = 0; |
| while (*p) { |
| int action, signal; |
| |
| if (*p++ != ';') { |
| res = 0; |
| break; |
| } |
| action = *p++; |
| signal = 0; |
| if (action == 'C' || action == 'S') { |
| signal = strtoul(p, (char **)&p, 16); |
| } else if (action != 'c' && action != 's') { |
| res = 0; |
| break; |
| } |
| thread = 0; |
| if (*p == ':') { |
| thread = strtoull(p+1, (char **)&p, 16); |
| } |
| action = tolower(action); |
| if (res == 0 || (res == 'c' && action == 's')) { |
| res = action; |
| res_signal = signal; |
| res_thread = thread; |
| } |
| } |
| if (res) { |
| if (res_thread != -1 && res_thread != 0) { |
| env = find_cpu(res_thread); |
| if (env == NULL) { |
| put_packet(s, "E22"); |
| break; |
| } |
| s->c_cpu = env; |
| } |
| if (res == 's') { |
| cpu_single_step(s->c_cpu, sstep_flags); |
| } |
| s->signal = res_signal; |
| gdb_continue(s); |
| return RS_IDLE; |
| } |
| break; |
| } else { |
| goto unknown_command; |
| } |
| case 'k': |
| #ifdef CONFIG_USER_ONLY |
| /* Kill the target */ |
| fprintf(stderr, "\nQEMU: Terminated via GDBstub\n"); |
| exit(0); |
| #endif |
| case 'D': |
| /* Detach packet */ |
| gdb_breakpoint_remove_all(); |
| gdb_syscall_mode = GDB_SYS_DISABLED; |
| gdb_continue(s); |
| put_packet(s, "OK"); |
| break; |
| case 's': |
| if (*p != '\0') { |
| addr = strtoull(p, (char **)&p, 16); |
| gdb_set_cpu_pc(s, addr); |
| } |
| cpu_single_step(s->c_cpu, sstep_flags); |
| gdb_continue(s); |
| return RS_IDLE; |
| case 'F': |
| { |
| target_ulong ret; |
| target_ulong err; |
| |
| ret = strtoull(p, (char **)&p, 16); |
| if (*p == ',') { |
| p++; |
| err = strtoull(p, (char **)&p, 16); |
| } else { |
| err = 0; |
| } |
| if (*p == ',') |
| p++; |
| type = *p; |
| if (s->current_syscall_cb) { |
| s->current_syscall_cb(s->c_cpu, ret, err); |
| s->current_syscall_cb = NULL; |
| } |
| if (type == 'C') { |
| put_packet(s, "T02"); |
| } else { |
| gdb_continue(s); |
| } |
| } |
| break; |
| case 'g': |
| cpu_synchronize_state(s->g_cpu); |
| env = s->g_cpu; |
| len = 0; |
| for (addr = 0; addr < num_g_regs; addr++) { |
| reg_size = gdb_read_register(s->g_cpu, mem_buf + len, addr); |
| len += reg_size; |
| } |
| memtohex(buf, mem_buf, len); |
| put_packet(s, buf); |
| break; |
| case 'G': |
| cpu_synchronize_state(s->g_cpu); |
| env = s->g_cpu; |
| registers = mem_buf; |
| len = strlen(p) / 2; |
| hextomem((uint8_t *)registers, p, len); |
| for (addr = 0; addr < num_g_regs && len > 0; addr++) { |
| reg_size = gdb_write_register(s->g_cpu, registers, addr); |
| len -= reg_size; |
| registers += reg_size; |
| } |
| put_packet(s, "OK"); |
| break; |
| case 'm': |
| addr = strtoull(p, (char **)&p, 16); |
| if (*p == ',') |
| p++; |
| len = strtoull(p, NULL, 16); |
| if (target_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 0) != 0) { |
| put_packet (s, "E14"); |
| } else { |
| memtohex(buf, mem_buf, len); |
| put_packet(s, buf); |
| } |
| break; |
| case 'M': |
| addr = strtoull(p, (char **)&p, 16); |
| if (*p == ',') |
| p++; |
| len = strtoull(p, (char **)&p, 16); |
| if (*p == ':') |
| p++; |
| hextomem(mem_buf, p, len); |
| if (target_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 1) != 0) { |
| put_packet(s, "E14"); |
| } else { |
| put_packet(s, "OK"); |
| } |
| break; |
| case 'p': |
| /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable. |
| This works, but can be very slow. Anything new enough to |
| understand XML also knows how to use this properly. */ |
| if (!gdb_has_xml) |
| goto unknown_command; |
| addr = strtoull(p, (char **)&p, 16); |
| reg_size = gdb_read_register(s->g_cpu, mem_buf, addr); |
| if (reg_size) { |
| memtohex(buf, mem_buf, reg_size); |
| put_packet(s, buf); |
| } else { |
| put_packet(s, "E14"); |
| } |
| break; |
| case 'P': |
| if (!gdb_has_xml) |
| goto unknown_command; |
| addr = strtoull(p, (char **)&p, 16); |
| if (*p == '=') |
| p++; |
| reg_size = strlen(p) / 2; |
| hextomem(mem_buf, p, reg_size); |
| gdb_write_register(s->g_cpu, mem_buf, addr); |
| put_packet(s, "OK"); |
| break; |
| case 'Z': |
| case 'z': |
| type = strtoul(p, (char **)&p, 16); |
| if (*p == ',') |
| p++; |
| addr = strtoull(p, (char **)&p, 16); |
| if (*p == ',') |
| p++; |
| len = strtoull(p, (char **)&p, 16); |
| if (ch == 'Z') |
| res = gdb_breakpoint_insert(addr, len, type); |
| else |
| res = gdb_breakpoint_remove(addr, len, type); |
| if (res >= 0) |
| put_packet(s, "OK"); |
| else if (res == -ENOSYS) |
| put_packet(s, ""); |
| else |
| put_packet(s, "E22"); |
| break; |
| case 'H': |
| type = *p++; |
| thread = strtoull(p, (char **)&p, 16); |
| if (thread == -1 || thread == 0) { |
| put_packet(s, "OK"); |
| break; |
| } |
| env = find_cpu(thread); |
| if (env == NULL) { |
| put_packet(s, "E22"); |
| break; |
| } |
| switch (type) { |
| case 'c': |
| s->c_cpu = env; |
| put_packet(s, "OK"); |
| break; |
| case 'g': |
| s->g_cpu = env; |
| put_packet(s, "OK"); |
| break; |
| default: |
| put_packet(s, "E22"); |
| break; |
| } |
| break; |
| case 'T': |
| thread = strtoull(p, (char **)&p, 16); |
| env = find_cpu(thread); |
| |
| if (env != NULL) { |
| put_packet(s, "OK"); |
| } else { |
| put_packet(s, "E22"); |
| } |
| break; |
| case 'q': |
| case 'Q': |
| /* parse any 'q' packets here */ |
| if (!strcmp(p,"qemu.sstepbits")) { |
| /* Query Breakpoint bit definitions */ |
| snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x", |
| SSTEP_ENABLE, |
| SSTEP_NOIRQ, |
| SSTEP_NOTIMER); |
| put_packet(s, buf); |
| break; |
| } else if (strncmp(p,"qemu.sstep",10) == 0) { |
| /* Display or change the sstep_flags */ |
| p += 10; |
| if (*p != '=') { |
| /* Display current setting */ |
| snprintf(buf, sizeof(buf), "0x%x", sstep_flags); |
| put_packet(s, buf); |
| break; |
| } |
| p++; |
| type = strtoul(p, (char **)&p, 16); |
| sstep_flags = type; |
| put_packet(s, "OK"); |
| break; |
| } else if (strcmp(p,"C") == 0) { |
| /* "Current thread" remains vague in the spec, so always return |
| * the first CPU (gdb returns the first thread). */ |
| put_packet(s, "QC1"); |
| break; |
| } else if (strcmp(p,"fThreadInfo") == 0) { |
| s->query_cpu = first_cpu; |
| goto report_cpuinfo; |
| } else if (strcmp(p,"sThreadInfo") == 0) { |
| report_cpuinfo: |
| if (s->query_cpu) { |
| snprintf(buf, sizeof(buf), "m%x", |
| cpu_index(ENV_GET_CPU(s->query_cpu))); |
| put_packet(s, buf); |
| s->query_cpu = s->query_cpu->next_cpu; |
| } else |
| put_packet(s, "l"); |
| break; |
| } else if (strncmp(p,"ThreadExtraInfo,", 16) == 0) { |
| thread = strtoull(p+16, (char **)&p, 16); |
| env = find_cpu(thread); |
| if (env != NULL) { |
| CPUState *cpu = ENV_GET_CPU(env); |
| cpu_synchronize_state(env); |
| len = snprintf((char *)mem_buf, sizeof(mem_buf), |
| "CPU#%d [%s]", cpu->cpu_index, |
| cpu->halted ? "halted " : "running"); |
| memtohex(buf, mem_buf, len); |
| put_packet(s, buf); |
| } |
| break; |
| } |
| #ifdef CONFIG_USER_ONLY |
| else if (strncmp(p, "Offsets", 7) == 0) { |
| TaskState *ts = s->c_cpu->opaque; |
| |
| snprintf(buf, sizeof(buf), |
| "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx |
| ";Bss=" TARGET_ABI_FMT_lx, |
| ts->info->code_offset, |
| ts->info->data_offset, |
| ts->info->data_offset); |
| put_packet(s, buf); |
| break; |
| } |
| #else /* !CONFIG_USER_ONLY */ |
| else if (strncmp(p, "Rcmd,", 5) == 0) { |
| int len = strlen(p + 5); |
| |
| if ((len % 2) != 0) { |
| put_packet(s, "E01"); |
| break; |
| } |
| hextomem(mem_buf, p + 5, len); |
| len = len / 2; |
| mem_buf[len++] = 0; |
| qemu_chr_be_write(s->mon_chr, mem_buf, len); |
| put_packet(s, "OK"); |
| break; |
| } |
| #endif /* !CONFIG_USER_ONLY */ |
| if (strncmp(p, "Supported", 9) == 0) { |
| snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH); |
| #ifdef GDB_CORE_XML |
| pstrcat(buf, sizeof(buf), ";qXfer:features:read+"); |
| #endif |
| put_packet(s, buf); |
| break; |
| } |
| #ifdef GDB_CORE_XML |
| if (strncmp(p, "Xfer:features:read:", 19) == 0) { |
| const char *xml; |
| target_ulong total_len; |
| |
| gdb_has_xml = 1; |
| p += 19; |
| xml = get_feature_xml(p, &p); |
| if (!xml) { |
| snprintf(buf, sizeof(buf), "E00"); |
| put_packet(s, buf); |
| break; |
| } |
| |
| if (*p == ':') |
| p++; |
| addr = strtoul(p, (char **)&p, 16); |
| if (*p == ',') |
| p++; |
| len = strtoul(p, (char **)&p, 16); |
| |
| total_len = strlen(xml); |
| if (addr > total_len) { |
| snprintf(buf, sizeof(buf), "E00"); |
| put_packet(s, buf); |
| break; |
| } |
| if (len > (MAX_PACKET_LENGTH - 5) / 2) |
| len = (MAX_PACKET_LENGTH - 5) / 2; |
| if (len < total_len - addr) { |
| buf[0] = 'm'; |
| len = memtox(buf + 1, xml + addr, len); |
| } else { |
| buf[0] = 'l'; |
| len = memtox(buf + 1, xml + addr, total_len - addr); |
| } |
| put_packet_binary(s, buf, len + 1); |
| break; |
| } |
| #endif |
| /* Unrecognised 'q' command. */ |
| goto unknown_command; |
| |
| default: |
| unknown_command: |
| /* put empty packet */ |
| buf[0] = '\0'; |
| put_packet(s, buf); |
| break; |
| } |
| return RS_IDLE; |
| } |
| |
| void gdb_set_stop_cpu(CPUArchState *env) |
| { |
| gdbserver_state->c_cpu = env; |
| gdbserver_state->g_cpu = env; |
| } |
| |
| #ifndef CONFIG_USER_ONLY |
| static void gdb_vm_state_change(void *opaque, int running, RunState state) |
| { |
| GDBState *s = gdbserver_state; |
| CPUArchState *env = s->c_cpu; |
| CPUState *cpu = ENV_GET_CPU(env); |
| char buf[256]; |
| const char *type; |
| int ret; |
| |
| if (running || s->state == RS_INACTIVE) { |
| return; |
| } |
| /* Is there a GDB syscall waiting to be sent? */ |
| if (s->current_syscall_cb) { |
| put_packet(s, s->syscall_buf); |
| return; |
| } |
| switch (state) { |
| case RUN_STATE_DEBUG: |
| if (env->watchpoint_hit) { |
| switch (env->watchpoint_hit->flags & BP_MEM_ACCESS) { |
| case BP_MEM_READ: |
| type = "r"; |
| break; |
| case BP_MEM_ACCESS: |
| type = "a"; |
| break; |
| default: |
| type = ""; |
| break; |
| } |
| snprintf(buf, sizeof(buf), |
| "T%02xthread:%02x;%swatch:" TARGET_FMT_lx ";", |
| GDB_SIGNAL_TRAP, cpu_index(cpu), type, |
| env->watchpoint_hit->vaddr); |
| env->watchpoint_hit = NULL; |
| goto send_packet; |
| } |
| tb_flush(env); |
| ret = GDB_SIGNAL_TRAP; |
| break; |
| case RUN_STATE_PAUSED: |
| ret = GDB_SIGNAL_INT; |
| break; |
| case RUN_STATE_SHUTDOWN: |
| ret = GDB_SIGNAL_QUIT; |
| break; |
| case RUN_STATE_IO_ERROR: |
| ret = GDB_SIGNAL_IO; |
| break; |
| case RUN_STATE_WATCHDOG: |
| ret = GDB_SIGNAL_ALRM; |
| break; |
| case RUN_STATE_INTERNAL_ERROR: |
| ret = GDB_SIGNAL_ABRT; |
| break; |
| case RUN_STATE_SAVE_VM: |
| case RUN_STATE_RESTORE_VM: |
| return; |
| case RUN_STATE_FINISH_MIGRATE: |
| ret = GDB_SIGNAL_XCPU; |
| break; |
| default: |
| ret = GDB_SIGNAL_UNKNOWN; |
| break; |
| } |
| snprintf(buf, sizeof(buf), "T%02xthread:%02x;", ret, cpu_index(cpu)); |
| |
| send_packet: |
| put_packet(s, buf); |
| |
| /* disable single step if it was enabled */ |
| cpu_single_step(env, 0); |
| } |
| #endif |
| |
| /* Send a gdb syscall request. |
| This accepts limited printf-style format specifiers, specifically: |
| %x - target_ulong argument printed in hex. |
| %lx - 64-bit argument printed in hex. |
| %s - string pointer (target_ulong) and length (int) pair. */ |
| void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...) |
| { |
| va_list va; |
| char *p; |
| char *p_end; |
| target_ulong addr; |
| uint64_t i64; |
| GDBState *s; |
| |
| s = gdbserver_state; |
| if (!s) |
| return; |
| s->current_syscall_cb = cb; |
| #ifndef CONFIG_USER_ONLY |
| vm_stop(RUN_STATE_DEBUG); |
| #endif |
| va_start(va, fmt); |
| p = s->syscall_buf; |
| p_end = &s->syscall_buf[sizeof(s->syscall_buf)]; |
| *(p++) = 'F'; |
| while (*fmt) { |
| if (*fmt == '%') { |
| fmt++; |
| switch (*fmt++) { |
| case 'x': |
| addr = va_arg(va, target_ulong); |
| p += snprintf(p, p_end - p, TARGET_FMT_lx, addr); |
| break; |
| case 'l': |
| if (*(fmt++) != 'x') |
| goto bad_format; |
| i64 = va_arg(va, uint64_t); |
| p += snprintf(p, p_end - p, "%" PRIx64, i64); |
| break; |
| case 's': |
| addr = va_arg(va, target_ulong); |
| p += snprintf(p, p_end - p, TARGET_FMT_lx "/%x", |
| addr, va_arg(va, int)); |
| break; |
| default: |
| bad_format: |
| fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n", |
| fmt - 1); |
| break; |
| } |
| } else { |
| *(p++) = *(fmt++); |
| } |
| } |
| *p = 0; |
| va_end(va); |
| #ifdef CONFIG_USER_ONLY |
| put_packet(s, s->syscall_buf); |
| gdb_handlesig(s->c_cpu, 0); |
| #else |
| /* In this case wait to send the syscall packet until notification that |
| the CPU has stopped. This must be done because if the packet is sent |
| now the reply from the syscall request could be received while the CPU |
| is still in the running state, which can cause packets to be dropped |
| and state transition 'T' packets to be sent while the syscall is still |
| being processed. */ |
| cpu_exit(s->c_cpu); |
| #endif |
| } |
| |
| static void gdb_read_byte(GDBState *s, int ch) |
| { |
| int i, csum; |
| uint8_t reply; |
| |
| #ifndef CONFIG_USER_ONLY |
| if (s->last_packet_len) { |
| /* Waiting for a response to the last packet. If we see the start |
| of a new command then abandon the previous response. */ |
| if (ch == '-') { |
| #ifdef DEBUG_GDB |
| printf("Got NACK, retransmitting\n"); |
| #endif |
| put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len); |
| } |
| #ifdef DEBUG_GDB |
| else if (ch == '+') |
| printf("Got ACK\n"); |
| else |
| printf("Got '%c' when expecting ACK/NACK\n", ch); |
| #endif |
| if (ch == '+' || ch == '$') |
| s->last_packet_len = 0; |
| if (ch != '$') |
| return; |
| } |
| if (runstate_is_running()) { |
| /* when the CPU is running, we cannot do anything except stop |
| it when receiving a char */ |
| vm_stop(RUN_STATE_PAUSED); |
| } else |
| #endif |
| { |
| switch(s->state) { |
| case RS_IDLE: |
| if (ch == '$') { |
| s->line_buf_index = 0; |
| s->state = RS_GETLINE; |
| } |
| break; |
| case RS_GETLINE: |
| if (ch == '#') { |
| s->state = RS_CHKSUM1; |
| } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) { |
| s->state = RS_IDLE; |
| } else { |
| s->line_buf[s->line_buf_index++] = ch; |
| } |
| break; |
| case RS_CHKSUM1: |
| s->line_buf[s->line_buf_index] = '\0'; |
| s->line_csum = fromhex(ch) << 4; |
| s->state = RS_CHKSUM2; |
| break; |
| case RS_CHKSUM2: |
| s->line_csum |= fromhex(ch); |
| csum = 0; |
| for(i = 0; i < s->line_buf_index; i++) { |
| csum += s->line_buf[i]; |
| } |
| if (s->line_csum != (csum & 0xff)) { |
| reply = '-'; |
| put_buffer(s, &reply, 1); |
| s->state = RS_IDLE; |
| } else { |
| reply = '+'; |
| put_buffer(s, &reply, 1); |
| s->state = gdb_handle_packet(s, s->line_buf); |
| } |
| break; |
| default: |
| abort(); |
| } |
| } |
| } |
| |
| /* Tell the remote gdb that the process has exited. */ |
| void gdb_exit(CPUArchState *env, int code) |
| { |
| GDBState *s; |
| char buf[4]; |
| |
| s = gdbserver_state; |
| if (!s) { |
| return; |
| } |
| #ifdef CONFIG_USER_ONLY |
| if (gdbserver_fd < 0 || s->fd < 0) { |
| return; |
| } |
| #endif |
| |
| snprintf(buf, sizeof(buf), "W%02x", (uint8_t)code); |
| put_packet(s, buf); |
| |
| #ifndef CONFIG_USER_ONLY |
| if (s->chr) { |
| qemu_chr_delete(s->chr); |
| } |
| #endif |
| } |
| |
| #ifdef CONFIG_USER_ONLY |
| int |
| gdb_queuesig (void) |
| { |
| GDBState *s; |
| |
| s = gdbserver_state; |
| |
| if (gdbserver_fd < 0 || s->fd < 0) |
| return 0; |
| else |
| return 1; |
| } |
| |
| int |
| gdb_handlesig (CPUArchState *env, int sig) |
| { |
| GDBState *s; |
| char buf[256]; |
| int n; |
| |
| s = gdbserver_state; |
| if (gdbserver_fd < 0 || s->fd < 0) |
| return sig; |
| |
| /* disable single step if it was enabled */ |
| cpu_single_step(env, 0); |
| tb_flush(env); |
| |
| if (sig != 0) |
| { |
| snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb (sig)); |
| put_packet(s, buf); |
| } |
| /* put_packet() might have detected that the peer terminated the |
| connection. */ |
| if (s->fd < 0) |
| return sig; |
| |
| sig = 0; |
| s->state = RS_IDLE; |
| s->running_state = 0; |
| while (s->running_state == 0) { |
| n = read (s->fd, buf, 256); |
| if (n > 0) |
| { |
| int i; |
| |
| for (i = 0; i < n; i++) |
| gdb_read_byte (s, buf[i]); |
| } |
| else if (n == 0 || errno != EAGAIN) |
| { |
| /* XXX: Connection closed. Should probably wait for another |
| connection before continuing. */ |
| return sig; |
| } |
| } |
| sig = s->signal; |
| s->signal = 0; |
| return sig; |
| } |
| |
| /* Tell the remote gdb that the process has exited due to SIG. */ |
| void gdb_signalled(CPUArchState *env, int sig) |
| { |
| GDBState *s; |
| char buf[4]; |
| |
| s = gdbserver_state; |
| if (gdbserver_fd < 0 || s->fd < 0) |
| return; |
| |
| snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb (sig)); |
| put_packet(s, buf); |
| } |
| |
| static void gdb_accept(void) |
| { |
| GDBState *s; |
| struct sockaddr_in sockaddr; |
| socklen_t len; |
| int fd; |
| |
| for(;;) { |
| len = sizeof(sockaddr); |
| fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len); |
| if (fd < 0 && errno != EINTR) { |
| perror("accept"); |
| return; |
| } else if (fd >= 0) { |
| #ifndef _WIN32 |
| fcntl(fd, F_SETFD, FD_CLOEXEC); |
| #endif |
| break; |
| } |
| } |
| |
| /* set short latency */ |
| socket_set_nodelay(fd); |
| |
| s = g_malloc0(sizeof(GDBState)); |
| s->c_cpu = first_cpu; |
| s->g_cpu = first_cpu; |
| s->fd = fd; |
| gdb_has_xml = 0; |
| |
| gdbserver_state = s; |
| |
| fcntl(fd, F_SETFL, O_NONBLOCK); |
| } |
| |
| static int gdbserver_open(int port) |
| { |
| struct sockaddr_in sockaddr; |
| int fd, val, ret; |
| |
| fd = socket(PF_INET, SOCK_STREAM, 0); |
| if (fd < 0) { |
| perror("socket"); |
| return -1; |
| } |
| #ifndef _WIN32 |
| fcntl(fd, F_SETFD, FD_CLOEXEC); |
| #endif |
| |
| /* allow fast reuse */ |
| val = 1; |
| qemu_setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &val, sizeof(val)); |
| |
| sockaddr.sin_family = AF_INET; |
| sockaddr.sin_port = htons(port); |
| sockaddr.sin_addr.s_addr = 0; |
| ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr)); |
| if (ret < 0) { |
| perror("bind"); |
| close(fd); |
| return -1; |
| } |
| ret = listen(fd, 0); |
| if (ret < 0) { |
| perror("listen"); |
| close(fd); |
| return -1; |
| } |
| return fd; |
| } |
| |
| int gdbserver_start(int port) |
| { |
| gdbserver_fd = gdbserver_open(port); |
| if (gdbserver_fd < 0) |
| return -1; |
| /* accept connections */ |
| gdb_accept(); |
| return 0; |
| } |
| |
| /* Disable gdb stub for child processes. */ |
| void gdbserver_fork(CPUArchState *env) |
| { |
| GDBState *s = gdbserver_state; |
| if (gdbserver_fd < 0 || s->fd < 0) |
| return; |
| close(s->fd); |
| s->fd = -1; |
| cpu_breakpoint_remove_all(env, BP_GDB); |
| cpu_watchpoint_remove_all(env, BP_GDB); |
| } |
| #else |
| static int gdb_chr_can_receive(void *opaque) |
| { |
| /* We can handle an arbitrarily large amount of data. |
| Pick the maximum packet size, which is as good as anything. */ |
| return MAX_PACKET_LENGTH; |
| } |
| |
| static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size) |
| { |
| int i; |
| |
| for (i = 0; i < size; i++) { |
| gdb_read_byte(gdbserver_state, buf[i]); |
| } |
| } |
| |
| static void gdb_chr_event(void *opaque, int event) |
| { |
| switch (event) { |
| case CHR_EVENT_OPENED: |
| vm_stop(RUN_STATE_PAUSED); |
| gdb_has_xml = 0; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| static void gdb_monitor_output(GDBState *s, const char *msg, int len) |
| { |
| char buf[MAX_PACKET_LENGTH]; |
| |
| buf[0] = 'O'; |
| if (len > (MAX_PACKET_LENGTH/2) - 1) |
| len = (MAX_PACKET_LENGTH/2) - 1; |
| memtohex(buf + 1, (uint8_t *)msg, len); |
| put_packet(s, buf); |
| } |
| |
| static int gdb_monitor_write(CharDriverState *chr, const uint8_t *buf, int len) |
| { |
| const char *p = (const char *)buf; |
| int max_sz; |
| |
| max_sz = (sizeof(gdbserver_state->last_packet) - 2) / 2; |
| for (;;) { |
| if (len <= max_sz) { |
| gdb_monitor_output(gdbserver_state, p, len); |
| break; |
| } |
| gdb_monitor_output(gdbserver_state, p, max_sz); |
| p += max_sz; |
| len -= max_sz; |
| } |
| return len; |
| } |
| |
| #ifndef _WIN32 |
| static void gdb_sigterm_handler(int signal) |
| { |
| if (runstate_is_running()) { |
| vm_stop(RUN_STATE_PAUSED); |
| } |
| } |
| #endif |
| |
| int gdbserver_start(const char *device) |
| { |
| GDBState *s; |
| char gdbstub_device_name[128]; |
| CharDriverState *chr = NULL; |
| CharDriverState *mon_chr; |
| |
| if (!device) |
| return -1; |
| if (strcmp(device, "none") != 0) { |
| if (strstart(device, "tcp:", NULL)) { |
| /* enforce required TCP attributes */ |
| snprintf(gdbstub_device_name, sizeof(gdbstub_device_name), |
| "%s,nowait,nodelay,server", device); |
| device = gdbstub_device_name; |
| } |
| #ifndef _WIN32 |
| else if (strcmp(device, "stdio") == 0) { |
| struct sigaction act; |
| |
| memset(&act, 0, sizeof(act)); |
| act.sa_handler = gdb_sigterm_handler; |
| sigaction(SIGINT, &act, NULL); |
| } |
| #endif |
| chr = qemu_chr_new("gdb", device, NULL); |
| if (!chr) |
| return -1; |
| |
| qemu_chr_fe_claim_no_fail(chr); |
| qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive, |
| gdb_chr_event, NULL); |
| } |
| |
| s = gdbserver_state; |
| if (!s) { |
| s = g_malloc0(sizeof(GDBState)); |
| gdbserver_state = s; |
| |
| qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL); |
| |
| /* Initialize a monitor terminal for gdb */ |
| mon_chr = g_malloc0(sizeof(*mon_chr)); |
| mon_chr->chr_write = gdb_monitor_write; |
| monitor_init(mon_chr, 0); |
| } else { |
| if (s->chr) |
| qemu_chr_delete(s->chr); |
| mon_chr = s->mon_chr; |
| memset(s, 0, sizeof(GDBState)); |
| } |
| s->c_cpu = first_cpu; |
| s->g_cpu = first_cpu; |
| s->chr = chr; |
| s->state = chr ? RS_IDLE : RS_INACTIVE; |
| s->mon_chr = mon_chr; |
| s->current_syscall_cb = NULL; |
| |
| return 0; |
| } |
| #endif |